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Everyone is interested in records, weather records, sports records, 
crime statistics, and so on. Record values are kept for almost every 
conceivable phenomenon. What was the coldest day last year (or ever), 
which city has the lowest crime rate, what was the shortest time 
recorded to complete a marathon, who holds the record in eating the 
most number of hot dogs in the shortest period, what was the highest 
stock value thus far? The list could go on and on; there is even a book 
that lists all kinds of records broken during a given year—the well-
known Guinness Book of World Records! Naturally, if there is a subject 
concerning statistical values that interests the majority of people in the 
world, it has to be of interest to statisticians. However, how does one 
relate record values to statistical theory? The easiest way to explain 
this is with some examples. To begin with, consider a sports event: Not 
only do we want to know who holds the record for running 100 meters 
in the Olympics, but we also want to predict the next record-breaking 
time. Similarly, we want to determine if Miami, Florida, will still have 
the highest auto theft rate next year, or will Los Angeles still be the 
most polluted city in the US next year. Or we would like to predict the 
next highest closing price of a particular stock. In all of these ex-
amples, we want to use past data to predict the future. And prediction 
of the future using past data requires statistical theory.  

Besides arising naturally in our day-to-day activities, observing 
record values also has a place in destructive stress testing and industrial 
quality control experiments. In these experiments it is often of interest 
to estimate a guarantee value or a population quantile. Generally, we 
would do this by observing the entire sample and then using the 
appropriate order statistic to estimate the guarantee value or the 
quantile of interest. Instead, we can observe the sample sequentially 
and record only successive minimum or maximum values. Then, 
measurements are made only at “record-setting” items, and the total 
number of measurements made is considerably smaller than n, the total 
sample size. It turns out that we can still estimate the guarantee value 
from these record-setting measurements. This strategy is extremely 
useful when items are available for testing, after they are manufactured, 
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but before they are shipped out. Let us say that we have a shipment of 
wooden beams and we want to make an inference about the breaking 
strength of these beams. We take a sample of fifty beams to test their 
breaking strength. In classical sampling, we would destroy all fifty 
beams. But in the setting of record-breaking data, here is what we 
would do: We stress the first beam until it breaks and record the 
breaking stress. The next beam is then stressed only up to the level that 
broke the first one. If it does not break, we move on to the third beam 
and stress it up to the value that broke the first beam. If the second 
beam breaks, its breaking stress is recorded; then we stress the third 
beam only up to the value that broke the second one. As is obvious, the 
data will consist of lower and lower breaking stress values. Moreover, 
the total number of beams broken will surely be less than fifty. Also as 
mentioned earlier, we will still be able to estimate the required quantile 
or guarantee value based on the statistical theory of successive minima. 
Of course, besides estimating the guarantee value, one may want to 
predict a future record, estimate underlying parameters, or estimate the 
underlying probability distribution function of the variable being 
measured. These and other problems have given rise to a plethora of 
papers and books on record-breaking data. 

However, although record values have been around forever, “record-
breaking data” as it is called, is relatively new to the field of statistics, 
owing its birth to Chandler in 1952. Chandler (1952) studied the 
stochastic behavior of random record values arising from the “classical 
record model,” that is, the record model where the underlying sample 
from which records are observed is considered to consist of 
independent identically distributed observations from a continuous 
probability distribution. Among the many properties that Chandler 
established for the random record sequence, perhaps the most important 
and somewhat surprising one was that the expected value of the waiting 
time between records has infinite expectation. Chandler’s work was 
followed by that of Dwass (1960) and Renyi (1962), who established 
limit theorems for some of the sequences associated with record-
breaking data. Dwass (1964) studied the frequency of records indexed 
by i, an ≤ i ≤ bn and showed that this frequency is asymptotically a 
Poisson count with mean ln(b/a). Afterward, the subject of record 
values caught the attention of several mathematicians and statisticians, 
and work on it increased tremendously. There have been numerous 
articles on moments of records, characterizations, inference from 
records, and the like. One only has to survey the recent statistical 
literature to note the fairly large volume of work that is still being 
carried out in this field. Also, statisticians have started moving away 
from the classical model. There are a number of situations where due to 
improvements in technology or techniques, the underlying population 
may have a trend in it. Hence the classical record-breaking model will 
not provide an adequate explanation for these data. In fact, as soon as 
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the basic “independent, identically distributed” assumption for the 
record model of Chandler is extended to better reflect reality, the 
problem becomes much harder. A perfect example here is the field of 
sports. Improved training techniques, diet, health care, and so on, all 
lead to better performances. Thus the simple record model cannot 
explain sports records due perhaps to the changing underlying 
population. Yang (1975), Ballerini and Resnick (1985), and Smith 
(1988) are just a few of the authors who have moved away from the 
simple model and have studied models that allow for a changing 
population. 

Although the literature on record values is not enormous compared 
to other subject areas in statistics, today there are over 300 papers and 
several books published on record-breaking data. With such a volume 
of work on records and record-breaking data, it is imperative that 
related results be brought together in one place. That has been the 
purpose of most of the books published on record-breaking data and 
that is also the purpose of this book. Most of the earlier literature on 
this topic has focused on the stochastic behavior of records, prediction 
of future record values, and characterization problems. Inference, both 
parametric and nonparametric, followed later. The manuscripts on 
record-breaking data have also followed the same trend. With the 
exception of the book by Arnold et al. (1998), all other books have 
focused on the stochastic behavior of records, characterizations, and 
prediction. Arnold et al. (1998) presented a comprehensive review of 
most of the results on records, including a chapter devoted to the 
results on inference from record-breaking data. However, that chapter 
is somewhat brief. The authors focused mainly on estimation of para-
meters from record-breaking data and not on the general problem of 
parametric and nonparametric inference from such data. Gulati and 
Padgett (1994d) gave a brief survey on estimation from such data up 
until that time. 

The purpose of this present monograph is then to fill the gap 
mentioned above. We focus on cataloging the results on nonparametric 
inference from record-breaking data. The general problem of parametric 
and nonparametric inference from record-breaking data has its birth in 
two articles by Samaniego and Whitaker (1986, 1988). In the first paper 
(Samaniego and Whitaker, 1986), they develop and study the properties 
of the maximum likelihood estimator of the mean of an underlying 
exponential distribution. In their 1988 paper, however, they use record-
breaking data to develop a nonparametric maximum likelihood 
estimator of the underlying distribution function. Under repeated 
sampling, the nonparametric maximum likelihood estimator is shown to 
be strongly consistent and asymptotically normal. Their estimator has 
since been used to develop and study properties of smooth 
nonparametric function estimates by Gulati and Padgett (1992, 1994, 
1995), among others. Besides function estimation from record-breaking 
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data, there are also results on distribution-free tests and nonparametric 
prediction from such data, as well as a paper on nonparametric 
Bayesian estimation from record-breaking data (Tiwari and Zalkikar, 
1991). All of these results are catalogued here. 

In view of the purpose of the monograph, the layout of the book 
follows. First, the problem of record-breaking data is defined and the 
notation introduced. This is done in Chapter 2. We also present a 
summary of the stochastic results on record-breaking data in Chapter 2. 
Because of the existence of several manuscripts on stochastic results 
from record-breaking data, and especially in light of the recent 
monograph by Arnold et al. (1998), the presentation on stochastic 
results is somewhat brief. In Chapter 3, we discuss some of the major 
results on parametric inference from such data. Expressions for the 
estimates of the parameters for various distributions can be found in the 
book by Arnold et al. (1998). Hence they are not repeated here. Work 
along the lines of Samaniego and Whitaker (1986), however, has not 
been discussed by Arnold et al. (1998) and therefore is presented in 
Chapter 3. The main emphasis of this book, however, begins in Chapter 
4. There we tabulate and discuss all the known work on nonparametric 
inference from such data, starting with the distribution-free tests of 
Foster and Stuart (1954), leading up to Samaniego and Whitaker’s 
work. Later chapters present some details of the work done in non-
parametric function estimation and other results in more recent years. 
Finally, we consider models that incorporate trend and give a brief 
outline of some of the work done there. 
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How does one describe record-breaking data in a statistical 
framework? There are several models for such data, and the classical 
record model is described here. This model arises, for example, in 
industrial quality control experiments and destructive stress testing, 
where one records successive minimum values. As mentioned in 
Chapter 1, in such experiments one is often interested in estimating a 
guarantee value or a population quantile. In the classical record model 
this is done by observing the data sequentially and recording only 
successive minimum values (since the quantile of interest is normally 
a lower quantile). Thus, one measures only “record-setting” items and 
in general, the number of measurements made is considerably smaller 
than the total sample size. This “measurement savings” is important 
when the measurement process is costly, time consuming, or de-
structive.   

Consider again the wooden beam example. Suppose a building code 
prohibits the use of a particular type of beam unless it has probability 
at least 0.95 of surviving some severe stress, x (see Glick, 1978). In 
other words, the fifth percentile x0.05 should satisfy x0.05 > x. Since it is 
always better to underestimate the percentile than overestimate it, one 
considers the smallest failure stress observed in laboratory testing. It 
is safe to assume that for a large sample, this point will lie below the 
distribution’s fifth percentile. In fact from Glick (1978), the breaking 
stress of the weakest item in a sample of size 90 lies below the fifth 
percentile with a probability of 0.99; that is, this minimum value will 
be the 0.99 tolerance limit for the fifth percentile of the distribution. 
So we may take a random sample of 90 beams, with our goal being the 
measurement of the breaking stress of the weakest beam. We want to 
destroy only a few of the beams and so record sampling is one way to 
measure the weakest beam. As mentioned in Chapter 1, the breaking 
stress value of the first beam is our first record value. Thereafter, 
successive beams are stressed only up to the value at which the 
previous breakage occurred, with smaller and smaller breaking stress 
values being recorded until the sample has been exhausted. Note, of 
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course, that the last breaking stress value recorded will be the 
breaking stress of the weakest item and the estimate of the required 
tolerance limit. Moreover, on average, we will destroy only about 5 
beams (Glick, 1978), leaving the remainder intact for shipment.  

The verbal description above is now quantified in a more exact 
mathematical framework. Then some stochastic properties and statist-
ical characterizations are briefly summarized in the remainder of this 
chapter. 

 

2.1  Notation and Terminology 
 

The notation and basic statistical framework for the record values 
(successive minima) is now introduced. Let Y1, Y2, . . . be a random 
sample from a continuous cumulative distribution function (c.d.f.) F 
with density function f. Then, since only successive minimum values 
are recorded, the observed data consist of the sequence X1, K1, X2, K2,   
. . . , Xr, Kr, where X1 = Y1, Xi , i = 2, 3, . . . , r, is the ith new minimum, 
and Ki is the number of trials following the observation of Xi to obtain 
a new record (or to exhaust all available observations in the case of i = 
r, Kr). The sampling schemes for generating these data are: 

1) Data are obtained via the inverse sampling scheme, where items 
are presented sequentially and sampling is terminated when the rth 
record is observed. In this case, the total number of items sampled Nr is 
a random variable and Kr is defined to be 1 for convenience. 

2) Records are obtained under the random sampling scheme, that is, 
a random sample, Y1, Y2, . . . , Yn, from c.d.f. F is examined 
sequentially and successive minimum values are recorded. For this 
sampling scheme the number of records Rn obtained is a random 

variable and, given a value of r, ∑ =

r

i iK
1

= n − 1.   

To understand the terminology better, we look at another example. 
Consider the process of measuring the thickness of a manufactured item 
using a micrometer. In order to measure the minimum thickness of n = 
100 items one first measures an item at random. The thickness of this 
item then is X1 = Y1. The gap in the micrometer created by the first item 
serves as a standard in judging subsequent items, and a new measure-
ment is made only if a subsequent item fits inside this gap. Hence, if 
the second measurement is made at the sixth trial, then X2 = Y6, K1 = 5, 
and N2 = 6 (note that N1 is always equal to one). Now the gap created 
by this sixth item serves as a standard for judging subsequent items. 
Once again, by using this method, the number of actual measurements 
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made will be substantially less than 100, and yet it will serve equally 
well in determining the minimum thickness.   

Regardless of the sampling scheme, we define the following 
sequences: {Xi, 1 ≤ i ≤ r} is the record value sequence, {Ni, 1 ≤ i ≤ r} is 
defined to be the record time sequence (note that N1 = 1 by default), 
and finally, {Ki, 1 ≤ i ≤ r} is the interrecord time sequence. With the 
above notation and terminology, we have what is called the Classical 
Record Model. 

 
 

2.2 Stochastic Behavior 
 

The stochastic behavior of the classical record model was first studied 
by Chandler (1952) who showed that the record times (Nis) and the 
interrecord times (Kis) both had infinite expectation, although the mode 
of the Kis was one. Chandler also gave an expression for the joint 
distribution of X1, X2, . . . , Xr, and obtained tables for the percentile 
points for Xi for i = 1, 2, . . . , 9, for the normal and the rectangular 
distributions. 

The fact that N2 has an infinite expectation discouraged many 
statisticians from working on record-breaking data for a while (see 
Galambos, 1978). Development began again with Dwass (1960) and 
Renyi (1962) who gave "strong law of large numbers"- and "central 
limit theorem"-type results for the Rns and the Nis. Dwass (1964) also 
showed the frequency of the record highs among the observations 
indexed by i, an ≤ i ≤ bn, where n is the sample size and 0 < a < b is 
asymptotically a Poisson count with mean ln(b/a). Since Dwass, a 
number of statisticians have investigated the behavior of record values. 
(See Neuts, 1967, Resnick, 1973(a,b,c), and Shorrock, 1972(a,b), 1973, 
for some of the articles on the subject.) Glick (1978) gave an informal 
summary of results to that date. Review articles have also been written 
by Galambos (1978), Nagaraja (1988), and Nevzorov (1987). In 
addition, the topic of records and record-breaking data has been 
discussed in a number of books. Besides the very thorough and 
comprehensive work by Arnold et al. (1998), work on records has been 
reviewed in the books by Galambos (1987), Resnick (1987), and 
Ahsanullah (1995). What follows next is a brief summary of the 
stochastic results about the number of records Rn, record values the Xis, 
the interrecord times Kis, and the record times Nis. For details of these 
results, the reader is referred to the book by Arnold et al. (1998). 
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Record Values 

a) The joint distribution of X1, X2, . . . , Xr is given by the 
probability density function  (Chandler, 1952, and Glick, 1978) 

g(x1, x2, . . . , xr) = f(xr) ∏
−

= −

1
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b) Define H(y) = −ln (1 – F(y)).  Then we have the large sample 
results that  (Resnick, 1973a) 

i) rrxH r /])([ −  is asymptotically normal with mean 0 and 

variance 1, and 

ii) rxH r /)(  converges to one with probability one. 

 
In fact, Resnick (1973a) characterized the three types of limit 

distributions to which the record values Xr can converge as r ∞→ . 
Depending on the underlying distribution F, a record value sequence 
satisfies exactly one of the following convergences in distribution as r 

∞→ . 
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where Φ(x) denotes the standard normal distribution function.  
 
Frequency of Records  
 

Results for the statistical behavior of the number of records Rn in a 
random sample of size n are listed next: 

a) E(Rn) = 
n

1

3

1

2

1
1 ++++ L  (Glick, 1978); 

 

b) Var(Rn) = ∑∑
==

−
n

i

n

i ii
1

2
1

11  (Glick, 1978). 

 
c) [ln(Rn) – n]/n1/2  is asymptotically normal with mean zero and 

variance one  (Resnick, 1973c). 
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d) Rn/ln(n) converges to one with probability one (or almost surely, 
a.s.) as the sample size n ∞→  (Renyi, 1962). That is, as n increases, 
about ln(n) records will be found in a random sample of n values. 

e) The frequency of record highs among the observations indexed 
by i, an ≤ i ≤ bn (0 < a < b) is asymptotically a Poisson count with 
mean ln(b/a) (Dwass, 1964). 
 
Record Times 
 

The record times Ni also have interesting stochastic properties, as 
described next. 

a) The value of Ni does not depend on the underlying distribution 
function (Chandler, 1952). 

b) rrN r /])[ln( −  is asymptotically normal with mean 0 and 

variance 1  (Renyi, 1962, Resnick, 1973c). 

c)  )ln(/ rN r
 converges to one with probability one as the number of 

records r ∞→  (Renyi, 1962, Dwass, 1960, and Galambos, 1978). 

d)  The distribution of the ratio 1/ +rr NN  is asymptotically uniform 

over the unit interval (Tata, 1969).  

e)  The successive ratios 1/ +rr NN , 21 / ++ rr NN , . . . are asymptot-

ically independent uniform variates  (Shorrock, 1972b and Resnick, 
1973c). 
 
Waiting Time Between Records 
 

For the interrecord time sequence, perhaps the most surprising result is 
the infinite expected value, the first property below.  The asymptotic 
distributional behavior of Kr is similar to that of Nr. 

a) E(Ki) = ∞  for all i, although the mode of the Kis is 1   
(Chandler, 1952). 

b) rrKr /])[ln( −  is asymptotically normal with mean 0 and 

variance 1  (Neuts, 1967). 

c) )ln(/ rKr
 converges to one with probability one as r ∞→   

(Neuts, 1967). 
 

In addition to the brief summary presented above of some of the 
main results on records, it can be shown that the record time sequence, 
the record-value sequence, and the sequence of the number of records 
each forms a Markov chain. There are also results on the moments of 
the record value sequence (both parametric and nonparametric) and on 
characterizations. Once again, the reader is referred to the book by 
Arnold et al. (1998) for a detailed discussion on all of these results. 


