
Real World .NET
Applications

BUDI KURNIAWAN

*0821_ch00_FINAL 2/19/03 5:18 AM Page i

Real World .NET Applications

Copyright ©2003 by Budi Kurniawan

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-082-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Alwi Wijaya

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen Watterson,
John Zukowski

Assistant Publisher: Grace Wong

Project Managers: Sofia Marchant, Laura Cheu

Copy Editor: Kim Wimpsett

Compositor: Diana Van Winkle, Van Winkle Design Group

Artists: Kurt Krames, Cara Brunk

Indexer: Valerie Perry

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged
to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully
download the code.

*0821_ch00_FINAL 2/19/03 5:18 AM Page ii

CHAPTER 5

Developing an FTP
Client Application

FILE TRANSFER IS an important networking task, and File Transfer Protocol (FTP)
client applications are still in wide use despite the ever-increasing popularity of
the Web. The FTP client application built for this chapter complies with the
current standard as specified in RFC959 by the World Wide Web Consortium
(www.w3.org); you can use it to connect to and engage in file transfer with
standard FTP servers. The main purpose of developing this application is to
show how to work with sockets in the .NET Framework.

Overview of the Chapter

This chapter starts by presenting a general overview of sockets and continues with
FTP and the project itself. In this chapter, you will find the following sections:

• “Working with Sockets”: This section introduces sockets and explains how
to use the System.Net.Sockets.Socket class and other related classes for
network programming.

• “Understanding FTP”: This section discusses the protocol for file transfer as
specified in RFC959.

• “Creating an FTP Application Step by Step”: This section covers a simple
console application that is similar to the ftp.exe program included in the
UNIX/Linux or Windows operating systems. This serves as an introduction
to the chapter’s FTP project.

• “Implementing the Project”: This section contains a detailed discussion on
the FTP client application with a Graphical User Interface (GUI).

333

*0821_ch05_FINAL 2/18/03 8:57 PM Page 333

Working with Sockets

A socket is an end point of a connection. It is a descriptor that lets an application
read from and write to the network. Using sockets, client applications and server
applications can communicate by sending and receiving streams of bytes over
connections. To send a message to another socket used in a software application,
you need to know not only the machine’s Internet Protocol (IP) address that hosts
the software application but also the software’s process identifier in that machine.
A unique number, called a port, identifies a software process in a machine.
Therefore, to send a message from a socket in one application to another socket in
another connection, you need to know the machine’s IP address and the appli-
cation’s port number.

In the .NET Framework, the System.Net.Sockets.Socket class represents a
socket. This class is an implementation of the Sockets Application Programming
Interface (API), which is also known as the Berkeley sockets interface. The Sockets
API was developed in the early 80s at the University of California at Berkeley for
the 4.1c release of Berkeley Software Distribution (BSD) Unix. This distribution
contained an early version of the Internet protocols.

You can use the System.Net.Sockets.Socket class as a socket in a server appli-
cation as well as in a client application. It also allows both synchronous and
asynchronous operations. This chapter only covers using the Socket class in a
client application. For more details on using this class in a server application,
you should consult the .NET Framework documentation.

Instantiating a Socket Object

Instantiating a socket object requires you to pass three arguments to its constructor.

Public Sub New(_

ByVal addressFamily As AddressFamily, _

ByVal socketType As SocketType, _

ByVal protocolType As ProtocolType _

)

AddressFamily, SocketType, and ProtocolType are enumerations that are part of
the System.Net.Sockets namespace.

An AddressFamily member defines the addressing scheme that a Socket object
uses to resolve an address. For socket applications that will work on the Internet,
you use InterNetwork.

Chapter 5

334

*0821_ch05_FINAL 2/18/03 8:57 PM Page 334

SocketType determines the type of socket. For this FTP client application, you
will use the Stream type. This type of socket supports two-way, connection-based
byte streams.

ProtocolType specifies the type of the low-level protocol that the socket uses
to communicate. You must use a stream socket with the Transmission Control
Protocol (TCP) type and the InterNetwork address family.

Therefore, instantiating a Socket object for your application requires the
following code:

Dim mySocket As New Socket(AddressFamily.InterNetwork, _

SocketType.Stream, ProtocolType.Tcp)

The arguments you pass to the constructor are available in the following read-
only properties: AddressFamily, SocketType, and ProtocolType.

Connecting to a Remote Server

Once you have a socket instance, you can connect to a remote server using the
Socket class’s Connect method. The Connect method attempts to connect to a
remote server synchronously. It waits until a connection attempt is successful or
has failed before releasing control to the next line in the program. Even though
this method is easy to use, there is some preliminary work before you can use this
method to connect to a remote server. Consider the Connect method signature:

Public Sub Connect(ByVal remoteEP As EndPoint)

It accepts an argument: an instance of System.Net.EndPoint.
The abstract EndPoint class represents a network address and has a subclass:
System.Net.IPEndPoint. When using the Connect method, you typically pass an
IPEndPoint object containing the IP address and port number of the remote server
to which you want to connect. The question will then be, “How do you construct
an IPEndPoint object for your socket to connect to a remote server?”

Now, look at the IPEndPoint class definition. It has two constructors:

Public Sub New(ByVal address As Long, ByVal port As Integer)

Public Sub New(ByVal address As IPAddress, ByVal port As Integer)

Of these two constructors, the second is usually used because IP addresses are
dotted-quad notation such as 129.36.128.44 and, as you soon will see, in the .NET
socket programming, it is easier to get an IP address in this notation than a Long.
However, the two constructors are actually similar. It is just that the remote IP

Developing an FTP Client Application

335

*0821_ch05_FINAL 2/18/03 8:57 PM Page 335

address in the first constructor is a Long, whereas in the second constructor it is a
System.Net.IPAddress object. Whichever constructor you choose, you need to have
an IP address and the port number of the remote server. The port number is
usually not a problem because popular services are allocated default port
numbers. For instance, HTTP uses port 80, Telnet uses port 25, and FTP uses
port 21.

The IP address is not normally directly available because it is easier to
remember domain names such as microsoft.com or amazon.com rather than the IP
addresses mapped to them. With this in mind, you need to resolve a domain name
to obtain the IP address of the remote server to which you would like to connect.
In the event, to obtain an IPAddress instance that you can use to connect to a
remote server, you need the following two other classes: System.Net.Dns and
System.Net.IPHostEntry.

The Dns class is a final class that retrieves information about a specific host
from the Internet Domain Name System (DNS)—hence the name Dns. It is mainly
used for its Resolve method to obtain a set of IP addresses mapped to a domain
name. The Resolve method returns an IPHostEntry object that contains an array
of IP addresses. To obtain these IP addresses, you use the IPHostEntry class’s
AddressList property.

For example, the following code displays all IP addresses mapped to a DNS
name:

Try

Dim server As String = "microsoft.com" 'or any other domain name

Dim hostEntry As IPHostEntry = Dns.Resolve(server)

Dim ipAddresses As IPAddress() = hostEntry.AddressList

Console.WriteLine(server & " is mapped to")

Dim ipAddress As IPAddress

For each ipAddress In ipAddresses

Console.WriteLine(ipAddress.ToString())

Next

Catch e As Exception

Console.WriteLine(e.ToString())

End Try

When run, the code will display all IP addresses mapped to the DNS name
microsoft.com.

Chapter 5

336

*0821_ch05_FINAL 2/18/03 8:57 PM Page 336

If a DNS name is mapped to more than one IP address, you can use any of
those addresses, even though people usually use the first one. The reason for
choosing the first one is that a DNS name is often mapped to one IP address only.
You can obtain the first IP address mapped to a DNS name using the following
code:

HostEntry.AddressList(0)

What is more important, once you get an IPAddress object, is that you can
construct an IPEndPoint object to connect to a remote server. If the connection
is successful, the Socket instance will set its Connected property to True. A pro-
grammer often checks the value of this property before performing other
operations on the socket instance because a server application can close a
connection after a period of time lapses.

To close a connection explicitly when you are done with a socket, you use
the Close method. Usually, you need to call the Shutdown method prior to invoking
Close to flush all pending data.

Sending and Receiving Streams

After a socket is connected to a remote machine, you can use it to send and
receive data. To send data in synchronous mode, you use the Send method. You
must place the data you send in an array of bytes. There are four overloads of the
Send method, all of which return an Integer indicating the number of bytes sent.

The first overload is the simplest and the easiest to use of the four. It has the
following signature:

Overloads Public Function Send(ByVal buffer() As Byte) As Integer

where buffer is an array of Byte containing the data you want to send. Using this
overload, all data in the buffer will be sent.

The second overload allows you to send all data in the buffer and specify the
bitwise combination of the System.Net.Sockets.SocketFlags enumeration
members. It has the following signature:

Overloads Public Function Send(_

ByVal buffer() As Byte, _

ByVal socketFlags As SocketFlags _

) As Integer

Developing an FTP Client Application

337

*0821_ch05_FINAL 2/18/03 8:57 PM Page 337

The third overload allows you to send all or part of the data in the buffer and
specify the bitwise combination of the SocketFlags enumeration:

Overloads Public Function Send(_

ByVal buffer() As Byte, _

ByVal size As Integer, _

ByVal socketFlags As SocketFlags _

) As Integer

In this overload, size is the number of bytes to be sent.
The last overload is similar to the third overload, but it also allows you to specify

an offset position in the buffer to begin sending data. Its signature is as follows:

Overloads Public Function Send(_

ByVal buffer() As Byte, _

ByVal offset As Integer, _

ByVal size As Integer, _

ByVal socketFlags As SocketFlags _

) As Integer

In this overload, offset is the offset position.
To receive data synchronously, you use the Receive method. This method also

has four overloads that are similar to the Send method overloads. The signatures of
the overloads are as follows:

Overloads Public Function Receive(ByVal buffer() As Byte) As Integer

Overloads Public Function Receive(_

ByVal buffer() As Byte, _

ByVal socketFlags As SocketFlags _

) As Integer

Overloads Public Function Receive(_

ByVal buffer() As Byte, _

ByVal size As Integer, _

ByVal socketFlags As SocketFlags _

) As Integer

Overloads Public Function Receive(_

ByVal buffer() As Byte, _

ByVal offset As Integer, _

ByVal size As Integer, _

ByVal socketFlags As SocketFlags _

) As Integer

Chapter 5

338

*0821_ch05_FINAL 2/18/03 8:57 PM Page 338

When using the Receive method, you can use the Socket class’s Available
property, which specifies the number of bytes of data received and is available to
be read.

Understanding FTP

RFC959 specifies the protocol for file transfer and is downloadable from
www.w3.org/Protocols/rfc959/A3_FTP_RFCs.html. This protocol defines how an
FTP client application and an FTP server must communicate.

Just like any client-server application, an FTP server should be available all
the time and a server does not know anything about its clients. It is always the
client that initiates a connection with the server. Before any file transfer can
happen, a client needs to connect to the FTP server and log in with a username
and a password. Some FTP servers allow anyone to access some or all of their
content by requesting them to log in using an anonymous account—in other
words, by using “anonymous” as the username and their email address as the
password.

In FTP, two connections need to be established between a client and an FTP
server. The first connection, the control connection, remains open during the
whole session and acts as the communication channel the client uses to send
requests to the server and for the server to send responses to those requests. The
second connection is the data connection used to transfer files and other data.
This connection opens just before some data need to be transferred. The data
connection closes right after the data transfer.

Typically, the “conversation” on the control channel after a connection is
established goes like this:

1. Server: OK, you are now connected. Tell me what you want.

2. Client: I would like to log in. Here is my username: “James.”

3. Server: Username received. Now, send me your password.

4. Client: My password is “s3m1c0nduct0r.”

By sending the username and password, the client tries to log in. If the login
fails, the server asks the client to send the password again. If it is successful, an
FTP session starts and file transfer can begin. The server terminates the session if
it does not hear anything from the client within some period of time, usually 900
seconds.

Developing an FTP Client Application

339

*0821_ch05_FINAL 2/18/03 8:57 PM Page 339

The client can start transferring files between itself and the server. Again, the
“conversation” goes like the following:

1. Client: Please send me companySecret.doc.

2. Server: Here you go. I am sending it from port x.

The client then uses another socket instance and tries to connect to the IP
address and port specified by the server. Once connected at this port, the server
starts sending the file. When all the data is sent, the server automatically closes the
data connection. Then the server uses the control channel to send the client
the following message:

Server: Connection complete.
A data connection also opens when the client needs to transfer a file or

when the server needs to send the list of files and subdirectories in the specified
directory. What really happens is of course more technical than the previous
description. However, you should have the general idea.

Using FTP Commands

In a conversation between an FTP client application and an FTP server, the client
sends a series of FTP commands and the server replies to each command sent by
the client. The next client operation is determined by the previous server’s reply.

Table 5-1 describes the FTP command that a client application can send to
the server.

Table 5-1. FTP Commands

COMMAND TYPE DESCRIPTION

USER Access control Sends the username to the server to log in. This is
normally the first command sent by the client after a
control connection is established.

PASS Access control Sends the user password to the server to log in. This is
normally the command that must be sent immediately
after the USER command is sent.

ACCT Access control Sends the user’s account information. Some FTP servers
may require the user’s account information to log in,
and some may not. If required, this command must be
sent right after the server sends the response to the
client’s PASS command. This response also determines
whether the ACCT command needs to be sent. If the
server sends a 332 cod to the client’s PASS command,
the ACCT command must be sent.

(Continued)

Chapter 5

340

*0821_ch05_FINAL 2/18/03 8:57 PM Page 340

Table 5-1. FTP Commands (Continued)

COMMAND TYPE DESCRIPTION

CWD Access control Changes the server’s working directory.

CDUP Access control Changes to the parent directory. This is a special case
for the CWD command.

SMNT Access control Mounts a different file system data structure without
altering the client’s login or accounting information.

REIN Access control Terminates the client, flushing all input/output and
account information. Upon receipt of this command,
the server leaves the control connection open.

QUIT Access control Terminates the client and closes the control connection.
If file transfer is in progress when this command is
received, the connection remains open for the server to
send the file transfer completion reply code. Afterward,
the connection closes.

PORT Transfer Specifies the data port to be used in the data
connection. This command is normally not necessary
because there are defaults for both the user and server
data ports.

PASV Transfer Asks the server to become passive—in other words,
requests the server to listen on a data port and to wait
for a connection rather than initiate one upon receipt of
a file transfer command. The server replies by sending
the host address and port number this server is
listening on for the next file transfer.

TYPE Transfer Specifies the representation type—in other words,
whether the representation is ASCII, EBCDIC, or
Image (binary).

STRU Transfer Specifies the file structure.

MODE Transfer Specifies the transfer mode (Stream, Block, or
Compressed). The default is Stream.

RETR Service Requests the transfer of the specified file from the
server.

STOR Service Asks the server to accept a file from the client. If a file
with the same name already exists in the working
directory, the file will be overwritten.

STOU Service Similar to STOR, but the file is saved in a different name.
The new filename is created in the current directory
under a name unique to that directory.

APPE Service Asks the server to accept a file from the client. If a file
with the same name already exists in the working
directory, the transferred file will be appended to the
existing file.

(Continued)

Developing an FTP Client Application

341

*0821_ch05_FINAL 2/18/03 8:57 PM Page 341

Table 5-1. FTP Commands (Continued)

COMMAND TYPE DESCRIPTION

ALLO Service Requests the server to reserve sufficient storage to
accommodate the new file to be transferred.

REST Service Restarts a new file transfer.

RNFR Service Specifies the name of the file to be renamed. This
command must be followed immediately by the RNTO
command.

RNTO Service Specifies the new name for the file to be renamed.

ABOR Service Aborts the previous FTP service command.

DELE Service Deletes the specified file.

RMD Service Removes directory.

MKD Service Makes a new directory

PWD Service Prints the working directory.

LIST Service Requests the list of files/subdirectories in the specified
directory and information on each individual
file/subdirectory such as file size, modified date,
and so on.

NLST Service Requests the list of files/subdirectories in the specified
directory without information about each individual
file/subdirectory.

SITE Service Asks the server to provide services specific to its system
that are essential to file transfer but not sufficiently
universal to be included a command in the protocol.

SYST Service Inquires about the server’s operating system.

STAT Service Inquires about the status of a file transfer.

HELP Service Requests some helpful information regarding the
server’s implementation status over the control
connection to the client.

NOOP Service No operation.

You terminate each FTP command with a carriage-return line feed. For
example, the following code connects to ftp.microsoft.com and sends the USER
command indicating the username James:

Private server As String = "ftp.microsoft.com"

Private port As Integer = 21

Private userName As String = "James"

Private controlSocket As Socket

Try

controlSocket = New _

Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp)

controlSocket.Connect(New IPEndPoint(Dns.Resolve(server).AddressList(0), port))

Chapter 5

342

*0821_ch05_FINAL 2/18/03 8:57 PM Page 342

If controlSocket.Connected Then

Console.WriteLine("Connected. Waiting for reply...")

Dim bytes(511) As Byte ' an array of 512 bytes

Dim receivedByteCount As Integer

' receive the server's response on successful connect

receivedByteCount = controlSocket.Receive(bytes)

' send the USER command

Dim command As String

command = "USER " & userName & ControlChars.CrLf

controlSocket.Send(Encoding.ASCII.GetBytes(command), command.Length, 0)

End If

Catch

End Try

An FTP connection carries a two-way dialogue between the FTP server and
the client application. The FTP server sends a reply to any command sent by the
client. To understand how the conversation takes place, it is important to under-
stand the server’s replies.

Sending FTP Replies

An FTP server replies to every FTP command from a client. These replies ensure
that requests and actions are synchronized during the process of file transfer. They
are also useful so that the client always know the state of the server.

An FTP command generates one or more replies. For example, a USER
command makes the server send a reply requesting the client to send the PASS
command. Some commands generate more replies. An example of multiple
replies is when an FTP server is about to send a file to a client. First, the server
sends a reply notifying the client that the file transfer process will commence.
After the file transfer finishes and the data connection closes, the server sends
the second reply telling the client that the file transfer has completed.

An FTP reply consists of a reply code followed by a space and some
description. A reply code is always a three-digit number specified in RFC959, but
the descriptions can be different from one server implementation to another. An
FTP client should only rely on the reply code.

Each of the three digits in a reply code has special meaning. The first digit is
the most important and indicates whether the FTP command is successful, has
failed, or is incomplete. There are five possible values for the first digit in the reply
code: 1, 2, 3, 4, and 5.

Table 5-2 describes the meaning of each possible value of the first digit in a
reply code.

Developing an FTP Client Application

343

*0821_ch05_FINAL 2/18/03 8:57 PM Page 343

Table 5-2. The First Digit in an FTP Reply

VALUE DESCRIPTION

1 Positive preliminary reply. The requested action is being initiated; expect

another reply before proceeding with a new command. This type of reply

indicates that the command was accepted and the client may now pay

attention to the data connections for implementations where simultaneous

monitoring is difficult.

2 Positive completion reply. The requested action has been successfully

completed. A new request may be initiated.

3 Positive intermediate reply. The command has been accepted, but the

requested action will not be active, pending receipt of further information.

The user should send another command specifying this information.

4 Transient negative completion reply. The command was not accepted and the

requested action did not take place, but the error condition is temporary and

the action may be requested again. The user should return to the beginning of

the command sequence, if any. Note that it is difficult to assign a meaning to

transient, particularly when two distinct sites (server and client) have to agree

on the interpretation.

5 Permanent negative completion reply. The command was not accepted and

the requested action did not take place. The client is discouraged from

repeating the exact request (in the same sequence).

Table 5-3 describes the meaning of each possible value of the second digit in a
reply code.

Table 5-3. The Second Digit in an FTP Reply

VALUE DESCRIPTION

0 These replies refer to syntax errors, syntactically correct commands that do

not fit any functional category, and unimplemented or superfluous

commands.

1 These are replies to requests for information, such as status or help.

2 These replies refer to the control and data connections.

3 Authentication and accounting. These are replies for the login process and

accounting procedures.

4 Unspecified yet.

5 These replies indicate the status of the server file system vis-à-vis the

requested transfer or other file system action.

Chapter 5

344

*0821_ch05_FINAL 2/18/03 8:57 PM Page 344

The third digit of the reply code gives a finer gradation of the meaning indi-
cated by the second digit. Table 5-4 should make it clearer.

Table 5-4. FTP Reply Codes in Numerical Order

VALUE DESCRIPTION

110 Restart marker reply.

120 Service ready in nnn minutes.

125 Data connection already open; transfer starting.

150 File status OK; about to open data connection.

200 Command OK.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

212 Directory status.

213 File status.

214 Help message.

215 NAME system type, where NAME is an official system name from the list in

the Assigned Numbers document.

220 Service ready for new user.

221 Service closing control connection.

225 Data connection open; no transfer in progress.

226 Closing data connection. Request file action successful (for example, file

transfer or file abort).

227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

230 User logged in; proceed.

250 Requested file action OK, completed.

257 "PATHNAME" created.

331 Username OK; need password.

332 Need account for login.

350 Requested file action pending further information.

421 Service not available, closing control connection. This may be a reply to any

command if the service knows it must shut down.

425 Cannot open data connection.

426 Connection closed; transfer aborted.

450 Requested file action not taken. File unavailable (for example, file busy).

451 Requested action aborted: local error in processing.

(Continued)

Developing an FTP Client Application

345

*0821_ch05_FINAL 2/18/03 8:57 PM Page 345

Table 5-4. FTP Reply Codes in Numerical Order (Continued)

VALUE DESCRIPTION

452 Requested action not taken. Insufficient storage space in system.

500 Syntax error, command unrecognized. This may include errors such as

command line too long.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command not implemented for that parameter.

530 Not logged in.

531 Need account for storing files.

550 Requested action not taken. File unavailable (for example, file not found,

no access).

551 Requested action aborted: page type unknown.

552 Requested file action aborted. Exceeded storage allocation (for current

directory or dataset).

553 Requested action not taken. Filename not allowed.

Usually, the description in a reply code is one line long. There are cases,
however, where the text is longer than a single line. In these cases the complete
text must be bracketed so the client application knows when it should stop
reading the reply. This requires a special format on the first line to indicate that
more than one line is coming, and another on the last line to designate it as the
last. At least one of these lines must contain the appropriate reply code to indicate
the state of the transaction. The RFC959 decides that both the first and last line
codes should be the same in the case of multiline reply description.

For example, replying to a PASS command, an FTP server may send the
single-line reply:

230 User logged in.

Another FTP server may send the following multiline reply:

230-User logged in. Welcome to the Atlantis Research Center.

Please note that access to this site is restricted to authorized people only.

This site is closely monitored 24 hours a day.

230 Please proceed.

Chapter 5

346

*0821_ch05_FINAL 2/18/03 8:57 PM Page 346

Creating an FTP Application Step by Step

To test this application (and the project), you need an FTP server. If you are con-
nected to the Internet, you can use a number of FTP servers that allow anonymous
access. These servers normally allow you to download files but not upload files.
Alternatively, you can use a local FTP server found in Windows 2000 Server. The
following sections start with installing and configuring an FTP server and then
continue with a simple FTP client application.

Installing and Configuring an FTP Server in
Windows 2000 Server

If you have access to Windows 2000 Server, you are in luck. One of the programs
you can install is an FTP server. If it is already installed, you can configure it
through the Internet Service Manager whose applet can be found in Adminis-
trative Tools in the Control Panel. If it is not yet installed, it is now time to do so.

To install the FTP Server in Windows 2000 Server, follow these steps:

1. Double-click Add/Remove Programs from Control Panel.

2. Click the Add/Remove Windows Components button on the left side of
the page. The Windows Components Wizard will display. One of the items
displayed in the Components list is Internet Information Services (IIS).
Click this item.

3. Click the Details button. The Internet Information Services dialog box
shows.

4. Check the File Transfer Protocol (FTP) Server subcomponent.

5. Click the OK button and follow the instructions to install. You will be
asked to insert the Windows 2000 Server installation CD.

The main task in the configuration is to map the directory that will become
the root of the FTP server. In addition, you can also set the session timeout and the
directory list style. Any user who has access to the Windows 2000 server will have
the same access to the FTP server.

Developing an FTP Client Application

347

*0821_ch05_FINAL 2/18/03 8:57 PM Page 347

To configure the FTP server, follow these steps:

1. Double-click Administrative Tools from Control Panel.

2. Double-click the Internet Service Manager icon. You should be able to see
the Default FTP Site icon under the machine name.

3. Right-click the Default FTP Site icon and click Properties. The Default FTP
Site Properties dialog box will display.

4. Click the Home Directory tab, as shown in Figure 5-1.

5. In the FTP Site Directory section, browse to the directory that you want to
be the root of the FTP server.

6. In the FTP Site Directory section, make sure that the Read and Write check
boxes are selected.

7. Select UNIX in the Directory Listing Style section.

8. Click the Apply button and then the OK button.

Figure 5-1. The Home Directory tab of the Default FTP Site Properties dialog box

Chapter 5

348

*0821_ch05_FINAL 2/18/03 8:57 PM Page 348

Using the NETFTP Application

The NETFTP console application is a simple FTP client application that is similar
to the ftp.exe program you can find in Unix/Linux or Windows. It consists of a
class, NETFTP, that you can find in the Listings/Ch05/Other/NETFTP.vb file.
The main purpose of this small application is to show how to use the
System.Net.Sockets.Socket class to connect to an FTP server and do file transfer;
it does not worry too much about error handling. After understanding this
application, you can understand the project more easily.

To compile this program, type the following command in the command
prompt:

vbc -r:System.dll FTPNET.vb

The result is an executable called FTPNET.exe.
The first thing to do to use this program is connect to an FTP server by typing

the following:

NETFTP <server> <user name> <password>

If the connection attempt was successful, a message such as the following will
display in the console.

Connected. Waiting for reply...

220 bulbul Microsoft FTP Service (Version 5.0).

USER Administrator

331 Password required for Administrator.

PASS

230 User Administrator logged in.

215 Windows_NT version 5.0

200 Type set to A.

If the connection failed, an error message will display.
Once connected, you will see the NETFTP> prompt. You can type one of the

following commands in this prompt: CWD, DELE, LIST, PWD, QUIT, RETR, STOR.
Upon execution, the server sends a reply that will display on the console. Other
than that, the program outputs the “Command Invalid” message.

Developing an FTP Client Application

349

*0821_ch05_FINAL 2/18/03 8:57 PM Page 349

Upon successful execution of a command, the program displays the NETFTP>
prompt again, indicating it is ready to accept a new command.

The valid commands are explained in the following sections.

CWD

This command causes the program to send a CWD command to the FTP server.
This command changes the remote working directory. The syntax of this
command is as follows:

CWD directory

where directory is the name of the directory to which you want to change. For
example, to change the working directory to the /files/program directory, type the
following:

CWD /files/program

You can also pass a relative path as the argument. To change to the parent
directory of the current directory, type the following:

CWD ..

If the command successfully executes, the server sends the following message,
which displays on the console:

250 CWD command successful.

If it cannot find the destination directory, the server sends the following
message:

550 /prog/images: The system cannot find the file specified.

DELE

This command causes the application to send a DELE command to the connected
FTP server. The DELE command deletes a file in the server. The syntax of this
command is as follows:

DELE pathToFileToDelete

Chapter 5

350

*0821_ch05_FINAL 2/18/03 8:57 PM Page 350

LIST

This command does not take an argument. It causes the application to send a
LIST command to the server. The LIST command displays the content of the
current directory. For example, the following is the output of the LIST directory:

227 Entering Passive Mode (127,0,0,1,6,77).

125 Data connection already open; Transfer starting.

226 Transfer complete.

drwxrwxrwx 1 owner group 0 Jul 28 21:30 April2001

-rwxrwxrwx 1 owner group 344064 Jul 29 13:25 Chapter5.doc

-rwxrwxrwx 1 owner group 12118 Jul 29 13:25 complete.wav

-rwxrwxrwx 1 owner group 12118 Jul 30 10:05 complete2.wav

-rwxrwxrwx 1 owner group 1050 Jul 29 13:25 Folder.gif

-rwxrwxrwx 1 owner group 53248 Jul 28 20:08 FTPClient.exe

drwxrwxrwx 1 owner group 0 Jul 28 20:21 June 2002

-rwxrwxrwx 1 owner group 9216 Jul 30 10:02 NETFTP.exe

-rwxrwxrwx 1 owner group 12077 Jul 30 10:02 NETFTP.vb

drwxrwxrwx 1 owner group 0 Jul 30 10:05 New Folder

drwxrwxrwx 1 owner group 0 Jul 26 20:09 New Folder (2)

-rwxrwxrwx 1 owner group 132717 Jul 29 13:24 rfc959.txt

Note that this directory listing is in the Unix style. An FTP server can choose to
use another style.

PWD

The PWD command causes the application to send a PWD command to the FTP
server. The PWD command displays the current directory. This command does not
take an argument. On successful execution, this is an example of what the server
may send:

257 "/" is current directory.

QUIT

The QUIT command causes the application to send a QUIT command to the FTP
server. The QUIT command causes the connection to be closed. This command
does not take an argument.

Developing an FTP Client Application

351

*0821_ch05_FINAL 2/18/03 8:57 PM Page 351

RETR

The RETR command causes the application to send a RETR command to the FTP
server. The RETR command downloads a file from the server. The syntax of this
command is as follows:

RETR pathToFileToDownload

STOR

The STOR command causes the application to send a STOR command to the FTP
server. The STOR command uploads a file in the local directory. The syntax of this
command is as follows:

STOR pathToFileToUpload

How the NETFTP Program Works

The NETFTP program comprises one class: NETFTP. The following sections describe
the NETFTP class.

Declarations

The following is the declarations part of the NETFTP class:

Private port As Integer = 21

Private controlSocket As _

New Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp)

Private dataSocket As Socket

Private serverAddress As String

Public replyMessage As String

Public replyCode As String

Note that there are two Socket object references used in this class: control-
Socket and dataSocket.

Chapter 5

352

*0821_ch05_FINAL 2/18/03 8:57 PM Page 352

Methods

The following are the methods in the NETFTP class.

Connect

The Connect method connects to an FTP server (see Listing 5-1).

Listing 5-1. The Connect Method

Public Sub Connect(ByVal server As String)

Try

controlSocket.Connect(New�
IPEndPoint(Dns.Resolve(server).AddressList(0), port))

Catch e As Exception

Console.WriteLine(e.ToString())

Return

End Try

If controlSocket.Connected Then

Console.WriteLine("Connected. Waiting for reply...")

GetResponse()

Else

Console.WriteLine("Couldn't connect.")

End If

End Sub

The Connect method uses the controlSocket’s Connect method to connect to an
FTP server:

Try

controlSocket.Connect(New IPEndPoint(Dns.Resolve(server).AddressList(0), port))

Catch e As Exception

Console.WriteLine(e.ToString())

Return

End Try

Developing an FTP Client Application

353

*0821_ch05_FINAL 2/18/03 8:57 PM Page 353

If the connection attempt is successful, the controlSocket’s Connected
property will be set to True. In this case, a message prints on the console and
the GetResponse method is invoked:

If controlSocket.Connected Then

Console.WriteLine("Connected. Waiting for reply...")

GetResponse()

Otherwise, a “Couldn’t connect” message displays on the console:

Else

Console.WriteLine("Couldn't connect.")

End If

PassiveData

The PassiveData method sends the PASV command to the connected FTP server to
make the server become passive (see Listing 5-2).

Listing 5-2. The PassiveData Method

Private Sub PassiveDataConnection()

SendCommand("PASV" & ControlChars.CrLf)

GetResponse()

Dim addr As String = replyMessage

addr = addr.Substring(addr.IndexOf("("c) + 1, _

addr.IndexOf(")"c) - addr.IndexOf("("c) - 1)

Dim address As String() = addr.Split(","c)

Dim ip As String = address(0) & "." & address(1) & "." & address(2) & "." & _

address(3)

Dim port As Integer = Convert.ToInt32(address(4)) * 256 + _

Convert.ToInt32(address(5))

dataSocket = New Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.Tcp)

dataSocket.Connect(New IPEndPoint(IPAddress.Parse(ip), port))

End Sub

Chapter 5

354

*0821_ch05_FINAL 2/18/03 8:57 PM Page 354

If the PASV command successfully executes at the server, the server sends
the address and port number of the data connection for the client to connect.
Therefore, on a successful execution of PASV, the server replies by sending a string
of the following format:

227 Entering Passive Mode (a1,a2,a3,a4,p1,p2).

where a1, a2, a3, and a4 are parts of an IP address in dotted-quad notation, and p1
and p2 signify the port number. Consequently, you can obtain the IP address using
the following lines:

Dim addr As String = replyMessage

addr = addr.Substring(addr.IndexOf("("c) + 1,�
addr.IndexOf(")"c) - addr.IndexOf("("c) - 1)

Dim address As String() = addr.Split(","c)

Dim ip As String = address(0) & "." & address(1) & "."�
& address(2) & "." & address(3)

You obtain the port number by multiplying p1 with 256 and adding the result
to p2:

Dim port As Integer = Convert.ToInt32(address(4)) *�
256 + Convert.ToInt32(address(5))

Then, you instantiate a data socket and invoke its Connect method:

dataSocket = New Socket(AddressFamily.InterNetwork, SocketType.Stream, _

ProtocolType.Tcp)

dataSocket.Connect(New IPEndPoint(IPAddress.Parse(ip), port))

After the Connect method is called, the data socket is readily available to the
method that invokes the PassiveData method.

GetResponse

The GetResponse method receives the byte stream from the connected FTP server.
This method is invoked immediately after an FTP command is sent to the server
(see Listing 5-3).

Developing an FTP Client Application

355

*0821_ch05_FINAL 2/18/03 8:57 PM Page 355

Listing 5-3. The GetResponse Method

Private Sub GetResponse()

' this method listens for the server response and receives all bytes

' sent by the server

' A server response can be single line or multiline.

' If the fourth byte of the first line is a hyphen, then it is

' multiline. If multiline, waits until the line that starts with the

' response code (the first three bytes of the first line).

Dim bytes(511) As Byte ' an array of 512 bytes

Dim receivedByteCount As Integer

Dim response As String = ""

' get the first line

receivedByteCount = controlSocket.Receive(bytes)

response = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

Dim multiline As Boolean = (response.Chars(3) = "-"c)

If multiline Then

If response.Length > 3 Then

replyCode = response.Substring(0, 3)

End If

Dim line As String = ""

Dim lastLineReached As Boolean = False

While Not lastLineReached

receivedByteCount = controlSocket.Receive(bytes)

line = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

response += line

If line.IndexOf(ControlChars.CrLf & replyCode & " ") <> -1 Then

lastLineReached = True

End If

If lastLineReached Then

'just wait until CRLF is reached

While Not line.EndsWith(ControlChars.CrLf)

receivedByteCount = controlSocket.Receive(bytes)

line = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

response += line

End While

End If

End While

Else

Chapter 5

356

*0821_ch05_FINAL 2/18/03 8:57 PM Page 356

While receivedByteCount = bytes.Length And _

Not response.EndsWith(ControlChars.CrLf)

receivedByteCount = controlSocket.Receive(bytes)

response += Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

End While

End If

Console.WriteLine()

Console.Write(response)

If response.Length > 3 Then

replyCode = response.Substring(0, 3)

replyMessage = response.Substring(3, response.Length - 3)

Else

replyCode = ""

replyMessage = "Unexpected Error has occurred."

End If

End Sub

The first thing this method does is to check the fourth byte of the reply to
determine whether the server reply is a single-line or a multiline response. The
fourth byte in a single-line response is a space, whereas it will be a hyphen in a
multiline response:

Dim bytes(511) As Byte ' an array of 512 bytes

Dim receivedByteCount As Integer

Dim response As String = ""

' get the first line

receivedByteCount = controlSocket.Receive(bytes)

response = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

Dim multiline As Boolean = (response.Chars(3) = "-"c)

If the response is multilined, the GetResponse method reads the reply code (the
first three digits of the first line) and keeps reading the response in a While loop
until the last line is reached. The last line is a line that starts with a reply code:

If multiline Then

If response.Length > 3 Then

replyCode = response.Substring(0, 3)

End If

Dim line As String = ""

Developing an FTP Client Application

357

*0821_ch05_FINAL 2/18/03 8:57 PM Page 357

Dim lastLineReached As Boolean = False

While Not lastLineReached

receivedByteCount = controlSocket.Receive(bytes)

line = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

response += line

If line.IndexOf(ControlChars.CrLf & replyCode & " ") <> -1 Then

lastLineReached = True

End If

When the last line is reached, it continues reading until the last byte is
received:

If lastLineReached Then

'just wait until CRLF is reached

While Not line.EndsWith(ControlChars.CrLf)

receivedByteCount = controlSocket.Receive(bytes)

line = Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

response += line

End While

If it is a single-line response, it just continues reading until the last byte in the
stream is received:

Else

While receivedByteCount = bytes.Length And _

Not response.EndsWith(ControlChars.CrLf)

receivedByteCount = controlSocket.Receive(bytes)

response += Encoding.ASCII.GetString(bytes, 0, receivedByteCount)

End While

The response will then be sent to the console:

Console.WriteLine()

Console.Write(response)

Chapter 5

358

*0821_ch05_FINAL 2/18/03 8:57 PM Page 358

Next, replyCode and replyMessage are assigned the reply code and message of
the server response, respectively:

replyCode = response.Substring(0, 3)

replyMessage = response.Substring(3, response.Length - 3)

Login

The Login method accepts a username and a password that will be sent as the
user’s credential to log in to the connected FTP server (see Listing 5-4).

Listing 5-4. The Login Method

Public Function Login(ByVal userName As String, ByVal password As String) As String

If controlSocket.Connected Then

' Sending user name

Dim command As String

command = "USER " & userName & ControlChars.CrLf

Console.WriteLine(command)

SendCommand(command)

GetResponse()

' Sending password

command = "PASS " & password & ControlChars.CrLf

Console.Write("PASS") 'do not display password

SendCommand(command)

GetResponse()

Return replyCode

Else

Console.Write("Login failed because no connection is available")

End If

Return ""

End Function

The Login method sends the USER and PASS commands in sequence. It returns
the three-digit reply code. Login is successful only if the three-digit code is 230.

Developing an FTP Client Application

359

*0821_ch05_FINAL 2/18/03 8:57 PM Page 359

SendCommand

The SendCommand method sends a command to the connected FTP server (see
Listing 5-5).

Listing 5-5. The SendCommand Method

Private Sub SendCommand(ByVal command As String)

Try

controlSocket.Send(Encoding.ASCII.GetBytes(command), command.Length, 0)

Catch

End Try

End Sub

SendCWDCommand

The SendCWDCommand method uses the SendCommand method to send a CWD
command to the connected FTP server (see Listing 5-6).

Listing 5-6. The SendCWDCommand Method

Public Sub SendCWDCommand(ByVal path As String)

SendCommand("CWD " & path & ControlChars.CrLf)

GetResponse()

End Sub

SendDELECommand

The SendDELECommand method sends a DELE command to the connected FTP server
using the SendCommand method (see Listing 5-7).

Listing 5-7. The SendDELECommand Method

Public Sub SendDELECommand(ByVal filename As String)

SendCommand("DELE " & filename & ControlChars.CrLf)

GetResponse()

End Sub

Chapter 5

360

*0821_ch05_FINAL 2/18/03 8:57 PM Page 360

SendLISTCommand

The SendLISTCommand method sends a LIST command to the connected FTP server
and displays the returned directory list (see Listing 5-8).

Listing 5-8. The SendLISTCommand Method

Public Sub SendLISTCommand()

PassiveDataConnection()

SendCommand("LIST" & ControlChars.CrLf)

GetResponse()

Dim byteReceivedCount As Integer

Dim msg As New StringBuilder(2048)

Dim bytes(511) As Byte

Do

byteReceivedCount = _

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

msg.Append(Encoding.ASCII.GetString(bytes, 0, byteReceivedCount))

Loop Until byteReceivedCount = 0

Console.WriteLine(msg.ToString())

'because the 226 response might be sent

'before the data connection finishes, only try to get "completion message"

'if it's not yet sent

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

End Sub

The SendLISTCommand method starts by calling the PassiveDataConnection and
sends the LIST command:

PassiveDataConnection()

SendCommand("LIST" & ControlChars.CrLf)

GetResponse()

Developing an FTP Client Application

361

*0821_ch05_FINAL 2/18/03 8:57 PM Page 361

The data socket instantiated in the PassiveDataConnection method then reads
the data from the server:

Dim byteReceivedCount As Integer

Dim msg As New StringBuilder(2048)

Dim bytes(511) As Byte

Do

byteReceivedCount = _

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

msg.Append(Encoding.ASCII.GetString(bytes, 0, byteReceivedCount))

Loop Until byteReceivedCount = 0

The data then displays on the console:

Console.WriteLine(msg.ToString())

Upon sending the directory list, the server should send the 226 reply
code indicating the transfer completion. However, in my testing, the 226
reply code might be sent before the data is received. Therefore, you call the
GetResponse method only if the 226 reply code has not been sent:

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

SendMKDCommand

The SendMKCommand method sends an MKD command to the connected FTP server
(see Listing 5-9).

Listing 5-9. The SendMKDCommand Method

Public Sub SendMKDCommand(ByVal dir As String)

SendCommand("MKD " & dir & ControlChars.CrLf)

GetResponse()

End Sub

SendPWDCommand

The SendPWDCommand method sends a PWD command to the connected FTP server
(see Listing 5-10).

Chapter 5

362

*0821_ch05_FINAL 2/18/03 8:57 PM Page 362

Listing 5-10. The SendPWDCommand Method

Public Sub SendPWDCommand()

SendCommand("PWD" & ControlChars.CrLf)

GetResponse()

End Sub

SendRMDCommand

The SendRMDCommand method sends a RMD command to the connected FTP server
(see Listing 5-11).

Listing 5-11. The SendRMDCommand Method

Public Sub SendRMDCommand(ByVal dir As String)

SendCommand("RMD " & dir & ControlChars.CrLf)

GetResponse()

End Sub

SendQUITCommand

The SendQUITCommand method sends a QUIT command to the connected FTP server
(see Listing 5-12). After the response is received, it calls the Shutdown and Close
methods of the control socket.

Listing 5-12. The SendQUITCommand Method

Public Sub SendQUITCommand()

SendCommand("QUIT" & ControlChars.CrLf)

GetResponse()

controlSocket.Shutdown(SocketShutdown.Both)

controlSocket.Close()

End Sub

SendRETRCommand

The SendRETRCommand method downloads a file in the connected FTP server (see
Listing 5-13).

Developing an FTP Client Application

363

*0821_ch05_FINAL 2/18/03 8:57 PM Page 363

Listing 5-13. The SendRETRCommand Method

Public Sub SendRETRCommand(ByVal filename As String)

Dim f As FileStream = File.Create(filename)

SendTYPECommand("I")

PassiveDataConnection()

SendCommand("RETR " & filename & ControlChars.CrLf)

GetResponse()

Dim byteReceivedCount As Integer

Dim totalByteReceived As Integer = 0

Dim bytes(511) As Byte

Do

byteReceivedCount = _

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

totalByteReceived += byteReceivedCount

f.Write(bytes, 0, byteReceivedCount)

Loop Until byteReceivedCount = 0

f.Close()

'because the 226 response might be sent

'before the data connection finishes, only try to get "completion message"

'if it's not yet sent

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

SendTYPECommand("A")

End Sub

The method starts by creating a file in the current local directory:

Dim f As FileStream = File.Create(filename)

It then changes the transmission mode to image (binary) by calling the Send-
TYPECommand method, passing "I" to the method:

SendTYPECommand("I")

Chapter 5

364

*0821_ch05_FINAL 2/18/03 8:57 PM Page 364

Next, it calls the PassiveDataConnection method to get a data socket for the
data transmission and sends a RETR command to the server:

PassiveDataConnection()

SendCommand("RETR " & filename & ControlChars.CrLf)

GetResponse()

The data socket created in the PassiveDataConnection method is then used to
read the data stream. The incoming stream is written to the file created at the
beginning of this method:

Dim byteReceivedCount As Integer

Dim totalByteReceived As Integer = 0

Dim bytes(511) As Byte

Do

byteReceivedCount = _

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

totalByteReceived += byteReceivedCount

f.Write(bytes, 0, byteReceivedCount)

Loop Until byteReceivedCount = 0

Next, the file closes:

f.Close()

After the data transmission completes, the server closes the data connection
and sends a 226 transfer completion code through the control connection.
However, the 226 reply code might be sent before all the data is received. Therefore,
you call the GetResponse method only if the 226 reply code has not been sent:

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

Finally, it changes the mode back to ASCII:

SendTYPECommand("A")

Developing an FTP Client Application

365

*0821_ch05_FINAL 2/18/03 8:57 PM Page 365

SendSTORCommand

The SendSTORCommand method uploads a file in the connected FTP server (see
Listing 5-14).

Listing 5-14. The SendSTORCommand Method

Public Sub SendSTORCommand(ByVal filename As String)

Dim f As FileStream = File.Open(filename, FileMode.Open)

SendTYPECommand("I")

PassiveDataConnection()

SendCommand("STOR " & filename & ControlChars.CrLf)

GetResponse()

Dim byteReadCount As Integer

Dim totalByteSent As Integer

Dim bytes(511) As Byte

Do

byteReadCount = f.Read(bytes, 0, bytes.Length)

If byteReadCount <> 0 Then

dataSocket.Send(bytes, byteReadCount, SocketFlags.None)

totalByteSent += byteReadCount

End If

Loop Until byteReadCount = 0

dataSocket.Shutdown(SocketShutdown.Both)

dataSocket.Close()

f.Close()

GetResponse()

SendTYPECommand("A")

End Sub

The method starts by opening the file to upload to the connected FTP server:

Dim f As FileStream = File.Open(filename, FileMode.Open)

Chapter 5

366

*0821_ch05_FINAL 2/18/03 8:57 PM Page 366

It then changes the transmission mode to image (binary) and calls the
PassiveDataConnection to obtain a data socket for the file transmission:

SendTYPECommand("I")

PassiveDataConnection()

Then it sends a STOR command to indicate to the server that it is going to
send a file to that server:

SendCommand("STOR " & filename & ControlChars.CrLf)

GetResponse()

The data socket created by the PassiveDataConnection transfers the file.

Dim byteReadCount As Integer

Dim totalByteSent As Integer

Dim bytes(511) As Byte

Do

byteReadCount = f.Read(bytes, 0, bytes.Length)

If byteReadCount <> 0 Then

dataSocket.Send(bytes, byteReadCount, SocketFlags.None)

totalByteSent += byteReadCount

End If

Loop Until byteReadCount = 0

After the file transfer completes, the data socket closes:

dataSocket.Shutdown(SocketShutdown.Both)

dataSocket.Close()

Then, the file closes and the mode switches back to ASCII:

f.Close()

GetResponse()

SendTYPECommand("A")

SendSYSTCommand

The SendSYSTCommand method sends a SYST method to the connected FTP server
(see Listing 5-15).

Developing an FTP Client Application

367

*0821_ch05_FINAL 2/18/03 8:57 PM Page 367

Listing 5-15. The SendSYSTCommand Method

Public Sub SendSYSTCommand()

SendCommand("SYST" & ControlChars.CrLf)

GetResponse()

End Sub

SendTYPECommand

You use the SendTYPECommand method to change the transmission mode from the
client to the server (see Listing 5-16).

Listing 5-16. The SendTYPECommand Method

Public Sub SendTYPECommand(ByVal type As String)

SendCommand("TYPE " & type & ControlChars.CrLf)

GetResponse()

End Sub

Main

The Main static method is the entry point of the program. It does the following:

• Ensures that the program is invoked using the correct number of arguments.

• Controls the program flow with a While loop so that the user can enter one
FTP command after the execution of another.

• Invokes the correct method upon receiving a valid user input.

• Displays an error message on receiving an invalid user input.

Listing 5-17 shows the Main method.

Listing 5-17. The Main Method

Public Shared Sub Main(ByVal args As String())

If args.Length <> 3 Then

Console.WriteLine("usage: NETFTP server username password")

Else

Dim ftp As New NETFTP()

Chapter 5

368

*0821_ch05_FINAL 2/18/03 8:57 PM Page 368

ftp.Connect(args(0))

Dim replyCode As String = ftp.Login(args(1), args(2))

If replyCode.Equals("230") Then

'login successful, allow user to type in commands

ftp.SendSYSTCommand()

ftp.SendTYPECommand("A")

Dim command As String = ""

Try

While Not command.ToUpper.Equals("QUIT")

Console.Write("NETFTP>")

command = Console.ReadLine().Trim()

If command.ToUpper.Equals("PWD") Then

ftp.SendPWDCommand()

ElseIf command.ToUpper.StartsWith("CWD") Then

If command.Length > 3 Then

Dim path As String = command.Substring(4).Trim()

If path.Equals("") Then

Console.WriteLine("Please specify the directory to change to")

Else

ftp.SendCWDCommand(path)

End If

End If

ElseIf command.ToUpper.StartsWith("DELE") Then

If command.Length > 4 Then

Dim path As String = command.Substring(5).Trim()

If path.Equals("") Then

Console.WriteLine("Please specify the file to delete")

Else

ftp.SendDELECommand(path)

End If

End If

ElseIf command.ToUpper.Equals("LIST") Then

ftp.SendLISTCommand()

ElseIf command.ToUpper.StartsWith("MKD") Then

If command.Length > 3 Then

Dim dir As String = command.Substring(4).Trim()

If dir.Equals("") Then

Console.WriteLine("Please specify the name�
of the directory to create")

Else

ftp.SendMKDCommand(dir)

End If

End If

Developing an FTP Client Application

369

*0821_ch05_FINAL 2/18/03 8:57 PM Page 369

ElseIf command.ToUpper.Equals("QUIT") Then

ElseIf command.ToUpper.StartsWith("RMD") Then

If command.Length > 3 Then

Dim dir As String = command.Substring(4).Trim()

If dir.Equals("") Then

Console.WriteLine("Please specify the name�
of the directory to delete")

Else

ftp.SendRMDCommand(dir)

End If

End If

ElseIf command.ToUpper.StartsWith("RETR") Then

If command.Length > 4 Then

Dim filename As String = command.Substring(5).Trim()

If filename.Equals("") Then

Console.WriteLine("Please specify a file to retrieve")

Else

ftp.SendRETRCommand(filename)

End If

End If

ElseIf command.ToUpper.StartsWith("STOR") Then

If command.Length > 4 Then

Dim filename As String = command.Substring(5).Trim()

If filename.Equals("") Then

Console.WriteLine("Please specify a file to store")

Else

ftp.SendSTORCommand(filename)

End If

End If

Else

Console.WriteLine("Invalid command.")

End If

End While

ftp.SendQUITCommand()

Catch e As Exception

Console.WriteLine(e.ToString())

End Try

Console.WriteLine("Thank you for using NETFTP.")

Else

ftp.SendQUITCommand()

Console.WriteLine("Login failed. Please try again.")

End If

End If

End Sub

Chapter 5

370

*0821_ch05_FINAL 2/18/03 8:57 PM Page 370

The Main method starts by checking that the user passes three arguments:
server, username, and password. If the number of arguments is not three, it prints
the following message on the console:

usage: NETFTP server username password

If the number of arguments is correct, the Main method instantiates a NETFTP
object and uses the first argument (server) to connect to the remote server by
calling the Connect method:

ftp.Connect(args(0))

Once connected, the Main method uses the second and third argument to log
in by calling the Login method:

Dim replyCode As String = ftp.Login(args(1), args(2))

The remote server returning a reply code of 230 indicates a successful login.
If login was successful, it calls the SendSYSTCommand and SendTYPECommand methods.
The SendSYSTCommand method prints the server’s operating system information, and
the SendTYPECommand method is called by passing "A" as the argument. This in effect
changes the transfer mode to ASCII:

If replyCode.Equals("230") Then

'login successful, allow user to type in commands

ftp.SendSYSTCommand()

ftp.SendTYPECommand("A")

After the user is successfully logged in, the program enters a While loop. Inside
the While loop is the code that gets the user’s input and sends the corresponding
FTP command. Control exits the While loop when the user types QUIT:

Dim command As String = ""

Try

While Not command.ToUpper.Equals("QUIT")

Inside the While loop, the Main method first displays the NETFTP> prompt and
uses the Console class’s ReadLine to read the user input:

Console.Write("NETFTP>")

command = Console.ReadLine().Trim()

Developing an FTP Client Application

371

*0821_ch05_FINAL 2/18/03 8:57 PM Page 371

Then, it goes through a series of If commands to execute code based on the
command entered by the user. Valid commands are PWD, CWD, DELE, LIST, MKD,
QUIT, RMD, RETR, and STOR.

If the command equals PWD, the SendPWDCommand method is called:

If command.ToUpper.Equals("PWD") Then

ftp.SendPWDCommand()

If the command is CWD, it ensures that there is a parameter, a path, after the
CWD command and that the parameter does not consist of spaces only. If the path
looks valid, it calls the SendCWDCommand method. Otherwise, it prints a warning on
the console:

ElseIf command.ToUpper.StartsWith("CWD") Then

If command.Length > 3 Then

Dim path As String = command.Substring(4).Trim()

If path.Equals("") Then

Console.WriteLine("Please specify the directory to change to")

Else

ftp.SendCWDCommand(path)

End If

End If

If the command is DELE, it makes sure there is a valid parameter, a filename.
If the command has a valid parameter, it invokes the SendDELECommand method.
Otherwise, it prints a warning to the user:

ElseIf command.ToUpper.StartsWith("DELE") Then

If command.Length > 4 Then

Dim path As String = command.Substring(5).Trim()

If path.Equals("") Then

Console.WriteLine("Please specify the file to delete")

Else

ftp.SendDELECommand(path)

End If

End If

If the command equals LIST, it invokes the SendLISTCommand method:

ElseIf command.ToUpper.Equals("LIST") Then

ftp.SendLISTCommand()

Chapter 5

372

*0821_ch05_FINAL 2/18/03 8:57 PM Page 372

If the command starts with MKD and there is a valid parameter (a directory
name), it calls the SendMKDCommand method. Otherwise, a warning displays on the
console:

ElseIf command.ToUpper.StartsWith("MKD") Then

If command.Length > 3 Then

Dim dir As String = command.Substring(4).Trim()

If dir.Equals("") Then

Console.WriteLine("Please specify the name of the directory to create")

Else

ftp.SendMKDCommand(dir)

End If

End If

If the command equals QUIT, it does not do anything as this will be captured
by the conditional statement in the While loop:

ElseIf command.ToUpper.Equals("QUIT") Then

If the command starts with RMD and there is a valid parameter (a directory
name to remove), it invokes the SendRMDCommand method. Otherwise, a warning
displays on the console:

ElseIf command.ToUpper.StartsWith("RMD") Then

If command.Length > 3 Then

Dim dir As String = command.Substring(4).Trim()

If dir.Equals("") Then

Console.WriteLine("Please specify the name of the directory to delete")

Else

ftp.SendRMDCommand(dir)

End If

End If

If the command starts with RETR and there is a parameter (a filename), the
SendRETRCommand method is invoked. Otherwise, it prints a warning on the console:

ElseIf command.ToUpper.StartsWith("RETR") Then

If command.Length > 4 Then

Dim filename As String = command.Substring(5).Trim()

If filename.Equals("") Then

Console.WriteLine("Please specify a file to retrieve")

Else

ftp.SendRETRCommand(filename)

End If

End If

Developing an FTP Client Application

373

*0821_ch05_FINAL 2/18/03 8:57 PM Page 373

If the command starts with STOR and there is a parameter (a filename), it
invokes the SendSTORCommand method. Otherwise, it prints a warning on the
console:

ElseIf command.ToUpper.StartsWith("STOR") Then

If command.Length > 4 Then

Dim filename As String = command.Substring(5).Trim()

If filename.Equals("") Then

Console.WriteLine("Please specify a file to store")

Else

ftp.SendSTORCommand(filename)

End If

End If

Finally, if the command is none of the valid commands, it simply prints
“Invalid command” on the console:

Else

Console.WriteLine("Invalid command.")

End If

When the user types QUIT, the control exits the While loop, and the
SendQUITCommand method is invoked:

ftp.SendQUITCommand()

Before closing itself, the program prints a thank you message.

Console.WriteLine("Thank you for using NETFTP.")

Implementing the Project

The project for this chapter is an FTP client application with a graphical user
interface, as shown in Figure 5-2. This section starts with a general overview of
the application. It then describes each class in detail.

Chapter 5

374

*0821_ch05_FINAL 2/18/03 8:57 PM Page 374

Figure 5-2. The FTP client application

To get a feel for the application, you are encouraged to try this application by
double-clicking the Form1.exe file in the listings/Ch05/Project directory.

When the application activates, it retrieves the content of the local current
directory and displays it on the left panel of the form.

Before you can do a file transfer, you need to connect to an FTP server. You
can connect and log in at the same time by pressing F3 or selecting File ➤ Connect.
To log in, you type your login details in the Login Form window, as shown in
Figure 5-3.

Figure 5-3. The Login Form window

Developing an FTP Client Application

375

*0821_ch05_FINAL 2/18/03 8:57 PM Page 375

You need to enter the server, the username, and the password into the Login
Form window and then click the OK button.

If the connection is successful, the content of the remote home directory
displays in the right panel of the form. If the login fails, the Login Form window
remains open until you enter the correct login details or until you click the Cancel
button.

The four buttons to the right of the left panel are for manipulating local files
and directories, and the buttons to the right of the right panel are for manipu-
lating remote files and directories. You can change the local or remote directory by
double-clicking the directory icon on both panels.

To upload a file, you can select a file from the local computer and click the
Upload button. Alternatively, you can simply double-click the file icon on the left
panel.

To download a file, select a file from the remote computer and then click the
Download button. Or, you can double-click the file icon.

Creating the Class Diagram

Figure 5-4 shows the class diagram for this application.

Figure 5-4. The class diagram

Chapter 5

376

*0821_ch05_FINAL 2/18/03 8:57 PM Page 376

The application is comprised of the following classes:

• FTP: Contains properties and methods to send FTP commands to an FTP
server.

• Form1: The main form of the application.

• Helper: Contains static methods used by the Form1 class

• LoginForm: Represents a form for the user to log in.

• Three EventArgs subclasses: EndDownloadEventArgs, EndUploadEventArgs, and
TransferProgressChangedEventArgs. These are event argument classes used in
several delegates in the FTP class.

You will now learn about the classes starting with the easiest.

Creating the Helper Class

You can find the Helper class in the Helper.vb file under the project’s directory.
It provides two static methods used by the Form1 class: IsDirectory and
IsDirectoryItem.

The Helper Class’s Methods

The following sections describe the two methods of the Helper class.

IsDirectory

The IsDirectory method accepts a string argument and returns True if the specified
string is a path to a directory.

The method definition is as follows:

Public Shared Function IsDirectory(ByVal path As String) As Boolean

If File.Exists(path) Or Directory.Exists(path) Then

' it is a file or a directory

Dim attr As FileAttributes = File.GetAttributes(path)

If (attr And FileAttributes.Directory) = FileAttributes.Directory Then

Return True

End If

End If

End Function

Developing an FTP Client Application

377

*0821_ch05_FINAL 2/18/03 8:57 PM Page 377

IsDirectoryItem

The IsDirectoryItem method accepts a System.Windows.Form.ListViewItem and
returns True if the item’s ImageIndex is 1, the image index of the folder icon. Its
definition is as follows:

Public Shared Function IsDirectoryItem(ByVal item As ListViewItem) As Boolean

If item.ImageIndex = 1 Then

Return True

Else

Return False

End If

End Function

Creating the LoginForm Class

You can find the LoginForm class in the LoginForm.vb file in the project’s directory.
It represents the login form for the user to login. This form displays as a modal
dialog box from the Form1 class when the user attempts to connect to a remote
server.

The class contains three Label controls (label1, label2, and label3), three
TextBox controls (serverTextBox, userTextBox, and passwordTextBox), and two
Button controls (okButton and cnlButton).

The passwordTextBox control accepts the user’s password, and the characters
entered are masked by setting its PasswordChar property as follows:

Me.passwordTextBox.PasswordChar = Microsoft.VisualBasic.ChrW(42)

You set the okButton control’s DialogResult property to
System.Windows.Forms.DialogResult.OK so that when the form is shown as a modal
dialog box, it returns DialogResult.OK when the okButton control is clicked:

Me.okButton.DialogResult = System.Windows.Forms.DialogResult.OK

On the other hand, you set the cnlButton.DialogResult property to
System.Windows.Forms.DialogResult.Cancel. When the form displays as a modal
dialog box, clicking the cnlButton control results in the form returning
Dialog.Cancel:

Me.cnlButton.DialogResult = System.Windows.Forms.DialogResult.Cancel

Chapter 5

378

*0821_ch05_FINAL 2/18/03 8:57 PM Page 378

The okButton control’s Click event is wired with the okButton_Click event
handler. This event handler populates three private fields with the values entered
by the user into the serverTextBox, userTextBox, and passwordTextBox controls:

Private Sub okButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles okButton.Click

userNameField = userTextBox.Text

passwordField = passwordTextBox.Text

serverField = serverTextBox.Text

Me.Close()

End Sub

The last line of this event handler also closes the form.
After the form returns—in other words, when either okButton or cnlButton

is clicked—you can obtain the values of serverField, userNameField, and
passwordField from the three read-only properties: Server, UserName,
and Password:

Public ReadOnly Property Server() As String

Get

Return serverField

End Get

End Property

Public ReadOnly Property UserName() As String

Get

Return userNameField

End Get

End Property

Public ReadOnly Property Password() As String

Get

Return passwordField

End Get

End Property

Creating the FTP Class

You can find the FTP class in the FTP.vb file in the project’s directory. This class
encapsulates functions to communicate with an FTP server. Using this class, you
can connect to a remote FTP server, log in, print the working directory, change the
directory, delete and rename a remote file, and download and upload a file.

Developing an FTP Client Application

379

*0821_ch05_FINAL 2/18/03 8:57 PM Page 379

Some of the functions in the FTP class are similar to those in the NETFTP class
discussed previously. However, you use a separate thread for downloading and
uploading a file to improve the perceived performance. For synchronization, a
Boolean called transferring prevents multiple upload/download at the same time.
The Upload and Download methods return immediately if the value of transferring
is True.

Finally, the FTP class has five public events as described in “The FTP Class’s
Events” section.

The FTP Class’s Declaration

The FTP class contains the following variable declaration:

Private port As Integer = 21

Private controlSocket, dataSocket As Socket

Private serverAddress As String

Private directoryListField As String

'the thread used for uploading and downloading files

Private dataTransferThread As Thread

'indicates whether dataTransferThread is being used

'if it is, do not allow another operation

Private transferring As Boolean

'for transferring filename and localDir when calling DoUpload and

'DoDownload

Private filename, localDir As String

Public replyMessage As String

Public replyCode As String

The FTP Class’s Properties

The FTP class has two read-only properties.

Connected

The Connected property indicates whether the control socket is connected:

Public ReadOnly Property Connected() As Boolean

Get

If Not controlSocket Is Nothing Then

Chapter 5

380

*0821_ch05_FINAL 2/18/03 8:57 PM Page 380

Return controlSocket.Connected

Else

Return False

End If

End Get

End Property

DirectoryList

The DirectoryList property returns the directory list obtained from the GetDirList
method in raw form:

Public ReadOnly Property DirectoryList() As String

Get

Return directoryListField

End Get

End Property

The FTP Class’s Methods

The following sections describe the methods in the FTP class.

ChangeDir

The ChangeDir method changes the current remote directory by sending the CWD
command:

Public Sub ChangeDir(ByVal path As String)

SendCommand("CWD " & path & ControlChars.CrLf)

GetResponse()

End Sub

ChangeToAsciiMode

The ChangeToAsciiMode method changes the transfer mode to ASCII:

Public Sub ChangeToAsciiMode()

SendTYPECommand("A")

End Sub

Developing an FTP Client Application

381

*0821_ch05_FINAL 2/18/03 8:57 PM Page 381

Connect

This method connects to a remote server:

Public Sub Connect(ByVal server As String)

Try

controlSocket = New _

Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp)

controlSocket.Connect(New _

IPEndPoint(Dns.Resolve(server).AddressList(0), port))

Catch e As Exception

Console.WriteLine(e.ToString())

Return

End Try

If controlSocket.Connected Then

Console.WriteLine("Connected. Waiting for reply...")

GetResponse()

Else

Console.WriteLine("Couldn't connect.")

End If

End Sub

DeleteDir

The DeleteDir method deletes a directory on the connected server by sending an
RMD command. A 2xx reply code indicates a successful RMD command. The
method definition is as follows:

Public Function DeleteDir(ByVal dir As String) As Boolean

SendCommand("RMD " & dir & ControlChars.CrLf)

GetResponse()

If replyCode.StartsWith("2") Then

Return True

Else

Return False

End If

End Function

DeleteFile

The DeleteFile method deletes a file on the connected server by sending a DELE
command. A 2xx reply code indicates a successful DELE command. The method
definition is as follows:

Chapter 5

382

*0821_ch05_FINAL 2/18/03 8:57 PM Page 382

Public Function DeleteFile(ByVal filename As String) As Boolean

SendCommand("DELE " & filename & ControlChars.CrLf)

GetResponse()

If replyCode.StartsWith("2") Then

Return True

Else

Return False

End If

End Function

Disconnect

The Disconnect method disconnects from the remote server:

Public Sub Disconnect()

If controlSocket.Connected Then

SendCommand("QUIT" & ControlChars.CrLf)

GetResponse()

controlSocket.Shutdown(SocketShutdown.Both)

controlSocket.Close()

End If

End Sub

DoDownload

The DoDownload method does the actual file download. This method is called from
the Download method. The following is the DoDownload method:

Public Sub DoDownload()

OnBeginDownload(New EventArgs())

Dim completePath As String = Path.Combine(localDir, filename)

Try

Dim f As FileStream = File.Create(completePath)

SendTYPECommand("I")

PassiveDataConnection()

SendCommand("RETR " & filename & ControlChars.CrLf)

GetResponse()

Dim byteReceivedCount As Integer

Dim totalByteReceived As Integer = 0

Dim bytes(511) As Byte

Do

byteReceivedCount = _

Developing an FTP Client Application

383

*0821_ch05_FINAL 2/18/03 8:57 PM Page 383

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

totalByteReceived += byteReceivedCount

f.Write(bytes, 0, byteReceivedCount)

OnTransferProgressChanged(New _

TransferProgressChangedEventArgs(totalByteReceived))

Loop Until byteReceivedCount = 0

f.Close()

'because the 226 response might be sent

'before the data connection finishes, only try to get "completion message"

'if it's not yet sent

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

SendTYPECommand("A")

Catch

End Try

Dim e As New EndDownloadEventArgs()

e.Message = "Finished downloading " & filename

OnEndDownload(e)

transferring = False

End Sub

The DoDownload method starts by raising the BeginDownload event:

OnBeginDownload(New EventArgs())

The DoDownload method is the method assigned to a new thread created in the
Download method. Prior to starting the new thread, the Download method sets the
localDir and filename variables. The localDir is the current local directory to
which the downloaded file will be saved. The filename variable contains the name
of the file to be downloaded.

The next thing the DoDownload method does after raising the BeginDownload
event is combine localDir and filename:

Dim completePath As String = Path.Combine(localDir, filename)

Chapter 5

384

*0821_ch05_FINAL 2/18/03 8:57 PM Page 384

Next, it creates a file on the local machine using the combined string of
localDir and filename:

Dim f As FileStream = File.Create(completePath)

Then, it changes the transfer mode to image (binary) and calls the
PassiveDataConnection method. The latter constructs a data socket to be
used for the file transfer:

SendTYPECommand("I")

PassiveDataConnection()

The actual file download starts when a RETR command is sent:

SendCommand("RETR " & filename & ControlChars.CrLf)

GetResponse()

Then, the data socket resulted from the PassiveDataConnection method
receives the data stream:

Dim byteReceivedCount As Integer

Dim totalByteReceived As Integer = 0

Dim bytes(511) As Byte

Do

byteReceivedCount = _

dataSocket.Receive(bytes, bytes.Length, SocketFlags.None)

totalByteReceived += byteReceivedCount

f.Write(bytes, 0, byteReceivedCount)

OnTransferProgressChanged(New _

TransferProgressChangedEventArgs(totalByteReceived))

Loop Until byteReceivedCount = 0

Note from the previous Do loop that the TransferProgressChanged event raises
after each invocation of the data socket’s Received method, passing the total number
of bytes received so far. The user of the FTP class can use this event to notify the user
of the progress of the file transfer, for example, by using a progress bar.

Afterward, the file closes:

f.Close()

Developing an FTP Client Application

385

*0821_ch05_FINAL 2/18/03 8:57 PM Page 385

After the file transfer completes, the server sends the 226 reply code. However,
sometimes this reply code is received even before the whole data transferred is
received. Therefore, you check to see that a 226 reply code has not been received
prior to calling the GetResponse method:

If replyMessage.IndexOf("226 ") = -1 Then

GetResponse()

End If

It then changes the mode to ASCII:

SendTYPECommand("A")

Catch

End Try

Finally, the EndDownload event triggers, passing the “Finished downloading
filename” message, where filename is the name of the file downloaded and the
transferring Boolean resets to allow a future file transfer:

Dim e As New EndDownloadEventArgs()

e.Message = "Finished downloading " & filename

OnEndDownload(e)

transferring = False

DoUpload

The DoUpload method does the actual file upload. This method is called from the
Upload method. The DoUpload method starts by raising the BeginUpload event:

OnBeginUpload(New EventArgs())

The DoUpload method is the method assigned to a new thread created in the
Upload method. Prior to starting the new thread, the Upload method sets the
localDir and filename variables. The localDir is the current local directory to
which the downloaded file will be saved. The filename variable contains the name
of the file to be downloaded.

The next thing the DoUpload method does after raising the BeginUpload event is
combine localDir and filename:

Dim completePath As String = Path.Combine(localDir, filename)

Chapter 5

386

*0821_ch05_FINAL 2/18/03 8:57 PM Page 386

Then it opens the file to upload, changes the mode to ASCII, and calls the
PassiveDataConnection method. The PassiveDataConnection method constructs a
data socket to be used for the file transfer:

Dim f As FileStream = _

File.Open(completePath, FileMode.Open, FileAccess.Read)

SendTYPECommand("I")

PassiveDataConnection()

The actual file upload starts when a STOR command is sent:

SendCommand("STOR " & filename & ControlChars.CrLf)

GetResponse()

Then, the data socket resulted from the PassiveDataConnection method
receives the data stream:

Dim byteReadCount As Integer

Dim totalByteSent As Integer

Dim bytes(511) As Byte

Do

byteReadCount = f.Read(bytes, 0, bytes.Length)

If byteReadCount <> 0 Then

dataSocket.Send(bytes, byteReadCount, SocketFlags.None)

totalByteSent += byteReadCount

OnTransferProgressChanged(_

New TransferProgressChangedEventArgs(totalByteSent))

End If

Loop Until byteReadCount = 0

Note from the previous Do loop that the TransferProgressChanged event raises
after each invocation of the data socket’s Send method, passing the total number
of bytes sent so far. The user of the FTP class can use this event to notify the user of
the progress of the file transfer, for example, by using a progress bar.

Afterward, the data socket and the file close:

dataSocket.Shutdown(SocketShutdown.Both)

dataSocket.Close()

f.Close()

Developing an FTP Client Application

387

*0821_ch05_FINAL 2/18/03 8:57 PM Page 387

When the data socket closes, the server knows that the file transfer is com-
pleted and sends a reply code that you receive using the GetResponse method:

GetResponse()

Then, it changes the mode back to ASCII:

SendTYPECommand("A")

Finally, the EndUpload event triggers, passing the “Finished uploading
filename” message, where filename is the name of the file uploaded and the
transferring Boolean resets to allow a future file transfer:

Dim ev As New EndUploadEventArgs()

ev.Message = "Finished uploading " & filename

OnEndUpload(ev)

transferring = False

Download

The Download method checks if file transfer is allowed and, if it is, creates a new
thread to download a file:

Public Sub Download(ByVal filename As String, ByVal localdir As String)

If Not transferring Then

transferring = True

Me.filename = filename

Me.localDir = localdir

dataTransferThread = _

New Thread(New ThreadStart(AddressOf DoDownload))

dataTransferThread.Start()

End If

End Sub

GetRemoteDirectory

GetRemoteDirectory is a helper method used to obtain the directory name at the
remote server. The argument passed to this function is a string that is the server
reply after a PWD command is sent. Therefore, the argument has the following
format:

"path" is current directory

Chapter 5

388

*0821_ch05_FINAL 2/18/03 8:57 PM Page 388

This method returns the "path" portion of the argument. The definition for
this method is as follows:

Private Function GetRemoteDirectory(ByVal message As String) As String

'message is the server response upon sending the "PWD" command

'its format is something like: "path" is current directory

'this function obtains the string between the double quotes

Dim path As String = ""

Dim index As Integer = message.IndexOf("""")

If index <> -1 Then

Dim index2 As Integer = message.IndexOf("""", index + 1)

If index2 <> -1 Then

path = message.Substring(index + 1, index2 - index - 1)

End If

End If

Return path

End Function

GetResponse

The GetResponse method receives the server reply and is the same as the GetResponse
method in the NETFTP class.

Login

The Login method logs in to a connected FTP server and is similar to the Login
method in the NETFTP class. The difference is that this method returns a Boolean
because the server’s reply is tested at the end of the method, as follows:

If replyCode.Equals("230") Then

Return True

Else

Return False

End If

MakeDir

The MakeDir method creates a new directory in the remote server by sending an
MKD command:

Public Sub MakeDir(ByVal dir As String)

SendCommand("MKD " & dir & ControlChars.CrLf)

GetResponse()

End Sub

Developing an FTP Client Application

389

*0821_ch05_FINAL 2/18/03 8:57 PM Page 389

PassiveDataConnection

The PassiveDataConnection method is the same as the PassiveDataConnection
method in the NETFTP class.

Rename

The Rename method changes the name of a remote file. It does so by sending the
RNFR command and the RNTO command in sequence. Its definition is as follows:

Public Sub Rename(ByVal renameFrom As String, ByVal renameTo As String)

SendCommand("RNFR " & renameFrom & ControlChars.CrLf)

GetResponse()

Console.WriteLine(replyCode & " " & replyMessage)

SendCommand("RNTO " & renameTo & ControlChars.CrLf)

GetResponse()

Console.WriteLine(replyCode & " " & replyMessage)

End Sub

SendCommand

The SendCommand method sends a specified command to the connected server.
Its definition is as follows:

Private Sub SendCommand(ByVal command As String)

Try

controlSocket.Send(Encoding.ASCII.GetBytes(command), command.Length, 0)

Catch

End Try

End Sub

SendTYPECommand

The SendTYPECommand method is the same as the SendTYPECommand method in the
NETFTP class.

Chapter 5

390

*0821_ch05_FINAL 2/18/03 8:57 PM Page 390

Upload

The Upload method checks if file transfer is allowed by checking the value of trans-
ferring. If the value is False, file transfer is allowed. It then creates a new thread for
the file transfer and starts the DoUpload method:

Public Sub Upload(ByVal filename As String, ByVal localDir As String)

If Not transferring Then

transferring = True

Me.filename = filename

Me.localDir = localDir

dataTransferThread = New Thread(New ThreadStart(AddressOf DoUpload))

dataTransferThread.Start()

End If

End Sub

The FTP Class’s Events

The FTP class can raise the following events: BeginDownload, EndDownload,
BeginUpload, EndUpload, and TransferProgressChanged. The first four are self-
explanatory. The TransferProgressChanged event raises several times during the
download and upload processes. The user of the FTP class can capture this event
to obtain the number of bytes of data transfer so far.

The definitions of public delegates are as follows:

Public Delegate Sub BeginDownloadEventHandler(ByVal sender As Object, _

ByVal e As EventArgs)

Public Delegate Sub EndDownloadEventHandler(ByVal sender As Object, _

ByVal e As EndDownloadEventArgs)

Public Delegate Sub BeginUploadEventHandler(ByVal sender As Object, _

ByVal e As EventArgs)

Public Delegate Sub EndUploadEventHandler(ByVal sender As Object, _

ByVal e As EndUploadEventArgs)

Public Delegate Sub TransferProgressChangedEventHandler(ByVal sender As Object, _

ByVal e As TransferProgressChangedEventArgs)

Developing an FTP Client Application

391

*0821_ch05_FINAL 2/18/03 8:57 PM Page 391

Creating the EventArgs Subclasses

The following are the three subclasses of EventArgs class:

Public Class EndDownloadEventArgs : Inherits EventArgs

Public Message As String

End Class

Public Class EndUploadEventArgs : Inherits EventArgs

Public Message As String

End Class

Public Class TransferProgressChangedEventArgs : Inherits EventArgs

Public TransferredByteCount As Integer

Public Sub New()

End Sub

Public Sub New(ByVal size As Integer)

TransferredByteCount = size

End Sub

End Class

Creating the Form1 Class

You can find the Form1 class in the Form1.vb file in the project’s directory. It repre-
sents the main form in the application. This section starts by showing various
controls used in the form. It then describes how those controls connect together.
The description makes frequent references to the class’s members, each of which
is given in detail at the end of the section.

To understand how the form works, let’s start with its visual description.
Figure 5-5 shows various controls on Form1.

Chapter 5

392

*0821_ch05_FINAL 2/18/03 8:57 PM Page 392

Figure 5-5. Control names on Form1

You can find the declaration of the controls in the Form1 class body:

Private hSplitter As System.Windows.Forms.Splitter

Private vSplitter As System.Windows.Forms.Splitter

Private leftPanel As System.Windows.Forms.Panel

Private rightPanel As System.Windows.Forms.Panel

Private localButtonsPanel As System.Windows.Forms.Panel

Private remoteButtonsPanel As System.Windows.Forms.Panel

Private progressBar As System.Windows.Forms.ProgressBar

Private label1 As System.Windows.Forms.Label

Private label2 As System.Windows.Forms.Label

Private localDir As System.Windows.Forms.ComboBox

Private localDeleteButton As System.Windows.Forms.Button

Private localRenameButton As System.Windows.Forms.Button

Private localMakeDirButton As System.Windows.Forms.Button

Private localDirList As System.Windows.Forms.ListView

Private uploadButton As System.Windows.Forms.Button

Private remoteDir As System.Windows.Forms.ComboBox

Private remoteDirList As System.Windows.Forms.ListView

Private remoteDeleteButton As System.Windows.Forms.Button

Private downloadButton As System.Windows.Forms.Button

Private remoteRenameButton As System.Windows.Forms.Button

Developing an FTP Client Application

393

label1 leftPanel vSplitter label2 rightPanel

mainMenu

localDirList

uploadButton

localDeleteButton

localRenameButton

localMakeDirButton

localButtonsPanel

localDir

remoteDir

downloadButton

remoteDeleteButton

remoteRenameButton

remoteMakeDirButton

remoteButtonsPanel

remoteDirList

hSplitter
progressBar

messageTextBox

*0821_ch05_FINAL 2/18/03 8:57 PM Page 393

Private remoteMakeDirButton As System.Windows.Forms.Button

Private messageTextBox As System.Windows.Forms.TextBox

Private mainMenu As System.Windows.Forms.MainMenu

Private fileMenuItem As System.Windows.Forms.MenuItem

Private connectFileMenuItem As System.Windows.Forms.MenuItem

Private exitFileMenuItem As System.Windows.Forms.MenuItem

Private imageList As System.Windows.Forms.ImageList

When first instantiated, the class’s constructor calls the InitializeComponent
method that instantiated the controls used in the form. At the last line, the
InitializeComponent method calls the InitializeControls method, which wires
events with event handlers, loads images, and so on.

The form has an ImageList control with three images used to represent a
parent directory, a folder, and a file. The image files (Up.gif, Folder.gif, and
File.gif) are located in the images directory under the project’s directory.
You add the images to imageList in the InitializeControls method:

imageList.Images.Add(Bitmap.FromFile("./images/Up.gif"))

imageList.Images.Add(Bitmap.FromFile("./images/Folder.gif"))

imageList.Images.Add(Bitmap.FromFile("./images/File.gif"))

At the end of its body, the InitializeControls method calls the following two
methods:

SelectLocalDirectory(localCurrentDir)

Log("Welcome. Press F3 for quick login.")

The SelectLocalDirectory method populates the localDirList control with the
list of subdirectories/files in the current directory, and the Log method displays a
message in the messageTextBox control. The current local directory displays in the
localDir ComboBox control.

Without being connected to a remote server, you can browse through your
local directory by double-clicking the parent directory icon and any subdirectory
in the current directory.

You can even do some simple file/directory manipulations such as the
following:

• Create a new directory by clicking the localMakeDirButton control.
The Click event of the localMakeDirButton control is handled by
localMakeDirButton_Click, which calls the MakeLocalDir method.

Chapter 5

394

*0821_ch05_FINAL 2/18/03 8:57 PM Page 394

• Delete a file/subdirectory by selecting a file/directory in the localDirList
control and clicking the localDeleteButton control. The Click event of the
localDirList control is wired with the localDeleteButton_Click event
handler. This event handler calls the DeleteLocalFile method.

• Rename a file/directory by selecting a file/directory in the localDirList
control and clicking the localRenameButton control. This button’s Click event
is wired to the localRenameButton_Click event handler, which calls the
RenameLocalFile method.

However, using an FTP client application, you will want to connect to a
remote server. You do this by pressing F3 or by selecting File ➤ Connect. Both the
F3 shortcut and the Connect menu item activates the Connect method. The Connect
method has two functions. When no FTP server is connected, it connects to the
server. When there is an FTP server connected, it disconnects the connection.

Connecting to a remote server requires you to enter the server name, username,
and password into the Login Form window. The Login Form window is called from
the Connect method and is shown as a modal dialog box.

If you click the OK button in the Login Form window, the Connect method tries
to connect you to the remote server. If the connection is successful, it also logs you
in. Whether login was successful, it calls the Log method. This method appends the
specified message to the messageTextBox control.

If login is successful, the Connect method displays the remote server’s home
directory content on the remoteDirList control.

The Form1 Class’s Declaration

The Form1 class has the following declarations part:

Private localCurrentDir As String = Directory.GetCurrentDirectory()

Private remoteCurrentDir As String

Private server, userName, password As String

Private ftp As New ftp()

'the size of the file being downloaded/uploaded

Private fileSize As Integer

Private Structure DirectoryItem

Public name As String

Public modifiedDate As String

Public size As String

End Structure

Note that the DirectoryItem structure represents either a directory or a file.

Developing an FTP Client Application

395

*0821_ch05_FINAL 2/18/03 8:57 PM Page 395

The Form1 Class’s Methods

The following sections describe the Form1 class’s methods.

ChangeLocalDir

The ChangeLocalDir method changes the local directory. This method is called
when the user double-clicks an item in the localDirList control. The action
taken by this method depends on the item activated. It changes directory if the
activated item is either the parent directory icon or a folder. If the item is a file,
the ChangeLocalDir method calls the UploadFile method.

This is the ChangeLocalDir method:

Private Sub ChangeLocalDir()

'get activated item (the items that was double-clicked

Dim item As ListViewItem = localDirList.SelectedItems(0)

If item.Text.Equals("..") Then

Dim parentDir As DirectoryInfo = Directory.GetParent(localCurrentDir)

If Not parentDir Is Nothing Then

localCurrentDir = parentDir.FullName

SelectLocalDirectory(localCurrentDir)

End If

Else

Directory.SetCurrentDirectory(localCurrentDir)

Dim fullPath As String = Path.GetFullPath(item.Text)

If Helper.IsDirectory(fullPath) Then

localCurrentDir = fullPath

SelectLocalDirectory(localCurrentDir)

Else

UploadFile()

End If

End If

End Sub

This method begins by obtaining the selected item from localDirList:

'get activated item (the items that was double-clicked

Dim item As ListViewItem = localDirList.SelectedItems(0)

Chapter 5

396

*0821_ch05_FINAL 2/18/03 8:57 PM Page 396

It then checks whether the item is a parent directory icon. If it is, it constructs
a DirectoryInfo object for the parent directory of the current directory using the
GetParent method of the System.IO.Directory class:

If item.Text.Equals("..") Then

Dim parentDir As DirectoryInfo = Directory.GetParent(localCurrentDir)

If the GetParent method returns a non-null value, it sets localCurrentDir to the
parent directory’s full name and calls the SelectLocalDirectory method to repop-
ulate the localDirList control:

If Not parentDir Is Nothing Then

localCurrentDir = parentDir.FullName

SelectLocalDirectory(localCurrentDir)

End If

If the activated item is not a parent directory icon, it sets the application
current directory to the value of localCurrentDir so that it can get the full path to
the currently activated item:

Else

Directory.SetCurrentDirectory(localCurrentDir)

Dim fullPath As String = Path.GetFullPath(item.Text)

Now, it has to determine whether the activated item is a file or a directory using
the Helper class’s IsDirectory method. If it is a directory, it sets localCurrentDir to
the full path obtained from the GetFullPath method in the previous line and then
calls the SelectLocalDirectory to repopulate the localDirList control:

If Helper.IsDirectory(fullPath) Then

localCurrentDir = fullPath

SelectLocalDirectory(localCurrentDir)

If the activated item is a file, the ChangeLocalDir method simply calls the
UploadFile method:

UploadFile()

Developing an FTP Client Application

397

*0821_ch05_FINAL 2/18/03 8:57 PM Page 397

ChangeRemoteDir

The ChangeRemoteDir method changes the directory in the connected server:

Private Sub ChangeRemoteDir()

If ftp.Connected Then

'get activated item (the item that was double-clicked)

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

If item.Text.Equals("..") Then

Dim index As Integer 'get the last index of "/"

index = remoteCurrentDir.LastIndexOf("/")

If index = 0 Then

remoteCurrentDir = "/"

Else

remoteCurrentDir = remoteCurrentDir.Substring(0, index)

End If

ftp.ChangeDir(remoteCurrentDir)

If ftp.replyCode.StartsWith("2") Then 'successful

SelectRemoteDirectory(remoteCurrentDir)

End If

Log(ftp.replyMessage)

ElseIf Helper.IsDirectoryItem(remoteDirList.SelectedItems(0)) Then

If remoteCurrentDir.Equals("/") Then

remoteCurrentDir += item.Text

Else

remoteCurrentDir += "/" & item.Text

End If

ftp.ChangeDir(remoteCurrentDir)

If ftp.replyCode.StartsWith("2") Then 'successful

SelectRemoteDirectory(remoteCurrentDir)

End If

Log(ftp.replyMessage)

Else

DownloadFile()

End If

Else

NotConnected()

End If

End Sub

Chapter 5

398

*0821_ch05_FINAL 2/18/03 8:57 PM Page 398

First, the method only executes the code in its body if a remote server is con-
nected. Checking a connection is through the FTP class’s Connected property:

If ftp.Connected Then

...

Else

NotConnected()

End If

After making sure that a remote server is connected, it obtains the activated
item from the remoteDirList control:

'get activated item (the item that was double-clicked)

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

The action taken by this method depends on the activated item. If the item is
a parent directory icon or a folder, it calls the FTP class’s ChangeDir method. If the
activated item is a file, it calls the FTP class’s Download method.

Note that because you are dealing with a remote server, you do not have
access to the directory system. Instead, you work with paths.

If the activated item is the parent directory icon, the method tries to obtain
the parent directory of the remote current directory. The remoteCurrentDir variable
holds the remote current directory. Obtaining the parent directory is by trimming
the characters after the last / (assuming that the remote server uses a Unix
directory listing):

If item.Text.Equals("..") Then

Dim index As Integer 'get the last index of "/"

index = remoteCurrentDir.LastIndexOf("/")

If index = 0 Then

' we are already in the root

remoteCurrentDir = "/"

Else

remoteCurrentDir = remoteCurrentDir.Substring(0, index)

End If

This gives you a new remote current directory. You just need to call the FTP
class’s ChangeDir method and pass the new directory name:

ftp.ChangeDir(remoteCurrentDir)

Developing an FTP Client Application

399

*0821_ch05_FINAL 2/18/03 8:57 PM Page 399

Now, if the ChangeDir method returns a successful reply message, you call the
SelectRemoteDirectory to repopulate the remoteDirList control. You also log the
reply message from the server:

If ftp.replyCode.StartsWith("2") Then 'successful

SelectRemoteDirectory(remoteCurrentDir)

End If

Log(ftp.replyMessage)

If the activated item is a folder, the user clicks a subdirectory in the current
remote directory. You can obtain the new current directory by appending the
item’s text to the current directory. Note, however, if you are currently in the root,
you do not append a / before appending the directory name:

ElseIf Helper.IsDirectoryItem(remoteDirList.SelectedItems(0)) Then

If remoteCurrentDir.Equals("/") Then

remoteCurrentDir += item.Text

Else

remoteCurrentDir += "/" & item.Text

End If

Having a new directory, you call the FTP class’s ChangeDir, passing the desti-
nation directory:

ftp.ChangeDir(remoteCurrentDir)

If the ChangeDir method returns a server’s successful message, you call the
SelectRemoteDirectory to repopulate the remoteDirList control. You also log the
server’s reply message:

If ftp.replyCode.StartsWith("2") Then 'successful

SelectRemoteDirectory(remoteCurrentDir)

End If

Log(ftp.replyMessage)

If the activated item is a file, you call the DownloadFile method:

DownloadFile()

Chapter 5

400

*0821_ch05_FINAL 2/18/03 8:57 PM Page 400

Connect

The Connect method connects to and disconnects from a remote server. If the
connectFileMenuItem’s Text displays Disconnect, the application may be connected
to a remote server. Because the remote server can disconnect a client if the client
is idle for a given period of time, it is possible that the application is not connected
to any server even though the client thinks it is still connected. Either way, the
Connect method handles the situation well. The definition of the Connect method
is as follows:

Private Sub Connect()

'connect and disconnect

If connectFileMenuItem.Text.Equals("&Disconnect") Then

'disconnect

If MessageBox.Show("Disconnect from remote server?", "Disconnect", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) = _

DialogResult.OK Then

If ftp.Connected Then

ftp.Disconnect()

Log("Disconnected.")

connectFileMenuItem.Text = "&Connect"

'clearing the ListView

'don't use the remoteDirList.Clear because it removes the columns too,

'instead use remoteDirList.Items.Clear()

remoteDirList.Items.Clear()

'clearing the combo box

remoteDir.Items.Clear()

remoteDir.Text = ""

End If

End If

Else

'connect

Dim loginForm As New LoginForm()

Dim loggedIn As Boolean = False

While Not loggedIn AndAlso loginForm.ShowDialog() = DialogResult.OK

server = loginForm.Server

userName = loginForm.UserName

password = loginForm.Password

Log("Connecting " & server)

Try

ftp.Connect(server)

If ftp.Connected Then

Log(server & " connected. Try to login.")

Developing an FTP Client Application

401

*0821_ch05_FINAL 2/18/03 8:57 PM Page 401

If ftp.Login(userName, password) Then

connectFileMenuItem.Text = "&Disconnect"

Log("Login successful.")

loggedIn = True

' try to get the remote list

ftp.ChangeToAsciiMode()

remoteCurrentDir = ftp.GetCurrentRemoteDir()

If Not remoteCurrentDir Is Nothing Then

SelectRemoteDirectory(remoteCurrentDir)

End If

Else

Log("Login failed.")

End If

Else

Log("Connection failed")

End If

Catch e As Exception

Log(e.ToString())

End Try

End While

If Not loggedIn AndAlso _

Not ftp Is Nothing AndAlso _

ftp.Connected Then

ftp.Disconnect()

End If

End If

End Sub

The Connect method first checks the connectFileMenuItem’s Text property. If it is
&Disconnect, it tries to disconnect from the connected remote server:

If connectFileMenuItem.Text.Equals("&Disconnect") Then

'disconnect

Before disconnecting, it asks for the user’s confirmation:

If MessageBox.Show("Disconnect from remote server?", "Disconnect", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) = _

DialogResult.OK Then

Chapter 5

402

*0821_ch05_FINAL 2/18/03 8:57 PM Page 402

If the user says OK, it checks if the application is really connected to a remote
server. If it is, it calls the FTP class’s Disconnect method, logs a message, changes the
connectFileMenuItem’s Text to &Connect, and clears the remoteDirList and remoteDir
controls:

If ftp.Connected Then

ftp.Disconnect()

Log("Disconnected.")

connectFileMenuItem.Text = "&Connect"

'clearing the ListView

'don't use the remoteDirList.Clear because it removes the columns too,

'instead use remoteDirList.Items.Clear()

remoteDirList.Items.Clear()

'clearing the combo box

remoteDir.Items.Clear()

remoteDir.Text = ""

End If

If no server is connected, the Connect method tries to connect. It starts by
defining a Boolean called loggedIn and showing the Login Form window as a modal
dialog box. It then does a While loop that loops until one of the following condi-
tions is satisfied:

• The user clicks the Cancel button on the Login Form window.

• The user clicks the OK button on the Login Form window and logs in suc-
cessfully. This is the code that does that:

'connect

Dim loginForm As New LoginForm()

Dim loggedIn As Boolean = False

While Not loggedIn AndAlso loginForm.ShowDialog() = DialogResult.OK

When the user clicks the OK button, it takes the values of the Login Form
window’s Server, UserName, and Password properties and logs a message:

server = loginForm.Server

userName = loginForm.UserName

password = loginForm.Password

Log("Connecting " & server)

Developing an FTP Client Application

403

*0821_ch05_FINAL 2/18/03 8:57 PM Page 403

It then tries to connect to the specified server using the FTP class’s Connect
method:

Try

ftp.Connect(server)

If the connection is successful, it logs a message and tries to log in using the
FTP class’s Login method, passing the username and password:

If ftp.Connected Then

Log(server & " connected. Try to login.")

If ftp.Login(userName, password) Then

The Login method returns True if the user logs in successfully and False
otherwise. For a successful login, you change the connectFileMenuItem’s Text
property to Disconnect, log a successful login message, and change the transfer
mode by calling the ChangeToAsciiMode of the FTP class:

connectFileMenuItem.Text = "&Disconnect"

Log("Login successful.")

loggedIn = True

' try to get the remote list

ftp.ChangeToAsciiMode()

Next, it tries to obtain the remote current directory by calling the
GetCurrentRemoteDir method of the FTP class:

remoteCurrentDir = ftp.GetCurrentRemoteDir()

If this method executes successfully on the remote server, it should return a
non-null value, the remote current directory. You then use it as an argument to the
SelectRemoteDirectory that displays the content of the remote current directory:

If Not remoteCurrentDir Is Nothing Then

SelectRemoteDirectory(remoteCurrentDir)

End If

If the FTP class’s Login method you called returns False, you log a “Login failed”
message:

Log("Login failed.")

Chapter 5

404

*0821_ch05_FINAL 2/18/03 8:57 PM Page 404

DeleteLocalFile

The DeleteLocalFile method deletes a local file and is called when the user selects
an item in the localDirList control and clicks the localDeleteButton control. The
definition of this method is as follows:

Private Sub DeleteLocalFile()

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to delete.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Else

If MessageBox.Show("Delete the selected file/directory?", _

"Delete Confirmation", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) _

= DialogResult.OK Then

Dim completePath As String = _

Path.Combine(localCurrentDir, localDirList.SelectedItems(0).Text)

Try

If Helper.IsDirectory(completePath) Then

Directory.Delete(completePath)

Else

File.Delete(completePath)

End If

LoadLocalDirList()

Catch ex As Exception

MessageBox.Show(ex.ToString(), "Error", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

End Try

End If

End If

End Sub

The DeleteLocalFile starts by checking if an item is selected in the
localDirList control. If not, it displays a message box:

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to delete.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Developing an FTP Client Application

405

*0821_ch05_FINAL 2/18/03 8:57 PM Page 405

If an item is selected, the DeleteLocalFile method asks for the user confir-
mation that the user intends to delete the item to make sure that the user did not
click the localDeleteButton control by accident:

If MessageBox.Show("Delete the selected file/directory?", _

"Delete Confirmation", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) _

= DialogResult.OK Then

If deletion is confirmed, it tries to obtain the complete path to the item by
combining the local current directory and the item’s text:

Dim completePath As String = _

Path.Combine(localCurrentDir, localDirList.SelectedItems(0).Text)

Then, it checks whether it is a directory or a file. If it is a directory, it calls the
Delete method of the System.IO.Directory class. If it is a file, the Delete method of
the System.IO.File class is invoked:

If Helper.IsDirectory(completePath) Then

Directory.Delete(completePath)

Else

File.Delete(completePath)

End If

After deletion, the localDirList is refreshed by calling the LoadLocalDirList
method:

LoadLocalDirList()

DeleteRemoteFile

The DeleteRemoteFile method deletes a file on the connected remote server:

Private Sub DeleteRemoteFile()

If ftp.Connected Then

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to delete.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Chapter 5

406

*0821_ch05_FINAL 2/18/03 8:57 PM Page 406

Else

If MessageBox.Show("Delete the selected file/directory?", _

"Delete Confirmation", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) _

= DialogResult.OK Then

Try

Dim selectedItem As ListViewItem = remoteDirList.SelectedItems(0)

If Helper.IsDirectoryItem(selectedItem) Then

If ftp.DeleteDir(selectedItem.Text) Then

LoadRemoteDirList()

Else

Log(ftp.replyMessage)

End If

Else

If ftp.DeleteFile(selectedItem.Text) Then

LoadRemoteDirList()

Else

Log(ftp.replyMessage)

End If

End If

Catch ex As Exception

MessageBox.Show(ex.ToString, "Error", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

End Try

End If

End If

Else

NotConnected()

End If

End Sub

Note that the method only executes its body if the application is connected to
a remote FTP server:

If ftp.Connected Then

...

Else

NotConnected()

End If

Developing an FTP Client Application

407

*0821_ch05_FINAL 2/18/03 8:57 PM Page 407

After making sure that a remote server is connected, it checks that an item is
selected in the remoteDirList control. If no item is selected, a warning displays in a
message box:

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to delete.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

If an item is selected, it asks for the user’s confirmation to make sure that the
remoteDeleteButton control was not clicked by accident:

Else

If MessageBox.Show("Delete the selected file/directory?", _

"Delete Confirmation", _

MessageBoxButtons.OKCancel, MessageBoxIcon.Question) _

= DialogResult.OK Then

If deletion is confirmed, the method obtains the selected item and sends it to
the Helper class’s IsDirectoryItem to determine if the selected item is a directory or
a file:

Try

Dim selectedItem As ListViewItem = remoteDirList.SelectedItems(0)

If Helper.IsDirectoryItem(selectedItem) Then

If the selected item is a directory, it calls the FTP class’s DeleteDir method and,
upon successful completion of this method, calls the LoadRemoteDirList to repop-
ulate the remoteDirList control. If the DeleteDir method returns False to indicate
that the deletion failed, it logs the message:

If ftp.DeleteDir(selectedItem.Text) Then

LoadRemoteDirList()

Else

Log(ftp.replyMessage)

End If

If the selected item is a file, it calls the FTP class’s DeleteFile method and, upon
successful completion of this method, calls the LoadRemoteDirList to repopulate
the remoteDirList control. If the DeleteFile method failed, it logs the message:

If ftp.DeleteFile(selectedItem.Text) Then

LoadRemoteDirList()

Chapter 5

408

*0821_ch05_FINAL 2/18/03 8:57 PM Page 408

Else

Log(ftp.replyMessage)

End If

DownloadFile

The DownloadFile method downloads a file from the connected remote server:

Private Sub DownloadFile()

If ftp.Connected Then

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file to download.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Else

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

If Helper.IsDirectoryItem(item) Then

MessageBox.Show("You cannot download a directory.", _

"Error downloading file", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

Try

fileSize = Convert.ToInt32(item.SubItems(1).Text)

Catch

End Try

ftp.Download(item.Text, localCurrentDir)

End If

End If

Else

NotConnected()

End If

End Sub

Note that the method only executes its body if the application is connected to
a remote FTP server:

If ftp.Connected Then

...

Else

NotConnected()

End If

Developing an FTP Client Application

409

*0821_ch05_FINAL 2/18/03 8:57 PM Page 409

After making sure that a remote server is connected, it checks that an item is
selected in the remoteDirList control. If no item is selected, a warning displays:

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file to download.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

If an item is selected, it gets the selected item from the remoteDirList control
and sends the item to the Helper class’s IsDirectoryItem method to determine
whether the selected item is a directory or a file:

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

If the item is a directory, the method shows an error message, warning the
user that they cannot download a directory:

If Helper.IsDirectoryItem(item) Then

MessageBox.Show("You cannot download a directory.", _

"Error downloading file", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

If the selected item is a file, it gets the file size from the item and assigns it to
the fileSize variable. The FTP class’s BeginDownload event handler uses this value to
calculate the transfer progress:

Try

fileSize = Convert.ToInt32(item.SubItems(1).Text)

Catch

End Try

It then calls the FTP class’s Download method, passing the filename and the local
current directory. These two arguments determine where to save the downloaded
file:

ftp.Download(item.Text, localCurrentDir)

GetDirectoryItem

This FTP client application only works properly if the remote server returns a
directory listing in Unix style. If this is the case, the list contains lines of data that
include the directory/filename and each directory/file’s meta information. The

Chapter 5

410

*0821_ch05_FINAL 2/18/03 8:57 PM Page 410

GetDirectoryItem method processes the line that contains a directory/file infor-
mation and returns it as a DirectoryItem object. The resulting DirectoryItem object
can contain information about a directory or a file.

The raw data passed to this method has the following format:

-rwxrwxrwx 1 owner group 11801 Jul 23 10:52 NETFTP.vb

or this format:

drwxrwxrwx 1 owner group 0 Jul 26 20:11 New Folder

The method definition is as follows:

Private Function GetDirectoryItem(ByVal s As String) As DirectoryItem

's is in the following format

'-rwxrwxrwx 1 owner group 11801 Jul 23 10:52 NETFTP.vb

'

'or

'

'drwxrwxrwx 1 owner group 0 Jul 26 20:11 New Folder

Dim dirItem As New DirectoryItem()

If Not s Is Nothing Then

Dim index As Integer

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing "drwxrwxrwx" part

'now s is in the following format

'1 owner group 11801 Jul 23 10:52 NETFTP.vb

'

'or

'

'1 owner group 0 Jul 26 20:11 New Folder

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the '1' part

'now s is in the following format

'owner group 11801 Jul 23 10:52 NETFTP.vb

'

'or

'

'owner group 0 Jul 26 20:11 New Folder

index = s.IndexOf(" "c)

Developing an FTP Client Application

411

*0821_ch05_FINAL 2/18/03 8:57 PM Page 411

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the 'owner' part

'now s is in the following format

'group 11801 Jul 23 10:52 NETFTP.vb

'

'or

'

'group 0 Jul 26 20:11 New Folder

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the 'group' part

'now s is in the following format

'11801 Jul 23 10:52 NETFTP.vb

'

'or

'

'0 Jul 26 20:11 New Folder

'now get the size.

index = s.IndexOf(" "c)

If index > 0 Then

dirItem.size = s.Substring(0, index)

s = s.Substring(index).TrimStart() 'removing the size

'now s is in the following format

'Jul 23 10:52 NETFTP.vb

'

'or

'

'Jul 26 20:11 New Folder

'now, get the 3 elements of the date part

Dim date1, date2, date3 As String

index = s.IndexOf(" "c)

If index <> -1 Then

date1 = s.Substring(0, index)

s = s.Substring(index).TrimStart()

index = s.IndexOf(" "c)

If index <> -1 Then

date2 = s.Substring(0, index)

s = s.Substring(index).TrimStart()

index = s.IndexOf(" "c)

If index <> -1 Then

date3 = s.Substring(0, index)

dirItem.modifiedDate = date1 & " " & date2 & " " & date3

' get the name

Chapter 5

412

*0821_ch05_FINAL 2/18/03 8:57 PM Page 412

dirItem.name = s.Substring(index).Trim()

End If

End If

End If

End If

End If

End If

End If

End If

End If

Return dirItem

End Function

The method starts by constructing a DirectoryItem object. This object will be
populated and returned to the function’s caller:

Dim dirItem As New DirectoryItem()

First the method checks that s (the argument passed to this method) is not
null:

If Not s Is Nothing Then

If s is not null, then the method finds the first space in s, modifies s so that s
does not include the string before the space, and left-trims s until the next non-
space character:

Dim index As Integer

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing "drwxrwxrwx" part

s now has the following format:

1 owner group 11801 Jul 23 10:52 NETFTP.vb

or this format:

1 owner group 0 Jul 26 20:11 New Folder

Developing an FTP Client Application

413

*0821_ch05_FINAL 2/18/03 8:57 PM Page 413

Then, you do the same thing as you did just now:

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the '1' part

to get s in the following format:

owner group 11801 Jul 23 10:52 NETFTP.vb

or this format:

owner group 0 Jul 26 20:11 New Folder

And again:

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the 'owner' part

to get s in the following format:

group 11801 Jul 23 10:52 NETFTP.vb

or this format:

group 0 Jul 26 20:11 New Folder

And yet another one:

index = s.IndexOf(" "c)

If index <> -1 Then

s = s.Substring(index).TrimStart() 'removing the 'group' part

Now, s has the following format:

11801 Jul 23 10:52 NETFTP.vb

or this format:

0 Jul 26 20:11 New Folder

Chapter 5

414

*0821_ch05_FINAL 2/18/03 8:57 PM Page 414

Now, you can get the size and do the same operation:

index = s.IndexOf(" "c)

If index > 0 Then

dirItem.size = s.Substring(0, index)

s = s.Substring(index).TrimStart() 'removing the size

Afterward, s has the following format:

Jul 23 10:52 NETFTP.vb

or this one:

Jul 26 20:11 New Folder

Now, get the three elements of the date part:

Dim date1, date2, date3 As String

index = s.IndexOf(" "c)

If index <> -1 Then

date1 = s.Substring(0, index)

s = s.Substring(index).TrimStart()

index = s.IndexOf(" "c)

If index <> -1 Then

date2 = s.Substring(0, index)

s = s.Substring(index).TrimStart()

index = s.IndexOf(" "c)

If index <> -1 Then

date3 = s.Substring(0, index)

dirItem.modifiedDate = date1 & " " & date2 & " " & date3

' get the name

dirItem.name = s.Substring(index).Trim()

Finally, return the DirectoryItem object:

Return dirItem

Developing an FTP Client Application

415

*0821_ch05_FINAL 2/18/03 8:57 PM Page 415

InitializeProgressBar

The InitializeProgressBar method initializes the progress bar prior to file transfer:

Private Sub InitializeProgressBar()

progressBar.Value = 0

progressBar.Maximum = fileSize

End Sub

The InitializeProgressBar method sets the Value property to 0 and the Maximum
property to fileSize. fileSize contains the number of bytes to transfer:

progressBar.Value = 0

progressBar.Maximum = fileSize

LoadLocalDirList

The LoadLocalDirList method populates the localDirList control with the content
of the current directory. If the current directory is not the root, an icon repre-
senting a parent directory is also added. The method definition is as follows:

Private Sub LoadLocalDirList()

localDirList.Items.Clear()

Dim item As ListViewItem

' if current directory is not root, add pointer to parent dir

If Not Directory.GetParent(localCurrentDir) Is Nothing Then

item = New ListViewItem("..", 1)

item.ImageIndex = 0

localDirList.Items.Add(item)

End If

' list of directories

Dim directories As String() = Directory.GetDirectories(localCurrentDir)

Dim length As Integer = directories.Length

Dim dirName As String

For Each dirName In directories

item = New ListViewItem(Path.GetFileName(dirName), 1)

item.SubItems.Add("")

item.SubItems.Add(Directory.GetLastAccessTime(dirName).ToString())

item.ImageIndex = 1

localDirList.Items.Add(item)

Chapter 5

416

*0821_ch05_FINAL 2/18/03 8:57 PM Page 416

Next

'list of files

Dim files As String() = Directory.GetFiles(localCurrentDir)

length = files.Length

Dim fileName As String

For Each fileName In files

item = New ListViewItem(Path.GetFileName(fileName), 1)

Dim fi As New FileInfo(fileName)

item.SubItems.Add(Convert.ToString(fi.Length))

item.SubItems.Add(File.GetLastWriteTime(fileName).ToString())

item.ImageIndex = 2

localDirList.Items.Add(item)

Next

End Sub

The method starts by clearing the localDirList control and defining a
ListViewItem called item:

localDirList.Items.Clear()

Dim item As ListViewItem

If the current directory is not root, it adds a parent directory icon:

If Not Directory.GetParent(localCurrentDir) Is Nothing Then

item = New ListViewItem("..", 1)

item.ImageIndex = 0

localDirList.Items.Add(item)

End If

Next, it adds all subdirectories in the current directory. You obtain the list of
directories from the GetDirectories method of the System.IO.Directory class:

Dim directories As String() = Directory.GetDirectories(localCurrentDir)

Dim length As Integer = directories.Length

Dim dirName As String

For Each dirName In directories

item = New ListViewItem(Path.GetFileName(dirName), 1)

item.SubItems.Add("")

item.SubItems.Add(Directory.GetLastAccessTime(dirName).ToString())

item.ImageIndex = 1

localDirList.Items.Add(item)

Next

Developing an FTP Client Application

417

*0821_ch05_FINAL 2/18/03 8:57 PM Page 417

Finally, it adds all files in the current directory. You obtain the list of files from
the GetFiles method of the Directory class:

Dim files As String() = Directory.GetFiles(localCurrentDir)

length = files.Length

Dim fileName As String

For Each fileName In files

item = New ListViewItem(Path.GetFileName(fileName), 1)

Dim fi As New FileInfo(fileName)

item.SubItems.Add(Convert.ToString(fi.Length))

item.SubItems.Add(File.GetLastWriteTime(fileName).ToString())

item.ImageIndex = 2

localDirList.Items.Add(item)

Next

LoadRemoteDirList

The LoadRemoteDirList method populates the remoteDirList control with the
content of the remote current directory. If the remote current directory is not
the root, an icon representing a parent directory is also added. The definition
of the LoadRemoteDirList is as follows:

Private Sub LoadRemoteDirList()

If ftp.Connected Then

remoteDirList.Items.Clear()

Dim item As ListViewItem

If Not remoteCurrentDir.Equals("/") Then

item = New ListViewItem("..", 1)

item.ImageIndex = 0

remoteDirList.Items.Add(item)

End If

Try

ftp.ChangeDir(remoteCurrentDir)

ftp.GetDirList()

Dim lines As String() = _

ftp.DirectoryList.Split(Convert.ToChar(ControlChars.Cr))

Dim line As String

Dim fileList As New ArrayList()

Dim dirList As New ArrayList()

For Each line In lines

If line.Trim().StartsWith("-") Then ' a file

Chapter 5

418

*0821_ch05_FINAL 2/18/03 8:57 PM Page 418

fileList.Add(line)

ElseIf line.Trim().StartsWith("d") Then ' a directory

dirList.Add(line)

End If

Next

' now load subdirectories to DirListView

Dim enumerator As IEnumerator = dirList.GetEnumerator

While enumerator.MoveNext

Dim dirItem As DirectoryItem = _

GetDirectoryItem(CType(enumerator.Current, String))

If Not dirItem.name Is Nothing Then

item = New ListViewItem(dirItem.name, 1)

item.SubItems.Add("")

item.SubItems.Add(dirItem.modifiedDate)

remoteDirList.Items.Add(item)

End If

End While

enumerator = fileList.GetEnumerator

While enumerator.MoveNext

Dim dirItem As DirectoryItem = _

GetDirectoryItem(CType(enumerator.Current, String))

If Not dirItem.name Is Nothing Then

item = New ListViewItem(dirItem.name, 2)

item.SubItems.Add(diritem.size)

item.SubItems.Add(dirItem.modifiedDate)

remoteDirList.Items.Add(item)

End If

End While

Catch e As Exception

Debug.WriteLine(e.ToString())

End Try

Else

NotConnected()

End If

End Sub

Developing an FTP Client Application

419

*0821_ch05_FINAL 2/18/03 8:57 PM Page 419

The method starts by checking if the application is connected to a remote
server. It only executes the rest of the code in its body if the application is con-
nected:

If ftp.Connected Then

...

Else

NotConnected()

End If

If the application is connected, the remoteDirList control is cleared and a
ListViewItem variable called item is defined:

remoteDirList.Items.Clear()

Dim item As ListViewItem

If the remote current directory is not root, the method adds the icon repre-
senting the parent directory:

If Not remoteCurrentDir.Equals("/") Then

item = New ListViewItem("..", 1)

item.ImageIndex = 0

remoteDirList.Items.Add(item)

End If

Next, it changes directory to the remote current directory and calls the FTP
class’s GetDirList to obtain the directory listing:

Try

ftp.ChangeDir(remoteCurrentDir)

ftp.GetDirList()

The directory listing returns in a long string containing file and directory
information in the remote current directory. The string then splits into lines:

Dim lines As String() = _

ftp.DirectoryList.Split(Convert.ToChar(ControlChars.Cr))

The subdirectories and files returned are not grouped by type, but you want to
display subdirectories in one group and files in another. Therefore, you construct
an ArrayList called fileList that will hold the list of files and an ArrayList named
dirList to hold the list of directories:

Chapter 5

420

*0821_ch05_FINAL 2/18/03 8:57 PM Page 420

Dim line As String

Dim fileList As New ArrayList()

Dim dirList As New ArrayList()

Then, each line that starts with a hyphen in a file is added to fileList and
lines starting with d are added to dirList:

For Each line In lines

If line.Trim().StartsWith("-") Then ' a file

fileList.Add(line)

ElseIf line.Trim().StartsWith("d") Then ' a directory

dirList.Add(line)

End If

Next

Now, you can add all subdirectories to the remoteDirList control. Note that
you use the GetDirectoryItem to convert the raw text to a DirectoryItem object:

Dim enumerator As IEnumerator = dirList.GetEnumerator

While enumerator.MoveNext

Dim dirItem As DirectoryItem = _

GetDirectoryItem(CType(enumerator.Current, String))

If Not dirItem.name Is Nothing Then

item = New ListViewItem(dirItem.name, 1)

item.SubItems.Add("")

item.SubItems.Add(dirItem.modifiedDate)

remoteDirList.Items.Add(item)

End If

End While

Next, you add all files to the remoteDirList control, again using the GetDirecto-
ryItem method to get DirectoryItem objects:

enumerator = fileList.GetEnumerator

While enumerator.MoveNext

Dim dirItem As DirectoryItem = _

GetDirectoryItem(CType(enumerator.Current, String))

If Not dirItem.name Is Nothing Then

item = New ListViewItem(dirItem.name, 2)

item.SubItems.Add(diritem.size)

item.SubItems.Add(dirItem.modifiedDate)

remoteDirList.Items.Add(item)

End If

End While

Developing an FTP Client Application

421

*0821_ch05_FINAL 2/18/03 8:57 PM Page 421

Log

The Log method appends the text passed to it to the messageTextBox control’s Text
property and forces the messageTextBox control to scroll to the end of the text:

Private Sub Log(ByVal message As String)

messageTextBox.Text += message & ControlChars.CrLf

'forces the TextBox to scroll

messageTextBox.SelectionStart = messageTextBox.Text.Length

messageTextBox.ScrollToCaret()

End Sub

MakeLocalDir

The MakeLocalDir method creates a new directory under the local current
directory:

Private Sub MakeLocalDir()

Dim dirName As String = InputBox(_

"Enter the name of the directory to create in the local computer", _

"Make New Directory").Trim()

If Not dirName.Equals("") Then

Dim fullPath As String = Path.Combine(localCurrentDir, dirName)

If Directory.Exists(fullPath) Then

MessageBox.Show("Directory already exists.", _

"Error creating directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

If File.Exists(fullPath) Then

MessageBox.Show("Directory name is the same as the name of a file.", _

"Error creating directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

Try

Directory.CreateDirectory(fullPath)

LoadLocalDirList()

Catch e As Exception

MessageBox.Show(e.ToString, _

"Error creating directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

End Try

End If

End If

End If

End Sub

Chapter 5

422

*0821_ch05_FINAL 2/18/03 8:57 PM Page 422

It begins by prompting the user to enter a name for the new directory:

Dim dirName As String = InputBox(_

"Enter the name of the directory to create in the local computer", _

"Make New Directory").Trim()

If the user enters a valid name, it gets the full path by combining the local
current directory and the entered name:

If Not dirName.Equals("") Then

Dim fullPath As String = Path.Combine(localCurrentDir, dirName)

Next, it checks if the directory already exists:

If Directory.Exists(fullPath) Then

MessageBox.Show("Directory already exists.", _

"Error creating directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

It also checks if the directory name resembles a file in the same directory:

If File.Exists(fullPath) Then

MessageBox.Show("Directory name is the same as the name of a file.", _

"Error creating directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

If the name is unique in the directory, it uses the CreateDirectory method of
the System.IO.Directory class to create a new directory:

Directory.CreateDirectory(fullPath)

Upon a successful create operation, it refreshes the content of the
localDirList control by calling the LoadLocalDirList method:

LoadLocalDirList()

Developing an FTP Client Application

423

*0821_ch05_FINAL 2/18/03 8:57 PM Page 423

MakeRemoteDir

The MakeRemoteDir method creates a new directory in the remote current directory.
If the application is connected to a remote server, it prompts the user for a
directory name. The MakeRemoteDir method definition is as follows:

Private Sub MakeRemoteDir()

If ftp.Connected Then

Dim dirName As String = InputBox(_

"Enter the name of the directory to create in the remote server", _

"Make New Directory").Trim()

If Not dirName.Equals("") Then

ftp.MakeDir(dirName)

Log(ftp.replyMessage)

If ftp.replyCode.StartsWith("2") Then

LoadRemoteDirList()

'Dim item As New ListViewItem(dirName, 1)

'If remoteCurrentDir.Equals("/") Then

' remoteDirList.Items.Insert(1, item)

'Else

' remoteDirList.Items.Insert(0, item)

'End If

End If

End If

Else

NotConnected()

End If

End Sub

It starts by prompting the user to enter a directory name into an InputBox:

If ftp.Connected Then

Dim dirName As String = InputBox(_

"Enter the name of the directory to create in the remote server", _

"Make New Directory").Trim()

If the name is not blank, it calls the FTP class’s MakeDir method and logs the
message:

If Not dirName.Equals("") Then

ftp.MakeDir(dirName)

Log(ftp.replyMessage)

Chapter 5

424

*0821_ch05_FINAL 2/18/03 8:57 PM Page 424

If the MakeDir method is successful (indicated by a reply code starting with 2),
it calls the LoadRemoteDirList method:

If ftp.replyCode.StartsWith("2") Then

LoadRemoteDirList()

End If

NotConnected

The NotConnected method is called every time another method finds out that the
application is not connected to a remote server. It logs a message and then changes
the connectFileMenuItem’s Text property to &Connect. The method definition is as
follows:

Private Sub NotConnected()

Log("Not connected")

connectFileMenuItem.Text = "&Connect"

'clearing the ListView

'don't use the remoteDirList.Clear because it removes the columns too,

'instead use remoteDirList.Items.Clear()

remoteDirList.Items.Clear()

'clearing the combo box

remoteDir.Items.Clear()

remoteDir.Text = ""

End Sub

The first thing it does is to log the “Not connected” message and change the
connectFileMenuItem’s Text property:

Log("Not connected")

connectFileMenuItem.Text = "&Connect"

It then clears the remoteDirList and remoteDir controls:

remoteDirList.Items.Clear()

'clearing the combo box

remoteDir.Items.Clear()

remoteDir.Text = ""

Developing an FTP Client Application

425

*0821_ch05_FINAL 2/18/03 8:57 PM Page 425

RenameLocalFile

The RenameLocalFile method renames a file in the local computer. This method is
invoked when the user clicks the localRenameButton control. The method definition
is as follows:

Private Sub RenameLocalFile()

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to rename.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Else

Dim newName As String = InputBox("Enter the new name", "Rename").Trim()

If Not newName.Equals("") Then

Dim item As ListViewItem = localDirList.SelectedItems(0)

If newName.Equals(item.Text) Then

MessageBox.Show("Please enter a different name from the " & _

"file/directory you are trying to rename.", _

"Error renaming file/directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

Dim fullPath As String = Path.Combine(localCurrentDir, item.Text)

If Helper.IsDirectory(fullPath) Then

Directory.Move(fullPath, Path.Combine(localCurrentDir, newName))

Else

Dim fi As New FileInfo(fullPath)

fi.MoveTo(Path.Combine(localCurrentDir, newName))

End If

LoadLocalDirList()

End If

End If

End If

End Sub

It first checks if an item is selected in the localDirList control. If not, it shows
a warning:

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to rename.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Chapter 5

426

*0821_ch05_FINAL 2/18/03 8:57 PM Page 426

If an item is selected in the localDirList control, it prompts for a new name:

Dim newName As String = InputBox("Enter the new name", "Rename").Trim()

If the new name does not consist only of spaces, it gets the selected item from
the localDirList control and checks the old name. If the old name is the same as
the new name, it displays an error message:

If Not newName.Equals("") Then

Dim item As ListViewItem = localDirList.SelectedItems(0)

If newName.Equals(item.Text) Then

MessageBox.Show("Please enter a different name from the " & _

"file/directory you are trying to rename.", _

"Error renaming file/directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

If the new name does not conflict with the old one, it composes the full path
using the static Combine method of the System.IO.Path class:

Dim fullPath As String = Path.Combine(localCurrentDir, item.Text)

Then it checks whether the selected item is a directory or a file. If it is a file, the
method calls the Move method of the System.IO.Directory class to change the
name:

If Helper.IsDirectory(fullPath) Then

Directory.Move(fullPath, Path.Combine(localCurrentDir, newName))

If the selected item is a file, the method constructs a FileInfo object and calls
its MoveTo method to change the filename:

Dim fi As New FileInfo(fullPath)

fi.MoveTo(Path.Combine(localCurrentDir, newName))

Finally, it invokes the LoadLocalDirList to refresh the content of the
localDirList control:

LoadLocalDirList()

Developing an FTP Client Application

427

*0821_ch05_FINAL 2/18/03 8:57 PM Page 427

RenameRemoteFile

The RenameRemoteFile method renames a file on the connected remote server. It
only runs the code in its body if the application is connected to a remote server.
The method definition is as follows:

Private Sub RenameRemoteFile()

If ftp.Connected Then

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to rename.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Else

Dim dirName As String = InputBox(_

"Enter the new name", "Rename").Trim()

If Not dirName.Equals("") Then

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

If dirName.Equals(item.Text) Then

MessageBox.Show("Please enter a different name from the " & _

"file/directory you are trying to rename.", _

"Error renaming file/directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

ftp.Rename(item.Text, dirName)

If ftp.replyCode.StartsWith("2") Then

item.Text = dirName

End If

Log(ftp.replyCode & " " & ftp.replyMessage)

End If

End If

End If

Else

NotConnected()

End If

End Sub

It starts by checking if there is a selected item in the remoteDirList control. If
there is not, an error message displays:

If ftp.Connected Then

Dim selectedItemCount As Integer = remoteDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file/directory to rename.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Chapter 5

428

*0821_ch05_FINAL 2/18/03 8:57 PM Page 428

If there is a selected item, the method prompts the user for a new name:

Dim dirName As String = InputBox(_

"Enter the new name", "Rename").Trim()

If the new name does not consists of spaces only, it gets the selected item and
gets the old name in the item’s Text property. It then compares the new name with
the old name:

If Not dirName.Equals("") Then

Dim item As ListViewItem = remoteDirList.SelectedItems(0)

If the new name equals the old name, it displays an error message:

If dirName.Equals(item.Text) Then

MessageBox.Show("Please enter a different name from the " & _

"file/directory you are trying to rename.", _

"Error renaming file/directory", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Otherwise, it calls the FTP class’s Rename method, passing both the old name
and the new name:

ftp.Rename(item.Text, dirName)

If the Rename method successfully executes (indicated by a server reply code
starting with 2), the method updates the item’s Text property in the remoteDirList
control:

If ftp.replyCode.StartsWith("2") Then

item.Text = dirName

End If

Finally, it logs the reply message from the server:

Log(ftp.replyCode & " " & ftp.replyMessage)

Developing an FTP Client Application

429

*0821_ch05_FINAL 2/18/03 8:57 PM Page 429

SelectLocalDirectory

The SelectLocalDirectory method inserts the local current directory into the
localDir combo box:

Private Sub SelectLocalDirectory(ByVal path As String)

' add current dir to the list

localDir.Items.Remove(path)

localDir.Items.Insert(0, path)

'this will trigger the localDir ComboBox's SelectedIndexChanged event

localDir.SelectedIndex = 0

End Sub

Prior to insertion, it removes the same item to avoid duplication:

' add current dir to the list

localDir.Items.Remove(path)

localDir.Items.Insert(0, path)

The method then sets the SelectedIndex property of the localDir combo
box to 0 to make the new item selected. This also triggers the combo box’s Selecte-
dIndexChanged event:

localDir.SelectedIndex = 0

SelectRemoteDirectory

If the application is connected to a remote server, this method inserts a remote
directory name at the first position in the remoteDir combo box. The method defi-
nition is as follows:

Private Sub SelectRemoteDirectory(ByVal path As String)

If ftp.Connected Then

' add current dir to thel ist

remoteDir.Items.Remove(path)

remoteDir.Items.Insert(0, path)

'this will trigger the remoteDir ComboBox's SelectedIndexChanged event

remoteDir.SelectedIndex = 0

Else

NotConnected()

End If

End Sub

Chapter 5

430

*0821_ch05_FINAL 2/18/03 8:57 PM Page 430

The first thing the method does is to remove the same item to avoid dupli-
cation:

If ftp.Connected Then

' add current dir to thel ist

remoteDir.Items.Remove(path)

remoteDir.Items.Insert(0, path)

It then sets the SelectedIndex property to 0. This triggers the SelectedIndexChanged
event of the remoteDir combo box:

remoteDir.SelectedIndex = 0

UpdateLocalDir

The UpdateLocalDir method is invoked when the localDir control’s
SelectedIndexChanged event is triggered. This event is raised when the user
manually selects a directory from the localDir control or the index is changed
programmatically. Then, this method refreshes the content of the localDirList
control. The method definition is as follows:

Private Sub UpdateLocalDir()

Dim selectedIndex As Integer = localDir.SelectedIndex

If localDir.SelectedIndex <> -1 Then

localCurrentDir = CType(localDir.Items(selectedIndex), String)

LoadLocalDirList()

End If

End Sub

UpdateProgressBar

The UpdateProgressBar method is called repeatedly by the event handler that
handles the TransferProgressChanged event. This method updates the value of the
progress bar. The method definition is as follows:

Private Sub UpdateProgressBar(ByVal count As Integer)

progressBar.Value = count

End Sub

Developing an FTP Client Application

431

*0821_ch05_FINAL 2/18/03 8:57 PM Page 431

UpdateRemoteDir

The UpdateRemoteDir method is invoked when the remoteDir control’s
SelectedIndexChanged event triggers. This event is raised when the user
manually selects a directory from the remoteDir control or the index is
changed programmatically. This is the UpdateRemoteDir method:

Private Sub UpdateRemoteDir()

If ftp.Connected Then

Dim selectedIndex As Integer = remoteDir.SelectedIndex

If remoteDir.SelectedIndex <> -1 Then

remoteCurrentDir = CType(remoteDir.Items(selectedIndex), String)

LoadRemoteDirList()

End If

Else

NotConnected()

End If

End Sub

When the application is connected to a remote server, this method refreshes
the content of the remoteDirList control.

UploadFile

The UploadFile method uploads a file to the connected remote server if the
application is connected to a remote server. This is the method definition:

Private Sub UploadFile()

If ftp.Connected Then

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file to upload.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

Else

Dim item As ListViewItem = localDirList.SelectedItems(0)

If Helper.IsDirectoryItem(item) Then

MessageBox.Show("You cannot upload a directory.", _

"Error uploading file", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

Else

Try

fileSize = Convert.ToInt32(item.SubItems(1).Text)

Catch

Chapter 5

432

*0821_ch05_FINAL 2/18/03 8:57 PM Page 432

End Try

ftp.Upload(item.Text, localCurrentDir)

End If

End If

Else

NotConnected()

End If

End Sub

It first checks if the application is connected to a remote server:

If ftp.Connected Then

If the application is connected, the method checks if there is a selected item in
the localDirList control. If there is no item selected, it displays an error message:

Dim selectedItemCount As Integer = localDirList.SelectedItems.Count

If selectedItemCount = 0 Then

MessageBox.Show("Please select a file to upload.", _

"Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning)

If there is an item selected, it gets the selected item from the localDirList
control:

Dim item As ListViewItem = localDirList.SelectedItems(0)

It then checks if the item is a directory item. If it is, the method displays an
error message:

If Helper.IsDirectoryItem(item) Then

MessageBox.Show("You cannot upload a directory.", _

"Error uploading file", MessageBoxButtons.OK, _

MessageBoxIcon.Error)

If the selected item is a file item, it assigns the file size to fileSize and calls the
FTP class’s Upload method:

Try

fileSize = Convert.ToInt32(item.SubItems(1).Text)

Catch

End Try

ftp.Upload(item.Text, localCurrentDir)

Developing an FTP Client Application

433

*0821_ch05_FINAL 2/18/03 8:57 PM Page 433

Compiling and Running the Application

You can find the source files for the application in the chapter’s project directory.
To compile the application, run the Build.bat file. The content of the Build.bat file
is as follows:

vbc /t:library /r:System.Windows.Forms.dll Helper.vb

vbc /t:library /r:System.dll,System.Windows.Forms.dll,System.Drawing.dll

LoginForm.vb

vbc /t:library /r:System.dll FTP.vb

vbc /t:winexe /r:System.dll,System.Windows.Forms.dll,�
System.Drawing.dll,Helper.dll,LoginForm.dll,�
FTP.dll Form1.vb

Summary

In this chapter you learned how to use sockets to connect to a remote server. You
also saw the code to resolve a DNS name into an IP address. You also learned
about the RFC959 specification and saw how it is implemented in an FTP client
application.

Chapter 5

434

*0821_ch05_FINAL 2/18/03 8:57 PM Page 434

