
Enterprise
JavaBeans 2.1

STEFAN DENNINGER and INGO PETERS with ROB CASTANEDA
translated by David Kramer

ApressTM

APress/Authoring/2003/03/04:15:59 Page i

Enterprise JavaBeans 2.1
Copyright c©2003 by Stefan Denninger and Ingo Peters with Rob Castaneda

All rights reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system, without the prior written permission of
the copyright owner and the publisher.

ISBN (pbk): 1-59059- 088-0

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, we use the names only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement
of the trademark.

Translator, Editor, Compositor: David Kramer

Technical Reviewer: Mary Schladenhauffen

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher,
Karen Watterson, John Zukowski

Managing and Production Editor: Grace Wong

Proofreader: Lori Bring

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,175
Fifth Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag
GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com

Outside the United States, fax +49 6221 345229 email orders@springer.de, or visit
http://www.springer.de,

For information on translations, please contact Apress directly at 2560 Ninth Street,
Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939,
email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

APress/Authoring/2003/03/04:15:59 Page ii

CHAPTER 3

The Architecture of

Enterprise JavaBeans

IN CHAPTER 2 WE INDICATED that Enterprise JavaBeans (EJB) is a component of the
Java-2 platform, Enterprise Edition (for details see [26]). In this model EJB takes
over the part of the server-side application logic that is available in the form of
components: the Enterprise Beans. This chapter introduces the architecture of
Enterprise JavaBeans. Figure 3-1 shows Enterprise Beans (in their incarnations as
entity, message-driven, and session beans) as the central elements.

Local

Naming
Service

JNDI

JTA

TA
Monitor

JDBC

DB

JMS

Messaging
Service

Session-
Bean

Remote

Session
Bean

Home

Remote

Entity
Bean

Home

Remote

Standard-API

Various
Services

Client

EJ
B
Co
nt
ai
ne
r

Se
rv
er

Persistence
Manager

LocalHome

Local

LocalHome

Local

Message-
Driven-

Bean

Message-
Driven-

Bean

Message-
Driven
Bean

Figure 3-1. Overview of the EJB architecture.

APress/Authoring/2003/03/05:09:54 Page 21

Chapter 3

They contain the application logic used by the client programs. Enterprise
Beans reside in an EJB container, which makes a run-time environment available
to them (so that, for example, they can be addressed by client programs via
the home and remote interfaces and have the possibility of communication
among one another via the local home and local interfaces, so that life-cycle
management can be provided). The EJB container is linked to services via the
standard programming interface, services that are available to the bean (for
example, access to databases via JDBC, access to a transaction service via JTA,
and access to a message service via JMS). The EJB container is installed (possibly
in addition to other containers) in an application server.

We shall now go into the details of the individual components of the
architecture and their interrelationships.

The Server

The server is the fundamental component of the EJB architecture. Here we are
deliberately not speaking of an EJB server. Actually, it should be called a J2EE
server. Sun Microsystems’ strategy in relationship to enterprise applications
in the framework of the J2EE platform involves Enterprise JavaBeans to a
considerably greater extent in the full portfolio of Java-based programming
interfaces and products than was the case in version 1.0 of the Enterprise
JavaBeans specification.

The specification of Enterprise JavaBeans in version 2.1 does not define any
sort of requirement on the server (just as in versions 1.0 and 1.1). The reason for
this is presumably their stronger integration into the Java 2 platform, Enterprise
Edition (see Figure 3-2).

A J2EE-conforming server is a run-time environment for various containers
(of which one or more can be EJB containers). Each container, in turn, makes
a run-time environment available for a particular type of component. Creators
of Java application servers tend more and more to support the J2EE platform.
There is scarcely a producer who offers a pure EJB server. Many suppliers of
databases, transaction monitors, or CORBA ORBs have meanwhile begun to
support Enterprise JavaBeans.

In the environment of the J2EE platform (and thus indirectly in the EJB
architecture) the server component has the responsibility of providing basic
functionality. This, includes, for example:

• Thread and process management (so that several containers can offer their
services to the server in parallel);

• Support of clustering and load sharing (that is, the ability to run several
servers cooperatively and to distribute client requests according to the load
on each server to obtain the best-possible response times);

22

APress/Authoring/2003/03/05:09:54 Page 22

The Architecture of Enterprise JavaBeans

J2EE Server

EJB Container

Enterprise
Bean

Enterprise
Bean

Enterprise
Bean

Web Container

Servlet

JSP File

Client Information
System

Figure 3-2. EJB in the context of Java2, Enterprise Edition.

• Security against breakdown (fail-safe);

• A naming and directory service (for locating components);

• Access to and pooling of operating system resources (for example, network
sockets for the operation of a web container).

The interface between the server and containers is highly dependent on the
producer. Neither the specification of Enterprise JavaBeans nor that of the Java 2
platform, Enterprise Edition, defines the protocol for this. The specification of
Enterprise JavaBeans in version 2.1 assumes that the producer of the server and
that of the container are one and the same.

The EJB Container

The EJB container is a run-time environment for Enterprise Bean components.
Just as an EJB container is assigned to the server as a run-time environment and
service provider, a bean is dependent on its EJB container, which provides it a
run-time environment and services. Such services are provided to the bean via
standard programming interfaces. The specification in version 2.1 obliges the EJB
container to provide at least the following programming interfaces:

23

APress/Authoring/2003/03/05:09:54 Page 23

Chapter 3

• The API (Application Programming Interface) of the Java 2 platform,
Standard Edition, in version 1.4;

• The API of the specification of Enterprise JavaBeans 2.1;

• The API of JNDI 1.2 (Java Naming and Directory Interface);

• The UserTransaction API from JTA 1.0.1 (Java Transaction API);

• The API of the JDBC 2.0 extension (Java Database Connectivity);

• The API of JMS 1.1 (Java Message Service);

• The API of Java Mail 1.3 (for sending e-mail);

• The API of JAXP 1.1, 1.2 (Java XML Parser);

• The API of JAXR and JAX-RPC 1.0 (Java XML Remote Procedure Calls);

• The API of Java Connectors 1.5;

• The API of Java Web Services 1.0.

A provider of a Java application server may offer additional services via the
standard interface. Some producers offer, for example, a generic service interface
particular to the producer by means of which specially developed services (such
as a logging service or user management) can be offered. If an Enterprise Bean
uses such proprietary services, then it cannot simply be placed in any available
container.

The EJB container provides Enterprise Beans a run-time environment,
and also offers the Enterprise Beans particular services at run-time, via the
above-mentioned (static) programming interfaces. We now would like to examine
the most important aspects of both domains (that of the run-time environment
as well as that of provided services).

Control of the Life Cycle of a Bean
(Run-Time Environment)

The EJB container is responsible for the life cycle of a bean. The EJB container
generates bean instances (for example, when a client requests one), deploys them
in various states via callback methods, and manages them in pools in case they
will not be needed until a later time. The bean instances are also deleted by the
EJB container. The states and respective methods that lead to a state transition
depend on the type of bean. They are discussed in detail in Chapter 4, “Session
Beans”; Chapter 5, “Entity Beans”; and Chapter 6, “Message-Driven Beans.”

24

APress/Authoring/2003/03/05:09:54 Page 24

The Architecture of Enterprise JavaBeans

Instance Pooling (Run-Time Environment);
Activation and Passivation

A system that supports mission-critical applications must be capable of dealing
with great demands. It must be capable of serving a large number of concurrent
clients without them having to put up with long response times. The greater the
number of clients, the greater generally the number of objects generated in the
server.

In order to keep the number of bean instances from growing without bound
and to prevent bean instances from continually being created and then destroyed,
an EJB container maintains a certain number of bean instances in a pool. As long
as a bean is in the pool, it is in a Pooled state and is to a certain extent deactivated.
On demand (as a rule, as a result of a client request) the first available bean
instance of the requisite type is taken from the pool. It is reactivated and placed in
a Ready state.

Such instance pooling is common practice in database applications. This
practice has also proved itself in the management of thread objects (such as in
server development). With pooling, fewer bean instances than the number of
client connections are needed, as a rule. By avoiding permanent object generation
and destruction, system performance is enhanced. Instance pooling is closely
connected with the life-cycle management of a bean. Finally, we note that the
specification does not obligate an EJB container to support instance pooling.

A further possibility for the EJB container to save system resources is to make
Enterprise Bean instances that are currently not needed (for example, from object
serialization) persistent and to remove them from memory (passivation). Upon
demand these instances can again be deserialized and made available in memory
(activation). Such a temporary storage of bean instances (those, for example,
for which a certain time period has expired) on secondary media can reduce
the burden on system memory resources. This behavior is similar to that of an
operating system page file.

Whether bean instances can be pooled, activated, or passivated depends on
their type. In the description of bean types in what follows we shall make the
necessary distinctions.

Distribution (Run-Time Environment)

The EJB container ensures that Enterprise Beans can be used by client programs,
which as a rule are not running in the same process. The client does not know on
what server the Enterprise Bean that it is currently using is located. Even when
an Enterprise Bean uses another Enterprise Bean, it is a client. The place where
the Enterprise Bean exists is transparent to the client. The use of an Enterprise

25

APress/Authoring/2003/03/05:09:54 Page 25

Chapter 3

Bean on another computer is not essentially different for the client from the use
of objects that are located in the same address space.

For distributed communication between the various parties, Java Remote
Method Invocation (Java RMI) is used. To achieve interoperability among applica-
tion servers supplied by different manufacturers the EJB specification prescribes
support for the communications protocol of the CORBA specification, IIOP, for
an EJB container that conforms to specifications. Distributed communication
thus takes place over the protocol RMI-IIOP (RMI over IIOP). In no case does the
developer of an Enterprise Bean have to worry about the bean being able to be
accessed from outside. This is the sole task of the EJB container.

This book assumes that the reader is already familiar with the techniques of
remote method invocation (or else see [13] and [4] for information on RMI). In
particular, the reader should understand the notions of stub and skeleton.

Since version 2.0 of the Enterprise JavaBeans specification the client has had
the ability to communicate with an Enterprise Bean via the Local interface. In
many applications it is necessary that Enterprise Beans, all of which are installed
in the same EJB container (aggregation of components), communicate with one
another. In version 1.1 of the EJB specification this means a remote call to a
component located in the same address space. The overhead of the RMI protocol
is unnecessary, and it leads to a degradation of performance. The advantage of
using local interfaces is that RMI is thereby completely ignored. Local interfaces
can then be sensibly used only if client and Enterprise Bean are located in the
same address space of a Java virtual machine. The location of the Enterprise Bean
is thus no longer transparent to the client. Transparency of location applies only
to EJB components that are called over the remote interface. Furthermore, the
semantics of a method call to a component are altered when a local interface is
used. With calls to the local interface, parameters are passed via call by reference,
while calls to the remote interface use call by value.

The various chapters on various types of beans will deal extensively with the
difference between the remote and local interfaces and will delve deeply into the
viewpoint of the client with respect to an Enterprise Bean.

Naming and Directory Service (Service)

If a client wishes to find a bean, it is directed to a naming interface. A naming
service offers the possibility of associating references to removed objects under a
particular name, which may be assigned arbitrarily, at a definite place (binding).
It also offers the possibility of looking up the object bound to the naming service
under that name (lookup). This is similar to the white pages, whereby one looks
up an object by name.

26

APress/Authoring/2003/03/05:09:54 Page 26

The Architecture of Enterprise JavaBeans

A directory service is more powerful than a naming service. It supports not
only binding of references to a name, it can also manage distributed objects
and other resources (such as printers, files, application servers) in hierarchical
structures, and it offers wide-ranging possibilities for administration. With a
directory service a client can be provided with additional descriptive information
about a reference to a remote object. This is similar to the yellow pages, whereby
one looks up an object by its attributes.

The interface over which the naming and directory services are accessed
is JNDI (Java Naming and Directory Interface). The bean, too, can receive
information via the naming and directory service. The EJB container provides
the bean instance information, for example, that was established at the time
of installation of the component (so-called environment entries). In this
way it is possible to influence the behavior of Enterprise Beans by external
parameterization. The bean also has the possibility of accessing particular
resources, such as database connections or a message service, via the naming
and directory services.

Persistence (Service)

The EJB container provides the beans, via the naming and directory services,
the possibility of accessing database connections. Beans can thereby themselves
ensure that their state is made persistent. However, the specification of Enterprise
JavaBeans provides for a mechanism by which the state of certain Enterprise Bean
types can be made persistent automatically. (We shall return to this mechanism
in Chapter 5, “Entity Beans.”)

As a rule, in the case of automatic storage of the state of Enterprise Beans by
the EJB container the data are made persistent in a database. One can imagine
other EJB containers that provide persistence mechanisms that place the data
in other storage systems (for example, in the file system or electronic archives).
There is also the possibility of developing EJB containers that make use of the
interfaces of other application systems in order to read or write data from or to
that location. Thus, for example, the data in an old main-frame system can be
bound by means of special EJB containers to component-oriented systems (the
container then acts to a certain extent as a wrapper for the old systems).

However, what is really at issue is that in the case of automatic persistence of
an Enterprise Bean, the bean couldn’t care less where the data are stored. The EJB
container takes on the task of ensuring that the data are stored and remain in a
consistent state. Thus a particular bean can be installed in various EJB containers
that support varying storage systems as persistence medium. For the Enterprise
Bean the persistence remains transparent. It doesn’t know where its data are
stored or where the data come from that the EJB container uses to initialize it.

27

APress/Authoring/2003/03/05:09:54 Page 27

Chapter 3

Transactions (Service and Run-Time Environment)

Transactions are a proven technique for simplifying the development of dis-
tributed applications. Among other things, transactions support the applications
developer in dealing with error situations that can occur from simultaneous
access to particular data by multiple users.

A developer who uses transactions splits up the actions to be executed into
atomic units (transactions). The transaction monitor (the EJB container) ensures
that the individual actions of a transaction are all executed successfully. If an
action fails, the successful actions thus far executed are canceled.

The support of transactions is a fundamental part of the specification
of Enterprise JavaBeans. In distributed systems in which several users work
simultaneously on many separate actions with the same data (which may be
distributed among several back-end systems), a transaction service on the level
of the application server is unavoidable. It is the task of the EJB container to
ensure that the necessary protocols (for example, the two-phase commit protocol
between a transaction monitor and a database system, context propagation,
and a distributed two-phase commit) for handling transactions are available.
The specification of Enterprise JavaBeans supports flat transactions; that is,
transactions cannot be nested.

The developer of an Enterprise Bean can choose how he or she wishes
to use transactions. On the one hand, transactions can be used explicitly, by
communicating over JTA directly with the transaction service of the EJB container.
Alternatively, the developer can opt for declarative (or implicit) transactions. In
this case, at the time of installation of an Enterprise Bean in the EJB container it is
specified what methods should run within which transactions. The EJB container
intervenes when these methods are called, and it ensures that they are called
within the appropriate transaction context.

In the case of declarative transactions the bean developer does not need
to be concerned with manipulating the transactions. During installation in EJB
container A, a bean can be installed with a completely different transactional
behavior from that during installation in EJB container B. The bean itself remains
untouched in each case, since in every case the container remains responsible
for guaranteeing the desired transactional behavior. Much more detail on
transactions in the EJB context is to be found in Chapter 7, “Transactions.”

Message (Service)

With version 2.0 of the specification of Enterprise JavaBeans the EJB container
is obligated to integrate a message service via JMS-API (Java Message Service).
With the definition of a new bean type—the message-driven bean—the message
service is integrated into the EJB container in a significant way. The development

28

APress/Authoring/2003/03/05:09:54 Page 28

The Architecture of Enterprise JavaBeans

of applications based on Enterprise JavaBeans thus gains two additional
dimensions: asynchronicity and parallel processing.

Basically, a message system enables the asynchronous exchange of messages
among two or more clients. In contrast to the case of a client–server system,
here the architecture of a message system is designed around a loose coupling of
equal partners. Each client of the message system can send and receive messages
asynchronously. The sender of a message remains largely anonymous, and the
same holds for the recipient. Message systems are also known under the name
message-oriented middleware (MOM).

In addition to the use of message-driven beans, the message service can,
of course, also be used for asynchronous message exchange between any two
parties. Enterprise Beans, like clients, can also send messages. Through the use of
messaging, processes can, for example, decouple from each other or even create
interfaces to other systems, making it an excellent component for enterprise
integration.

Chapter 6 offers a fuller discussion of Java Message Service message-
driven beans.

Security (Run-Time Environment)

The specification obligates the EJB container to provide Enterprise JavaBeans an
infrastructure for security management as a part of the run-time environment.
It is the task of the system administrator and of the installer of the Enterprise
Beans to establish security policy. Once again, the EJB container is responsible
for the implementation of this security policy. The goal here is (as with container-
managed automatic persistence and declarative transactions) to make the
security mechanisms transparent to the Enterprise JavaBeans, so that they can be
deployed in as many systems as possible.

If the security strategy were implemented in the bean, it would be problematic
to employ the same bean under both more- and less-strict security requirements.
On the other hand, it makes much more sense to place the security mechanisms
in the run-time environment of the components. They are thereby reusable
to a great extent, and the security policy can be adapted from the outside as
the situation warrants. The specification of Enterprise JavaBeans specifically
mentions that it is preferable that no logic relating to security be present in the
code of a bean.

It is possible to define user roles. In every Enterprise Bean particular
permissions can be assigned to a particular role. The assignment takes place, as
with the establishment of the user roles, at one of the following times:

• The time of bean installation;

• The time at which several beans are combined into an aggregate.

29

APress/Authoring/2003/03/05:09:54 Page 29

Chapter 3

Permissions are focused essentially on whether the user is permitted to call
particular methods of an Enterprise Bean. At run time the EJB container
determines whether a client call to a bean method should be allowed to be
executed. To this end it compares the role of the client with the permissions of the
respective Enterprise Bean method.

As a rule, in addition to the security mechanisms that we have described, an
EJB container offers the following security attributes:

• Authentication of the user by a user ID and password;

• Secure communication (for example, via the use of secure socket layers).

Chapter 8 contains a more detailed discussion of security in relation to Enterprise
JavaBeans.

Finally, we note that the EJB container is the central instance in the
component model of Enterprise JavaBeans. It provides the Enterprise Beans
(the components) a convenient run-time environment at a very high level of
abstraction and makes a variety of services available by way of standard interfaces.

The Persistence Manager

The persistence manager is the building block in the architecture of Enterprise
JavaBeans that enables the automatic persistence of particular components.
It was introduced with version 2.0 of the EJB specification to achieve a better
separation of the physical data storage from the object model. The goal was to
improve the portability of persistent EJB components to application servers of
other manufacturers. Moreover, improvements were introduced for the mapping
of a persistent component onto the storage medium, as well as the possibility
of constructing declarative relations between persistent components and an
abstract query language. In version 1.1 one was often forced, in the situation of
automatic container-governed persistence, to rely on the use of proprietary tools
(object-relational “OR” mapping tools) or the use of proprietary extensions of the
EJB container, with the result that the portability of the components was greatly
compromised.

As always, persistence is managed by the EJB container; that is, it determines
when the data of a component are loaded or stored. The EJB container also
determines whether in the case of an action’s failure a successfully executed
saving operation should be undone (transaction). The persistence manager,
on the other hand, is responsible for where and how the persistent data are
stored. It takes over communication with the storage medium (for example, a
database). The mapping of the persistent data of an Enterprise Bean onto the
storage medium (for example, the mapping onto one or more database tables)
is determined at the installation of a component. The persistence manager

30

APress/Authoring/2003/03/05:09:54 Page 30

The Architecture of Enterprise JavaBeans

plays no role when the Enterprise Bean itself looks after persistence or when the
components possess no persistent data.

In most cases a database is used for storing data. In spite of the ANSI SQL
standard the databases of different producers are not one hundred percent
compatible with one another. For example, they use different key words in the
syntax of their query languages. It is usual that particular database functions
that distinguish one database from those of other producers are usable only
with proprietary extensions of the standard query language SQL. The persistence
manager is supposed to catch these difficulties as well. Depending on the
implemented database, a specialized persistence manager can be used that is
able to deal with the peculiarities of the database system.

A further responsibility of the persistence manager is the formulation of
search queries. With knowledge of the mapping of the data and of the peculiarities
of the storage medium in use it can translate abstract search queries into concrete
search queries. For the formulation of abstract search queries for finding EJB
components the specification of Enterprise JavaBeans offers a query language
called EJB-QL (Enterprise JavaBeans Query Language). EJB-QL was introduced in
version 2.0 of the EJB specification and is further enhanced in version 2.1.

The persistence manager and the query language EJB-QL are dealt with
extensively in Chapter 5.

Enterprise Beans

Enterprise Beans are the server-side components used in the component
architecture of Enterprise JavaBeans. They implement the application logic
on which the client programs rely. The functionality of the server and the EJB
container ensures only that beans can be used. Enterprise Beans are installed in
an EJB container, which offers them an environment at run time in which they
can exist. Enterprise Beans rely implicitly or explicitly on the services that the EJB
container offers:

Implicitly in the case of

• container-managed persistence (CMP);
• declarative transactions;
• security.

Explicitly in the case of

• The use of explicit transactions;
• bean-managed persistence (BMP);
• the sending of asynchronous messages.

31

APress/Authoring/2003/03/05:09:54 Page 31

Chapter 3

Types of Enterprise Beans

There are three different forms of Enterprise Beans, which differ more or less
sharply one from the other: entity beans, message-driven beans, and session
beans. Table 3-1 describes the basic differences among these three types of
Enterprise Beans.

Table 3-1. Defining characteristics distinguishing session, message-driven, and entity
Beans (see [25]).

Session Bean Message-Driven Bean Entity Bean

Task of the
bean

Represents a server-
side service that
executes tasks for a
client.

Represents server-
side enterprise logic
for the processing
of asynchronous
messages.

Represents an enter-
prise object whose
data are located in
permanent storage.

Access to the
bean

A session bean is a pri-
vate resource for the
client, available to the
client exclusively.

A message-driven
bean is not directly
accessible to the
client. Communi-
cation is effected
exclusively via send-
ing messages over a
particular channel of
the message service.

An entity bean is a
central resource; the
bean instance is used
simultaneously by
several clients, and its
data are available to
all clients.

Persistence
of the bean

Not persistent. When
the bound client or
server is terminated,
the bean is no longer
accessible.

Not persistent. When
the server is termi-
nated, the bean is
no longer accessible.
The messages that
have not yet been de-
livered to the bean
are persistent as re-
quired. (More on this
in Chapter 6.)

Persistent. When
bound clients or
server is terminated,
the state of the en-
tity bean is located in
a persistent storage
medium. The bean
can be recreated at a
later time.

Session beans model ordinary processes or events. For example, this could be
the entering of a new customer in an enterprise resource planning system (ERP),
the execution of a booking in a booking system, or setting a production plan
based on open orders. Session beans can be viewed as an extension of the client’s
arm toward the server. This point of view is supported by the fact that a session
bean is a private resource of a particular client.

Entity beans, on the other hand, represent objects in the real world that
are associated with particular data, such as a customer, a booking account, or a
product. An instance of a particular entity bean type can be used simultaneously
by several clients. Session beans usually operate on data represented by entity
beans.

32

APress/Authoring/2003/03/05:09:54 Page 32

The Architecture of Enterprise JavaBeans

Message-driven beans are recipients of asynchronous messages. A message
service acts as a mediator between the sender of a message and the message-
driven bean. Entity and session beans are addressed via the remote or local
interface. Calls to entity or session beans are synchronous; that is, the execution
of the client is blocked until the method of the Enterprise Bean has been
processed. After the method call has returned, the client can continue its
processing. Message-driven beans can be addressed by the client only (indirectly)
by sending a message over a particular channel of the message service. A
particular type of message-driven bean receives all messages that are sent over
a particular channel of the message service. Communication over a message
service is asynchronous. That is, the execution of the client can proceed directly
after a message is sent. It does not remain blocked until the message has
been delivered and processed. The container can deploy several instances of a
particular message-driven bean type for the processing of messages. Thus in this
case parallel processing is possible. Message-driven beans have no state between
the processing of several messages. Furthermore, they have no identity vis-à-vis
the client. In a certain sense the are similar to stateless session beans (see the
following paragraph). For the processing of a message, message-driven beans can
use session or entity beans as well as all services that the container offers.

There is another distinction to be made with regard to session beans, namely,
whether a session bean is stateless or stateful. Stateless session beans do not store
any data from one method call to the next. The methods of a stateless session
bean operate only with the data that are passed to it as parameters. Stateless
session beans of the same type all possess the same identity. Since they have no
state, there is neither the necessity nor the possibility of distinguishing one from
the other.

Stateful session beans, on the other hand, store data over many method calls.
Calls by methods to stateful session beans can change the state of the bean. The
state is lost when the client is no longer using the bean or when the server is
taken down. Stateful session beans of the same type have differing identities at
run time. The EJB container must be able to distinguish them, since they have
differing states for their clients.

A session bean receives its identity from the EJB container. In contrast to
entity beans, the identity of a session bean is not externally visible. Since clients
always work with a session bean that for them is an exclusive instance, there is no
need for such visibility.

Entity beans can be distinguished by whether they themselves are responsible
for making their data persistent or whether the EJB container takes over this task.
In the first case one speaks of bean-managed persistence, while in the second the
talk is of container-managed persistence.

Entity beans of the same type have differing identities at run time. An entity
bean of a particular type is identified at run time by its primary key, which is

33

APress/Authoring/2003/03/05:09:54 Page 33

Chapter 3

allocated by the EJB container. It is thereby bound to particular data, which it
represents in its activation phase. The identity of an entity bean is outwardly
visible.

The bean types play a role in resource management of the EJB container. With
entity beans, message-driven beans, and stateless session beans the container can
instigate pooling, while with stateful session beans it can instigate passivation and
activation (serialization and deserialization onto a secondary storage medium).

The interface between an entity bean and the EJB container is called the
context (javax.ejb.EJBContext). This interface is again specialized for the three
bean types (to javax.ejb.EntityContext, javax.ejb.MessageDrivenContext, and
javax.ejb.SessionContext). The bean can communicate with the container
using the context that is passed by the EJB container to the bean. The context
remains bound to a bean during its entire life span. By means of the context the
EJB container manages the identity of an Enterprise Bean. With a change in the
context the EJB container can change the identity of a bean.

Chapters 4, 5, and 6 provide an extensive discussion of the technical details of
session, message-driven, and entity beans. The second section of Chapter 9 deals
with the differing semantics of the various bean types.

Components of an Enterprise Bean

An Enterprise Bean possesses the following components:

• The remote interface and the (remote) home interface or
the local and local home interface (for entity and session beans);

• The bean class (for entity, message-driven, and session beans);

• The primary key or primary key class (for entity beans);

• The deployment descriptor (for entity, message-driven, and session beans).

One speaks of the remote client view when an Enterprise Bean is addressable
over the remote interface. If an Enterprise Bean uses the local interface, one
speaks of the local client view. Basically, an Enterprise Bean can support both the
local and remote client views. However, the specification advises that one choose
one of the two cases.

Let us describe the individual components of a bean by way of an example.
We would like to develop an entity bean that represents a bank account.
The components should make it possible to ascertain the account number, a
description of the account, and the current balance of the account. Furthermore,
the balance of the account should be capable of being raised or lowered by an
arbitrary amount. The bank-account bean should be able to be addressed by the
remote client, that is, from a client that is located outside the address space of the
bank-account bean.

34

APress/Authoring/2003/03/05:09:54 Page 34

The Architecture of Enterprise JavaBeans

This chapter concentrates on the representation of the special features
determined by the architecture. In this example we shall not go into the special
features of a particular bean type (that will be done extensively in Chapters 4, 5,
and 6). Since an entity bean exhibits all the components mentioned above, it is
best suited for this introductory example. Moreover, we shall not use the local
interface in this example. Since EJB is a distributed component architecture, the
use of the remote interface is standard. The use of the local interface is analogous
to that of the remote interface, and it will be dealt with in Chapters 4 and 5.

Remote Interface

The remote interface defines those methods that are not offered externally
by a bean. The methods of the remote interface thus reflect the functionality
that is expected or demanded by the components. The remote interface
must be derived from javax.ejb.EJBObject, which in turn is derived from
java.rmi.Remote. All methods of the remote interface must declare the exception
java.rmi.RemoteException. See Listing 3-1.

Listing 3-1. Remote interface of BankAccount.

package ejb.bankaccount;

import java.rmi.RemoteException;

import javax.ejb.EJBObject;

public interface BankAccount extends EJBObject

{

//ascertain account number

public String getAccNumber()

throws RemoteException;

//ascertain account description

public String getAccDescription()

throws RemoteException;

//ascertain account balance

public float getBalance()

throws RemoteException;

//increase account balance

public void increaseBalance(float amount)

throws RemoteException;

//reduce account balance

public void decreaseBalance(float amount)

throws RemoteException;

}

35

APress/Authoring/2003/03/05:09:54 Page 35

Chapter 3

Home Interface

The home interface must be derived from javax.ejb.EJBHome (in this interface
is to be found the method for deleting a bean; it does not need to be separately
declared). EJBHome, for its part, is likewise derived from javax.rmi.Remote. In
the home interface as well all methods declare the triggering of an exception of
type java.rmi.RemoteExeption. As in the case of the remote interface, everything
points to the distributed character and the embedding in the EJB framework. See
Listing 3-2.

Listing 3-2. The home interface of BankAccount.

package ejb.bankaccount;

import java.rmi.RemoteException;

import javax.ejb.CreateException;

import javax.ejb.EJBHome;

import javax.ejb.FinderException;

public interface BankAccountHome extends EJBHome

{

//generate an account

public BankAccount create(String accNo,

String accDescription,

float initialBalance)

throws CreateException, RemoteException;

//find a particular account

public BankAccount findByPrimaryKey(String accPK)

throws FinderException, RemoteException;

}

Bean Classes

Bean classes implement the methods that have been declared in the home and
remote interfaces (with the exception of the findByPrimaryKey method), without
actually implementing these two interfaces. The signatures of the methods of the
remote and home interfaces must agree with the corresponding methods in the
bean class. The bean class must implement an interface that depends on its type,
and indeed, it must be javax.ejb.EntityBean, javax.ejb.MessageDrivenBean, or
javax.ejb.SessionBean. The bean implements neither its home nor its remote

36

APress/Authoring/2003/03/05:09:54 Page 36

The Architecture of Enterprise JavaBeans

interface. Only in the case of an entity bean with container-managed automatic
persistence is the class abstract. The classes of session, message-driven, and entity
beans, which manage their own persistence, are concrete classes. See Listing 3-3.

Listing 3-3. Bean class of BankAccount.

package ejb.bankaccount;

import javax.ejb.CreateException;

import javax.ejb.EntityBean;

import javax.ejb.EntityContext;

import javax.ejb.RemoveException;

public abstract class BankAccountBean implements EntityBean {

private EntityContext theContext;

public BankAccountBean() {

}

//the create method of the home interface

public String ejbCreate(String accNo,

String accDescription,

float initialBalance)

throws CreateException

{

setAccountNumber(accNo);

setAccountDescription(accDescription);

setAccountBalance(initialBalance);

return null;

}

public void ejbPostCreate(String accNo,

String accDescription,

float initialBalance)

throws CreateException

{

}

//abstract getter/setter methods

public abstract String getAccountNumber();

public abstract void setAccountNumber(String acn);

public abstract String getAccountDescription();

public abstract void setAccountDescription(String acd);

public abstract float getAccountBalance();

public abstract void setAccountBalance(float acb);

37

APress/Authoring/2003/03/05:09:54 Page 37

Chapter 3

//the methods of the remote interface

public String getAccNumber() {

return getAccountNumber();

}

public String getAccDescription() {

return getAccountDescription();

}

public float getBalance() {

return getAccountBalance();

}

public void increaseBalance(float amount) {

float acb = getAccountBalance();

acb += amount;

setAccountBalance(acb);

}

public void decreaseBalance(float amount) {

float acb = getAccountBalance();

acb -= amount;

setAccountBalance(acb);

}

//the methods of the javax.ejb.EntityBean interface

public void setEntityContext(EntityContext ctx) {

theContext = ctx;

}

public void unsetEntityContext() {

theContext = null;

}

public void ejbRemove()

throws RemoveException

{

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

}

38

APress/Authoring/2003/03/05:09:54 Page 38

The Architecture of Enterprise JavaBeans

Primary Key (Primary Key Class)

The primary key is relevant only for entity beans. Its purpose is to identify an
entity of a particular type uniquely. As in the case of the primary key of a database
table, it contains those attributes that are necessary for unique identification.
With the primary key a particular entity can be found, which then is associated
by the EJB container with an entity bean instance of the correct type. With the
primary key the identity of an entity bean is externally visible. The primary key
class is irrelevant for session and message-driven beans, since their identity is
never externally visible. The specification distinguishes two types of primary keys:

• primary keys that refer to a field of the entity bean class;

• primary keys that refer to several fields of the entity bean class.

A primary key that refers to only a single field of the entity bean class
can be represented by a standard Java class (for example, java.lang.String,
java.lang.Integer). In our example the class java.lang.String is the primary
key class, since the unique identification of an account is possible via its
(alphanumeric) account number.

A primary key that refers to several fields of the entity bean class is
represented, as a rule, by a class specially developed for that purpose. Such a class
must be a public class, and it must have a public constructor without arguments.
The fields of the primary key class that represent the primary key of the entity
bean must address those of the entity bean class by name. Furthermore, these
fields must also be public. The class must be RMI-IIOP compatible (serializable),
and it must implement the methods equals() and hashCode(). Listing 3-4 shows
an example of such a primary key class for an account bean that requires for its
unique identification the number of the client as well as the account number
(client-capable system).

Listing 3-4. Example of a primary key class for multipart keys.

package ejb.custom;

public class CustomAccountPK implements java.io.Serializable

{

public String clientNumber;

public String accountNumber;

public CustomAccountPK() {

}

public int hashCode() {

return clientNumber.hashCode() ˆ

accountNumber.hashCode();

}

39

APress/Authoring/2003/03/05:09:54 Page 39

Chapter 3

public boolean equals(Object obj) {

if(!(obj instanceof CustomAccountPK)) {

return false;

}

CustomAccountPK pk = (CustomAccountPK)obj;

return (clientNumber.equals(pk.clientNumber)

&& accountNumber.equals(pk.accountNumber));

}

public String toString() {

return clientNumber + ":" + accountNumber;

}

}

The Deployment Descriptor

The deployment descriptor is a file in XML format (details on XML can be found
in [3]) that describes one or more beans or how several beans can be collected
into an aggregate. All such information that is not to be found in the code of
a bean is placed in the deployment descriptor. Essentially, this is declarative
information. This information is of particular importance for those collecting
several Enterprise Beans into an application or installing Enterprise Beans in one
EJB container. The EJB container is informed via the deployment descriptor how
it is to handle the component(s) at run time.

The deployment descriptor contains information on the structure of an
Enterprise Bean and its external dependencies (for example, to other beans
or to particular resources such as connections to a database). Furthermore, it
contains information about how the components should behave at run time or
how they can be combined with other components into more complex building
blocks. We shall illustrate this for our example bean by showing in Listing 3-5 a
suitable complete deployment descriptor (for a full description of the deployment
descriptor see [21]).

Listing 3-5. Deployment descriptor of BankAccount.

<?xml version="1.0" ?>

<ejb-jar version="2.1" xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">

<description>

This deployment descriptor contains information on

the entity bean BankAccount.

</description>

40

APress/Authoring/2003/03/05:09:54 Page 40

The Architecture of Enterprise JavaBeans

<enterprise-beans>

<entity>

<!-- Name of the Enterprise Bean -->

<ejb-name>BankAccount</ejb-name>

<!-- class of the Home Interface -->

<home>ejb.bankaccount.BankAccountHome</home>

<!-- class of the Remote Interface -->

<remote>ejb.bankaccount.BankAccount</remote>

<!-- class of the Enterprise Bean -->

<ejb-class>ejb.bankaccount.BankAccountBean</ejb-class>

<!-- type of persistence -->

<persistence-type>Container</persistence-type>

<!-- class of the primary key -->

<prim-key-class>java.lang.String</prim-key-class>

<!-- specifies whether the implementation of the

Enterprise Bean is reentrant -->

<reentrant>False</reentrant>

<!-- the EJB version for which this Enterprise

Bean was developed -->

<cmp-version>2.x</cmp-version>

<!-- Name of the persistence mechanism -->

<abstract-schema-name>AccountBean

</abstract-schema-name>

<!-- list of the persistent attributes

of the Enterprise Bean -->

<cmp-field>

<description>account number</description>

<field-name>accountNumber</field-name>

</cmp-field>

<cmp-field>

<description>account description</description>

<field-name>accountDescription</field-name>

</cmp-field>

<cmp-field>

<description>account balance</description>

<field-name>accountBalance</field-name>

</cmp-field>

<!-- primary key field -->

<primkey-field>accountNumber</primkey-field>

</entity>

</enterprise-beans>

<assembly-descriptor>

<!-- Definition of the user role 'Banker'-->

<security-role>

41

APress/Authoring/2003/03/05:09:54 Page 41

Chapter 3

<description> the role of the banker

</description>

<role-name>Banker</role-name>

</security-role>

<!-- Definition of access rights at the method level-->

<method-permission>

<role-name>banker</role-name>

<method>

<ejb-name>BankAccount</ejb-name>

<method-name>*</method-name>

</method>

</method-permission>

<!-- Definition of transactional behavior

per method of the Enterprise Bean -->

<container-transaction>

<method>

<ejb-name>BankAccount</ejb-name>

<method-name>increaseBalance</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

<container-transaction>

<method>

<ejb-name>BankAccount</ejb-name>

<method-name>decreaseBalance</method-name>

</method>

<trans-attribute>Required</trans-attribute>

</container-transaction>

</assembly-descriptor>

</ejb-jar>

Since our example deals with an entity bean with container-managed
persistence, instructions for the persistence manager must also be provided. It
must know which fields of the bean are to be mapped to which columns in which
table or tables. Moreover, it requires instructions about the database in which
the data are to be stored. The specification does not specify what form these
instructions are to take. It prescribes only that the creator must provide tools by
means of which such instructions can be supplied. It is thus clear that these tools
will be different depending on the creator, as also will be the format in which the
instructions are provided. In the simplest case these instructions can be given in a
file in XML format. Listing 3-6 shows an imaginary example. Later in this chapter
we shall call these instructions the persistence descriptor.

42

APress/Authoring/2003/03/05:09:54 Page 42

The Architecture of Enterprise JavaBeans

Listing 3-6. Example of mapping instructions for the persistence manager.

<abstract-schema>

<name>AccountBean</name>

<data-source>

<name>test-db</name>

<type>oracle</type>

</data-source>

<table-name>account</table-name>

<field-mapping>

<bean-field>accountNumber</bean-field>

<column>acno</column>

</field-mapping>

<field-mapping>

<bean-field>accountDescription</bean-field>

<column>acdesc</column>

</field-mapping>

<field-mapping>

<bean-field>accountBalance</bean-field>

<column>acbal</column>

</field-mapping>

</abstract-schema>

If all components are present, then according to bean type, the home
and remote interfaces, the bean class(es), the primary key class(es), and the
deployment descriptor (which can contain a description of several Enterprise
Bean components) are packed in JAR format into a file. The acronym JAR stands
for “Java archive” and corresponds to the popular ZIP format. The components
of an Enterprise Bean are then complete and are packed as component(s) in a
jar file (further details on packing a component in a jar file can be found in [21]).
Table 3-2 shows once more which components are relevant to which bean type.

Table 3-2. Overview of the components of various bean types.

Entity Session Message-
Driven

Container
Managed

Bean
Managed

Remote, local interface X X X

Local & remote home interface X X X

Concrete bean class X X X

Abstract bean class X

Deployment descriptor X X X X

Persistence descriptor X

43

APress/Authoring/2003/03/05:09:54 Page 43

Chapter 3

How Everything Works Together

Let us assume that the component BankAccount is not included in an aggregate,
but is installed directly in an EJB container, in order to be used by client programs.
The installation takes place with the help of the relevant tools. The specification
obligates the creator of an EJB container and the persistence manager to provide
these tools. It is left to the creator to determine what these tools look like and
how they are to be used. As a rule, they support the capturing of all relevant data
for the installation of a component via a graphical user interface. However, of
primary importance is the result of the tool-supported installation procedure.
It provides the missing links in the EJB architecture: the implementation of the
home and remote interfaces (respectively the local home and local interfaces)
of the Enterprise Bean and in the case of a container-managed entity bean the
implementation of the concrete bean class. Figure 3-3 shows these relationships.

(Local)Home
Interface

Remote(/Local)
Interface

Bean Class

EJBHome

(Local)Home
Interface

EJBObject

Remote(/Local)
Interface

Container
Tools

Class

Interface

XML Document

Bean Class

Persistence Manager
Tools

Persistence
Descriptor

PrimaryKey Class
Deployment
Descriptor

Document in Unspecified Format

Elements Relevant Only for Container-Managed Entity Beans

Concrete
Class

Abstract
Class

Concrete
Class

Figure 3-3. Generation of the missing architectural components.

As we have already mentioned, an Enterprise Bean uses either local or remote
interfaces. The implementation class of the home or local home interface is
usually called EJBHome, while that of the local or remote interface is denoted by
EJBHome, while the remote interface is usually known as EJBObject. The classes
EJBHome and EJBObject are generated from the components of a bean by the tools
of the container’s creator.

44

APress/Authoring/2003/03/05:09:54 Page 44

The Architecture of Enterprise JavaBeans

If we are dealing with an entity bean with container-managed persistence,
then it is the job of the persistence manager to generate a concrete class.
This is derived from the abstract bean class and represents the necessary
code for persistence. For this generation, the additionally created instructions
regarding the database and table(s) from the persistence descriptor as well as
the persistence fields of the components are employed (see in this respect the
example in Listing 3-6).

The EJBHome object serves at run time as a sort of object factory, and the
EJBObject as a sort of functional wrapper for the Enterprise Bean in question.
(See Figure 3-4.) They are the extension of the run-time environment of the EJB
container for particular bean types.

EJBHome

Home Interface

EJBObject

Remote Interface

Client

Client Process Server Process

RMI

RMI

1

2

3

4

Method call

Bean1

1

2

3

4

Bean2

EJBHome

LocalHome Interface

EJBObject

Local Interface

Local
Client

5

5

7

6

6

8

7

8

Figure 3-4. EJBHome and EJBObject at run time.

If the Enterprise Bean uses remote interfaces, then they are both remote
objects in the sense of Java RMI. If the Enterprise Bean uses local interfaces, then
they are traditional Java objects. In both cases the client calls upon the methods
of the EJBHome and EJBObject, never directly those of the bean instance. EJBHome
and EJBObject delegate the respective method calls (after or before particular
container-related routines) to the bean instance.

45

APress/Authoring/2003/03/05:09:54 Page 45

Chapter 3

With this indirection the EJB container is able to bring its implementation of
the declarative instructions into the deployment descriptor. The content of the
deployment descriptor influences considerably the generated code of the EJBHome

and EJBObject classes.
The EJBHome class contains the code for the generation, location, and deletion

of bean instances. Often, code is generated for resource management into the
EJBHome class. The EJBObject class implements the transaction behavior, security
checking, and, as needed, the logic for container-managed persistence. The
implementation of these classes depends to a great extent on the creator. The
specification makes no compulsory prescriptions for the creator with respect to
the implementation of EJBHome and EJBObject.

No instance other than the EJBHome and EJBObject objects can cooperate
with the bean instance. It is completely protected by the container classes.
Communication between beans also always takes place by way of the container
classes EJBHome and EJBObject.

From this state of affairs we obtain answers to questions that may have been
left unanswered in the previous section. The home and remote interfaces do
not need to be implemented, since the implementation classes are generated by
the container tools. (The same holds in the case where a local home interface
and local interface are used.) The Enterprise Bean is not a remote object, since
it is never to be addressed externally. It should be able to be addressed via
EJBHome and EJBObject. The EJB container would otherwise have no possibility of
intervention to keep up with its tasks. Therefore, the interfaces javax.ejb.EJBHome
and javax.ejb.EJBObject (the basic interfaces of the home and remote interfaces)
are also derived from java.rmi.Remote.

It is even clear why the signatures of the bean methods and the methods in
the home and remote interfaces must agree. The interfaces are implemented by
EJBHome and EJBObject classes. They delegate the calls to the interface methods
to the corresponding methods of the bean class. The code necessary for this is
generated. If the signatures in the methods declared in the interfaces do not agree
with the corresponding bean methods or if these methods don’t even exist in the
bean class, then a complaint will be registered in the generation of EJBHome and
EJBObject by the container tools, or else the result will be a run-time error.

Finally, EJBHome and EJBObject ensure that in the case of session beans each
client is able to work with an instance exclusive to it, while in the case of entity
beans several clients can share the same instance.

46

APress/Authoring/2003/03/05:09:54 Page 46

The Architecture of Enterprise JavaBeans

The Client’s Viewpoint

If a client now wishes to use the bank account bean installed in the EJB container,
it must first locate the bean. For this it uses the naming and directory service. This
is addressed via the JNDI interface. (See Figure 3-5.)

Client

Home

EJB Container

Server

Client
Stub

Home

EJBHome
Naming
Service

JNDI
lookup

Interface

Run-Time Object

Figure 3-5. Finding an Enterprise Bean via JNDI.

Like the Enterprise Bean, the client uses the naming and directory service of
the EJB container or of the server in which the bean is installed. The EJB container
is responsible for making the Enterprise Bean accessible under a particular name
via the naming and directory service. In many cases the name of the bean in
the deployment descriptor is used for this purpose. The field of the deployment
descriptor in which the name of the Enterprise Bean is entered is called ejb-name

(and occurs in our BankAccount example). We now assume that the EJB container
uses this name for the publication of the bean’s name via the naming service
(JNDI). Listing 3-7 shows how a client finds the bank account bean.

47

APress/Authoring/2003/03/05:09:54 Page 47

Chapter 3

Listing 3-7. Finding the home interface using JNDI.

//depending on the creator of the container or server the appropriate settings

//in the environment should be made in order to generate the correct context.

final String BANK_ACCOUNT = "java:comp/env/ejb/BankAccount";

//generation of the context for access to the naming service

InitialContext ctx = new InitialContext();

//location of the bean BankAccount

Object o = ctx.lookup(BANK_ACCOUNT);

//type transformation; details on this in Section 4

BankAccountHome bh = (BankAccountHome)

PortableRemoteObject.narrow(o,BankAccountHome.class);

Using the naming and directory service the EJB container provides the
Enterprise Bean with an instance of the client stub of the implementation class of
the home interface (EJBHome).

Using the methods of the home interface (and those of the interface
javax.ejb.EJBHome) the client can govern the life cycle of the bean. For example,
it can generate a new account with the following code fragment:

BankAccount ba = bh.create("0815", "sample account", 0.0);

The EJBHome object generates a new bean instance (or takes one from the
pool), generates a new data set in the database, and generates an EJBObject

instance (see Figure 3-6).

Client

Home

EJB Container

Server

Client
Stub

Home

EJBHome

Insert

Entity
Bean

Remote

EJBObject

JDBC

DB

Remote

Client
Stub

Synchronization

Create

Action

Reference

Interface

Run-Time Object

Figure 3-6. Generating a new bean via the home interface.

48

APress/Authoring/2003/03/05:09:54 Page 48

The Architecture of Enterprise JavaBeans

From the parameters of the create method a primary key object is generated,
which is associated with the bean instance (via the context of the bean). In this
way the bean instance acquires its identity. As a result of this operation the client
is provided with the stub of the EJBObject instance. The stub represents the client
with respect to the remote interface of the bean.

From this point on the client can use the functionality of the bean by calling
the methods of the remote interface. For example, it can increase the bank
balance by one hundred units:

ba.increaseBalance(100.0);

The call to the method increaseBalance(float) on the client stub passes
to the EJBObject instance on the server. From there it is again delegated to the
bean instance, which finally has the consequence of changing the data with the
assistance of the transaction monitor (for this method it was specified in the
deployment descriptor that it must take place in a transaction). (See Figure 3-7.)

Client

EJB Container

Server

increaseBalance

Entity
Bean

Remote

EJBObject

JDBC

DB

Remote

Client
Stub

Synchronization

JTA

TA
Monitor

Transaction

Action

Reference

Interface

Run-Time Object

Coordination

Figure 3-7. Invoking a method via the remote interface.

For the client there is no big difference between using an Enterprise Bean and
a traditional Java object located in the same process, although it communicates
with a transaction-protected component on a remote computer. What begins

49

APress/Authoring/2003/03/05:09:54 Page 49

Chapter 3

with a one-line instruction in the code of the client can trigger very complex
actions on the server.

From the client’s point of view the way that an Enterprise Bean is used via
the local interface is analogous to the use of an Enterprise Bean via the remote
interface. Similar analogies hold in the processing of the EJBHome and EJBObject

classes.
The information presented in this section applies primarily to session and

entity beans. Message-driven beans differ from the other two types (as already
mentioned) in that they cannot be addressed directly by a client. They can
be addressed only indirectly via the asynchronous sending of a message. A
message-driven bean is less complex than a session or entity bean and is also
easier for the container to manipulate, since the message service takes over a
large part of the work. Chapter 6 discusses this issue in detail and makes clear the
differences between this type and the other two types of bean.

What an Enterprise Bean May Not Do

The specification of Enterprise JavaBeans is very restrictive for the developer of an
Enterprise Bean as it relates to the use of certain interfaces. The most important
restrictions will be presented in this section. What is most interesting is the
question of the reason for such prohibitions. We shall investigate this question
after we briefly introduce the most important restrictions (the complete list of
restrictions can be found in [21]):

• An Enterprise Bean may not use static variables. Static constants, on the
other hand, are permitted.

• An Enterprise Bean may not use a thread synchronization mechanism.

• An Enterprise Bean may not use the functionality of the AWT (Abstract
Windowing Toolkit) to produce output via a graphic user interface or to
read input from the keyboard.

• An Enterprise Bean may not use any classes from java.io to access files or
directories in a file system.

• An Enterprise Bean may not listen in on a network socket; it may not accept
a connection to a network socket; and it may not use a socket for multicast.

• An Enterprise Bean may not attempt to use introspection or reflection to
access information from classes and instances that are supposed to remain
secret according to the Java security policy.

50

APress/Authoring/2003/03/05:09:54 Page 50

The Architecture of Enterprise JavaBeans

• An Enterprise Bean may not generate a class loader; it may not use a class
loader; it may not change the context of a class loader; it may not set a
security manager; it may not generate a security manager; it may not stop
the Java virtual machine; and it may not change the standard input the
standard output, or the standard error.

• An Enterprise Bean may not use an object of the class Policy, Security,
Provider, Signer, or Identity from the java.security package or attempt
to change their values.

• An Enterprise Bean may not set a socket factory that is used by the classes
ServerSocket and Socket. The same holds for the stream handler factory of
the URL class.

• An Enterprise Bean may not use threads. It may neither start nor stop them.

• An Enterprise Bean may not directly read or write file descriptors.

• An Enterprise Bean may not load a native library.

• An Enterprise Bean may never pass this as an argument in a call to a
method or this as the return value of a method call.

To “program” an Enterprise Bean means to develop server-side logic at a
relatively high level of abstraction. The specification of Enterprise JavaBeans
describes a component architecture for distributed applications. Through the
component model the specification seeks to establish a clear distribution of
labor among various tasks. The server and the EJB container are responsible for
system-specific functionality. The bean uses this infrastructure as its run-time
environment and thus need not concern itself with system-specific functionality.
The task of the bean is to concentrate on the logic for enterprise-related processes.
In order to be able to carry out this task, it should use the services made available
to it by the EJB container, and no others. These restrictions imposed by the
specification of Enterprise Beans should serve to ward off conflicts between the
EJB container and the Enterprise Beans.

EJB Assignment of Roles

The specification of Enterprise JavaBeans splits the responsibilities for develop-
ment into various roles. The idea is to achieve a certain level of abstraction in
the EJB model in order to encourage diversification through the allocation of
concrete tasks to various expert groups and thereby achieve a synergistic effect.
To put it another way, everyone should develop what he or she can best develop.
Figure 3-8 provides an overview of the various roles and their interaction.

51

APress/Authoring/2003/03/05:09:54 Page 51

Chapter 3

Application Assembler

Container /Server
Tools

Container/
Persistence Manager

Tools

EJB-Server

EJB Container

Services

Monitoring

Deployment Descriptor

Enterprise JavaBean

JAR File

Bean Provider Bean Provider Bean Provider

Bean Deployer

Server/Container/
Persistence Manager

Provider

System Administrator

Figure 3-8. EJB assignment of roles.

Server Provider

The server provider is responsible for the provision of basic server functions. It
must ensure that a stable run-time environment is available to various containers
(e.g., above all, EJB containers). This includes—as already mentioned in the
previous chapter—the network connection, thread and process management,
sizing (clustering), and resource management.

Container Provider

The container provider sits on top of the interfaces of the server provider and
offers the components (Enterprise Beans) a convenient run-time environment.
The implementation of a container provider must be in accordance with
the conditions set forth in this chapter. It must ensure that accesses to an
Enterprise Bean take place solely via the container, and the same holds for the
Enterprise Bean’s communication with its environment. Primarily, the container

52

APress/Authoring/2003/03/05:09:54 Page 52

The Architecture of Enterprise JavaBeans

provider provides for persistence of components, mechanisms for dealing with
transaction-oriented processes, security features, resource pooling, and support
for making available versions of components (this last feature is not more
precisely defined in the specification). For beans to be installed in a container,
the container provider must make available tools that enable the bean deployer
(see below) to generate the necessary interface code (EJBHome and EJBObject).
The container provider must make tools available to the system administrator for
monitoring the container and the beans.

Persistence Manager Provider

The persistence manager provider must provide tools with which the code needed
for the persistence of a container-managed entity bean can be generated. The
tools are used when an Enterprise Bean is installed in a particular container. The
persistence manager provider is typically a specialist in the area of databases. It is
therefore necessary that the following conditions hold:

• The state of an entity bean is stored with container-managed persistence in
the database.

• The referential integrity of the entity bean is ensured with respect to other
entity beans to which it is related.

Since the EJB container governs the persistence of an entity bean (that is, it
determines, for example, when the state should be saved), an interface between
container and persistence manager is necessary. The specification leaves it to the
container and persistence manager providers to define such an interface.

Bean Provider

The role of the bean provider belongs to those developers who implement the
actual business logic. They package their application knowledge into components
that make this knowledge reusable. Building on the products of the server
and container providers, the bean developer is freed from the development of
basic server tasks (such as multithreading, network connection, transactions).
Therefore, such a developer can devote his or her complete energy to the
task at hand. In addition to the component, the bean provider provides the
deployment descriptor, which contains information about the component itself,
as well as about its external dependencies (e.g., on what services from the server
the component depends). The deployment descriptor (an extensive example
was presented in Listing 3-5) provides all information that the bean deployer
(to be discussed shortly) requires for installing the component in a server.

53

APress/Authoring/2003/03/05:09:54 Page 53

Chapter 3

The application assembler (see the next heading) also needs this information
in order to assemble applications or modules of an application from various
components. The result of the work of a bean provider is a file in JAR (Java
Archive) format that contains the bean class(es) and the interfaces of the bean(s)
as well as the deployment descriptor.

Application Assembler

Finally, the application assembler is responsible for linking the functionalities
of the beans installed in the container to applications. To this can belong the
development of client applications and the associated control of information
exchange with the Enterprise Beans. The application assembler can, however, also
assemble several (smaller) components provided by bean providers into a new
(larger) component. The application assembler can enlarge this conglomerate
with its own Enterprise Beans, whose task consists, for example, in the coupling
of other Enterprise Beans. The resulting “supercomponents” already represent an
aspect of a concrete application.

The application assembler documents its work, just like the bean provider
in the deployment descriptor. Thereby the bean deployer (see the next section)
understands how to install the components so that from the individual building
blocks a complete application results. Additionally, the application assembler can
provide instructions and information for the bean deployer in regard to the user
interface or dependencies on non-EJB components in the deployment descriptor.

Bean Deployer

To install the components selected for a particular business problem in a
container is the task of the bean deployer. To this belongs, above all, the provision
of the tools of the container and persistence manager providers as well as the
correct parameterization of the components to be installed. This operation
assumes an extensive knowledge of the application and system contexts as well
as of the internal system linkages. In particular, the deployer must resolve the
external dependencies defined in the deployment descriptor (for example, by
ensuring the existence of required services or related Enterprise Beans) and
take into account the instructions of the application assembler contained in the
deployment descriptor.

54

APress/Authoring/2003/03/05:09:54 Page 54

The Architecture of Enterprise JavaBeans

System Administrator

The system administrator monitors the EJB server with the assistance of the
tools provided by the producer and takes care of the operation of the required
infrastructure (e.g., for an operational network) of an EJB server.

The EJB assignment of roles represents an ideal scenario, and the translation
of the EJB specification into practice will show whether it can be maintained in
this form. Thus today servers and containers are offered in a single product. The
Java-2 platform, Enterprise Edition (J2EE), already provides a variety of containers
(at least an EJB container and a web container) for an application server. In the
meantime, the specification of Enterprise JavaBeans assumes that server and
container are always offered by the same producer and cannot be exchanged for
others. The same holds for the persistence manager. As long as the specification
defines no protocol between EJB containers and persistence managers, both will
be offered in a single product.

This role-playing is supremely adapted (in theory) to component-oriented
software, at least from the point of view that one is dealing with a number
of individuals. Thus a container provider (a container is, after all, a type of
component) does not know during development what beans will later be put
into this container. Nor does a bean provider know at the time of development to
what purpose those components will later be used. The provider merely packs a
well-rounded functionality into a component with the goal of optimal reusability.
If the correct components have been installed and parameterized by the bean
deployer, then it is simple for the application assembler to link the functionality
that is offered to applications or to create modules out of available components.
The work of the application assembler is, moreover, not bound temporally to the
work of the bean deployer. The application assembler can use, via the deployer,
already installed components, or can transmit “supercomponents” that have
assembled to the deployer for installation.

The roles of the server and container providers are intended for system
specialists, who provide a stable basis. For an application developer (such
as described in the introductory chapter, “Motivation”) there are a variety of
approaches. One could slip into the role of the bean provider by encapsulating
one’s knowledge into beans and then installing them in a purchased application
server that offers an EJB container. Or instead, one could leaf through the catalog
of a software manufacturer and look for components that offer a solution to one’s
problem(s). One’s task would then be limited to installing the purchased beans on
the server and correctly parameterizing them (corresponding to the role of the
bean deployer).

55

APress/Authoring/2003/03/05:09:54 Page 55

Chapter 3

In the next step our developer (or a colleague) could write an application
using the installed beans that takes over the interaction between the user and
the communication with the components (application assembler, limited to the
development of the client scenario).

In any case, one thing is clear to the application developer (above all in the
role of the bean provider): He or she can concentrate fully on the solution to his
or her problems. Technical problems such as the implementation of a stable,
efficient, and scalable server are taken over by the server and container providers.

In the rest of this book we shall for the most part restrict our attention to the
roles of the bean provider, the bean deployer, and the application assembler.

Points of View

Once the architecture and the significant features and concepts of the specifi-
cation of the Enterprise JavaBeans are known, we would like, in conclusion, to
clarify various perspectives on the architecture.

EJB from the Point of View of Application Development

It is interesting to consider Enterprise JavaBeans from the point of view of
application development. For this we should return to the scenario of Chapter 1.
The application developer described there could use Enterprise JavaBeans as a
basis for the prototype to be developed. He or she could use a J2EE-compatible
server including an EJB container from any supplier and develop the prototype in
the form of Enterprise Beans. We would like to consider whether the secondary
problems that arise from the business problem can be neutralized using
Enterprise JavaBeans as the basis technology. We wish to investigate whether
the application developer can concentrate completely on the problems of the
application domain. To this end we recall a figure from Chapter 1 (see Figure 3-9).

There is certainly the requirement of reusability due to the client–server-
oriented architecture. There is also the necessity for security characteristics of the
transaction service of Enterprise JavaBeans in order to ensure a smooth multiuser
operation.

The characteristic of scalability means that applications that are realized as
Enterprise Beans or as aggregates of beans can be partitioned among several
servers. For example, the servers can use the same database as back-end system.
Thus the burden of client queries, depending on the application, is divided
among several servers, while the database is centrally located. Through locational
transparency of Enterprise Beans with a remote interface (which is ensured by a
central naming and directory service) the following are possible:

56

APress/Authoring/2003/03/05:09:54 Page 56

The Architecture of Enterprise JavaBeans

Business
Problem
Business
Problem

Multiuser CapabilityMultiuser Capability

ScalabilityScalability

AvailabilityAvailability

Links to the Outside WorldLinks to the Outside World

Integration with Other ApplicationsIntegration with Other Applications

Data StorageData Storage

Stepwise MigrationStepwise Migration

Short Development CyclesShort Development Cycles

ConfigurabilityConfigurability

Easy ExtendibilityEasy Extendibility

Figure 3-9. Secondary issues in a business problem.

• Distribute individual applications of an application system among several
servers.

• Store individual beans from one server on another server.

• Set up additional servers and store beans or aggregates of beans there.

Moreover, many application servers offer mechanisms for the allocation
of tasks. In this regard a cluster of application servers (independent of the
application that the client uses) concerns itself with the optimal servicing of the
client’s queries. However, this feature is provider-dependent and not required by
the architecture of Enterprise JavaBeans.

The subject of availability becomes significant in regard to the locational
transparency of Enterprise Bean components, which is ensured by the central
naming and directory service. If an application server goes out of service, the
beans installed there are installed on another server. The information necessary
for the installation is already contained in the deployment descriptor of the
Enterprise Beans, and they can generally be transported unaltered. A change in
the configuration in the naming and directory service allows them to be placed
at the service of clients on another server without the configuration of the client
having to be changed.

Since Enterprise JavaBeans are ever more tightly bound in the context of
the Java 2 platform, Enterprise Edition, the connection with the outside world
is not a critical topic. With the support of a web container (see Figure 3-2), at

57

APress/Authoring/2003/03/05:09:54 Page 57

Chapter 3

least the basic technological and architectural prerequisites are given to create a
connection with the outside world. In Chapter 9 we shall devote ourselves to this
topic in somewhat greater detail.

Once all the uses of an application system have been realized based on
Enterprise JavaBeans, then the potential for integration of the applications among
one another is very high. The exchange of data within the application is simple
in this case (even more so if a central database is used). Enterprise JavaBeans
can also be used to integrate applications belonging to various systems. Using a
message service, which the EJB container has had to integrate since version 2.0,
it is even possible to achieve dynamic coupling of applications and systems. A
message service makes a number of communication channels available over
which n-to-n communication with dynamically changing partners is possible.

Through the use of specialized EJB containers, which use an application
system other than a database system as persistence system, these systems can
be integrated into EJB-based systems. Under certain conditions one can also
envision employing Enterprise Beans as wrappers and interfaces to simple
systems (to the extent to which that is possible within the limits of programming
restrictions).

Applications are constructed from a number of Enterprise Beans, each of
which encapsulates a particular functionality. This granularity, as established by
the component paradigm, makes it possible for the development of an application
system to be structured from a variety of viewpoints. Each component can be a
partial project. It is easier to manage each subproject than to keep track of the
entire project all at one time.

The interfaces to the outside world are defined for each component (and thus
for each subproject). This results in a trend toward shortening the development
cycle. Not least, the architecture of Enterprise JavaBeans plays an active role, since
the application developer (i.e., the bean developer) is freed from the development
of system-technical functionality. The presence of a unified platform allows
this system-technical functionality to be reused, and the bean developer can
concentrate fully on the solution of the application-related problems.

The configurability of an EJB-based system is given primarily via the
deployment descriptor. This makes it possible for beans, at the time of installation
in a server, to adapt themselves to a variety of situations. The run-time behavior
of an Enterprise Bean can also be influenced by the settings in the deployment
descriptor. Using the bean environment, parameters can be set that the bean can
evaluate at run time.

An EJB-based system can also be configured via the exchange of bean
classes. In fact, the new bean classes offer the same interface; that is, they use
the same home and remote interfaces as the old bean classes, but they offer a
different implementation. To the client the beans with altered implementation
appear under the same names in the JNDI as before. For the client the exchange

58

APress/Authoring/2003/03/05:09:54 Page 58

The Architecture of Enterprise JavaBeans

of implementations plays no role, in that the old agreement (the promised
functionality of the interface) is preserved.

In the case of container-managed persistence, Enterprise JavaBeans offer the
concept of transparent, automatic data storage. The Enterprise Bean leaves data
storage to the EJB container and the persistence manager. It need not concern
itself with the technical aspects of data storage. Such a bean can be used without
difficulty in other EJB containers.

Through the deployment of specialized EJB containers (as can be seen in
Figure 3-10) it is possible to achieve a stepwise migration from the old system. The
state of the data and the systems can be reused. For the bean the EJB container
is not only a run-time environment and service provider but also the interface to
the old system (which to the bean is essentially transparent). After the complete
takeover of the data (for example, into a relational database system) the beans
already developed can be reused through installation in another EJB container.

J2EE Server

Web Container

EJB Mainframe Container

EJB Database Container

Bean

Bean

Bean

Bean

Bean

Servlet

JSP

Database

Mainframe
System

Client

Client

Web Client

Naming
Service

JNDI

Client

Communication

Figure 3-10. An Enterprise JavaBean scenario.

It is possible to extend the functionality of an EJB-based system without
difficulty by installing new Enterprise Beans. Under certain conditions new beans
can make use of the functionality of already existing beans.

From the viewpoint of the application developer as described in the scenario
of Chapter 1 all the secondary problems that arise can be neutralized by the
use of Enterprise JavaBeans. EJB was the correct approach to the solution of the
problem.

59

APress/Authoring/2003/03/05:09:54 Page 59

Chapter 3

EJB from the Point of View of the Component Paradigm

An additional point of view from which Enterprise JavaBeans can be considered
is that of the component paradigm. In the preceding chapters some basic points
about this were presented. Two questions then arise:

• Are Enterprise Beans genuine components?

• Do Enterprise JavaBeans fulfill the requirements of the component
architecture?

To elucidate these questions we must measure the properties of Enterprise Beans
and the EJB architecture against the requirements presented in Chapter 2.

In view of the definition presented in Chapter 2, Enterprise Beans are genuine
components. The fundamental characteristic of the standardized interface is
given in the form of the home and remote interfaces or the local home and local
interfaces. The interface is standardized by the guidelines of the component
model of the Enterprise JavaBeans specification. The interface represents a sort
of contract to which an Enterprise Bean is compelled to adhere. This interface is
independent of the implementation. A bean can be developed and maintained
as a single unit. Whether this represents a self-contained functionality depends
on the developer. This characteristic of a component cannot be compelled by the
specification, but it should serve as a guideline to the developer of an Enterprise
Bean.

In order to determine whether the architecture of the Enterprise JavaBeans
does justice to the requirements of the component paradigm, we would like to
evaluate the various characteristics that we presented in Chapter 2:

• Independence of the environment: Enterprise JavaBeans are based
completely on the programming language Java. Enterprise Beans can be
deployed only in a Java environment. However, via CORBA they can be used
in conjunction with other environments. The specification of version 2.1
designates RMI-IIOP as communications protocol, which should ensure
compatibility with CORBA.

• Locational transparency: The location of a component with a remote
interface is fully transparent, since the Enterprise Beans can be located via
the naming and directory service as well as RMI, and also can be addressed
on remote computers. The specification also requires a producer to include
a naming and directory service in the system environment and emphasizes
the distributed nature of Enterprise Beans. Locational transparency is not a
characteristic of Enterprise Beans with a local interface.

• Separation of the interface and implementation: This property is provided
to Enterprise JavaBeans through the concept of the home and remote,
respectively local home and local remote, interfaces.

60

APress/Authoring/2003/03/05:09:54 Page 60

The Architecture of Enterprise JavaBeans

• Self-descriptive interfaces: In the case of Enterprise JavaBeans it is possible
to obtain information about the remote interface(s) of a component. The
home object uses the method getEJBMetaData() to return an object of type
javax.ejb.EJBMetaData (for relevant details see [21]). This object provides,
among other things, information about the home and remote interfaces
of an Enterprise Bean. Using the Java reflection API (see [4]) it is possible
to investigate the interfaces at run time and to program dynamic calls
to Enterprise Bean methods. The combination of naming and directory
services (JNDI), the metadata interface (javax.ejb.EJBMetaData), and the
Java reflection API offers possibilities comparable to those of the interface
repository of CORBA (cf. [17]). It is the task of the EJB container to generate
for an Enterprise Bean a corresponding implementation class for the
metadata interface from the specifications of the deployment descriptor.

• Problem-free immediate usability (Plug & Play): At the time of installation
of an Enterprise Bean the implementation classes for the home and
remote interfaces must be generated and compiled. By means of these
an Enterprise Bean component becomes usable (without it having to be
altered in the process) by the EJB container of a particular producer. All
information that is necessary for the installation process is contained in
the bean class itself and in the deployment descriptor (which is a part of
the component). The binary independence of the component code of an
Enterprise Bean exists to the extent that the components comply with the
binary standard defined by the Java programming language. This results
is problem-free usability of an Enterprise Bean component in every EJB
container.

• Ability of integration and composition: This issue is accommodated
by a certain role in the EJB process model, the application assembler.
The composition of Enterprise Beans into an aggregate is specifically
provided for.

Enterprise JavaBeans can be considered a component architecture. It will
be interesting to see what extensions and improvements are offered in future
versions.

EJB from the Enterprise Point of View

A final point of view is that of Enterprise JavaBeans from the point of view
of the Enterprise. In Chapter 2 we defined criteria that a basic technology
should satisfy from this viewpoint: economic viability, security, and meeting
the enterprise’s requirements. It is difficult to give an objective evaluation of
a technology according to such global criteria. Nonetheless, we may certainly

61

APress/Authoring/2003/03/05:09:54 Page 61

Chapter 3

conclude that Enterprise JavaBeans, on grounds of economic viability as defined
in Chapter 2, are certainly of interest to an enterprise, particularly for those
businesses that engage in application development (whether internally or for
external customers).

In the sections above we have already seen the advantages of such a
technology. In the development of enterprise-related logic in Enterprise Beans
the developer is freed totally from having to deal with technical system issues. The
technological basis has been developed by specialists in this field and conforms
to a (quasi) standard. Thus development can be focused directly on the problems
of the particular enterprise. The component-oriented point of view enables a
greater granularity and thereby makes development more transparent and more
easily kept under control. The EJB technology offers all the prerequisites for
allowing the application systems to grow with the enterprise (with respect both to
greater functionality and to growth in the number of employees).

With respect to security the enterprise is supported not only by the security
mechanisms of the specification and the programming language Java. Since
Enterprise JavaBeans defines a standard in a certain sense that is already
supported by a number of producers, there are relatively few dependencies
on a particular application server vendor. It would, however, be desirable to
achieve an official standardization of Enterprise JavaBeans through the work of a
standardization committee. Nevertheless, an investment in this technology could
pay off over a long period of time.

The specification defines many conditions that ensure the fail-safe operation
of EJB-based systems. An example is the stringent restrictions on the development
of beans. Among other things, this should help to avoid unstable conditions in
the system. Another example is the separation of system functionality and
enterprise-specific functionality. It benefits reliability and security that the system
functionality has been developed by a specialist. A wide deployment of the system
among many customers by a responsible developer should lead more rapidly to a
higher quality than what could be obtained by in-house development.

As for the needs of enterprises, the EJB specification is directed precisely at
those enterprises that develop their own applications or act as a service provider
for other enterprises. As a rule, the developers in such enterprises are specialists
in particular application areas, but not in the domain of system development.
The result is often applications that deal with the technical problems, but cause
dissatisfaction through shortcomings in the technological foundations. With the
model of Enterprise JavaBeans it is precisely this issue that is dealt with. The
demand for a stable basic architecture that offers a convenient component model
that can be embedded in the application logic should exist in many areas and
in many enterprises. Precisely because applications deployed in businesses are
becoming ever more complex, there is ever increasing demand for stable, secure,
and flexible basic architectures.

62

APress/Authoring/2003/03/05:09:54 Page 62

