
Applied ADO.NET:
Building Data-Driven

Solutions

MAHESH CHAND
AND

DAVID TALBOT

*0732_ch00_CMP2 2/24/03 12:35 PM Page i

Applied ADO.NET: Building Data-Driven Solutions

Copyright © 2003 by Mahesh Chand and David Talbot

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-073-2

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Philip Pursglove

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Karen Watterson,
John Zukowski

Managing Editor: Grace Wong

Project Manager: Tracy Brown Collins

Development Editor: Philip Pursglove

Copy Editor: Kim Wimpsett

Compositor: Diana Van Winkle, Van Winkle Design Group

Artist and Cover Designer: Kurt Krames

Indexer: Ron Strauss

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

*0732_ch00_CMP2 2/24/03 12:35 PM Page ii

CHAPTER 7

Data Binding
and Windows Forms
Data-Bound Controls

WHEN IT COMES to developing interactive database applications, it’s difficult to
resist using data-bound controls. Data-bound controls are easy to use, and they
also provide many handy, built-in features. You used DataGrid, ListBox, and other
data-bound controls in the previous chapters. In this chapter, we discuss the
basics of data binding, how to use data-bound controls, and how to develop inter-
active database applications using these controls with a minimal amount of time
and effort.

Both Windows Forms and Web Forms provide a rich set of data-bound con-
trols, which help developers build data-driven Windows and Web applications. In
this chapter, we concentrate on Windows Forms. Chapter 16 covers data binding
in Web Forms.

Understanding Data Binding

So what are data-bound controls? You’ve already seen the DataGrid and ListBox
controls in the previous chapters. You used these controls to display data from a
data source. Data-bound controls are Windows controls that represent and
manipulate data in Graphical User Interface (GUI) forms. Both Windows Forms
and Web Forms provide a variety of flexible and powerful data-bound controls.
These data-bound controls vary from a TextBox to a DataGrid.

The process of binding a data source’s data to GUI controls is called data
binding. Most of the editable Windows controls provide data binding, either
directly or indirectly. These controls contain members that connect directly to a
data source, and then the control takes care of displaying the data and other
details. For example, to view data in a DataGrid control, you just need to set its
DataSource property to a data source. This data source could be a DataSet, DataView,
array, collection, or other data source. Data-bound controls can display data, and

287

*0732_ch07_CMP2 2/15/03 8:04 PM Page 287

they are smart enough to display properties (metadata) of the stored data such as
data relations.

You can divide data binding into two categories: simple data binding and
complex data binding. In simple data binding, a control displays data provided by
a data feed. In fact, the control itself is not capable of displaying complex data.
Setting the Text property of a TextBox or Label control is an example of simple data
binding. Complex data binding, on the other hand, allows controls to bind to mul-
tiple columns and complex data. Binding an entire database table or multiple
columns of a database table to a DataGrid or a ListBox control is an example of
complex data binding.

Using the Binding Class

The Binding class, defined in the System.Windows.Forms namespace, represents
simple binding between the data source item and a control.

Constructing a Binding Object

The Binding class constructor, which creates an instance of the Binding class, takes
three arguments: a data-bound control’s property name, a data source as an
Object, and a data member, usually the name of the data source columns as a
string. You define the Binding class constructor as follows:

Public Sub New(_

ByVal propertyName As String, _

ByVal dataSource As Object, _

ByVal dataMember As String _

)

In this syntax, dataSource can be a DataSet, DataTable, DataView,
DataViewManager, any class that implements IList, and a class object. Listing 7-1
binds the Employees.FirstName column of a DataSet to the Text property of a
TextBox.

Listing 7-1. Binding a TextBox Using Binding

Dim ds As DataSet = New DataSet()

ds = GetDataSet("Employees")

Dim bind1 As Binding

bind1 = New Binding("Text", ds, "Employees.FirstName")

Chapter 7

288

*0732_ch07_CMP2 2/15/03 8:04 PM Page 288

TextBox1.DataBindings.Add(bind1)

Besides the previous two controls, you can perform simple binding on many
controls including Button, CheckBox, CheckedListBox, ComboBox, DateTimePicker,
DomainUpDown, GroupBox, HscrollBar, Label, LinkLabel, ListBox, ListView, MonthCalender,
NumericUpDown, PictureBox, ProgressBar, RadioButton, RichTextBox, ScrollBar, StatusBar,
TextBox, TreeView, and VscrollBar. Listing 7-2 binds the Text property of a ComboBox,
Label, and Button control with the DataTable’s LastName, City, and Country columns
(respectively).

Listing 7-2. Binding Multiple Controls Using Binding

ComboBox1.DataBindings.Add _

(New Binding("Text", ds, "Employees.LastName"))

TextBox2.DataBindings.Add _

(New Binding("Text", ds, "Employees.EmployeeID"))

Label4.DataBindings.Add(

New Binding("Text", ds, "Employees.City"))

Button1.DataBindings.Add(

New Binding("Text", ds, "Employees.Country"))

Understanding the BindingsCollection Class

The BindingsCollection class represents a collection of Binding objects for a
control. You access the BindingsCollection class through the control’s DataBindings
property. The BindingsCollection class provides members to add, count, and
remove Binding objects to the collection. Listing 7-1 and Listing 7-2 used the Add
method of BindingsCollection to add a Binding object to the collection.

The BindingsCollection class has three properties: Count, Item, and List. The
Count property returns the total number of items in the collection. The Item
property returns the Binding object at a specified index, and the List property
returns all the items in a collection as an ArrayList.

The Add method of BindingsCollection adds a Binding object to the collection.
The Remove method deletes a Binding object from the collection. The RemoveAt
method removes a Binding object at the specified index. The Clear method
removes all the Binding objects from the collection.

Listing 7-3 counts the total number of Binding objects associated with a
control and removes the Binding objects from various controls.

Data Binding and Windows Forms Data-Bound Controls

289

*0732_ch07_CMP2 2/15/03 8:04 PM Page 289

Listing 7-3. Counting and Removing Binding Objects

MessageBox.Show("Total Bindings: " + _

Button1.DataBindings.Count.ToString())

TextBox1.DataBindings.RemoveAt(0)

TextBox2.DataBindings.Clear()

NOTE The BindingsCollection class is a collection of Binding objects. The
index of Binding objects in a collection is 0 based, which means the 0th item
of the collection is the first item and (n–1)th item in the collection is the
nth item.

Setting Binding Class Members

The Binding class provides six properties: BindingManagerBase, BindingMemberInfo,
Control, DataSource, IsBinding, and PropertyName.

BindingManagerBase represents the BindingManagerBase object, which manages
the binding between a data source and data-bound controls.

The BindingMemberInfo property object is a BindingMemberInfo structure that
contains the information about the binding. The BindingMemberInfo structure has
three properties: BindingField, BindingMember, and BindingPath. The BindingField
property returns the data-bound control’s property name. BindingMember returns
the information used to specify the data-bound control’s property name, and
BindingPath returns the property name, or the period-delimited hierarchy of
property names, that precedes the data-bound object’s property.

Listing 7-4 reads the bindings available on all the controls and displays their
information by using the BindingMemberInfo property.

Listing 7-4. Reading All the Bindings of a Form

Dim str As String

Dim curControl As Control

Dim curBinding As Binding

For Each curControl In Me.Controls

For Each curBinding In curControl.DataBindings

Dim bInfo As BindingMemberInfo = _

curBinding.BindingMemberInfo

Chapter 7

290

*0732_ch07_CMP2 2/15/03 8:04 PM Page 290

str = "Control: " + curControl.Name

str += ", BindingPath: " + bInfo.BindingPath

str += ", BindingField: " + bInfo.BindingField

str += ", BindingMember: " + bInfo.BindingMember

MessageBox.Show(str)

Next curBinding

Next curControl

The Control and DataSource properties return the control and data source that
belong to this binding. The IsBinding property returns True if the binding is active;
otherwise it returns False. PropertyName returns the name of the bound control’s
property that can be used in data binding. Listing 7-5 displays the DataSource and
PropertyName properties of a TextBox.

Listing 7-5. Reading a TextBox Control’s Binding Properties

If (TextBox1.DataBindings(0).IsBinding) Then

Dim ds As DataSet = _

CType(TextBox1.DataBindings(0).DataSource, DataSet)

str = "DataSource : " + ds.Tables(0).TableName

str += ", Property Name: " + _

TextBox1.DataBindings(0).PropertyName

MessageBox.Show(str)

End If

In addition to the previously discussed properties, the Binding class also pro-
vides two protected methods: OnParse and OnFormat. OnParse raises the Parse event,
and OnFormat raises the Format event. The Parse event occurs when the value of a
data-bound control is changing, and the Format event occurs when the property of
a control is bound to a data value. The event handler for both the Parse and Format
events receives an argument of type ConvertEventArgs containing data related to
this event, which has two members: DesiredType and Value. DesiredType returns
the data type of the desired value, and Value gets and sets the value of the
ConvertEventArgs object.

Now let’s say you want to convert text and decimal values for a Binding for a
TextBox. You write the code in Listing 7-6, where you change the Binding type and
add event handlers for the Binding objects for Format and Parse members.

Data Binding and Windows Forms Data-Bound Controls

291

*0732_ch07_CMP2 2/15/03 8:04 PM Page 291

NOTE This listing uses the Customers table instead of Employees because
the Employees table doesn’t have any decimal data. If you want to use the
Employees table, you could convert a Date type to a String type.

Listing 7-6. Adding Format and Parse Event Handlers

Dim bind2 As Binding = New Binding _

("Text", ds, "customers.custToOrders.OrderAmount")

AddHandler bind1.Format, AddressOf DecimalToCurrencyString

AddHandler bind1.Parse, AddressOf CurrencyStringToDecimal

Private Sub DecimalToCurrencyString(ByVal sender As Object, _

ByVal cevent As ConvertEventArgs)

If Not cevent.DesiredType Is GetType(String) Then

Exit Sub

End If

cevent.Value = CType(cevent.Value, Decimal).ToString("c")

End Sub

Private Sub CurrencyStringToDecimal(ByVal sender As Object, _

ByVal cevent As ConvertEventArgs)

If Not cevent.DesiredType Is GetType(Decimal) Then

Exit Sub

End If

cevent.Value = Decimal.Parse(cevent.Value.ToString, _

NumberStyles.Currency, Nothing)

End Sub

NOTE To test this code, you need to create a DataSet from the Employees
table of the Northwind database and use it as a data source when
constructing a Binding object. Also, don’t forget to add a reference to the
System.Globalization namespace because the NumberStyle enumeration
is defined in this namespace.

Chapter 7

292

*0732_ch07_CMP2 2/15/03 8:04 PM Page 292

Understanding the BindingManagerBase Functionality

The BindingManagerBase class is an abstract base class. You use its functionality
through its two derived classes: CurrencyManager and PropertyManager.

By default data-bound controls provide neither data synchronization nor the
position of the current item. The BindingManagerBase object provides the data syn-
chronization in Windows Forms and makes sure that all controls on a form are
updated with the correct data.

Question and Answer

Question: What is data synchronization?

Answer: Have you ever developed database applications in Visual Basic 6.0 or
Microsoft Foundation Classes (MFC)? In both of those languages, a data-bound
control lets you navigate through data from one record to another and update
data in the controls available on the form. As you move to the next record, the
next row was fetched from the data source and every control was updated with
the current row’s data. This process is called data synchronization.

OK, now let’s say a form has three controls: a TextBox, a Label, and a
PictureBox. All three controls support data binding from a DataSet, which is filled
with the data from the Employees table. The TextBox control displays FirstName,
the Label control displays LastName, and the PictureBox control displays Photo
properties (columns) of the DataSet. All of the controls must be synchronized in
order to display the correct first name, last name, and photo for the same
employee.

CurrencyManager accomplishes this synchronization by maintaining a
pointer to the current item for the list. All controls are bound to the current item
so they display the information for the same row. When the current item changes,
CurrencyManager notifies all the bound controls so that they can refresh their data.
Furthermore, you can set the Position property to specify the row in the DataSet or
DataTable to which the controls point. Figure 7-1 shows the synchronization process.

Data Binding and Windows Forms Data-Bound Controls

293

*0732_ch07_CMP2 2/15/03 8:04 PM Page 293

Figure 7-1. Synchronization between a data source and data-bound controls

Using the BindingManagerBase Class Members

As you learned, the Binding property returns the collection of binding objects as
a BindingsCollection object that BindingManagerBase manages. Listing 7-7 creates a
BindingManagerBase object for the form and reads all of the binding controls.

Listing 7-7. Reading All Controls Participating in Data Binding

' Get the BindingManagerBase

Dim bindingBase As BindingManagerBase = _

Me.BindingContext(ds, "Employees")

Dim bindingObj As Binding

' Read each Binding object from the collection

For Each bindingObj In bindingBase.Bindings

MessageBox.Show(bindingObj.Control.Name)

Next bindingObj

NOTE To read a form’s controls that are participating in data binding, you
must make sure that the form’s data source and control’s data source are
the same.

The Count property returns the total number of rows being managed by
BindingManagerBase. The Current property returns the current object, and the
Position property represents (both gets and sets) the position in the underlying
list to which controls bound to this data source point. We use these properties in
the following sample examples.

Chapter 7

294

*0732_ch07_CMP2 2/15/03 8:04 PM Page 294

Table 7-1 describes the BindingManagerBase class methods.

Table 7-1. The BindingManagerBase Class Methods

METHOD DESCRIPTION

AddNew Adds a new item to the list

CancelCurrentEdit Cancels the current edit operation

EndCurrentEdit Ends the current edit operation

GetItemProperties Returns the list of property descriptions for the data source

RemoveAt Deletes the row at the specified index

ResumeBinding Resumes data binding

SuspendBinding Suspends data binding

GetListName Protected. Returns the name of the list

OnCurrentChanged Raises the CurrentChanged event, which occurs when the bound

value changes

PullData Pulls data from the data-bound control into the data source

PushData Pushes data from data source into the data-bound control

UpdateIsBinding Updates the binding

Besides the properties and methods discussed previously, the
BindingManagerBase class provides two events: CurrentChanged and
PositionChanged. The CurrentChanged event occurs when the bound value
changes, and the PositionChanged event occurs when the position changes.

Using CurrencyManager and PropertyManager

CurrencyManager manages a list of Binding objects on a form. It’s inherited from the
BindingManagerBase class. Besides the functionality provided by BindingManagerBase,
the CurrencyManager provides two members: a List property and a Refresh method.
The List property returns the list of bindings maintained by CurrencyManager as an
IList object. To convert an IList to other objects, you need to cast it with the type
of the object, which must implement IList. Some of the objects that implement
IList are DataView, DataTable, DataSet, Array, ArrayList, and CollectionBase.

You create a CurrencyManager object by using the BindingContext object, which
returns either CurrencyManager or PropertyManager, depending on the value of the
data source and data members passed to the Item property of BindingContext. If
the data source is an object that can only return a single property (instead of a list
of objects), the type will be PropertyManager. For example, if you specify a TextBox

Data Binding and Windows Forms Data-Bound Controls

295

*0732_ch07_CMP2 2/15/03 8:04 PM Page 295

control as the data source, PropertyManager will be returned. If the data source is an
object that implements IList, IListSource, or IBindingList, such as a DataSet,
DataTable, DataView, or an Array, CurrencyManager will be returned.

You can create a CurrencyManager from objects such as a DataView and vice
versa. For example, the following code creates a CurrencyManager from a DataView
and a DataView from a CurrencyManager:

Dim dv As DataView

dv = New DataView(ds.Tables("Customers"))

Dim curManager1 As CurrencyManager = DataGrid1.BindingContext(dv)

Dim list As IList = curManager1.List

Dim dv1 As DataView = CType(curManager1.List, DataView)

Dim curManager2 As CurrencyManager = Me.BindingContext(ds1)

Unlike CurrencyManager, PropertyManager doesn’t provide any additional
members besides the members provided by its base class, BindingManagerBase.

Understanding BindingContext

Each object inherited from the Control class has a BindingContext object attached
to it. BindingContext manages the collection of BindingManagerBase objects for
that object such as a form. The BindingContext creates the CurrencyManager and
PropertyManager objects, which were discussed previously. Normally you use the
Form class’s BindingContext to create a CurrencyManager and PropertyManager for a
form and its controls, which provide data synchronization.

The Item property of BindingContext returns the BindingManagerBase (either
CurrencyManager or PropertyManager). The Contains methods returns True if it con-
tains the specified BindingManagerBase.

Besides the Item and Contains members, the BindingContext has three pro-
tected methods: Add, Clear, and Remove. The Add method adds a BindingManagerBase
to the collection, the Clear method removes all items in the collection, and the
Remove method deletes the BindingManagerBase associated with the specified data
source.

Building a Record Navigation System

Now let’s see data binding in action. In this section, you’ll develop an application
that provides data synchronization. In this application, you’ll build a record navi-
gation system. The controls will display records, and then when you click the

Chapter 7

296

*0732_ch07_CMP2 2/15/03 8:04 PM Page 296

Move Next, Move Last, Move Previous, and Move First buttons, the controls will
display the respective records.

To begin, create a Windows application and design a form that looks like
Figure 7-2. For this example, you don’t have to place the ReadBindingMemberInfo
and Remove controls. Add a ComboBox control, two TextBox controls, a ListBox
control, some Label controls, and some Button controls. The Load Data button
loads data to the controls and attaches Binding objects to the BindingContext. You
should also add four buttons with brackets as the text (<<, <, >, >>), which repre-
sents the Move First, Move Previous, Move Next, and Move Last records.

Figure 7-2. Record navigation form

NOTE You can create your own form, but to save you some time, you
can download the code from the Apress (www.apress.com) or C# Corner
(www.c-sharpcorner.com) Web sites. Open the project in Visual Studio
.NET (VS .NET) to understand it better.

As usual, first you add some variables to the project, which shown in Listing 7-8.
Don’t forget to change your server name; the server name in this example is MCB.

Data Binding and Windows Forms Data-Bound Controls

297

*0732_ch07_CMP2 2/15/03 8:04 PM Page 297

Listing 7-8. Record Navigation System Variables

Private ConnectionString As String = "Integrated Security=SSPI;" & _

"Initial Catalog=Northwind;Data Source=MCB;"

Private conn As SqlConnection = Nothing

Private sql As String = Nothing

Private adapter As SqlDataAdapter = Nothing

Private ds As DataSet = Nothing

Second, you call the LoadData method on the Load Data button click:

Private Sub LoadBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles LoadBtn.Click

LoadData()

End Sub

Listing 7-9 shows the LoadData and GetDataSet methods. The GetDataSet
method returns a DataSet object from the table name passed in the method. The
LoadData method creates bindings for these controls with different DataTable
columns.

Listing 7-9. LoadData and GetDataSet Methods

Private Sub LoadData()

Dim ds As DataSet = New DataSet()

ds = GetDataSet("Employees")

Dim bind1 As Binding

bind1 = New Binding("Text", ds, "Employees.FirstName")

TextBox1.DataBindings.Add(bind1)

TextBox2.DataBindings.Add _

(New Binding("Text", ds, "Employees.LastName"))

ComboBox1.DataBindings.Add _

(New Binding("Text", ds, "Employees.EmployeeID"))

Label4.DataBindings.Add(New Binding("Text", ds, "Employees.City"))

Button1.DataBindings.Add(New Binding("Text", ds, "Employees.Country"))

ListBox1.DataSource = ds.Tables(0).DefaultView

ListBox1.DisplayMember = "Title"

End Sub

' object based on various parameters.

Public Function GetDataSet(ByVal tableName As String) As DataSet

sql = "SELECT * FROM " + tableName

ds = New DataSet(tableName)

Chapter 7

298

*0732_ch07_CMP2 2/15/03 8:04 PM Page 298

conn = New SqlConnection()

conn.ConnectionString = ConnectionString

adapter = New SqlDataAdapter(sql, conn)

adapter.Fill(ds, tableName)

Return ds

End Function

The previously discussed steps will load the first row from the Employees
table to the controls. Now, the next step is to write code for the move buttons.
Listing 7-10 shows the code for all four buttons—Move First, Move Next, Move
Previous, and Move Last. As you can see, this code uses the Position and Count
properties of BindingManagerBase to set the position of the new record. Binding-
Context and other Binding objects manage everything for you under the hood.

Listing 7-10. Move Next, Move Previous, Move First, and Move Last Button Code

Private Sub MoveFirstBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveFirstBtn.Click

Me.BindingContext(Me.ds, "Employees").Position = 0

End Sub

Private Sub MovePrevBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MovePrevBtn.Click

Dim idx As Int32 = _

Me.BindingContext(Me.ds, "Employees").Position

Me.BindingContext(Me.ds, "Employees").Position = idx - 1

End Sub

Private Sub MoveNextBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveNextBtn.Click

Dim idx As Int32 = _

Me.BindingContext(Me.ds, "Employees").Position

Me.BindingContext(Me.ds, "Employees").Position = idx + 1

End Sub

Private Sub MoveLastBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveLastBtn.Click

Me.BindingContext(Me.ds, "Employees").Position = _

Me.BindingContext(Me.ds, "Employees").Count - 1

End Sub

Data Binding and Windows Forms Data-Bound Controls

299

*0732_ch07_CMP2 2/15/03 8:04 PM Page 299

When you run your application, the first record looks like Figure 7-3. Clicking
the Move First, Move Next, Move Previous, and Move Last buttons will navigate
you through the first, next, previous, and last records of the table (respectively).

Figure 7-3. Record navigation system in action

Question and Answer

Question: When I click the move buttons, I don’t see the pointer in the ListBox
moving. Why not?

Answer: The ListBox control doesn’t use the same binding method as simple
data-bound controls such as TextBox or Label controls. We discuss this in the
following section.

You just saw how to implement a record navigation system using simple data
binding and simple data-bound controls. In the following section, we show you
how to build a record navigation system using complex data-bound controls such
as ListBox and DataGrid controls.

Chapter 7

300

*0732_ch07_CMP2 2/15/03 8:04 PM Page 300

Working with Complex Data-Bound Controls

Unlike simple data-bound controls, the complex data-bound controls can display
a set of data such as a single column or a collection of columns. The controls such
as DataGrid are even able to display data from multiple tables of a database.
Whereas the simple data-bound controls usually use their Text properties for
binding, complex data-bound controls use their DataSource and DataMember prop-
erties.

In the following sections, we discuss some of the common complex data-
bound controls such as the ComboBox, ListBox, and DataGrid.

The Role of Control Class in Data Binding

The Control class is the mother of all Windows controls. This class’s basic function-
ality is required by visual Windows controls that are available from the Toolbox or
through other wizards. The Control class handles user input through the keyboard,
the mouse, and other pointing devices. It also defines the position and size of con-
trols; however, it doesn’t implement painting.

If you count the Control class members, you’ll find that this class is one of the
biggest classes available in the .NET Framework Library. In the following sections,
you’ll explore some of the data-binding functionality implemented by this class.

The Control class provides two important and useful properties, which play a
vital role in the data-binding process. These properties are BindingContext and
DataBinding. The BindingContext property represents the BindingContext attached
to a control. As discussed earlier, BindingContext returns a single BindingManagerBase
object for all data-bound controls. The BindingManagerBase object provides the
synchronization for all data-bound controls. The Control class also implements
the DataSourceChanged event, which raises when the data source of a control is
changed. We discuss this event in more detail shortly.

Using the ListControl Class

The ListControl class is the base class for ListBox and ComboBox controls and imple-
ments the data-binding functionality. The ListControl class provides four
data-binding properties: DataManager, DataSource, DisplayMember, and ValueMember.

The DataManager (read-only) property returns the CurrencyManager object asso-
ciated with a ListControl class.

The DataSource property (both get and set) represents the data source for a
ListControl class.

Data Binding and Windows Forms Data-Bound Controls

301

*0732_ch07_CMP2 2/15/03 8:04 PM Page 301

The DisplayMember (both get and set) represents a string, which specifies the
property of a data source whose contents you want to display. For example, if you
want to display the data of a DataTable’s Name column in a ListBox control, you set
DisplayMember ="Name".

The ValueMember (both get and set) property represents a string, which spec-
ifies the property of the data source from which to draw the value. The default
value of this property is an empty string ("").

You’ll see how to use these properties in the following samples.

ListControl DataBinding-Related Events

Besides the BindingContextChanged event, the ListControl class implements
three data-binding events: OnDataSourceChanged, OnDisplayMemberChanged, and
OnValueMemberChanged. The OnDataSourceChanged method raises the DataSourceChanged
event. This event occurs when the DataSource property of a ListControl class is
changed. The OnDisplayMemberChanged method raises the DisplayMemberChanged
event, which occurs when the DisplayMember property of the control changes. The
OnValueMemberChanged method raises the ValueMemberChanged event, which occurs
when the ValueMember property of the control changes.

These events are useful when your program needs a notification when any of
these events occur. Listing 7-11 attaches these events with event handlers. The
code also shows the handler methods, which will be called when the event occurs.

Listing 7-11. Adding a ListBox Control Event Handler

' Bind data with controls

Private Sub BindListControls()

ComboBox1.DataSource = ds.Tables(0)

ComboBox1.DisplayMember = "EmployeeID"

ListBox1.DataSource = ds.Tables(0)

ListBox1.DisplayMember = "FirstName"

ListBox2.DataSource = ds.Tables(0)

ListBox2.DisplayMember = "LastName"

ListBox3.DataSource = ds.Tables(0)

ListBox3.DisplayMember = "Title"

End Sub

Chapter 7

302

*0732_ch07_CMP2 2/15/03 8:04 PM Page 302

Private Sub ComboDataSourceChangedMethod(ByVal sender As Object, _

ByVal cevent As EventArgs) Handles ListBox1.DataSourceChanged

MessageBox.Show("Data Source changed")

End Sub

Private Sub DisplayMemberChangedMethod(ByVal sender As Object, _

ByVal cevent As EventArgs) Handles ListBox1.DisplayMemberChanged

MessageBox.Show("Display Member changed")

End Sub

Private Sub ValueMemberChangedMethod(ByVal sender As Object, _

ByVal cevent As EventArgs) Handles ListBox1.ValueMemberChanged

MessageBox.Show("Value Member changed")

End Sub

Private Sub BindingContextChangedMethod(ByVal sender As Object, _

ByVal cevent As EventArgs) Handles ListBox1.BindingContextChanged

MessageBox.Show("Binding Context changed")

End Sub

To raise these events, just change the value of the ListBox properties (see
Listing 7-12).

Listing 7-12. Raising ListBox Events

Private Sub ListChangedEvents_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ListChangedEvents.Click

Dim custDataSet As DataSet = New DataSet()

sql = "SELECT CustomerID, ContactName, City FROM Customers"

custDataSet = New DataSet("Customers")

conn = New SqlConnection()

conn.ConnectionString = ConnectionString

adapter = New SqlDataAdapter(sql, conn)

adapter.Fill(custDataSet, "Customers")

ListBox1.DataSource = custDataSet.Tables(0)

ListBox1.DisplayMember = "ContactName"

ListBox1.ValueMember = "ContactName"

conn.Close()

conn.Dispose()

End Sub

Data Binding and Windows Forms Data-Bound Controls

303

*0732_ch07_CMP2 2/15/03 8:04 PM Page 303

Data Binding in ComboBox and ListBox Controls

Now you'll learn how to use complex data binding in a ComboBox and a ListBox
control. Unlike simple data-bound controls, complex data-bound controls
maintain the default binding synchronization. For instance, if you bind a data
source with a ListBox and a ComboBox control, and then move from one item to
another in a control, you can see the selection change in the second control
respective to the item you select in the first control.

To prove this theory, you’ll create a Windows application with a ComboBox and
three ListBox controls. The final form looks like Figure 7-4.

Figure 7-4. ListBox and ComboBox data-binding form

As usual, you load data in the Form_Load event. Listing 7-13 shows the event
handler code, where you call the FillDataSet and BindListControl methods.

Listing 7-13. The Form Load Event Handler

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

FillDataSet()

BindListControls()

End Sub

Chapter 7

304

*0732_ch07_CMP2 2/15/03 8:04 PM Page 304

The FillDataSet method simply opens the connection and fills data in a
DataSet. Listing 7-14 shows this method.

Listing 7-14. The FillDataSet Method

' Fill DataSEt

Private Sub FillDataSet()

ds = New DataSet()

sql = "SELECT * FROM Employees"

ds = New DataSet("Employees")

conn = New SqlConnection()

conn.ConnectionString = ConnectionString

adapter = New SqlDataAdapter(sql, conn)

adapter.Fill(ds, "Employees")

conn.Close()

conn.Dispose()

End Sub

The BindListControls method is where you bind the ComboBox and ListBox con-
trols. Listing 7-15 shows the BindListControls method. As you can see, this code
binds the ComboBox to the EmployeeID column and binds the three ListBox controls
to the FirstName, LastName, and Title columns.

Listing 7-15. Binding ListBox and ComboBox Controls

' Bind data with controls

Private Sub BindListControls()

ComboBox1.DataSource = ds.Tables(0)

ComboBox1.DisplayMember = "EmployeeID"

ListBox1.DataSource = ds.Tables(0)

ListBox1.DisplayMember = "FirstName"

ListBox2.DataSource = ds.Tables(0)

ListBox2.DisplayMember = "LastName"

ListBox3.DataSource = ds.Tables(0)

ListBox3.DisplayMember = "Title"

End Sub

If you run the application and select any record in the ComboBox or ListBox con-
trols, you’ll see that the other controls select the correct value. For instance, if you
select the sixth record in the ComboBox, all of the ListBox controls reflect this choice
(see Figure 7-5).

Data Binding and Windows Forms Data-Bound Controls

305

*0732_ch07_CMP2 2/15/03 8:04 PM Page 305

Figure 7-5. Data synchronization in ComboBox and ListBox controls

Data Binding in a DataGrid Control

The DataGrid control is much more powerful than any other data-bound control.
It’s also capable of displaying data relations. A DataGrid control displays data in a
tabular, scrollable, and editable grid. Like other data-bound controls, a DataGrid
control can display data from various sources with the help of its DataSource
property. The DataSource property can be a DataTable, DataView, DataSet, or
DataViewManager.

When a DataSet or a DataViewManager contains data from more than one table,
you can specify what table you want to display in the DataGrid property by using
the DataMember property. For example, let’s say you have a DataSet that contains two
tables—Customers and Orders. By default, if you bind a DataSet, it’ll display data
from both tables. But if you want to display data from the Customers table only,
you need to set the DataMember property to the table’s name. Listing 7-16 sets the
DataSource and DataMember properties of a DataGrid.

Chapter 7

306

*0732_ch07_CMP2 2/15/03 8:04 PM Page 306

Listing 7-16. Setting the DataSource and DataMember Properties of a DataGrid Control

ds = New DataSet()

sql = "SELECT * FROM Customers"

ds = New DataSet()

adapter = New SqlDataAdapter(sql, conn)

adapter.Fill(ds)

DataGrid1.DataSource = ds

DataGrid1.DataMember = "Customers"

You can also set the DataSource and DataMember properties by using the
DataGrid control’s SetDataBinding method. This method takes the first argument as
a dataSource and the second argument as a dataMember. Typically, a data source is a
DataSet, and the dataMember is the name of a table available in the DataSet. The fol-
lowing code shows how to call the SetDataBinding method of a DataGrid control:

DataGrid1.SetDataBinding(ds, "Customers")

You’ll use the DataGrid control and its members throughout this chapter.

Deleting Data Binding

Removing data binding from a data-bound control is simple. The following code
snippet deletes data binding from a DataGrid control:

DataGrid1.DataSource = null;

DataGrid1.DataMember = "";

The DataGrid: Super Data-Bound Control

The DataGrid control is one of the most flexible and versatile controls in Windows
Forms. In this section, we discuss some of the DataGrid functionality.

The DataGrid class represents the DataGrid control in Windows Forms. Before
writing any code, you’ll learn about the DataGrid class properties and methods.
Figure 7-6 shows a DataGrid’s parent items and background, and Figure 7-7 shows
some of the DataGrid parts.

Data Binding and Windows Forms Data-Bound Controls

307

*0732_ch07_CMP2 2/15/03 8:04 PM Page 307

Figure 7-6. The DataGrid’s parent items and background

Figure 7-7. The DataGrid’s parts

Chapter 7

308

*0732_ch07_CMP2 2/15/03 8:04 PM Page 308

Understanding the DataGrid Class Members

Like all other Windows controls, the DataGrid inherits from the Control class, which
means that the data-binding functionality defined in the Control class is available
in the DataGrid control. Besides the hundreds of members implemented in the
Control class, the DataGrid provides many more members. Table 7-2 describes
the DataGrid class properties.

Table 7-2. The DataGrid Class Properties

PROPERTY DESCRIPTION

AllowNavigation Indicates whether navigation is allowed. True or false. Both

get and set.

AllowSorting Indicates whether sorting is allowed. True or false. Both get

and set.

AlternatingBackColor Background color of alternative rows.

BackColor Background color of the grid.

BackgroundColor Color of the nonrow area of the grid. This is the background

color if the grid has no rows.

BorderStyle Style of the border.

CaptionBackColor Background color of caption.

CaptionFont Font of caption.

CaptionForeColor Foreground color of caption.

CaptionText Caption text.

CaptionVisible Indicates whether caption is visible.

ColumnHeadersVisible Indicates whether column headers are visible.

CurrentCell Returns current selected cell.

CurrentRowIndex Index of the selected row.

DataMember Represents the data sources among multiple data sources. If

there’s only one data source, such as a DataTable or a DataSet

with a single table, there’s no need to set this property. Both

get and set.

DataSource Represents the data source such as a DataSet, a DataTable, or

Ilist.

FirstVisibleColumn Index of the first visible column.

FlatMode FlatMode. Type of FlatMode enumeration.

ForeColor Foreground color.

GridLineColor Color of grid lines.

Data Binding and Windows Forms Data-Bound Controls

309

*0732_ch07_CMP2 2/15/03 8:04 PM Page 309

Table 7-2. The DataGrid Class Properties (Continued)

PROPERTY DESCRIPTION

GridLineStyle Style of grid lines.

HeaderBackColor Background color of column headers.

HeaderFont Font of column headers.

HeaderForeColor Foreground color of column headers.

Item Value of the specified cell.

LinkColor Color of the text that you can click to navigate to a child table.

LinkHoverColor Link color changes to when the mouse moves over it.

ParentRowBackColor Background color of parent rows. Parent rows are rows that

allow you to move to child tables.

ParentRowForeColor Foreground color of parent rows.

ParentRowLabelStyle Label style of parent rows.

ParentRowsVisible Indicates whether parent rows are visible.

PreferredColumnWidth Default width of columns in pixel.

PreferredRowHeight Default height of rows in pixels.

ReadOnly Indicates whether grid is read only.

RowHeaderVisible Indicates whether row header is visible.

RowHeaderWidth Width of row headers.

SelectionBackColor Background color of selected rows.

SelectionForeColor Foreground color of selected rows.

TableStyles Table style. DataGridTableStyle type.

VisibleColumnCount Total number of visible columns.

VisibleRowCount Total number of visible rows.

HorizScrollBar Protected. Returns the horizontal scroll bar of the grid.

VertScrollBar Protected. Returns the horizontal scroll bar of the grid.

ListManager Protected. Returns the CurrencyManager of the grid.

Table 7-3 describes the DataGrid class methods.

Chapter 7

310

*0732_ch07_CMP2 2/15/03 8:04 PM Page 310

Table 7-3. The DataGrid Class Methods

METHOD DESCRIPTION

BeginEdit Starts the editing operation

BeginInit Begins the initialization of grid that is used on a form or

used by other components

Collapse Collapses children if a grid has parent and child

relationship nodes expanded

EndEdit Ends the editing operation

EndInit Ends grid initialization

Expand Expands children if grid has children in a parent/child

relation

GetCurrentCellBounds Returns a rectangle that specifies the four corners of the

selected cell

HitTest Gets information when clicking on the grid

IsExpanded True if node of the specified row is expanded; otherwise

false

IsSelected True if specified row is selected; otherwise false

NavigateBack Navigates to the table previously displayed in the grid

NavigateTo Navigates to the table specified by the row and relation

name

ResetAlternatingBackColor Resets the AlternatingBackColor property to the default

color

ResetBackColor Resets background color to default

ResetGridLineColor Resets grid lines color to default

ResetHeaderBackColor Resets header background to default

ResetHeaderFont Resets header font to default

ResetHeaderForeColor Resets header foreground color to default

ResetLinkColor Resets link color to default

ResetSelectionBackColor Resets selection background color to default

ResetSelectionForeColor Resets selection foreground color to default

Select Selects a specified row

SetDataBinding Sets the DataSource and DataMember properties

UnSelect Unselects a specified row

Data Binding and Windows Forms Data-Bound Controls

311

*0732_ch07_CMP2 2/15/03 8:04 PM Page 311

Besides the methods described in Table 7-3, the DataGrid class provides some
protected methods (see Table 7-4).

Table 7-4. The DataGrid Class Protected Methods

PROTECTED METHOD DESCRIPTION

CancelEditing Cancels the current edit operation and rolls back

all changes

GridHScrolled Listens for the horizontal scroll bar’s scroll event

GridVScrolled Listens for the vertical scroll bar’s scroll event

OnBackButtonClicked Listens for the caption’s Back button clicked event

OnBorderStyleChanged Raises the BorderStyleChanged event

OnCaptionVisibleChanged Raises the CaptionVisibleChanged event

OnDataSourceChanged Raises the DataSourceChanged event

OnFlatModeChanged Raises the FlatModeChanged event

OnNavigate Raises the Navigate event

OnParentRowsLabelStyleChanged Raises the ParentRowsLabelStyleChanged event

OnParentRowsVisibleChanged Raises the ParentRowsVisibleChanged event

OnReadOnlyChanged Raises the ReadOnlyChanged event

OnRowHeaderClick Raises the RowHeaderClick event

OnScroll Raises the Scroll event

OnShowParentDetailsButtonClicked Raises the ShowParentDetailsButtonClick event

ProcessGridKey Processes keys for grid navigation

ProcessTabKey Gets a value indicating whether the Tab key

should be processed

ResetSelection Turns off selection for all rows that are selected

Exploring the DataGrid Helper Objects

The DataGrid class comes with 13 helper objects (classes, structures, and
enumerations). What do we mean by helper classes? Helper classes provide
simple methods to access some of the more complicated aspects of
the DataGrid class. These helper objects are DataGrid.HitTestInfo, the
DataGrid.HitTestType enumeration, DataGridBoolColumn, the DataGridCell
structure, DataGridColumnStyle, DataGridColumnStyle.CompModSwitches, the
DataGridColumnStype.DataGridColumnHeaderAccessibleObject DataGridLineStyle

enumeration, the DataGridParentRowsLabelStyle enumeration,
DataGridPreferredColumnWidthTypeConverter,

Chapter 7

312

*0732_ch07_CMP2 2/15/03 8:04 PM Page 312

DataGridTableStyle, DataGridTextBox, and DataGridTextBoxColumn. We discuss
some of these objects in the following section. You’ll see the rest of them later in
this chapter.

Understanding the DataGrid and DataGrid Column
Styles

The DataGrid control hides much more functionality in it. Not only can it display
data and data relations, it also provides functionality to customize its styles
including color, text, caption, and font. The TableStyles property of DataGrid
opens the door for formatting a grid and its columns. The GridStyles property
returns an object of GridTableStyleCollection, which is a collection of
DataGridTableStyle.

DataGridTableStyle represents the style of a DataTable that can be viewed in
the grid area of a DataGrid. The GridTableStyles class of DataGridTableStyle repre-
sents a collection of DataGridColumnStyle. Figure 7-8 represents the relationship
between the DataGrid-related style objects. We discuss these objects in more detail
in the following sections.

Figure 7-8. DataGrid-related style objects

Before you see these objects in action, you’ll look at these object classes and
their members briefly.

Data Binding and Windows Forms Data-Bound Controls

313

*0732_ch07_CMP2 2/15/03 8:04 PM Page 313

Using the DataGridTableStyle Class

The DataGridTableStyle object customizes the grid style for each DataTable in a
DataSet. However, the DataGridTableStyle name is a little misleading. From its
name, you would probably think the DataGridTableStyle represents the style of a
DataGridTable such as its color, text, and font. Correct? Actually, DataGridTableStyle
represents the grid itself. Using DataGridTableStyle, you can set the style and
appearance of each DataTable, which is being displayed by the DataGrid. To specify
which DataGridTableStyle is used when displaying data from a particular DataTable,
set the MappingName to the TableName of a DataTable. For example, if a DataTable’s
TableName is Customers, you set MappingName to the following:

DataGridTableStyle.Mapping="Customers"

The DataGridTableStyle class provides similar properties and methods
to those in the DataGrid class. Some of these properties are AllowSorting,
AlternativeBackColor, BackColor, ColumnHeaderVisible, ForeColor, and
GridColumnStyle.

Using the GridColumnStyles Property

The GridColumnStyles property returns a collection of columns available in a
DataGridTableStyle as a GridColumnStylesCollection, which is a collection of Data-
GridColumnStyle objects. By default all columns are available through this property.

Using the GridTableStyleCollection Members

The GridTableStyleCollection is a collection of DataGridTableStyle. The TableStyle
property of DataGrid represents and returns a collection of DataGridTableStyle
objects as a GridTableStylesCollection object.

TIP DataGridTableStyle is useful when it comes to managing a DataGrid’s
style programmatically. One of the real-world usages of DataGridTableStyle
is when you need to change the column styles of a DataGrid or want to
move columns from one position to another programmatically.

Chapter 7

314

*0732_ch07_CMP2 2/15/03 8:04 PM Page 314

Unlike other collection objects, by default the GridTableStylesCollection doesn’t
contain any DataGridTableStyle objects. You need to add DataGridTableStyle objects
to the collection. By default a DataGrid displays default settings such as color, text,
font, width, and formatting. By default all columns of DataTable are displayed.

Constructing and Adding a DataGridStyle

You’ll now learn how to create a DataGridTableStyle object and add it to the
DataGrid’s DataGridTableStyle collection. Listing 7-17 creates a DataGridTableStyle,
set its properties, and adds two columns: a Boolean and a text box column. The
DataGridBookColumn class represents a Boolean column with check boxes, and the
DataGridTextBoxColumn represents a text box column. (We discuss these classes in
the following sections.)

Listing 7-17. Creating and Adding a DataGridTableStyle

Private Sub AddDataGridStyleMethod()

' Create a new DataGrudTableStyle

Dim dgTableStyle As New DataGridTableStyle()

dgTableStyle.MappingName = "Customers"

dgTableStyle.BackColor = Color.Gray

dgTableStyle.ForeColor = Color.Wheat

dgTableStyle.AlternatingBackColor = Color.AliceBlue

dgTableStyle.GridLineStyle = DataGridLineStyle.None

' Add some columns to the style

Dim boolCol As New DataGridBoolColumn()

boolCol.MappingName = "boolCol"

boolCol.HeaderText = "boolCol Text"

boolCol.Width = 100

' Add column to GridColumnStyle

dgTableStyle.GridColumnStyles.Add(boolCol)

' Text column

Dim TextCol As New DataGridTextBoxColumn()

TextCol.MappingName = "Name"

TextCol.HeaderText = "Name Text"

TextCol.Width = 200

' Add column to GridColumnStyle

dgTableStyle.GridColumnStyles.Add(TextCol)

' Add DataGridTableStyle to the collection

DataGrid1.TableStyles.Add(dgTableStyle)

End Sub

Data Binding and Windows Forms Data-Bound Controls

315

*0732_ch07_CMP2 2/15/03 8:04 PM Page 315

You can even create a DataGridTableStyle from a CurrencyManager. Listing 7-18
creates a DataGridTableStyle from a CurrencyManager and adds it the collection.

Listing 7-18. Creating a DataGridTableStyle from CurrencyManager

Private Sub CreateNewDGTableStyle()

Dim curManager As CurrencyManager

Dim newTableStyle As DataGridTableStyle

curManager = CType _

(Me.BindingContext(ds, "Customers"), CurrencyManager)

newTableStyle = New DataGridTableStyle(curManager)

DataGrid1.TableStyles.Add(newTableStyle)

End Sub

Using the DataGridColumnStyle Class

The DataGridColumnStyle represents the style of a column. You can attach a
DataGridColumnStyle to each column of a DataGrid. The DataGrid can contain
different types of columns such as a check box or a text box. As you saw earlier,
a DataGridTableStyle contains a collection of DataGridColumnStyle objects, which
can be accessed through the GridColumnStyles property of DataGridTableStyle.
This object is pretty useful and allows many formatting- and style-related
members. Table 7-5 describes the DataGridColumnStyle properties.

Table 7-5. The DataGridColumnStyle Properties

PROPERTY DESCRIPTION

Alignment Alignment of text in a column. Both get and set.

DataGridTableStyle Returns the DataGridTableStyle object associated with the

column.

HeaderText Text of the column header. Both get and set.

MappingName Name used to map the column style to a data member. Both

get and set.

NullText You can set the column text when the column has null

values using this property. Both get and set.

PropertyDescriptor PropertyDescriptor object that determines the attributes of

data displayed by the column. Both get and set.

ReadOnly Indicates if column is read only. Both get and set.

Width Width of the column. Both get and set.

Chapter 7

316

*0732_ch07_CMP2 2/15/03 8:04 PM Page 316

Besides the methods described in Table 7-6, the DataGridColumnStyle class pro-
vides a method, ResetHeaderText, which resets the header text to its default value
of null.

Table 7-6. The DataGridColumnStyle Methods

METHOD DESCRIPTION

Abort Aborts the edit operation.

BeginUpdate Suspends the painting operation of the column until the

EndUpdate method is called.

CheckValidDataSource If a column is not mapped to a valid property of a data source,

this throws an exception.

ColumnStartEditing Informs DataGrid that the user has start editing the column.

Commit Completes the editing operation.

ConcedeFocus Notifies a column that it must relinquish the focus to the

control it’s hosting.

Edit Prepares the cell for editing a value.

EndUpdate Resumes the painting of columns suspended by calling the

BeginUpdate method.

EnterNullValue Enters a DBNullValue into the column.

GetColumnValueAtRow Returns the value in the specified row.

GetMinimumHeight Returns the minimum height of a row.

GetPreferedHeight Returns the height used for automatically resizing columns.

GetPreferedSize Automatic size.

Invalidate Redraws the column.

SetColumnValueAtRow Sets a value in the specified row.

SetDataGrid Sets the DataGrid to which this column belongs.

SetDataGridInColumn Sets the DataGrid for the column.

UpdateUI Updates the value of a row.

Using the DataGridBoolColumn Class

A DataGrid can contain different types of columns such as a check box or a text
box. By default all columns are in a simple grid format. The DataGridBoolColumn
class represents a Boolean column of a DataGrid. Each cell of a Boolean column
contains a check box, which can be checked (true) or unchecked (false). The
DataGridBoolColumn class is inherited from the DataGridColumnStyle class. Besides
the functionality provided by the DataGridColumnStyle, it provides its own
members. Table 7-7 describes the DataGridBoolColumn class properties.

Data Binding and Windows Forms Data-Bound Controls

317

*0732_ch07_CMP2 2/15/03 8:04 PM Page 317

Table 7-7. The DataGridBoolColumn Properties

PROPERTY DESCRIPTION

AllowNull Represents whether null values are allowed in this column or not (both

get and set)

FalseValue Represents the actual value of column when the value of column is set to

False (both get and set)

NullValue The actual value used when setting the value of the column to Value

(both get and set)

TrueValue Represents the actual value of column when the value of column is set to

True (both get and set)

Listing 7-19 creates a new DataGridBoolColum and sets its properties.

Listing 7-19. Creating a DataGridBoolColumn

Dim dgCol As DataGridBoolColumn

dgCol = CType(dtGrid.TableStyles _

("Customers").GridColumnStyles("Current"), DataGridBoolColumn)

dgCol.TrueValue = True

dgCol.FalseValue = False

dgCol.NullValue = Convert.DBNull

Setting DataGrid Sorting and Navigation

By default, navigation and sorting is on in a DataGrid. If a DataGrid is filled with
data and you click the DataGrid header, it sorts data in ascending or descending
order, depending on the current state. In other words, if the data is sorted in
ascending order, right-clicking the header will sort it in descending order—and
vice versa. You can activate or deactivate sorting programmatically using the
AllowSorting property, which is a Boolean type. The following code shows how to
set the AllowSorting property:

' Allow Sorting

If (allowSortingCheckBox.Checked) Then

dtGrid.AllowSorting = True

Else

dtGrid.AllowSorting = False

End If

Chapter 7

318

*0732_ch07_CMP2 2/15/03 8:04 PM Page 318

Like the AllowSorting property, the AllowNavigation property enables or dis-
ables navigation. Setting the property to True indicates that navigation in a
DataGrid is allowed and setting it to False means that navigation is not allowed.
When you change the AllowNavigation property, the AllowNavigationChanged event
is fired. Perhaps you notice in the previous samples that if a DataSet had more than
one database table, there were links to each table? When you click a table link,
the DataGrid opens that table. If AllowNavigation is False, then no links to child
tables display. Listing 7-20 uses AllowNavigation and also handles the
AllowNavigationChanged event.

Listing 7-20. AllowNavigation in Action

' Change navigation using AllowNavigation property

Private Sub NavigationMenu_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles NavigationMenu.Click

' Change navigation. If its true, change it to false and

' vice versa

If dtGrid.AllowNavigation = True Then

dtGrid.AllowNavigation = False

Else

dtGrid.AllowNavigation = True

End If

End Sub

Private Sub AllowNavigationEvent(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles dtGrid.AllowNavigationChanged

Dim nav As Boolean = dtGrid.AllowNavigation

Dim str As String = "AllowNavigationChanged event fired. "

If (nav) Then

str = str + "Navigation is allowed"

NavigationMenu.Checked = True

Else

str = str + "Navigation is not allowed"

NavigationMenu.Checked = False

End If

MessageBox.Show(str, "AllowNavigation")

End Sub

Data Binding and Windows Forms Data-Bound Controls

319

*0732_ch07_CMP2 2/15/03 8:04 PM Page 319

Setting DataGrid Coloring and Font Styles

As mentioned, the DataGrid provides properties to set the foreground and back-
ground color of almost every part of a DataGrid such as headers, grid lines, and so
on. The DataGrid also provides font properties to set the font of the DataGrid.
Listing 7-21 sets Font and Color properties of a DataGrid.

Listing 7-21. Using Some of the DataGrid’s Color and Font Properties

' Setting DataGrid's Color and Font properties

dtGrid.BackColor = Color.Beige

dtGrid.ForeColor = Color.Black

dtGrid.BackgroundColor = Color.Red

dtGrid.SelectionBackColor = Color.Blue

dtGrid.SelectionForeColor = Color.Yellow

dtGrid.GridLineColor = Color.Blue

dtGrid.HeaderBackColor = Color.Black

dtGrid.HeaderForeColor = Color.Gold

'dtGrid.AlternatingBackColor = Color.AliceBlue

dtGrid.LinkColor = Color.Pink

dtGrid.HeaderFont = New Font("Verdana", FontStyle.Bold)

dtGrid.Font = New Font("Verdana", 8, FontStyle.Regular)

TIP You can customize a DataGrid and allow the user to select a color and
font for each part of the DataGrid at runtime as well as at design-time
using the Properties window.

Setting Caption Properties

You just saw the Font property of the DataGrid itself. The DataGrid also provides
properties to set the caption’s fonts and color. For example, Listing 7-22 sets the
font, background color, and foreground color of caption of the DataGrid.

Chapter 7

320

*0732_ch07_CMP2 2/15/03 8:04 PM Page 320

Listing 7-22. The DataGrid’s Caption Properties

dtGrid.CaptionText = "Customized DataGrid"

dtGrid.CaptionBackColor = System.Drawing.Color.Green

dtGrid.CaptionForeColor = System.Drawing.Color.Yellow

dtGrid.CaptionFont = New Font("Verdana", 10, FontStyle.Bold)

Seeing DataGridTableStyle and DataGridColumnStyle
in Action

A common use of DataGridColumnStyle is changing the positions of a DataGrid’s
columns programmatically. In the following sections, you’ll see some common
usages of DataGridTableStyle and DataGridColumnStyle.

As mentioned, you’ll see some real-world uses of data-bound controls in
this chapter. Specifically, you’ll learn how to add check box and text box columns
to a DataGrid. You also know that the GridColumnStyles property returns a col-
lection of DataGridTableStyle as an object of GridColumnStyleCollection. Using
GridColumnStyleCollection you can add and remove column styles to a collection.
This is what you’ll use to add new columns to a collection and attach them to a
DataGridTableStyle.

To start this application, create a Windows application and define a DataSet
variable as private:

Private ds As DataSet = Nothing

On the form’s Load event, you call the CreateDataSet, DataGrid.SetDataBinding,
and FillDataGrid methods (see Listing 7-23).

Listing 7-23. Form’s Load Method

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

' Create in memory DataSet. You can even create

' a DataSet from a database

CreateDataSet()

' Bind DataSet to DataGrid

dtGrid.SetDataBinding(ds, "Employees")

' Fill data in DataGrid

FillDataGrid()

End Sub

Data Binding and Windows Forms Data-Bound Controls

321

*0732_ch07_CMP2 2/15/03 8:04 PM Page 321

The CreateDataSet method in Listing 7-24 simply creates a DataSet by creating
a DataTable and adding three columns: EmployeeID (integer), Name (string), and
StillWorking (Boolean). This method also adds four rows to the DataTable and adds
the DataTable to a DataSet.

Listing 7-24. The CreateDataSet Method

' Create a DataSet with two tables and populate it.

Private Sub CreateDataSet()

' Create a DataSet, add a DataTable

' Add DataTable to DataSet

ds = New DataSet("ds")

Dim EmployeeTable As DataTable = New DataTable("Employees")

' Create DataColumn objects and add to the DataTAable

Dim dtType As System.Type

dtType = System.Type.GetType("System.Int32")

Dim EmpIDCol As DataColumn = _

New DataColumn("EmployeeID", dtType)

Dim EmpNameCol As DataColumn = New DataColumn("Name")

dtType = System.Type.GetType("System.Boolean")

Dim EmpStatusCol As DataColumn = New DataColumn("StillWorking", dtType)

EmployeeTable.Columns.Add(EmpIDCol)

EmployeeTable.Columns.Add(EmpNameCol)

EmployeeTable.Columns.Add(EmpStatusCol)

' Add first records

Dim row As DataRow = EmployeeTable.NewRow()

row("EmployeeID") = 1001

row("Name") = "Jay Leno"

row("StillWorking") = False

EmployeeTable.Rows.Add(row)

' Add second records

row = EmployeeTable.NewRow()

row("EmployeeID") = 1002

row("Name") = "Peter Kurten"

row("StillWorking") = True

EmployeeTable.Rows.Add(row)

' Add third records

row = EmployeeTable.NewRow()

row("EmployeeID") = 1003

row("Name") = "Mockes Pope"

row("StillWorking") = False

EmployeeTable.Rows.Add(row)

Chapter 7

322

*0732_ch07_CMP2 2/15/03 8:04 PM Page 322

' Add fourth records

row = EmployeeTable.NewRow()

row("EmployeeID") = 1004

row("Name") = "Rock Kalson"

row("StillWorking") = True

EmployeeTable.Rows.Add(row)

' Add the tables to the DataSet

ds.Tables.Add(EmployeeTable)

End Sub

In Listing 7-25, the FillDataSet method creates a DataGridTableStyle and sets
its properties. After that, it creates two DataGridTextBoxColumns and one DataGrid-
BoolColumn and sets their properties. Also, it makes sure that the MappingName of the
columns matches with the name of the columns of the DataTable. After creating
each column, you add these methods to the column collection by using the
DataGrid.GridColumnStyles.Add method. Finally, you add DataGridTableStyle to
the DataGrid by using the DataGrid.TableStyles.Add method. After doing so, the
DataGrid should have a new style with a check box and two text box columns.

Listing 7-25. The FillDataGrid Method

Private Sub FillDataGrid()

' Create a DataGridTableStyle and set its properties

Dim dgTableStyle As DataGridTableStyle = New DataGridTableStyle()

dgTableStyle.MappingName = "Employees"

dgTableStyle.AlternatingBackColor = Color.Gray

dgTableStyle.BackColor = Color.Black

dgTableStyle.AllowSorting = True

dgTableStyle.ForeColor = Color.White

' Create a DataGridColumnStyle. Add it to DataGridTableStyle

Dim dgTextCol As DataGridColumnStyle = New DataGridTextBoxColumn()

dgTextCol.MappingName = "Name"

dgTextCol.HeaderText = "Employee Name"

dgTextCol.Width = 100

dgTableStyle.GridColumnStyles.Add(dgTextCol)

' Get PropertyDescriptorCollection by calling GetItemProperties

Dim pdc As PropertyDescriptorCollection = Me.BindingContext _

(ds, "Employees").GetItemProperties()

'Create a DataGrodTextBoxColu

Dim dgIntCol As DataGridTextBoxColumn = _

New DataGridTextBoxColumn(pdc("EmployeeID"), "i", True)

dgIntCol.MappingName = "EmployeeID"

Data Binding and Windows Forms Data-Bound Controls

323

*0732_ch07_CMP2 2/15/03 8:04 PM Page 323

dgIntCol.HeaderText = "Employee ID"

dgIntCol.Width = 100

dgTableStyle.GridColumnStyles.Add(dgIntCol)

' Add CheckBox column using DataGridCoolColumn

Dim dgBoolCol As DataGridColumnStyle = New DataGridBoolColumn()

dgBoolCol.MappingName = "StillWorking"

dgBoolCol.HeaderText = "Boolean Column"

dgBoolCol.Width = 100

dgTableStyle.GridColumnStyles.Add(dgBoolCol)

' Add table style to DataGrid

dtGrid.TableStyles.Add(dgTableStyle)

End Sub

Seeing HitTest in Action

You can use a hit test to get information about a point where a user clicks a
control. There are many real-world usages of a hit test. For example, say you want
to display two pop-up menus when a user right-clicks a certain area on a DataGrid.
One area is on the DataGrid column header; this right-click pop-up menu will have
options such as Sort Ascending, Sort Descending, Hide, and Find. As you can
pretty guess from these names, the sort menu items will sort a column’s data in
ascending and descending order, the Hide menu item will hide (or delete) a
column, and the Find menu item will search for a keyword in the selected column.

The second pop-up menu will pop up when you right-click any grid’s cell. This
menu will have options such as Move First, Move Previous, Move Next, and Move
Last that will allow you to move to the first, previous, next, and last rows of a
DataGrid.

Now, using only these two cases, you can find out what DataGrid part is pro-
cessing the hit test action (in other words, which one is being clicked by the user).
The HitTest method of DataGrid performs a hit test action.

Using the DataGrid.HitTestInfo Class

The HitTest method takes a point and returns the DataGrid.HitTestInfo object,
which determines the part of a DataGrid clicked by the user. It’s useful when you’re
designing a custom grid and want to do different things when user clicks different
parts of the DataGrid.

The DataGrid.HitTestInfo class has three properties: Column, Row, and Type. The
Column and Row properties represent the number of the column and row that the
user has clicked. The Type property specifies the part of the DataGrid that is clicked.

Chapter 7

324

*0732_ch07_CMP2 2/15/03 8:04 PM Page 324

The DataGrid.HitTestType enumeration is used as the Type property, which is
defined in Table 7-8.

Table 7-8. The DaaGrid.HitTestType Enumeration

MEMBER DESCRIPTION

Caption Returns True if the caption was clicked.

Cell Returns True if a cell was clicked.

ColumnHeader Returns True if a column header was clicked.

ColumnResize Represents the column border, the line between column headers.

None Returns True if the background area was clicked.

ParentRow The parent row displays information about the parent table of the

currently displayed child table.

RowHeader Returns True if the row header was clicked.

RowResize Returns True if the line between rows.

You can also check the Type property against the combination of
DataGrid.HitTestType enumeration members. Listing 7-26 is the mouse down
event handler of a DataGrid, which tracks almost every portion of a DataGrid and
generates a message when you right-click a DataGrid. Simply copy this code, right-
click the DataGrid, and see it in action.

Listing 7-26. Seeing HitTest in Action

' DataGrid Mouse down event handler

Private Sub dtGrid_MouseDown(ByVal sender As Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles dtGrid.MouseDown

Dim grid As DataGrid = CType(sender, DataGrid)

Dim hti As DataGrid.HitTestInfo

' When right mouse button was clicked

If (e.Button = MouseButtons.Right) Then

hti = grid.HitTest(e.X, e.Y)

Select Case hti.Type

Case DataGrid.HitTestType.None

MessageBox.Show("Background")

Case DataGrid.HitTestType.Cell

MessageBox.Show("Cell - Row:" & hti.Row & ", Col: " & hti.Column)

Case DataGrid.HitTestType.ColumnHeader

MessageBox.Show("Column header " & hti.Column)

Case DataGrid.HitTestType.RowHeader

Data Binding and Windows Forms Data-Bound Controls

325

*0732_ch07_CMP2 2/15/03 8:04 PM Page 325

MessageBox.Show("Row header " & hti.Row)

Case DataGrid.HitTestType.ColumnResize

MessageBox.Show("Column seperater " & hti.Column)

Case DataGrid.HitTestType.RowResize

MessageBox.Show("Row seperater " & hti.Row)

Case DataGrid.HitTestType.Caption

MessageBox.Show("Caption")

Case DataGrid.HitTestType.ParentRows

MessageBox.Show("Parent row")

End Select

End If

End Sub

Reshuffling DataGrid Columns

How about reshuffling or moving DataGrid columns? Reshuffling a DataGrid’s
columns is a simple trick. You need to find which column you want to reshuffle.
You can do this by using the column name or column index. In this sample, you’ll
use the column index.

How about reading information about a DataGridTableStyle and its columns?
The following code reads information about a grid’s tables and their names:

Dim gridStyle As DataGridTableStyle

For Each gridStyle In DataGrid1.TableStyles

infoStr = "Table Name: " + gridStyle.MappingName

Dim colStyle As DataGridColumnStyle

For Each colStyle In gridStyle.GridColumnStyles

infoStr = "Column: " + colStyle.MappingName

Next

Next

Let’s see this in action. Create a Windows application, add a DataGrid control,
two Button controls, two Label controls, two TextBox controls, and a ListBox
control. Next, set their properties and positions. The final form looks like Figure 7-9.
As you can see, to exchange two columns, you enter column index in both text
boxes and click the Exchange Columns button.

Chapter 7

326

*0732_ch07_CMP2 2/15/03 8:04 PM Page 326

Figure 7-9. Column reshuffling form

Now let’s write the code. As usual, you first define some variables:

' Developer defined variables

Private conn As SqlConnection = Nothing

Private ConnectionString As String = "Integrated Security=SSPI;" & _

"Initial Catalog=Northwind;Data Source=MCB;"

Private sql As String = Nothing

Private ds As DataSet = Nothing

Private adapter As SqlDataAdapter = Nothing

Next, add a new method called FillDataGrid, which fills the DataGrid from the
Customers table of the Northwind database. You call the FillDataGrid method
from the form’s Load event handler (see Listing 7-27). You can also see from the
FillDataGrid method, this code adds DataGridTableStyle to each DataTable in a
DataSet.

CAUTION What if you don’t add DataGridTableStyle? By default, the
DataGrid doesn’t have any DataGridTableStyle and uses the default
DataGridTableStyle. To make this program work, you must add it
manually.

Data Binding and Windows Forms Data-Bound Controls

327

*0732_ch07_CMP2 2/15/03 8:04 PM Page 327

Listing 7-27. The FillDataGrid and Form_Load Methods

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

FillDataGrid()

End Sub

Private Sub FillDataGrid()

sql = "SELECT * FROM Customers"

conn = New SqlConnection(connectionString)

adapter = New SqlDataAdapter(sql, conn)

ds = New DataSet("Customers")

adapter.Fill(ds, "Customers")

DataGrid1.DataSource = ds.Tables(0).DefaultView

' By default there is no DataGridTableStyle object.

' Add all DataSet table's style to the DataGrid

Dim dTable As DataTable

For Each dTable In ds.Tables

Dim dgStyle As DataGridTableStyle = New DataGridTableStyle()

dgStyle.MappingName = dTable.TableName

DataGrid1.TableStyles.Add(dgStyle)

Next

' DataGrid settings

DataGrid1.CaptionText = "DataGrid Customization"

DataGrid1.HeaderFont = New Font("Verdana", 12)

End Sub

Now you write code on the Exchange Columns button click event handler (see
Listing 7-28). As you can see, you need to make sure that the text boxes aren’t
empty. After that you call the ReshuffleColumns method, which actually moves the
columns from one position to another.

Chapter 7

328

*0732_ch07_CMP2 2/15/03 8:04 PM Page 328

Listing 7-28. Exchanging the Button Click Handler

Private Sub ExchangeColsBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ExchangeColsBtn.Click

If (TextBox1.Text.Length < 1) Then

MessageBox.Show("Enter a number between 0 to 19")

TextBox1.Focus()

Return

ElseIf (TextBox2.Text.Length < 1) Then

MessageBox.Show("Enter a number between 0 to 19")

TextBox1.Focus()

Return

End If

' Get column 1 and column 2 indexes

Dim col1 As Integer = Convert.ToInt32(TextBox1.Text)

Dim col2 As Integer = Convert.ToInt32(TextBox2.Text)

' Exchange columns

ReshuffleColumns(col1, col2, "Customers", DataGrid1)

End Sub

As mentioned earlier, moving column positions in a grid involves resetting a
DataGridTableStyle. As you can see from Listing 7-29, you read the current Data-
GridTableStyle and create a new DataGridTableStyle. Next, you copy the entire
current DataGridTableStyle including the two columns that you want to exchange
and then change positions of these columns. Next, you remove the current Data-
GridTableStyle from the DataGrid and apply the new DataGridTableStyle by using
the DataGrid.TableStyles.Remove and DataGrid.TableStyles.Add methods.

Listing 7-29. The ReshuffleColumns Method

Private Sub ReshuffleColumns(ByVal col1 As Integer, _

ByVal col2 As Integer, ByVal mapName As String, ByVal grid As DataGrid)

Dim existingTableStyle As DataGridTableStyle = grid.TableStyles(mapName)

Dim counter As Integer = existingTableStyle.GridColumnStyles.Count

Dim NewTableStyle As DataGridTableStyle = New DataGridTableStyle()

NewTableStyle.MappingName = mapName

Dim i As Integer

For i = 0 To counter - 1 Step +1

If i <> col1 And col1 < col2 Then

NewTableStyle.GridColumnStyles.Add _

(existingTableStyle.GridColumnStyles(i))

End If

Data Binding and Windows Forms Data-Bound Controls

329

*0732_ch07_CMP2 2/15/03 8:04 PM Page 329

If i = col2 Then

NewTableStyle.GridColumnStyles.Add _

(existingTableStyle.GridColumnStyles(col1))

End If

If i <> col1 And col1 > col2 Then

NewTableStyle.GridColumnStyles.Add _

(existingTableStyle.GridColumnStyles(i))

End If

Next

' Remove the existing table style and add new style

grid.TableStyles.Remove(existingTableStyle)

grid.TableStyles.Add(NewTableStyle)

End Sub

Reading information about a DataGrid’s columns using a DataGridColumnStyle
is simple. You just read the GridColumnStyleCollection using the GridColumnStyles
property of DataGridTableStyle. Listing 7-30 reads a DataGrid’s column styles and
adds them to the ListBox control.

Listing 7-30. Getting a DataGrid Columns’ Style Using DataGridColumnStyle

Private Sub GetInfoBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles GetInfoBtn.Click

Dim infoStr As String = "Visible Rows: " + _

DataGrid1.VisibleRowCount.ToString()

ListBox1.Items.Add(infoStr)

infoStr = "Visible Cols: " + _

DataGrid1.VisibleColumnCount.ToString()

ListBox1.Items.Add(infoStr)

infoStr = "Total Rows: " + _

ds.Tables(0).Rows.Count.ToString()

ListBox1.Items.Add(infoStr)

infoStr = "Total Cols: " + _

ds.Tables(0).Columns.Count.ToString()

ListBox1.Items.Add(infoStr)

' Get all table styles in the Grid and Column Styles

' which returns table and column names

Dim gridStyle As DataGridTableStyle

Chapter 7

330

*0732_ch07_CMP2 2/15/03 8:04 PM Page 330

For Each gridStyle In DataGrid1.TableStyles

infoStr = "Table Name: " + gridStyle.MappingName

ListBox1.Items.Add(infoStr)

Dim colStyle As DataGridColumnStyle

For Each colStyle In gridStyle.GridColumnStyles

infoStr = "Column: " + colStyle.MappingName

ListBox1.Items.Add(infoStr)

Next

Next

End Sub

Now run the application and enter 1 in the Column 1 box and enter 2 in the
Column 2 box and then click the Exchange Columns buttons. You’ll see both
columns switched their positions. Now if you click the Get Grid Columns and
Tables Info button, the output looks like Figure 7-10.

Figure 7-10. Getting a DataGrid control’s column styles

Data Binding and Windows Forms Data-Bound Controls

331

*0732_ch07_CMP2 2/15/03 8:04 PM Page 331

Getting a Column Header Name

Listing 7-31 returns the column name when a user right-clicks a DataGrid column
header.

Listing 7-31. Getting a DataGrid Column Header Name

Private Sub DataGrid1_MouseDown(ByVal sender As Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) Handles DataGrid1.MouseDown

Dim str As String = Nothing

Dim pt As Point = New Point(e.X, e.Y)

Dim hti As DataGrid.HitTestInfo = DataGrid1.HitTest(pt)

' If right mouse button clicked

If e.Button = MouseButtons.Right Then

If hti.Type = DataGrid.HitTestType.ColumnHeader Then

Dim gridStyle As DataGridTableStyle = _

DataGrid1.TableStyles("Customers")

str = gridStyle.GridColumnStyles(hti.Column).MappingName.ToString()

MessageBox.Show("Column Header " + str)

End If

End If

' If left mouse button clicked

If e.Button = MouseButtons.Left Then

If hti.Type = DataGrid.HitTestType.Cell Then

str = "Column: " + hti.Column.ToString()

str += ", Row: " + hti.Row.ToString()

MessageBox.Show(str)

End If

End If

End Sub

Hiding a DataGrid’s Columns

Now you’ll learn a few more uses of a DataGrid control. Hiding a DataGrid column is
simply a job of finding the right column and setting its Width property to 0. For an
example, see the TotalDataGrid sample that comes with the downloads from
www.apress.com.

To make your program look better, you’ll create a right-click pop-up menu, as
shown in Figure 7-11.

Chapter 7

332

*0732_ch07_CMP2 2/15/03 8:04 PM Page 332

Figure 7-11. Pop-up menu on DataGrid right-click menu

To create a pop-up menu, you declare a ContextMenu and four MenuItem objects
as sortAscMenu, sortDescMenu, findMenu, and hideMenu. You also define two more
variables to store the current DataGridColumnStyle and column name as follows:

Private curColName As String = Nothing

Private curColumnStyle As DataGridColumnStyle

If DataGrid.HitTestType is ColumnHeader, you add menu items and get the
current column, as shown in Listing 7-32. In this listing, you simply store the
current DataGridColumnStyle and the name of the column.

Listing 7-32. Getting the Current DataGridColumnStyle

Case DataGrid.HitTestType.ColumnHeader

' Add context menus

popUpMenu = New ContextMenu()

popUpMenu.MenuItems.Add("Sort ASC")

popUpMenu.MenuItems.Add("Sort DESC")

popUpMenu.MenuItems.Add("Find")

popUpMenu.MenuItems.Add("Hide Column")

Me.ContextMenu = popUpMenu

Me.BackColor = Color.Sienna

sortAscMenu = Me.ContextMenu.MenuItems(0)

sortDescMenu = Me.ContextMenu.MenuItems(1)

findMenu = Me.ContextMenu.MenuItems(2)

hideMenu = Me.ContextMenu.MenuItems(3)

' Find the Column header name

Dim gridStyle As DataGridTableStyle = _

dtGrid.TableStyles("Customers")

curColName = gridStyle.GridColumnStyles _

(hti.Column).MappingName.ToString()

curColumnStyle = gridStyle.GridColumnStyles(hti.Column)

Data Binding and Windows Forms Data-Bound Controls

333

*0732_ch07_CMP2 2/15/03 8:04 PM Page 333

Finally, you write the Find menu button click event handler and set
curColumnStyle.Width to 0:

Private Sub hideMenuHandler(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles hideMenu.Click

curColumnStyle.Width = 0

End Sub

Implementing Custom Sorting in a DataGrid

By default a DataGrid provides you with sorting options when you click a DataGrid
column. But there may be occasions when you don’t want to use the default
behavior and instead want to implement your own custom sorting.

In Figure 7-11, you saw the Sort ASC and Sort DESC menu options. As you
probably remember from Chapter 3 and Chapter 4, sorting is easy to implement in
a DataView. To sort a DataView, you simply set the Sort property of the DataView to
the column name and to ASC or DESC for ascending and descending sorting,
respectively. Listing 7-33 shows the Sort ASC and Sort DESC menu event handler
code.

Listing 7-33. Sorting a DataGrid Control’s Columns

Private Sub SortAscMenuHandler(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles sortAscMenu.Click

Dim dv As DataView = ds.Tables("Customers").DefaultView

dv.Sort = curColName + " ASC"

dtGrid.DataSource = dv

End Sub

Private Sub SortDescMenuHandler(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles sortDescMenu.Click

Dim dv As DataView = ds.Tables("Customers").DefaultView

dv.Sort = curColName + " DESC"

dtGrid.DataSource = dv

End Sub

Chapter 7

334

*0732_ch07_CMP2 2/15/03 8:04 PM Page 334

Building a DataGrid Record Navigation System

Move methods are one of the features of the ADO recordset that don’t appear in
ADO.NET. A recordset provides MoveFirst, MoveNext, MovePrevious, and MoveLast
methods to move to the first, next, previous and last record in a recordset (respec-
tively). In this example, you’ll implement move functionality in a DataGrid control.

Listing 7-34 implements move functionality in a custom recordset class called
CustRecordSet.vb. (We already discussed how you can use BindingContext to move
the current pointer from one position to another.) In this code, CreateRecordSet
simply fills and binds a DataSet to the grid. The FirstRecord, PrevRecord, NextRecord,
and LastRecord methods set the current position of the pointer to the first row,
current row –1, current row +1, and the last row (respectively).

NOTE In this example, the table name is Customers. You may want to
customize the name so it can work for any database table.

Listing 7-34. CustRecordSet.vb

Imports System.Data.SqlClient

Public Class CustRecordSet

Private dataAdapter As SqlDataAdapter = Nothing

Private dataSet As DataSet = Nothing

Private dtGrid As DataGrid = Nothing

Private frm As Form = Nothing

Private mapName As String = Nothing

Public Sub CreateRecordSet(ByVal conn As SqlConnection, _

ByVal sql As String, ByVal grid As DataGrid, ByVal curForm As Form, _

ByVal tableName As String)

Me.dataAdapter = New SqlDataAdapter(sql, conn)

Me.dataSet = New DataSet("Customers")

Me.dataAdapter.Fill(Me.dataSet, "Customers")

dtGrid = grid

frm = curForm

mapName = tableName

dtGrid.DataSource = Me.dataSet

dtGrid.DataMember = "Customers"

End Sub

Data Binding and Windows Forms Data-Bound Controls

335

*0732_ch07_CMP2 2/15/03 8:04 PM Page 335

Public Sub FirstRecord()

If frm.BindingContext(Me.dataSet, mapName) Is Nothing Then

Return

End If

frm.BindingContext(Me.dataSet, mapName).Position = 0

End Sub

Public Sub PrevRecord()

If frm.BindingContext(Me.dataSet, mapName) Is Nothing Then

Return

End If

frm.BindingContext(Me.dataSet, mapName).Position -= 1

End Sub

Public Sub NextRecord()

If frm.BindingContext(Me.dataSet, mapName) Is Nothing Then

Return

End If

frm.BindingContext(Me.dataSet, mapName).Position += 1

End Sub

Public Sub LastRecord()

If frm.BindingContext(Me.dataSet, mapName) Is Nothing Then

Return

End If

frm.BindingContext(Me.dataSet, mapName).Position = _

frm.BindingContext(Me.dataSet, mapName).Count - 1

End Sub

End Class

Now create a Windows application and add a DataGrid control and four
Button controls (Move First, Move Next, Move Previous, and Move Last). The
form’s Load event calls FillDataSet, which creates a new CustRecordSet object and
calls its CreateRecordSet method, which in turn fills data in a DataGrid control
and binds a DataSet with the DataGrid control (see Listing 7-35).

Chapter 7

336

*0732_ch07_CMP2 2/15/03 8:04 PM Page 336

Listing 7-35. Creating a Custom Recordset

' form load

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

FillDataGrid()

End Sub

' Fill DataGrid

Private Sub FillDataGrid()

sql = "SELECT * FROM Customers"

conn = New SqlConnection(connectionString)

recordSet = New CustRecordSet()

recordSet.CreateRecordSet(conn, sql, DataGrid1, Me, "Customers")

End Sub

Now on the button click event handlers, simply call CustRecordSet’s
FirstRecord, PrevRecord, NextRecord, and LastRecord methods, as shown in Listing
7-36.

Listing 7-36. Moving Record Button Click Event Handlers

' Move First button click

Private Sub MoveFirstBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveFirstBtn.Click

recordSet.FirstRecord()

End Sub

' Move Previous button click

Private Sub MovePrevBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MovePrevBtn.Click

recordSet.PrevRecord()

End Sub

' Move next button click

Private Sub MoveNextBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveNextBtn.Click

recordSet.NextRecord()

End Sub

' Move last button click

Private Sub MoveLastBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MoveLastBtn.Click

recordSet.LastRecord()

End Sub

Data Binding and Windows Forms Data-Bound Controls

337

*0732_ch07_CMP2 2/15/03 8:04 PM Page 337

The final application looks like Figure 7-12.

Figure 7-12. DataGrid navigation system

TIP You can implement the same functionality on a DataGrid control’s
right-click menu by adding four menu items that allow users to move to
the first, next, previous, and last records of a DataGrid.You can even develop
your own DataGrid component with sorting, searching, and navigating
features.

Implementing Search in a DataGrid

You just saw how to implement custom sorting in a DataGrid control. After sorting,
searching is one more basic requirement of database-driven applications. There
are two methods to implement search in a DataGrid control:

• Using the SELECT statement

• Using a DataSet and DataView

Chapter 7

338

*0732_ch07_CMP2 2/15/03 8:04 PM Page 338

Searching Using the SELECT Statement

You already used search functionality in a connected environment using the SQL
SELECT statement. Do you remember using a SELECT statement with a WHERE clause?
In a WHERE clause, you passed the criteria specifying the data for which you’re
looking. If you want to search in multiple tables, you construct a JOIN query with
WHERE clause. You can even search for a keyword using the SELECT...LIKE statement,
which was discussed in “The DataView in Connected Environments” section of
Chapter 4.

You use the SELECT statement in a DataAdapter, which reads data based on the
SELECT statement and the criteria passed in it. However, using this method for
searching may not be useful when you’re searching data frequently—especially
when you’re searching data in a DataGrid. We suggest not using this method when
searching data in an isolated application and there’s no other application updating
the data. Why? The main reason is that every time you change the SELECT statement,
you need to create a new DataAdapter and fill the DataSet when you change the
SELECT statement. This method is useful when there are multiple applications
updating the data simultaneously and you want to search in the latest updated
data.

Searching Using a DataTable and DataView

The DataTable and DataView objects provide members that can filter data based on
criteria. (See “The DataView” section in Chapter 3 for more information.) You can
simply create a DataView from a DataSet, set a DataView’s RowFilter property to the
search criteria, and then bind the DataView to a DataGrid, which will display the fil-
tered records.

TIP Using the same method, you can implement a Search or Find feature
in a DataGrid control. You can also provide a Search option on a DataGrid
control’s header so that you know on which column a user has clicked.

The new application looks like Figure 7-13. Obviously, the Search button
searches the column entered in the Column Name text box for a value entered in
the Value text box.

Data Binding and Windows Forms Data-Bound Controls

339

*0732_ch07_CMP2 2/15/03 8:04 PM Page 339

NOTE If you search for a string, use a singe quote (') before and after the
string.

We discuss the Save method functionality in the following section.

Figure 7-13. Implementing search functionality in a DataGrid control

After creating a Windows application and adding controls to the form, define
following variables:

' Developer defined variables

Private conn As SqlConnection = Nothing

Private connectionString As String = _

"Integrated Security=SSPI;Initial Catalog=Northwind;Data Source=MCB;"

Private sql As String = Nothing

Private searchView As DataView = Nothing

Dim adapter As SqlDataAdapter = Nothing

Dim ds As DataSet = Nothing

Chapter 7

340

*0732_ch07_CMP2 2/15/03 8:04 PM Page 340

Now add the FillDataGrid method, which fills the DataGrid and creates a
DataView called searchView (see Listing 7-37).

Listing 7-37. FillDataGrid Method

' Fill DataGrid

Private Sub FillDataGrid()

sql = "SELECT * FROM Orders"

conn = New SqlConnection(connectionString)

adapter = New SqlDataAdapter(sql, conn)

ds = New DataSet("Orders")

adapter.Fill(ds, "Orders")

DataGrid1.DataSource = ds.Tables("Orders")

searchView = New DataView(ds.Tables("Orders"))

Dim cmdBuilder As SqlCommandBuilder = _

New SqlCommandBuilder(adapter)

' Disconnect. Otherwise you would get

' Access violations when try multiple operations

conn.Close()

conn.Dispose()

End Sub

Now, the next step is to set a RowFilter of searchView based on the values
entered in the Column Name and Value text fields. Listing 7-38 shows the code for
the Search button. As you can see, the code sets the RowFilter of searchView and
binds it to the DataGrid to display the filtered data.

Listing 7-38. Seach Button Click Event Handler

Private Sub SearchBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles SearchBtn.Click

If (TextBox1.Text.Equals(String.Empty)) Then

MessageBox.Show("Enter a column name")

TextBox1.Focus()

Return

End If

If (TextBox2.Text.Equals(String.Empty)) Then

MessageBox.Show("Enter a value")

TextBox1.Focus()

Return

End If

' Construct a row filter and apply on the DataView

Data Binding and Windows Forms Data-Bound Controls

341

*0732_ch07_CMP2 2/15/03 8:04 PM Page 341

Dim str As String = TextBox1.Text + "=" + TextBox2.Text

searchView.RowFilter = str

' Set DataView as DataSource of DataGrid

DataGrid1.DataSource = searchView

End Sub

At this time, if you run the application, the data from the Orders table is filled
in the DataGrid. If you enter EmployeeID in the Column Name text box and 6 in the
Value field and then click the Search button, the filtered data looks like Figure 7-14.

Figure 7-14. Filtered data after searching

Inserting, Updating, and Deleting Data through
DataGrids

As you learned earlier, the DataGrid control is one of the most powerful, flexible,
and versatile controls available in Windows Forms. It has an almost unlimited
number of properties and methods. You can add new records, update records, and
delete existing records on a DataGrid with little effort, and you can easily save the
affected data in a database.

Chapter 7

342

*0732_ch07_CMP2 2/15/03 8:04 PM Page 342

When a DataGrid control is in edit mode (the default mode), you can simply
add a new record by clicking the last row of the grid and editing the column
values. You can update data by changing the existing value of cells. You can delete
a row by simply selecting a row and clicking the Delete button.

In the previous example, you used a Save Changes button on a form (see
Figure 7-14). Now just write the code in Listing 7-39 on the Save Changes button
click to save the data.

Listing 7-39. Saving Updated Data in a Data Source from a DataGrid Control

Private Sub SaveBtn_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles SaveBtn.Click

Dim changeDS As DataSet = New DataSet()

' Data is modified

If (ds.HasChanges(DataRowState.Modified)) Then

changeDS = ds.GetChanges(DataRowState.Modified)

Dim changedRecords As Integer

changedRecords = adapter.Update(changeDS, "Orders")

If (changedRecords > 0) Then

MessageBox.Show(changedRecords.ToString() & _

" records modified.")

End If

End If

' Data is deleted

If (ds.HasChanges(DataRowState.Deleted)) Then

changeDS = ds.GetChanges(DataRowState.Deleted)

Dim changedRecords As Integer

changedRecords = adapter.Update(changeDS, "Orders")

If (changedRecords > 0) Then

MessageBox.Show(changedRecords.ToString() & _

" records deleted.")

End If

End If

' Data is added

If (ds.HasChanges(DataRowState.Added)) Then

changeDS = ds.GetChanges(DataRowState.Added)

Dim changedRecords As Integer

changedRecords = adapter.Update(changeDS, "Orders")

If (changedRecords > 0) Then

MessageBox.Show(changedRecords.ToString() & _

" records added.")

Data Binding and Windows Forms Data-Bound Controls

343

*0732_ch07_CMP2 2/15/03 8:04 PM Page 343

End If

End If

ds.AcceptChanges()

DataGrid1.Refresh()

End Sub

As you can see from Listing 7-39, you simply get the modified, deleted, and
updated changes in a new DataSet by calling the DataSet.GetChanges method and
save the changes by calling the DataAdapter.Update method. In the end, you accept
the changes by calling DataSet.AcceptChanges and refresh the DataGrid control by
calling the DataGrid.Refresh method.

Summary

Data-bound controls are definitely one of the greatest additions to GUI applica-
tions. In this chapter, we discussed the basics of data binding and how data
binding works in Windows Forms data-bound controls and ADO.NET. We dis-
cussed some essential objects that participate in the data-binding phenomena,
including Binding, BindingContext, BindingsCollection, BindingManagerBase,
PropertyManager, CurrencyManager, and BindingContext.

After discussing basics of data binding and how to use these objects, you
learned about some data-bound controls and how to bind data using the data-
binding mechanism. You also saw some practical usage of data binding and
data-bound controls; specifically, you created a record navigation system with a
DataGrid control. Some of the examples discussed in this chapter included
changing DataGrid styles programmatically, binding data sources to various data-
bound controls, building a record navigation application, and implementing
search, add, update, and delete record features in a DataGrid.

The next chapter covers constraints and data relations in more detail.

Chapter 7

344

*0732_ch07_CMP2 2/15/03 8:04 PM Page 344

