
Foreword

Computer systems are becoming ubiquitous. Many of the most important
and prevalent ones are reactive systems. Reactive systems include micropro-
cessors, computer operating systems, air traffic control systems, as well as
on-board avionics and other embedded systems. These systems are charac-
terized technically by their ongoing, ideally infinite behavior; termination is
impossible or aberrant behavior, in contrast to classical theories of computa-
tion. Reactive systems tend to be characterized in practice by having failure
modes that can severely compromise safety, even leading to loss of life. Al-
ternatively, errors can have serious financial repercussions such as expensive
recalls. Reactive systems need to be correct before being deployed.

To determine whether such reactive systems do behave correctly, a rich
mathematical theory of verification of reactive systems has been developed
over the last two decades or so. In contrast to earlier work emphasizing the
role of proofs in deductive systems to establish correctness, the alternative
suggestion is to take a model-theoretic view. It turns out that this permits
the process of reasoning about program correctness to be fully automated in
principle and partially automated to a high degree in practice.

It is my pleasure to introduce Klaus Schneider’s excellent book Verification
of Reactive Systems: Formal Methods and Algorithms. This book is the story of
reactive systems verification, reflecting Klaus’s broad expertise on the sub-
ject. It addresses both applications and theory, providing especially strong
coverage of basic as well as advanced theory not otherwise available in book
form. Key topics include Kripke and related transition structures, temporal
logics, automata on infinite strings including Safra’s determinization con-
struction, expressiveness and Borel hierarchies of ω-languages, as well as
monadic predicate logics. An underlying theme is the use of the vectored µ-
calculus to provide an elegant "Theory of Everything". Verification of Reactive
Systems belongs on the bookshelf of every serious researcher into the topic.
It should also serve as a valuable text for graduate students and advanced
undergraduates.

April 2003 E. Allen Emerson,
Endowed Professor of Computer Sciences

University of Texas at Austin

Preface

The design of modern information processing systems like digital circuits or
protocols is becoming more and more difficult. A large part of the design
costs and time (about 70%) is currently spent on methods that try to guaran-
tee the absence of design errors. For this reason, designing systems is now
more and more a synonym for verifying systems.

The research into the verification of reactive systems, in particular, into
model checking, is one of the most impressive successes of theoretical com-
puter science. Two decades after the publication of the basic papers on the
formal foundation, the methods became mature enough for industrial usage.
Nowadays, the hardware industry employs hundreds of highly specialized
researchers working with formal methods to detect design bugs.

When I entered this field, it was an enormous effort to read hundreds of
papers to understand the relationships between the different formal methods
that are currently in use. It was surprising to me that there was no book cov-
ering all these methods, even the basic ones, although there is such a huge
interest in them. For this reason, I decided to write this book to provide new-
comers and researchers with a textbook that covers most of the relevant lo-
gics, with a particular emphasis on (verification and translation) algorithms.

The book is intended for graduate students as well as for researchers
already working in this area. It is self-contained and gives proofs and al-
gorithms for all important constructions. For a less detailed and formal in-
troduction, I want to recommend the book of Clarke, Grumberg, and Peled
[111]. Supplemental material on actual tools is found in [38], and further top-
ics on the µ-calculus and infinite games are found in [221].

There are many persons I have to thank for helping me to write this book.
In particular, I want to thank Detlef Schmid and the hardware verification
group at the University of Karlsruhe, in particular Jorgos Logothetis, To-
bias Schüle, and Roberto Ziller. Many discussions with Moshe Vardi moved
me to improve the book. Allen Emerson was soon interested in the project
and also gave fruitful comments. Moreover, I want to thank Amir Pnueli,
Wolfgang Thomas, and Peter Schmitt for comments on early versions of the
manuscript. Last, but not least, it should be mentioned that the editors of
the EATCS series, in particular, Prof. Brauer, and the team at Springer-Verlag
helped me to publish this book.

Kaiserslautern, September 2003 Klaus Schneider

1

Introduction

Quo facto, quando orientur controversiae, non magis disputatione
opus erit inter duos philosophos, quam inter duos computistas.

Sufficiet enim calamos in manus sumere sedereque ad abacos,
et sibi mutuo (accito si placet amico) dicere: calculemus1.

— Gottfried Wilhelm Leibniz (1646-1716)

1.1 Formal Methods in System Design

1.1.1 General Remarks and Taxonomy

The development of information processing systems, especially if these con-
sist of concurrent processes, is a very complicated task. In fact, modern com-
puter systems are the most complicated structures mankind has ever built
in its history: Modern microprocessors are implemented by millions of tran-
sistors; operating systems and software applications consist of millions of
lines of code. Therefore, it is no wonder that these systems often have errors
that lead to serious malfunctions, even if the systems have been extensively
tested to validate their correctness.

While the construction of erroneous systems has never been tolerated,
the need to avoid errors in design is becoming more and more important.
One reason for this is that system sizes are rapidly growing. If we assume
that the number of errors in these systems grows with their size, it becomes
clear that the larger the systems are, the more troublesome they will be, and
the probability that they will actually work is reduced. Very large systems
1 The translation is roughly as follows: whenever there are different opinions about

certain facts, one should not discuss them like philosophers usually do; instead
one should ‘calculate’ the truth. Leibniz and Newton were the first who tried to
replace at least some parts of the creativity used by mathematicians by rules of a
calculus that could be implemented by machines.

2 1 Introduction

could contain so many errors that they will never successfully run. A couple
of large software projects have demonstrated this already.

But even if the system’s development can be successfully completed, the
time spent for debugging and testing grows rapidly with the system’s size.
It is not unusual that more than 70% of the design time is spent on simu-
lation. Errors found late in the design may lead to expensive redesigns that
in turn lead to delays in the time-to-market. Even if this delay is only about
two or three months, the overall economic success of the product may be
endangered.

Another reason for the increased pressure to avoid design errors is that
computer systems are used more and more in applications where their mal-
functioning can cause extensive damage or could even endanger human
lives. Nuclear plants, aircrafts, and automobiles are more and more con-
trolled by so-called embedded systems. These embedded systems are in princi-
ple complete computer systems, since they usually consist of a microproces-
sor that runs special software. Often more than one task has to be performed
by the system, and for this reason, it is often divided into several processes
or threads that implement the desired tasks. For reasons of efficiency, spe-
cialized hardware is often used to increase the throughput. For example, im-
age processing systems often have special processing units like JPEG and
MPEG decoders for compressing and decompressing image data to increase
the throughput.

While the complexity of systems steadily increases, the design methods to
guarantee correct systems have not emerged at the same speed. In software
design, the introduction of object-oriented analysis and design has helped to
structure the designs to obtain reusable designs. In hardware design, special
design flows and design tools are used to translate a high-level algorithmic
description given in hardware description languages like VHDL or Verilog
to a circuit netlist. This way, it is possible to design quite large systems, much
larger and faster than one expected some years ago.

However, the design of embedded systems does not only involve the de-
sign of hardware or software. Instead, the combination of both is a critical
problem since the tasks that are implemented in hardware or software must
be carefully selected. For this reason, hardware-software codesign methods
are in use that start with a realization-independent description of the system,
which may however already be partitioned into several tasks. In an analy-
sis phase, modules are detected whose functions influence the speed of the
system. Moreover, estimates for implementation costs also need to be con-
sidered. Dependent on these facts, a partition into hardware and software is
made and the design of the hardware and software parts is done in a con-
ventional manner.

So, there are already design flows that allow hardware and software de-
velopment and also hardware/software codesigns. However, these design
flows are very complex. If an error is detected late in the design, its correc-
tion may influence even the hardware-software partitioning so that a com-

1.1 Formal Methods in System Design 3

plete redesign has to be made. It is therefore mandatory that design errors are
detected as soon as possible, i.e., at the level of the realization-independent
description.

One way to detect design errors is clearly to test the design by means of
implementing prototypes. This is a standard task in software design, but is
not so simple for the design of hardware. Here, one is usually forced to simu-
late the circuits as it is too expensive to fabricate prototype circuits. However,
in the last few years, programmable hardware such as field-programmable
gate arrays (FPGAs) [70, 122] have been developed that allow the implemen-
tation of hardware prototypes. However, the speed of these prototypes is
slower than the speed that will be obtained by a later implementation as
an application-specific integrated circuit (ASIC). Therefore, simulation of the
hardware-software system is often still necessary to check the correct interac-
tion between the software and hardware parts. However, the problem with
simulation is that it is quite slow when large designs are to be simulated, and
what is even more intrinsic to the approach is that only errors can be found,
while the absence of errors can never be shown.

For this reason, the application of formal methods in the design of soft-
ware, hardware, and hardware-software codesign is more and more fre-
quently discussed. There are some approaches that are independent of the
kind of system to be verified. However, in most cases, the kind of system
determines the kinds of properties to be verified, and this in turn makes one
or another verification formalism more or less suited. For example, when a
hardware controller is to be verified, we will usually not have to consider
abstract data types. Instead, we are confronted with some sort of finite state
machine that has to emit the desired control signals at the right point of time.
For this reason, the kind of system is important for the choice of a suitable
verification formalism.

Therefore, it is no wonder that a plethora of formal methods has been
developed over time. Some of them consider the same problem and try to
solve it in different ways, but there are also very different approaches that
have almost nothing in common. In fact, only a few of the formal methods
that are considered nowadays are discussed in this book, as it has a special
focus on so-called reactive systems and finite-state based verification procedures.

For this reason, we will first consider in the next section different ways
to apply formal methods to the design of complex systems. In particular,
we distinguish between three main approaches: formal specification, verifi-
cation, and formal synthesis or program derivation. While these approaches
only explain where and how formal methods are applied in the design flow,
no formal method has yet been determined. The particular choice of a for-
mal method crucially depends, as already mentioned, on the kind of system,
and also on the kind of specification, that is considered. Therefore, in Section
1.1.3, we give a classification of systems with their related properties. Having
then seen the important classifications of formal methods, systems and pro-
perties, we then consider in Section 1.2 the history of some formal methods.

4 1 Introduction

The content of Section 1.2 is however rather limited to the focus of this book
and does not consider the genealogy of other formalisms. Nevertheless, it is
very fruitful to see the relationship between the considered approaches.

1.1.2 Classification of Formal Methods

So far, we have discussed the usefulness of formal methods in the design
of software, hardware or hardware-software codesigns. There are, however,
very different formal methods and, furthermore, very different ways that
these formal methods can be used in the design.

In this section, we discuss the main applications of formal methods in
system design and can therefore give a first classification of formal methods.
We can also explain what can be achieved by formal methods in system de-
sign and what they can not do. There are at least the following ways to use
formal methods in system design:

• writing formal specifications
• proving properties about the specification
• deriving implementations from a given specification
• verifying specifications w.r.t. a given implementation

We will discuss these different approaches and, moreover, discuss the limi-
tations of formal methods in the design process.

Writing a formal specification. Formal methods are used to reason about math-
ematical objects. However, hardware circuits are, e.g., not mathematical
objects, but physical objects of the real world. Therefore, it is necessary to
develop a mathematical model of the system and also to describe the pro-
perties that the system should have by means of some mathematical lan-
guage. This should be clear, but it must be stressed for two reasons: First,
the properties are normally given in an informal manner, i.e., by means
of natural language. It is frequently the case that these requirements are
inconsistent, and therefore, they can not be satisfied at all. Secondly, no
matter what formal method is used, it can only argue about the formally
given system description and the formally given properties. If these are
not what is actually intended, the application of the formal methods will
prove things that nobody is really interested in.
For the system’s model, this problem is often overestimated. Any pro-
gramming language with a formal semantics is a mathematical model
that can in principle be used for the application of formal methods. At
least, it can be converted into another mathematical model. Hence, any
programmer and any hardware designer already deals with formal mo-
dels even if ‘formal methods’ are not believed to be applied in the design
flow.
Additionally, the environment of the system has often to be modeled to
show that the system meets its specification. The environment often re-
stricts the inputs that can occur by physical restrictions. For example, a

1.1 Formal Methods in System Design 5

robot’s arm can not reach every place and therefore, it is not necessary to
consider all locations of it. But even if the environment model has to be
taken into account, the problem is overestimated. In any engineering dis-
cipline mathematical models are used; and nobody who finds a problem
in the construction of a crane would suggest that crane builders should
abandon mathematics.

Proving properties of the specification. We have already pointed out that speci-
fications are often given in an informal language and must therefore be
first rephrased in a formal specification language. This is an error-prone
task, and therefore, it is often desirable to prove some properties of a
given specification to see that it actually means what one has in mind. In
particular, it is important to show its satisfiability to assure that at least
one solution exists. For example, the specification a(0) ∧a(1) ∧∀t.a(t+1) =
¬a(t), that should express that a is true for the first two points of time
and then oscillates, is not satisfiable (a correct specification would be
a(0) ∧ a(1) ∧ ¬a(2) ∧ ∀t.a(t+3) = ¬a(t+2)).
It is often fruitful to prove the equivalence of different specifications to
get a deeper understanding of the task that is to be implemented. Even
if the specifications are not verified against a later implementation these
steps often lead to a deeper understanding and a better structuring of
the problem. Therefore, formal methods allow us to find errors in the
specification phase. Hall writes in his article [231] about his experience
with formal methods in software design in his company:

In an informal specification, it is hard to tell what is an error because
it is not clear what is being said. When challenged, people try to defend
their informal specification by reinterpreting it to meet the criticism.
With a formal specification, we have found that errors are much more
easily found – and, once they are found, everyone is more ready to agree
that they are errors.

Deriving implementations from a specification. Once a specification has been set
up and one has figured out that it is indeed what is desired, it would
be helpful to have a design method that could automatically derive a
system’s implementation that fulfills the given requirements. This has
actually been the idea of the fifth generation programming languages like
PROLOG, where the specification and implementation phases become
closely related to each other.
However, specifications are often given in a declarative manner and
not in a constructive manner. This means that these specifications only
describe what the system should do, but not how this function can be
achieved. It is certainly not possible to derive correct programs from
declarative specifications since these problems are intrinsically undeci-
dable so that machines can never solve them. Therefore, the construction
of appropriate implementations will always remain a creative task for
human beings.

6 1 Introduction

Nevertheless, the algorithm can be given in an abstract manner where
many implementation details are ignored. It is then possible to use ap-
propriate design tools to construct a more detailed system’s implemen-
tation out of such an abstract system description. For example, the algo-
rithm can be written in a high-level programming language and a com-
piler can then be used to translate the algorithm to some machine lan-
guage so that it can be executed on a microprocessor. In hardware design,
a high-level hardware description can be translated by so-called synthe-
sis tools to a low level description that can be physically implemented.
Similarly, software and hardware descriptions can be generated from ab-
stract and realization independent descriptions for example those given
in SDL [139, 524] or synchronous languages [42, 230]. Therefore, formal
software [93] and hardware synthesis [57, 58, 297] have their applications
here.

Verifying specifications w.r.t. a given implementation. As it may be possible to
automatically derive detailed system descriptions by less detailed ones,
or at least to use tools that assure the correctness of the manually applied
design steps, there is no need to reprove properties at different levels
of abstraction. The design steps that are used to refine the system’s de-
scription must not affect the validity of the specification. However, it still
remains to check whether the abstract implementation satisfies the orig-
inally given specifications. This process is normally called formal verifi-
cation of the system and this is also the main topic of this book.
There are two main ways formal verification can be applied. On the one
hand, one can describe both the system’s model Φimp and the specifi-
cation Φspec in a formal language and consider the resultant formulas
with a special calculus that is suited for the chosen formal language. As
both the specification and the system are given as formulas of the same
logic, the remaining task is to prove properties of the language such as
Φimp → Φspec or Φimp ↔ Φspec. Therefore, these methods are based on
automated theorem proving for certain formal languages (logics). Usually,
one wants to confirm that the formula Φimp → Φspec holds, i.e., to check
that the specification holds for the implementation. The specification can
therefore, and in general will, only describe a partial behavior of the sys-
tem.
While the above mentioned approach is reduced to the theorem proving
problem Φimp → Φspec of a certain logic, another approach has been de-
veloped since the 1980s which is called model checking. In model checking,
the system’s description is not given in the logic. Instead, it is given as
an interpretationMimp of the considered logic. A model checking proce-
dure has the task of evaluating the specificationΦspec in the interpretation
Mimp.
It is often the case that the model checking problem of a logic is simpler
than the related theorem proving or satisfiability problem, but both may
also share the same complexity. It can however be easily seen that model

1.1 Formal Methods in System Design 7

checking is somehow simpler than satisfiability checking on nondeter-
ministic algorithms: Model checking must evaluate a given formula in a
given model while satisfiability checking must check whether an interpre-
tation exists such that the formula can be evaluated to true. In particular,
nondeterministic machines can guess a suitable interpretation, if one ex-
ists, and can then use the corresponding model checking procedure to
evaluate the formula in the model. Therefore, model checking is often
less complex than the related theorem proving problem, at least when
nondeterministic computation models are considered.
The difference is best seen by a simple example: Consider as specifica-
tion logic the simple propositional logic. Interpretations of this logic are
simply truth assignments to the variables that occur in the formulas, and
model checking is simply performed by evaluating a propositional for-
mula with such an assignment. It is clear that the latter can be done in
linear time with respect to the length of the formula. Theorem proving
for propositional logic is however equivalent to the satisfiability problem
and therefore known to be NP-complete [124, 204].

Fabrication Test

Implementation
Verification

Implementation
Verification

Design

Verification

Design

Verification
Specification

Specification VHDL

Switch Level

Chip

RT/Gate Level

Equivalence
Proving

Fig. 1.1. Different ways to apply formal methods in the design

Different ways to apply formal methods for the hardware design are pic-
torially given in Fig. 1.1, but the restriction to hardware design is not im-
portant to the discussion at the moment. Specifications can be compared
with each other, where equivalence between specifications can be checked
and where one specification implies another one. Implementation verification,
or equivalence checking compares different implementation descriptions with

8 1 Introduction

each other. This approach is often called ‘vertical verification’ which is shown
in Fig. 1.1. If one implementation is obtained by derivation with a formal
method from another one, one speaks about formal synthesis or program deriva-
tion. Finally, formal specifications can be checked for a given implementation
description, which is often called property checking or simply (formal) verifica-
tion. In general, we may define verification to be the process of constructing
a mathematical proof that shows that an implementation fulfills a given spe-
cification.

While all the mentioned ways of using formal methods in the design of
complex systems are important in assuring the correctness of the system that
is to be developed, we mainly consider the verification of properties in this
book. Moreover, for some formalisms in this book, the verification problem,
which is normally interpreted as a model checking problem can be solved
by the same methods as the satisfiability problem. Therefore, we will also
consider satisfiability problems for some formalisms.

One point to be discussed here is that it is often argued that the verifi-
cation of a system guarantees that the system will be free of errors. This is
normally not the case. What is shown in a formal verification is that the for-
mal model of the system satisfies a formal specification. Therefore, we need
to additionally assure that the specification actually describes the properties
that are to be fulfilled and that the system’s model is actually what is im-
plemented later on. We already addressed the problem in the paragraph on
‘writing a formal specification’: Programming languages, hardware descrip-
tion languages and other system level description languages are already for-
mal models that can be used for the verification as well as for the refinement
of the implementation. Hence, the problem of the system’s formal model be-
ing different from the later implementation is not a severe one. This not so
simple with the specification: As it is impossible to guess what a specification
engineer had in mind, when he or she wrote a specification, the only way to
check if the specification is what is wanted is to prove the properties of the
specification. A major point here is that the specification language should be
as readable as possible so that it can be easily understood. Many complaints
about formal methods are prejudiced by the fact that many are hard to un-
derstand. Nevertheless, even if a readable formalism is chosen, engineering
practice has shown [231] that any formally given specification should addi-
tionally be explained in natural language to be better understood. This is also
for reasons of redundancy.

However, even if the specification and the system are correctly given and
successfully verified, there are some problems that can nevertheless lead to
a malfunctioning system. For example, it may be the case that the underly-
ing physical components that finally execute the systems computations are
damaged. This is a particular problem for the fabrication of hardware cir-
cuits: Layout defects that may occur during the fabrication process may also
lead to malfunctioning chips. These defects can not be checked by formal
verification, and are normally avoided by testing. This means that a chip is

1.1 Formal Methods in System Design 9

tested under a given set of test pattern sequences that distinguish a correct
from a faulty circuit. The test patterns are usually automatically generated.
As for large circuits the number of test patterns may become prohibitively
large, additional test circuitry like scan-paths and self-tests, may become nec-
essary. Modern test procedures establish a high quality, so that normally less
than five bad chips out of one million are delivered [282].

Moreover, correct systems can be used in a wrong manner which results
in errors by wrong usage. This is a general problem as systems are usually
designed in a modular manner and are therefore implemented with assump-
tions on their environment. Such a problem has occurred with the Ariane 5,
since a software module had been reused from the Ariane 3 that assumed
certain values on the acceleration that did not hold for the Ariane 5.

Wrong usage is, in particularly, a problem for embedded systems as these
systems are by definition integrated into an environment which corresponds
with certain assumptions in the design phase. Hence, there will always be
some assumptions on the interaction between the system and its environ-
ment which may be functional, or of other kinds. For example, temperature,
voltages, physical size, and many more requirements may have to be consid-
ered. Hence, the correct usage of the systems must also be specified.

Furthermore, it may be the case that the system is correct and is used in a
correct manner, but aging of the system may lead after some years to defects.
These kinds of errors can not be avoided by verification approaches. The
solution here is to use fault tolerance methods, e.g., to implement redundant
systems that are able to run even if one or two system’s components fail.

Therefore, to guarantee ‘trustworthy’ systems, formal verification, test,
and fault tolerance methods must all be used. There are many examples,
ranging from the verification of train stations, the Pentium bug, the Ariane
5, and many others, that show the necessity of formal methods in system de-
sign. Formal methods have already led to the discovery of several errors in
systems that are already in use and in standards that have been signed-off as
correct.

Having outlined the limitations of formal methods, it is important to say
that their usage is still essential for avoiding design errors. Modern system
design flows will benefit from formal methods in that design errors can be
avoided or found quicker than by traditional test and simulation methods.
According to a recent investigation [449], in 82% of the cases, design errors
were responsible for the malfunctioning of systems. Moreover, it has been
reported [231] that the usage of formal methods has led to a better structure
of a system since the different tasks that the system should perform are better
understood from the beginning of its design. It might be surprising, but it is
often the case that designers have captured the problem that they should
have solved only after they have made the implementation. An indication
for this phenomenon is that re-implementations are often much better than
the first ones.

10 1 Introduction

So, we have outlined different ways on how formal methods can be ap-
plied in modern system design. We have already distinguished between ver-
ification, formal synthesis, and the theorem proving of properties to check
the specifications. For a further discussion, we will now try to classify differ-
ent kinds of systems and their related properties in the next section. We will
then finally be able to describe the kind of systems and kind of formalisms
that will be considered in this book.

1.1.3 Classification of Systems

In the previous section, we outlined several ways of applying formal meth-
ods in the design of complex systems. We now refine this view in considering
different kinds of systems, their different properties, and thereby, a certain
preselection of verification formalisms. Depending on their architecture, sys-
tems can be classified in several ways, for example:

• asynchronous/synchronous hardware
• analog/digital hardware
• mono- or multi-processor systems
• imperative/functional/logic-based/object-oriented software
• multi-threaded or sequential software
• conventional vs. real-time operating systems
• embedded systems vs. local systems vs. distributed systems

As specific architectures such as the ones given above are dedicated to spe-
cific tasks, it is clear that one formal method will be more or less suited than
the other. For example, the behavior of analog hardware is essentially based
on differential equations so that their formal verification is closely related
with solving these equations. In contrast to this, digital hardware only con-
siders Boolean valued data types that may be collected in so-called bitvectors
to encode finite data types like 16-bit integers. Clearly, infinite data types
and complex abstract data types play no particular role in hardware systems
(at least at the register-transfer level), and are therefore solely considered in
software design (or in high-level design phases of hardware designs). The
problems that occur for the verification of digital hardware circuits are in-
trinsically based on finite-state machines and are therefore, in principle, solv-
able by computers. However, the number of states may become prohibitively
large, so that the verification approaches must fight the state-explosion pro-
blem.

Digital hardware design becomes more and more ‘soft’, which means that
the hardware design starts at the level of algorithmic descriptions. For exam-
ple, special applications such as image processing algorithms like the JPEG
and the MPEG algorithms are often implemented in special hardware circuits
that are found in modern digital cameras. On the other hand, the perfor-
mance of modern microprocessors is so good that often elaborate hardware

1.1 Formal Methods in System Design 11

designs are not much faster than the highly optimized microprocessor struc-
tures where many person-years of development have been invested. There-
fore, hardware implementations are only recommended when efficiency is
crucial for the functioning of the system or if large numbers of circuits are
expected to be sold. The reason for the latter issue is that the development of
a hardware circuit is much more expensive than that for an equivalent soft-
ware component, and these development costs need to be recovered by the
sale of a large number of circuits.

However, as more and more complex algorithms are implemented in
hardware, the requirements for hardware verification also changes. The need
to consider complex multi-threaded systems whose threads heavily interact
with each other becomes more and more challenging. Even if no complex
data types need to be considered, the tasks that are performed by modern
hardware systems are more and more complex, and the number of states
in these systems has reached very large numbers. The implementation of
complex control tasks will moreover require the consideration of high-level
description languages that can deal with many interacting threads.

Hence, the difference between this high-level hardware design and the
design of multi-threaded software diminishes, so that we need, in princi-
ple, not to distinguish between hardware-oriented multi-threaded software
with low-level data types and high-level hardware descriptions. A more
distinguishing criterion is the paradigm of the underlying programming
language, i.e., whether it is imperative, functional, logic-based or object-
oriented. Logic-based languages such as PROLOG, and functional languages
such as ML, Haskell, and many more are well-suited w.r.t. verification. How-
ever these languages are rarely extended by multiple threads which limits
their usefulness in system design. Moreover, these languages require, in gen-
eral, more memory than imperative languages, at least when the user is re-
sponsible for storage management.

Hence, for the implementation of embedded systems, these languages have
not really been considered, since memory requirements are often of an essen-
tial importance for these systems. This domain is completely determined by
imperative languages like C. With the increasing complexity and therefore
the increasing need to reuse components, it is probable that object-oriented
languages as C++ and maybe Java will be used in future. Therefore, software
and hardware designs will come closer in the future.

Another issue is added by embedded and distributed systems. As the
components of these systems have to interact with each other or with the
environment, it is important to guarantee that this interaction is done in a
correct and efficient manner. For example, it must be guaranteed that mes-
sages are never lost and arrive within some time constraints. The interaction
of different system components with each other gives us another major dis-
tinction. From the viewpoint of a component all other components belong to
the environment, we simply consider a component together with its environ-

12 1 Introduction

ment in the following. Depending on the type of interaction, we distinguish
the following important classes of system:

Transformational Systems: After being started by the environment, these sys-
tems read, at the beginning of their computations, some input data and
produce the desired output data. It is assumed that these systems should
always terminate, because the outputs are only available after the ter-
mination. An example of a transformational system is a compiler that
translates a program of a high-level programming language (which is
the input data) to a machine language (which is the output data).

Interactive Systems differ from transformational systems in that it is not de-
sired that they terminate unless the user explicitly instructs them to do
so. Instead, they continuously run and interact with the environment (the
user). These interactions are split into the action that is given by the envi-
ronment and the reaction which is the answer of the system to the given
action. It is important for the distinguishing from the next category that
the environment of an interactive system has to wait until the system is
ready for new inputs. This means that the frequency of interactions is
completely determined by the performance of the system.

Reactive Systems differ from interactive systems in that the environment can
freely determine the points in time when an interaction is desired. This
means that a reactive system must be at least fast enough to react on a
given environment action before the next action of the environment oc-
curs. For this reason, reactive systems must satisfy some real-time con-
straints and therefore fall into the category of real-time systems. Two dif-
ferent kinds of real-time constraints are distinguished: these are hard and
soft real-time constraints. The former are necessary for a correct function-
ing of the system, while the latter ones are wanted to increase the com-
fort. Because of their nature, reactive systems must often satisfy hard
real-time constraints and are therefore usually implemented as concur-
rent systems. This means that these systems consist of a couple of con-
current threads that may be dynamically generated and aborted.

The implementation of reactive systems is not an easy task. The environment
often gives clear real-time constraints by the physical construction of the sys-
tem. For example, a valve can be closed within a certain amount of time, a car
can be stopped within a certain amount of time, or an airbag can be opened
within a certain interval of time.

As it is quite clear what real-time constraints are to be met, it is not
so clear, how a reactive system should be implemented to meet these con-
straints. In general, to be as fast as possible, one might suggest a complete
hardware solution. However, this is in most cases not necessary and would
be far more expensive than it should be. Therefore, the systems are normally
implemented partly in hardware and in software, so that a compromise be-
tween the costs and the efficiency has to be made.

1.1 Formal Methods in System Design 13

Reconsidering the system classes that we have previously considered by
examining the architecture, we first note that nearly all hardware circuits are
reactive systems in the following sense: In the design of asynchronous hard-
ware, it is required that all signals become stable within a certain amount
of time so that oscillating signals are avoided. In the design of synchronous
hardware circuits, the points of time where the interactions will occur are
fixed by the system’s clock which synchronizes all parts of the circuit. The
‘real-time’ constraint of any submodule of such a circuit is therefore that any
signal must be propagated through the circuit and all signals have stabilized
before the next clock cycle occurs. CAD tools for designing hardware circuits
determine the critical path of a hardware circuit and can minimize its length
so that the clock speed can be increased. Hence, hardware designs do always
have to consider real-time constraints.

In contrast to that, the software design does not usually aim to construct
reactive systems. However, there are new applications that make software
obey given real-time constraints. For example, a distributed data base to
manage flight reservations must be updated fast enough for all requests to
be considered w.r.t. the actual state of the data base. Moreover, computers
are used to control complex systems such as aircrafts or even nuclear plants,
and must therefore be able to react on unforeseen situations before serious
damages occur. For this reason it is usually important to use real-time op-
erating systems that guarantee fixed time bounds for interrupting processes
and executing interrupt routines. It is very important for the implementa-
tion of reactive systems that process management is done within guaranteed
real-time constraints: Everybody who has ever erroneously deleted a direc-
tory on a Unix system that contains many files, and tried to abort the deletion
process without success, will agree that Unix is certainly not a real-time op-
erating system.

Special programming languages for the development of reactive systems
have been suggested in the past decade, in particular the synchronous lan-
guages [230]. The main paradigm of these languages is the perfect synchrony
paradigm that is most easily explained with the synchronous language Es-
terel [42, 43]. The perfect synchrony paradigm is achieved in Esterel as fol-
lows: By the Esterel semantics, almost all program statements do not require
time for their execution. There is only one basic statement, namely the pause
statement that does consume time, and this is actually all it does. Each time
a pause statement is executed, one logical unit of time is consumed, which
means that the control flow rests for one unit of time on that pause statement.
Therefore, threads run synchronously to each other since they will always ex-
ecute all statements between two pause statements in zero time and will then
synchronize (by the semantics of Esterel) at the next pause statement.

Clearly, it is only an idealized view that the other Esterel statement can
be executed without consuming time. However, the same idealization has
been used for designing complex hardware circuits. There, the designer as-
sumes that the signals propagate through a combinational circuit without

14 1 Introduction

delays, although this is physically not possible. However, if the clock cycle
is not too fast, this idealization is legal and liberates the designer from the
burden to consider the circuits in a more detailed manner than necessary.
The complexity of actual hardware designs proves that this idealization is
reasonable. Berry, the main developer of the Esterel language, compares this
idealization with the models that are used in mechanics [41]: Although we
know that Newtonian mechanics is not precisely true and that it is only an
approximation of the relativistic mechanics due to Einstein, most applica-
tions nowadays still use Newtonian models, simply because these are much
more efficiently computed, and for most applications the results are precise
enough.

After a (synchronous) program has been written, it can be translated to
a finite state machine that controls the manipulation of the data variables.
The states of this finite state machine correspond with the possible locations
of the control flow in the program text. As the program text is finite, it fol-
lows that the control flow can always be modeled with finitely many states.
However, if the values of the data variables are considered, the state set may
become infinite when infinite data types come into play. In practice, however,
there is no system that is able to really handle infinite data types, so that we
usually have finite data types: Integers in most programming languages like
C have a certain bitwidth and are therefore finite data types. For this reason,
we can compile most programs to finite state machines, even if these have an
astronomical number of states.

Synchronous languages have a nice property in that the concurrency of
the programs can be handled at compile-time: due to the semantics all pro-
grams are deterministic, and therefore the interactions of the threads are
known at compile-time. The languages moreover provide convenient state-
ments for controlling the complex interactions of threads like different vari-
ants of abortion and suspension. Even if these programs are quite readable,
the important properties that one is interested in the verification of reactive
systems are nevertheless concerned with the correct temporal behavior. Par-
ticular problems are to prove the absence of deadlocks, absence of live-locks,
mutual exclusion, and write clashes, and in general, that signals occur at the
right time so that, for example, protocols are correctly implemented.

An important taxonomy of properties, as given below, is found in many
books and papers, in particular in [351, 352]. It is based on both practical and
theoretical observations. On the one hand, the properties below can often
be found more or less directly in many specifications. On the other hand,
many formalisms can be classified when they are either able to express these
properties or not.

Safety properties state that for all computations of the system, and for all
instances of time, some property will invariantly hold. For example, a
safety property of a traffic light controller would be that at no point of
time, the traffic lights of crossing streets will have a green light.

1.1 Formal Methods in System Design 15

Liveness properties state that some desired state of the system can eventually
be reached. There is no fixed bound of time given in which the state must
be reached. For example, a liveness property could be that the initializa-
tion phase will definitely terminate and that the system will therefore
become ready for computations.

Persistence properties are related to the stabilization of certain properties. In
general, a persistence property describes that for all possible computa-
tions, there is a point of time when a certain property will always hold
afterwards.

Fairness properties state that some property will infinitely often hold. The no-
tions of fairness and liveness are often mixed up since, for example live-
ness properties in the theory of Petri nets means that the net is always
alive, i.e., that there is always some progress. In our classification, this
is however a fairness property. Manna and Pnueli call these properties
recurrence properties [351, 352].
The notion of ‘fairness’ is derived from specifications, where these pro-
perties are used to state that no process is ignored infinitely often by an
operating system that should schedule the processes on a processor. Sev-
eral notions of fairness have been introduced such as strong fairness, un-
conditional fairness, and many others (see [175, 197] for a more detailed
discussion of these fairness properties).

From a viewpoint of expressiveness, we will see in Section 4.6, that live-
ness, safety, and persistence properties can be reduced to equivalent fairness
properties when appropriate observers are added. The above properties are
used to define a hierarchy for ω-automata given in Section 4.6, which is then
adapted to temporal logic in Section 5.4.3. We will moreover see that the
first three classes can be translated to very simple fixpoint expressions, while
the latter class requires a higher effort, since it requires mutually dependent
nested fixpoints for its description. Hence, these properties can be used to
structure many formalisms in a hierarchy. We will elaborate this issue in de-
tail throughout this book.

Safety and liveness properties are of particular interest, even they can
both be reduced to persistence and fairness properties when appropriate ob-
servers are used. One reason is simply that most specifications are safety
properties, and another reason is that the verification of safety properties
can be done by specialized verification procedures. For example, these pro-
perties can be verified by induction, so that no traversal of the state spaces is
necessary. Therefore, safety properties can also be proved for infinite state
spaces. For example, induction-less induction methods that are based on
term rewriting can verify safety properties.

To summarize, we have now seen where and how formal methods can
be applied in modern system design. Our main interest is the formal verifi-
cation of already implemented systems. We have furthermore classified the
systems in many ways, and the most relevant systems for this book are re-

16 1 Introduction

active systems that can often be reduced to finite-state machines. Hence, we
are interested in the formal verification of finite state systems. Moreover, we
have already mentioned important classes of properties, without taking a
specific formalism into account.

The kind of system clearly influences the properties to be specified, and
therefore the choice of a suitable verification formalism. A plethora of for-
malisms has been developed, and still new formalisms are invented for dif-
ferent purposes. Therefore, we will consider in the next section some of the
most popular ones and will, in particular, list how these formalisms have
evolved over the time.

1.2 Genealogy of Formal Verification

In the previous section, we defined what classes of formal methods exist, and
have seen the application of formal methods in specification, formal syn-
thesis, and formal verification. Moreover, we have found reactive systems
to be of particular interest for formal verification, since their design is an
error-prone task due to the intensive use of multi-threading and the hetero-
geneous design which is often split into hardware and software. Moreover,
reactive systems are well-suited to formal verification, since they can often
be reduced to finite state systems so that the verification problem becomes
decidable.

In this section, we consider approaches that are used for the formal veri-
fication of properties in a more detailed manner. In particular, we give some
historical notes on the formalisms that are considered in detail throughout
this book. Parts of the next section are based on [50], who themselves bor-
rowed material from [140]. The other sections are a summary of other re-
search papers of the corresponding formalisms.

1.2.1 Early Beginnings of Mathematical Logic

The idea that formal reasoning could be mechanized such that machines can
generate mathematical proofs is an old dream that has its origins in the sev-
enteenth century. Déscartes (1596-1650) developed an algebraic foundation of
the ancient Euclidian geometry known from the Greek philosophers. Based
on the introduction of coordinate systems, he was able to express all geo-
metric problems by means of algebraic equations that are then solvable by
purely algebraic means. Déscartes was aware of the fact that his ‘decision
procedure’ could be mechanized in a similar way to the arithmetic computa-
tions have been mechanized by the calculators of Schickard (1592-1653) and
Pascal (1623-1662). In his work, he wrote:

. . . it is possible to construct all the problems of ordinary geometry by doing
no more than the little covered in the four figures that I have explained. This

1.2 Genealogy of Formal Verification 17

is one thing which I believe the ancients did not notice, for otherwise they
would not have put so much labor into writing so many books in which
the very sequence of the propositions showed that they did not have a sure
method of finding all . . .

Leibniz (1646-1716) had an even more general vision: His aim was to do the
same for all fields of mathematics and even more for any kind of human
thinking. In a research project that he planned for the next three centuries (!),
his aims were to develop a formal language called the ‘lingua characteristica’,
and to develop a corresponding calculus, called the ‘calculus ratiocinator’. The
lingua characteristica would be powerful enough to express all kind of pro-
perties, and the calculus ratiocinator would provide laws that could be im-
plemented – in modern words – in some sort of decision procedure, so that
one could build a machine that would be able to derive any kind of truth.

However, the contribution of Leibniz to this project was not very promis-
ing, although his research in the differential calculus went in that direction. A
first calculus in the sense of Leibniz was then developed by A. de Morgan and
G. Boole (1815-1864) for propositional logic. Originally, Boolean algebra had
been developed for the formalization of set theory. Boole himself viewed his
work as a contribution to Leibniz’s research programme. It is remarkable to
mention that in 1869 S. Javins built a machine that was able to check Boolean
expressions so that Leibniz’s research programme had already been success-
ful for propositional logic at that time.

The next step was then taken by Gottlob Frege (1848-1925). In his book
[198] entitled ‘Begriffsschrift’, he actually developed what we now call first
order predicate logic. This logic is a convenient formalism that can express
many interesting properties. In particular, it extends propositional logic by
quantified formulas of the form ∃x.Φ and ∀x.Φ which express that the prop-
erty Φ must hold for at least one or for all elements x. Atomic formulas are
not only propositional constants, but may also depend on arguments, i.e.,
they may be of the form p(τ1,, . . . , τn), where the τi’s are terms of the logic.
These terms are recursively constructed of variables, constants and function
applications which look like f(τ1,, . . . , τn). Note however that f(τ1,, . . . , τn)
is interpreted as an element of the considered domain, while atomic formu-
las are interpreted to be either true or false. Additionally, equality .= is often
added in that for two terms τ1 and τ2, the expression τ1

.= τ2 is an atomic
formula that expresses that the elements τ1 and τ2 are the same. The domain
D that is used for interpretation of the terms and formulas is thereby given
by an interpretation of the logic. An interpretation must moreover provide
a function J that maps predicates p of arity n to a relation J (p) ⊆ Dn, and
function symbols f of arity n to functions of type Dn → D. In contrast to
propositional logic, first order logic therefore allows reasoning about infinite
domains.

Although Frege’s work has not become very famous, his contribution is
important when one considers the argumentations that were used at that

18 1 Introduction

time. In particular, it was not clear at that time what the basic constructs and
axioms of mathematics were. Therefore, many proofs were not sound since
they are based on other things that were, in turn, based on the theorem that
was to be proved. Frege’s work mainly contributed to the formal language,
i.e., lingua characteristica, although he made proofs by the ‘modus ponens’
which was his ‘calculus ratiocinator’. Frege’s work was moreover important
because he was the first who distinguished between syntax and semantics of a
formal language and therefore, his work is an early forerunner of the princi-
ples that are used nowadays in computer science.

G. Peano applied Frege’s mathematical logic to other fields of science. He
wrote:

. . . ‘I think that the propositions of any science can be expressed by these
signs alone, provided we add signs representing the objects of that science.’

Therefore, Peano’s aim was to eliminate natural language for the precise
formulation of properties in a precise formal manner. However, his reasoning
about these properties was then done in natural language so that he ignored
the initial work of Frege in terms of the ‘calculus ratiocinator’.

Automated reasoning has however been controversially discussed from
its beginning: For example, the famous mathematician H. Poincaré wrote:

Thus it will be readily understood that in order to present a theorem, it is no
longer necessary or even useful to know what it means. We might replace
geometry by the reasoning piano imagined by Stanley Javins; or if we prefer,
we might imagine a machine where we could put in axioms at one end and
take out theorems at the other, like that legendary machine in Chicago where
pigs go in alive and come out transformed into hams and sausages. It is no
more necessary for the mathematician than it is for these machines to know
what he is doing.’

Nevertheless, it became clear that mathematics had to be put on a sound
basis with a clearly defined set of axioms and inference rules. Whitehead and
Russel have proved in their famous work, the ‘Principia Mathematica’, that
such a formal foundation was possible for all known mathematics. At this
time, the formalization of higher order predicate logics, or as it is sometimes
called the type theory, started in order to circumvent antinomies like Russel’s
paradox (to construct the set of all sets which could not be correctly typed).

The classical mathematical logic was then quickly developed: Th. Skolem
developed in [461] and [462] a systematic way to check the satisfiability of
logical formulas. In [461] he developed his quantifier elimination method
that became known as ‘skolemization’. The essential idea is thereby that for-
mulas of the form ∀x.∃y.Φ(x, y) denote some dependency between y and x
so that there must be a function f that maps any element x to an element y so
that the relation Φ(x, y) holds. Hence, the formula ∀x.∃y.Φ(x, y) is satisfiable
if and only if the formula ∀x.Φ(x, f(x)) is satisfiable (where f should not

1.2 Genealogy of Formal Verification 19

already occur in Φ). The skolemization therefore eliminates positive occur-
rences of ∃ quantifiers for the consideration of satisfiability. As a result, only
universally quantified formulas need to be considered, which can be more-
over brought into prenex normal form, so that only formulas of the form
∀x1. . . .∀xn.Φ have to be considered, where Φ does not contain quantifiers at
all.

In [462], Skolem constructed a ‘standard model’ for the universal frag-
ment of first order predicate logic, namely the Herbrand universe, whose
name is therefore not attributed to its inventor. The essential idea is that for
any considerations of satisfiability, one can use the set of (variable-free) terms
as domain D, hence, interpreting terms by themselves, and predicates as re-
lations between terms. Hence, Skolem proved that any satisfiable first order
logic formula does also has a countable model, which means that uncount-
able domains such as the real numbers can not be characterized by first order
logic.

In the same year, Hilbert and Ackermann [246] presented in their book
‘Grundzüge der theoretischen Logik’ an axiomatization of the first order
predicate calculus and imposed two important questions: firstly, the com-
pleteness of this axiomatization, i.e., whether it is possible to derive any valid
property with it, and secondly, its decidability, i.e., whether one can build a
machine to deduce truth.

Both problems have been solved by Gödel: In 1930, he showed [211] that
the calculus given by Hilbert and Ackermann was in fact complete, which
was then a promising approach to automated reasoning. However, one year
later, Gödel showed [212] that any formal system that is strong enough to
express arithmetic can either be not complete, or it is not decidable whether
a formula is an axiom of the system. In particular, he presented a construc-
tion of a formula in any such formal system that can neither be proved nor
disproved. To this end, he encoded the notions of derivation in a calculus as
first-order formulas and considered the formula that says ‘I am not deriv-
able’. If this formula was valid, it could be used as a witness for a valid for-
mula that can not be derived. If it was false, it must be derivable, but then the
calculus is not correct since it derives the wrong formulas. Therefore any for-
malism that is powerful enough to formalize arithmetic with natural num-
bers is incomplete and therefore has ‘leaks’ (i.e., formulas that are neither
true nor false). Some of the yet unsolved propositions of number theory such
as Goldbach’s conjecture are supposed to be examples of such leaks (how-
ever the same had been thought about Fermat’s theorem until a proof was
recently found).

The decidability problem for first order logic as raised by Hilbert and
Ackermann was then independently solved by A. Turing and A. Church [99]
in 1936 in that they showed the undecidability of the problem. While Tur-
ing reduced the problem to the termination problem of his Turing machines,
Church found a similar reduction in the evaluation of λ-calculus expressions.

20 1 Introduction

These negative results evidently destroyed the dream of implementing a ‘cal-
culus ratiocinator’ as implied by Leibniz.

However, Herbrand already pointed out in his dissertation of 1930 that
any valid sentence can be proved in finite time, i.e., we can define algorithms
that are able to prove any valid formula of first-order predicate calculus. The
essential property of first order logic that enables us to do this is the com-
pactness property which states that a (possibly infinite) set of formulas is
satisfiable iff each finite subset of it is satisfiable. In other words, a possibly
infinite set of formulas is unsatisfiable iff there is a finite subset of it that is
unsatisfiable. The objective of Herbrand’s proof procedure is therefore to re-
place quantified formulas ∀x.Φ by the set {[Φ]τx | T } where T is the set of all
terms and [Φ]τx is obtained from Φ by replacing x by τ .

However, if the formula is satisfiable, the procedure may run into an in-
finite loop that encounters an infinite model and will therefore never termi-
nate. The problem is that as long as the algorithm does not terminate, we
know nothing about the truth value of the formula. As we have no upper
bound on how long the algorithm will run, there will be no result found un-
less the algorithm successfully terminates.

1.2.2 Automated Theorem Proving

The rapid development of the first computers started a new kind of re-
search, namely automated theorem proving. It now became possible to build,
in a much simpler way than ever before, a ‘calculus ratiocinator’, simply by
programming a computer. The first program in that direction, a decision pro-
cedure due to Presburger for his arithmetic [415], was implemented in 1954
by M. Davis on a Johniac, a ‘Röhrencomputer’. A big success was achieved
by the proof of the fact that the sum of two even numbers is again an even
number. This was the first proof made by a machine.

Based on more powerful computers, better implementations followed:
H. Wang developed in 1958 at IBM, and afterwards from 1959-1964 at Bell-
Labs, an automated theorem prover that was able to prove 350 theorems of
the ‘Principia Mathematica’ (quite simple laws of predicate calculus with
equality). In 1960-1962, Martin Davis and Hillary Putnam presented a new
proof procedure which was split into two parts [141]: firstly, a part that in-
stantiates the quantified formulas in a systematic way (by terms of the Her-
brand universe), and a second part for efficient evaluation of propositional
logic. The latter part is still in use, but the former part was more important
in the 1960s.

In 1960, Prawitz [414] recognized that the enumeration of all terms of the
Herbrand universe was not reasonable, and therefore developed an algo-
rithm for computing only the relevant instantiations by a process that we call
unification. His idea was implemented by Davis, McIllroy and others. In 1965,
Robinson [425] integrated Prawitz’s unification algorithm in a single deduc-
tion rule, namely the resolution principle. In the meantime, a lot of refine-

1.2 Genealogy of Formal Verification 21

ments of resolution calculus such as hyper-resolution or theory-resolution
[470] have been developed and implemented in efficient theorem provers
like Otter, Setheo, or SPASS. Moreover, other representations like clausal
graphs, the connection graphs of Kowalski [287], the matings of P. Andrews
[16], or the connection method [48] of Bibel have been developed for the im-
plementation of more efficient theorem provers.

The field of automated theorem proving is still a major topic of research.
Many refinements have been added and many new calculi and special-
ized logics have been invented. For example, tableau calculi [195, 464] are
a promising way to construct automated theorem provers for special kinds
of logics, such a modal logics [98, 255, 292]. The relationship between tableau
and the more frequently used resolution calculi is outlined in detail by Fit-
ting in [195]. Eder considers in [150] the complexity of different calculi,
and d’Agostino [134] points out some improvements for tableau calculi so
that theorem provers based on them may reach the same efficiency as the
resolution-based ones.

Nearly all automated theorem provers are designed for first order predi-
cate logic. We have already mentioned that the compactness property of first
order logic leads directly to a semi-decision procedure for the logic. How-
ever, as there are sound and complete calculi for first order logic, it follows by
Gödel’s result that first order logic can not express Peano’s arithmetic. As any
abstract data type such as lists, can be used to encode numbers, it moreover
follows that first-order logic can not characterize such abstract data types (up
to isomorphisms between the interpretations).

For this reason, extensions of the first-order logic have been investigated
that extend the logic by means of induction principles. The most popular
provers for first order logic (with induction) are ACL2 [277], Eves [132], LP
[205], Nqthm [60], Reve [322], and RRL [276]. In general, these fall into the two
classes of explicit and implicit induction provers. Explicit induction provers
like [25, 60, 61, 92, 206] use induction rules as explicitly given proof rules, e.g.,
for tableau construction. These induction rules are based on a well-founded
ordering of the terms and require that the induction step transfers results
from smaller terms to larger ones.

Implicit induction calculi, also known as inductionless induction, are
based on term rewriting and have been developed since the eighties [59, 199,
254, 267, 268, 385]. These calculi are based on the consideration that an equa-
tion γ is a consequence of a set of equations Γ if and only if the same set of
(variable-free) formulas can be derived from both Γ and Γ ∪{γ}. The restric-
tion to equation systems is not as severe, as it might look at a first glance:
any proposition can be written as an equation of the form Φ = true. More-
over, there are extensions [144, 275, 286] that consider conditional equation
systems. The advantage of the inductionless induction methods is that they
are able to automatically deduce all lemmas that are required for the proof,
while in explicit induction provers, the user has to manually set up the ap-

22 1 Introduction

propriate lemmas. Note that the induction often fails for valid formulas and
must then be applied to a stronger property.

Another, and even more powerful extension of first order logic is ob-
tained by higher order logics. While first order logics only quantify over el-
ements of the considered domain D, higher order logics additionally quan-
tify over sets of such elements, and functions of such elements. These addi-
tional extensions enhance the expressiveness of the logics so that all facts of
mathematics can be expressed. For example, Peano’s axioms for the natural
numbers can be easily expressed in higher order logic, and hence, the natural
numbers can be formalized with this formalism.

Clearly, this means by Gödel’s result that there is no complete calculus
for this logic. Therefore, it is hardly possible that automated proof proce-
dures can be implemented for it (Andrews et. al. [18] have implemented
an automated theorem prover for higher order logic, and Kerber showed
in [279, 280] how simple properties of higher order logics can be proved by
means of a first order theorem prover). Hence, theorem provers for higher
order logic are usually proof assistants, where the user has to manually in-
voke proof steps that are then checked by the system. The system has there-
fore only the task of book-keeping subgoals, checking the applicability of the
rules, and clearly to generate the subgoals by applying the rules.

In particular, theorem provers for higher order logic are interesting for
the formal verification of systems. In fact, one of the main applications of
these theorem provers is verification. The most popular higher order logic
theorem provers that are used for this purpose are HOL [216], PVS [396], Coq
[125], Veritas [233], Nuprl [123], and Isabelle [398]. These provers differ in the
kind of higher order logic they use, e.g., PVS uses dependent types2, while
HOL is based on simple types. Nuprl is based on intuitionistic logic, while
the others are based on classic logic. Moreover, the theorem provers differ in
the comfort they provide. In particular, PVS and HOL provide a rich set of
efficient decision procedures including Presburger arithmetic, propositional
logic, and also proof procedures for first order logic.

Both induction provers, and theorem provers for higher order logics, in
particular HOL and PVS, have been used to verify different kinds of systems.
For example, in 1986 Camilleri, Gordon and Melham verified a n-bit broad
CMOS adder and a sequential switch level circuit for the computation of
n! [94]. Herbert formalized delay times in combinational hardware circuits
[245] in 1988, as well as a network chip in ECL logic. Gordon verified a n-bit
sequential multiplier and many other circuits [215] around the mid-eighties.
Kumar, Schneider, and Kropf presented, in 1991, a structured approach for
the verification of register-transfer circuits in HOL [298, 440, 441]. HOL has
also been used to show the correctness of microprocessors like TAMARACK-
2 In simple type theory, the types are defined independently of the terms. In depen-

dent type theory, the set of types and terms are mutually recursive. Therefore, it is
in general not decidable whether a term is correctly typed.

1.2 Genealogy of Formal Verification 23

1 [269], Viper [121, 133, 517], and DLX [480]. PVS has also been used for
the same purpose, e.g., the processor AAMP5 has been verified by Miller
and Srivas [368]. Nqthm has been used by Hunt [256] to verify the 16-bit
microprocessor FM8501 whose complexity is comparable with a PDP-11. The
work has been extended to the verification of the 32-bit processor FM8502
that has also a more powerful instruction set [257]. The verification of the
FM8502 was part of a larger verification project where also a code generator,
an assembler, and even a kernel of an operating system were verified [45].

1.2.3 Beginnings of Program Verification

In the so-far mentioned work, we mainly considered pure theorem prov-
ing for first and higher order predicate calculus that had been successfully
applied to the verification of some systems, but that is still not specialized,
neither in terms of the formal language nor in terms of the proof methods.
As there was however an early interest in the verification of computer sys-
tems by mathematical proofs, specialized logics and proof procedures were
invented in the late 1960s. Thus, a new field for automated reasoning, namely
the verification of computer programs and systems was born.

The earliest work in this area probably stems from Floyd [196] and Hoare
[248]. They proposed guarantee commitment style proof rules for computer
programs: Given that Φ and Ψ were formulas of some predicate logic, and
P is a program statement, then the ‘Hoare triple’ {Φ}P{Ψ} means that: if Φ
holds when the program P is started, and P terminates, then the property Ψ
holds. In this ‘Hoare triple’ the condition Φ is called the precondition and Ψ
is called the postcondition. The most interesting rule of Hoare’s calculus is
the one for the verification of loops. The rule is based on so-called invariants
ΦI and is as follows:

Φ→ ΦI {ΦI ∧B}P{ΦI} ΦI ∧ ¬B → Ψ
{Φ}while B do P end{Ψ}

If a specification Ψ is to be shown for the loop while B do P end, where we
can assume the precondition Φ, we must first search a suitable invariant ΦI
so that we can apply the above rule. The remaining problem is then to prove
the propositions that are given above the line. In particular, the condition
{ΦI ∧ B}P{ΦI} amounts to saying that ΦI is an invariant of P : if it holds
before the execution of P , it will also remain true after the termination of
P (it may however be false during the execution of P). The problem is that
invariants are not always detected easily so that the conditions above the line
hold.

For this reason, some investigations started to compute or approximate
invariants. In particular, Dijkstra [145] suggested to compute weakest precon-
ditions for a specification Ψ and a given program P . Informally, the weakest
precondition wp(P, Ψ) satisfies the Hoare triple {wp(P, Ψ)}P{Ψ}, and for any

24 1 Introduction

other precondition Φ that satisfies {Φ}P{Ψ}, we have Φ → wp(P, Ψ). Weak-
est preconditions can be used to give a fixpoint characterization of invariants.
We will consider these relationships in the next paragraph, and in more de-
tail in Section 3.8.3. Moreover, we note that Owicki and Gries extended these
proof methods for safety properties to deal with concurrency in [394, 395].

1.2.4 Dynamic Logics and Fixpoint Calculi

Dynamic logics, also called program logics, due to Pratt and Harel [235, 411]
can be used as a formal foundation of both Hoare’s calculus and Dijkstra’s
weakest preconditions. Both can be defined in dynamic logic, and the rules
revealed by Hoare and Dijkstra can then be proved.

Dynamic logics are special cases of modal logics [98, 255, 292] which have
been developed in philosophy. In modal logics, the truth values of the atomic
propositions of the logic are no longer fixed by a particular interpretation as
in the previously mentioned predicate logics. Instead, it depends on a current
state, which is often called the ‘current world’. Moreover, an interpretation
of modal logic determines what the next state of a state could be. Models of
modal logics are therefore Kripke structures K = (S, I, R, ξ) where S is the
set of possible states, I ⊆ S is the set of initial states,R ⊆ S × S determines
the transition relation, and ξ is finally a function that maps any state s ∈ S
to an interpretation of the atomic formulas. (s, s′) ∈ R means that the state
s′ can be reached from the set s, i.e., it is a possible successor state of s. There
may be more than one successor state, and sometimes a condition α may
be given to select a particular next state. This roughly explains the semantic
models for modal logics. Several modal logics are distinguishable in that one
often gives additional requirements on the transition relation, for example,
that it must be symmetric or transitive.

For the syntax of dynamic logics, there are two important additional op-
erators for modal logics: 〈α〉Ψ holds in a state s if this state has a successor
state s′ that can be reached from s with the condition α such that the formula
Ψ holds in s′. The dual operator [α]Ψ , defined as [α]Ψ :≡ ¬〈α〉¬Ψ , states that
all successor states s′ that can be reached under the condition α must satisfy
Ψ .

It is quite clear, how modal logics and program logics are related to each
other: States of a Kripke structure KP can be used to model different stages
of the computation of a program P . The transition relation RP can be de-
rived with the semantics of the programming language used to implement
the program P . Hence, by means of the programming language’s seman-
tics, we can transform every program into a corresponding Kripke structure
(e.g. see [435, 436, 438] to derive a Kripke structure from Esterel programs).
Therefore, modal logics are particularly well-suited for reasoning about the
before-after behavior of programs, when we consider all the situations that
could occur during the execution of a program.

1.2 Genealogy of Formal Verification 25

In dynamic logics, the modal operators 〈α〉Ψ and [α]Ψ are extended in
that the conditions α need not necessarily be atomic program statements (this
distinguishes them from Hennessy-Milner logic [239]). Instead, they may be
entire program statements P , and in this case, the formula 〈P 〉Ψ intuitively
holds in a particular state s if the program statement P can be executed from
this state so that after termination of P a state s′ is reached where Ψ holds.
Note that several transitions can be taken during the execution of P . In a
similar way, the formula [P]Ψ holds iff for all executions of the program P
the property Ψ must hold after termination (P may be nondeterministic or its
execution may depend on the inputs). If no terminating execution of P can be
started in this state, the formula does trivially hold. Usually, dynamic logics
consider some set of program constructs for determining the statements that
are allowed in the formulas. A detailed definition is given in Section 3.8.3.

Using dynamic logics, Hoare triples {Φ}P{Ψ} can be defined as an abbre-
viation of the formula Φ → [P]Ψ . Therefore, Hoare’s rules can also be given
as formulas in dynamic logic and therefore the correctness of the rules can
be proved. For example, the above mentioned rule for loops is translated to
the following valid dynamic logic formula:

Φ∧
(Φ→ ΦI)∧
(ΦI ∧B → [P]ΦI)∧
(ΦI ∧ ¬B → Ψ)

→ [while B do P end]Ψ

Also the correctness of the rules for the computation of weakest precondi-
tions can be proved. In particular, it turns out that the weakest preconditions
of loops can be defined as greatest fixpoints:

wp(while B do S end, Ψ) := νx.(¬B ∧ Ψ) ∨ (B ∧wp(S, x))

Thus, the expression νx.Φ denotes the greatest fixpoint of Φ. To explain what
this means in our setting, recall that the models are Kripke structures and that
the formulas are interpreted on states of the Kripke structure. Therefore, we
can compute for any formula Φ and any Kripke structure K the set of statesJΦKK of K where Φ holds. If we change the structure K to KSx such that the
variable x holds in the states S ⊆ S, we obtain a so-called state transformer
by defining f(S) := JΦKKSx . Note that f is a function of type f : 2S → 2S .
S ⊆ S a fixpoint of this state transformer iff the condition S = f(S) holds. As
the set of all subsets 2S is ordered by the set inclusion, we can furthermore
talk about least and greatest fixpoints, and denote these as µx.Φ and νx.Φ,
respectively.

These observations showed the usefulness of fixpoint expressions and
stimulated the construction of fixpoint logics. In 1975, Kfoury and Park proved
that properties like termination and totality of programs can not be expressed
in first order logics [283] (see Section 6.2.2). For this reason, Park [397], Hitch-
cock and Park [247], and de Bakker and de Roever [142] introduced a least fix-
point operator to remedy these deficiencies. Emerson and Clarke showed in

26 1 Introduction

1980 [160] how fixpoints can be used to formulate correctness properties of
parallel programs. The resulting formal systems were powerful enough to
express properties like termination, liveness, and freedom from deadlocks or
starvation. Based on these forerunners, Pratt [413] and Kozen [288, 289] have
developed the propositional µ-calculus. This formalism is discussed in detail
in Chapter 3 of this book and we will see that it is a very powerful basis for
all other formalisms in this book. In particular, we will see in Section 3.8.3
that dynamic logics can be easily defined in terms of the µ-calculus.

In the early 1980s, it was not immediately clear, whether the propositional
µ-calculus was decidable. It should be noted that the compactness property
that is the reason for the semi-decidability of first order logic does neither
hold for propositional dynamic logic nor for the propositional µ-calculus.
In 1983-1984, Kozen [288, 289], Vardi and Wolper [499] developed exponen-
tial time decision procedures for fragments of Kozen’s µ-calculus. In 1983,
Kozen and Parikh [290] and independently, Niwiński showed that the satis-
fiability problem of µ-calculus formulas can be reduced to the second order
theory of n successors (SnS). By Rabin’s results [418] (Rabin has proved the
decidability of SnS), a first decision procedure was obtained for the proposi-
tional µ-calculus. However, like Streett and Emerson’s decision procedure of
1984 [477], its runtime complexity was nonelementary, which means that the
runtime can not be bound by a finite number of exponential nestings. Bet-
ter decision procedures were found afterwards: Streett and Emerson found,
in 1989 [478], a triple exponential time decision procedure for the proposi-
tional µ-calculus. Based on further improvements for (1) determinizing ω-
automata in exponential time by Safra’s construction (cf. Definition 4.29),
and (2) checking the emptiness of ω-automata on trees in exponential time
[165, 168, 304, 409] this was reduced to a single exponential time decision
procedure (cf. Appendix B.3). The decidability and complexity of the exten-
sion to past time modalities was finally shown by Vardi [430, 496] in 1998.

Beneath the test for satisfiability, the evaluation of a given µ-calculus for-
mula in a given Kripke structure is of interest, i.e., the model checking pro-
blem of the µ-calculus. In particular, the verification problem can be reduced to
such model checking problems. In general, one distinguishes between local
and global approaches. Global approaches aim at computing the set of states
where the formula holds, while local approaches only try to check whether
the formula holds in a particular state or not. In general, local model check-
ing approaches may be more efficient than global ones, since the validity in
a given state can possibly be answered by considering only a part of the en-
tire state set. In the worst case however, the same complexity is reached as
in global approaches. Global approaches, on the other hand, have the ad-
vantage that they can make use of a breadth-first search which can be very
efficiently implemented by means of symbolic traversals with binary deci-
sion diagrams [44, 88]. Therefore, global approaches can cope with very large
structures, i.e., structures with up to 10100 states.

1.2 Genealogy of Formal Verification 27

A first model checking procedure, given by Emerson and Lei in 1986

[174], runs in time O
(
|K| (|S| |Φ|)ad(Φ)+1

)
, where |S| is the number of states,

|K| is the size of the Kripke structure (maximum of transitions and states),
and ad(Φ) is the number of alternating nestings of fixpoint operators (see
page 116). In 1991, Cleaveland and Steffen [118, 119] presented a sophisti-
cated model checking procedure for the alternation free µ-calculus (this is
the set of µ-calculus formulas with ad(Φ) ≤ 1) that runs in time O (|K| |Φ|)
and therefore improved the previous result. Therefore, the alternation-free
µ-calculus is a promising language for the automated verification since it has
very efficient model checking procedures. Cleaveland, Klein, and Steffen ex-
tended their model checking procedure afterwards to formulas of arbitrary

alternation depth and obtained a runtime of order O
((

1
d |S| |Φ|

)d−1 |K| |Φ|
)

[116] with d := ad(Φ).
In 1993, Emerson, Jutla and Sistla [169] presented some more fragments of

the µ-calculus that can be checked in time O
(
|K| |Φ|2

)
, i.e, linear in terms of

the system’s size and quadratic in terms of the length of the formula. As the
system’s size is usually the limiting factor, this is still an acceptable result. In
1994, Long, Browne, Clarke, Jha, and Marrero showed that the previous re-

sults on µ-calculus model checking can be improved to O
(
(|S| |Φ|)

d
2 |K| |Φ|

)
[333]. We will give proofs for these results in Chapter 3.

Local model checking procedures (see Appendix B) for the µ-calculus
have been given by Stirling and Walker [471, 472] (1989-1991), Cleaveland
[115] (1989), and Bradfield and Stirling [67] (1992). Bradfield [63] also dis-
cusses model checking procedures for infinite state spaces.

The µ-calculus is of particular interest for the complexity theory, since the
model checking problem of the µ-calculus is known to be in NP and also in
the complement coNP [168–170], as shown by Emerson, Jutla and Sistla in
1993. This means that there is a nondeterministic procedure that can check
µ-calculus formulas in polynomial time. There are very few problems that
belong to NP ∩ coNP for which no polynomial deterministic procedure is
known. The model checking problem for the µ-calculus is one of them. The
result was even refined to membership in UP ∩ coUP by Jurdziński in 1998
[270].

Another question related to the alternation depth was independently
solved by Bradfield [64, 65] and Lenzi [321] in 1996. They proved that the
alternation hierarchy of the µ-calculus is strict, i.e., for every number n, there
are µ-calculus formulas of alternation depth nwhich can not be expressed by
µ-calculus formulas of lower alternation depth. All currently known model
checking procedures are, however, exponential in the alternation depth.

The research on efficient decision procedures for the µ-calculus is still not
complete. In particular, it is not clear whether a polynomial model checking
procedure exists or not, although the existence of a polynomial algorithm is
unlikely. Moreover, efficient decision procedures for the µ-calculus are im-

28 1 Introduction

portant, since we will see throughout the book that most formalisms can be
translated to the µ-calculus.

1.2.5 Temporal Logics

µ-calculus formulas are quite hard to understand, in particular when inter-
dependent fixpoints are nested. For this reason, there is a need for more read-
able specification languages. Special modal logics have been developed with
the view that the change from one state to another requires one unit of time
by Prior in 1957 [416, 417]. Therefore, the resulting logics are called tempo-
ral logics. Beneath the simple next-time operator, which we discussed in the
previous section, temporal logics provide further temporal operators for de-
scribing complex temporal properties. The most important temporal opera-
tor is the U operator that has the following meaning: [ϕ U ψ] holds if there is
a point of time in the future where ψ holds and up to this point the condition
ϕ holds. Other temporal operators are G and F with the following meaning:
Gϕ states that ϕ must always hold, and Fϕ states that ϕ must hold at least
once. The next time operator is usually written as X, so that Xϕ means that ϕ
holds at the next point of time. Note here that all mentioned temporal oper-
ators do refer to a particular computation of a system, i.e., to a path through
the Kripke structure.

From the viewpoint of temporal operators, Kamp [274] used, in 1968, a
combined form of the U and the X operator, which we denote as XU. The
operator is defined as [ϕ XU ψ] := X [ϕ U ψ], i.e., it behaves like U except that
the present point of time is ignored. Moreover, Kamp considered the corre-
sponding past-time operator: [ϕ

←−
XU ψ] holds iff there was a point of time

in the past, where ψ held and since then ϕ holds up to this point. Kamp
proved that XU is able to express all previously mentioned future tempo-
ral operators and is strictly more expressive than the temporal operators G
and F (see page 289). Kamp also proved that his temporal logic is as expres-
sive as the first order theory of linear order (see Section 6.4). The same was
proved [203] in 1980 for the future time fragment of the logic by Gabbay,
Pnueli, Shelah and Stavi so that past time operators have been viewed as un-
necessary since then. However, in 1985, Lichtenstein, Pnueli, and Zuck [326]
reintroduced past operators for reasons of clear and uniform specifications.
Laroussinie and Schnoebelen, also favored past operators for sake of simple
and succinct specifications [315, 316, 355, 443] (for example: ‘when an acci-
dent happens, then a mistake is made before hand’). Further operators, such
as the X operator, the precede operator, and the weak U operator were intro-
duced by Manna and Pnueli in 1979 and 1982 [343, 345, 346]. We will discuss
these operators in Chapter 5.

We have already remarked that temporal operators consider a particu-
lar computation of a system, i.e., a path through a Kripke structure. In 1980,
Emerson and Clarke [160], and in 1981, Ben-Ari, Manna and Pnueli [36] ex-
plicitly used, for the first time, the path quantifiers E and A to quantify over

1.2 Genealogy of Formal Verification 29

computation paths of a particular state. Hence, EΦ holds in a state of a Kripke
structure iff at least one infinite computation path starts in that state that sat-
isfies Φ. Analogously AΦ holds in a state iff all infinite computation paths
that start in that state satisfy Φ. If a temporal logic provides these path quan-
tifiers, one usually says that the temporal logic is a branching time temporal
logic, otherwise it is called a linear time temporal logic. This is motivated by
the fact that the use of a path quantifier allows branching to another path
when the formula is evaluated along a certain path. Hence, these formulas
can state properties about the ‘branching behavior’ of a system, which is not
possible for linear time temporal logics. The linear time temporal logic with
the temporal operators X and U is usually denoted as LTL (we will call it
LTLp). By Kamp’s result, the temporal operators G and F, and many more
can be defined, since this set of operators is already expressively complete
w.r.t. the monadic first order theory of linear orders MFO<. We prove this in
Section 6.4.

The branching time temporal logic given by Ben-Ari, Manna and Pnueli
in 1981 was called UB and is discussed in Chapter 5. In the same year, Emer-
son and Clarke [160, 161] pointed out that some forms of temporal logic
formulas can be directly interpreted as fixpoint formulas of µ-calculus and
therefore introduced the temporal logic CTL as a macro language of a frag-
ment of the alternation-free µ-calculus. CTL consists of macro operators that
are formed by coupling path quantifiers and temporal operators in pairs.
This however makes it hard to express complex temporal properties for one
computation path since each temporal operator must be preceded by a path
quantifier that has the freedom to choose a new path for its evaluation.

The following decade saw an extensive debate [163, 172, 310, 324, 497] on
whether the branching time logic CTL or the linear time temporal logic LTL
is more suited for the specification and verification of finite state systems.
In general, LTL specifications tend to be more readable than CTL specifica-
tions, since LTL directly allows the formalization of properties with more
than one event, as temporal operators may be nested arbitrarily. For exam-
ple, the property ‘a has to hold until b holds the second time’ can be ex-
pressed in LTL as [a U (a ∧ b ∧ X [a U b])]. In 1985, Lichtenstein and Pnueli
presented [324] a model checking procedure for temporal logic that runs in
time O(|K| 2c|Φ|) for some constant c > 0. They argued that specifications
Φ are rather short in comparison to the size of the model and that therefore
their decision procedure is of practical use. In 1986, Clarke, Emerson, and
Sistla gave a model checking procedure for CTL that runs in time O(|K| |Φ|)
[103] which was a strong argument for the use of CTL.

However, this good theoretical result need not necessarily have led to ver-
ification tools that were able to verify large systems. In fact, first implemen-
tations were only able to handle systems with a thousand states. The break-
through of the CTL model checking procedures was achieved with the devel-
opment of efficient data structures for symbolically traversing the structure.
These symbolic model checking procedures are based on manipulating Boolean

30 1 Introduction

functions that are stored as binary decision diagrams (BDDs) [74] (cf. Ap-
pendix A). The application of these data structures in the model checking
procedures is as follows: The states of the Kripke structures are encoded by
a couple of state variables q1, . . . , qn, and hence, the transition relation can
be described as a Boolean formula in q1, . . . , qn and corresponding variables
q′1, . . . , q′n for the next state. This description of the structure can then be ef-
ficiently stored as a BDD, as can the sets of states of the structure. As the
evaluation of the temporal logic formula simply consists of some fixpoint it-
erations over such sets of states, the entire model checking procedure can be
implemented with BDDs. Note that a structure with n state variables may
have 2n reachable states. Hence, small propositional formulas can encode
large structures. In particular, note that if all the 2n states were connected
with each other, the transition relation would be simply represented by the
formula 1 (denoting truth). The same holds for sets of states.

Symbolic model checking was introduced by Burch, Clarke, McMillan,
Dill, Hwang in 1990 [87–89], and independently in the same year by Berthet,
Coudert, and Madre [44]. The use of symbolic model checking had finally
led to the breakthrough in the verification of finite state systems and allowed
the checking of systems with more than 1020 states. For this reason, symbolic
CTL model checking still plays a dominant role, and verification tools such
as SMV [360] and VIS [69] have successfully verified lots of systems, includ-
ing the alternating bit protocol [103], traffic light controllers [71], DMA con-
trollers [360], the Gigamax cache coherence protocol [360], and the Futurebus
cache coherence protocol [106].

A major drawback of CTL is however its limited expressiveness: In par-
ticular, CTL can not express fairness. Therefore, extensions of CTL have been
defined which augment the temporal operators of CTL by additional fairness
constraints. In [103], it was shown that model checking procedures of poly-
nomial runtime can be obtained for the extension of fairness constraints, and
the procedures would still require polynomial runtime in terms of the size of
the structure.

Nevertheless, the expressiveness, and even worse, the readability of CTL
is not satisfactory. Therefore, the search continued for more powerful tem-
poral logics that could be efficiently checked by symbolic model checking.
Emerson and Halpern therefore introduced the temporal logic CTL∗ in [163]
as a superset of CTL and LTL, in that path quantifiers may be applied to every
subformula. Emerson and Lei [172, 176] then showed that any model check-
ing procedure for LTL can be transformed to a model checking procedure for
CTL∗ with roughly the same complexity. Therefore, there is no additional cost
when path quantifiers are added to LTL. Expressivenesses and complexities
of several temporal logics were investigated by Emerson and Halpern [162]
in 1985, and, in particular for CTL∗ by Emerson and Jutla in [165]. It turned
out that both LTL and CTL∗ model checking problems are PSPACE-complete.
Moreover, neither LTL nor CTL∗ can be directly checked by symbolic model

1.2 Genealogy of Formal Verification 31

checking (however, as we will discuss below, both can be translated to the
µ-calculus which can be checked by symbolic model checking).

Recently, some new results have been added to the discussion. In 1994,
Bernholtz and Grumberg presented a temporal logic CTL2 that allows two
nested temporal operators after a path quantifier. They showed that CTL2

can still be checked in polynomial time. In 1997, Schneider presented the
temporal logic LeftCTL∗ that allows arbitrary deep nesting of temporal op-
erators on one argument of the binary temporal operators without neces-
sarily using path quantifiers. LeftCTL∗ can be translated to the alternation-
free µ-calculus, and in particular, to CTL. The size of the obtained CTL for-
mula for a given LeftCTL∗ formula Φ is thereby bound by O(|Φ| 22|Φ|), so
that a LeftCTL∗ model checking procedure with runtime O(|K| |Φ| 22|Φ|) is
obtained. Note that the blow-up shows that there are LeftCTL∗ formulas that
are exponentially more succinct than corresponding CTL formulas, and are
therefore more readable.

In fact, from a result of Wilke [513], it follows that at least an exponen-
tial lower bound is required for this translation. Adler and Immerman [4]
improved this result in 2001 to a lower bound |ϕ|!. In fact, the translation of
LeftCTL∗ to exponentially sized ‘CTL’ formulas given in Section 5.3.5 trans-
lates the formulas to CTL formulas where common subterms are shared.
For this reason only a blow-up O(|Φ| 22|Φ|) is sufficient. Recently, Johannsen
and Lange [266] proved that satisfiability checking of CTL+ is 2EXPTIME-
complete. As satisfiability checking of CTL is only EXPTIME-complete (as
well as the sat-problem of the µ-calculus), it follows that every translation
from CTL+ to CTL (or to the µ-calculus) must necessarily have an exponen-
tial blow-up.

LeftCTL∗ specifications tend to be as readable as LTL specifications (for
the same reasons), but can be automatically translated to CTL, so that one
benefits from the already existing efficient model checking tools for CTL. As
an example, consider the LeftCTL∗ formula E[Fa ∧ FGb] that states that there
is a path where a holds at least once and after some time b always holds.
This formula is translated to the following equivalent, but less readable CTL
formula:

EF[a ∧ EFEGb] ∨ EF [b U (a ∧ EGb)]

We will consider the translation from LeftCTL∗ to CTL in detail in Section
5.3.3 and 5.3.5. The expressiveness of LeftCTL∗ is the same as the expres-
siveness of the well-known logic CTL, which suffices for most applications.
Nevertheless, we will also consider some extensions of LeftCTL∗. In particu-
lar, we will define a logic AFCTL∗ in Section 5.4.5. AFCTL∗ is strictly stronger
than LeftCTL∗ and CTL, but can still be translated to the alternation-free µ-
calculus.

The translations of AFCTL∗ and LeftCTL∗ to the µ-calculus are very dif-
ferent. While we will translate LeftCTL∗ directly to the alternation-free µ-
calculus (Section 5.3.5), our translation of AFCTL∗ is indirect via a transla-

32 1 Introduction

tion to ω-automata (see Chapter 4 and Section 5.4). For this reason, the logic
LeftCTL∗ is still interesting on its own. The construction of the logic AFCTL∗

is related to a result of Kupferman and Vardi [303] who characterized the
intersection between the alternation-free µ-calculus and LTL. We will out-
line the relationship in Section 5.4.5. Therefore, the definition of the temporal
logics LeftCTL∗ and AFCTL∗ is motivated by the well-known hierarchies of
ω-automata and µ-calculus. It is thus of crucial importance that a good com-
promise between the expressiveness and the efficiency of the logics is found.
In general, the stronger the expressiveness of a logic, the higher the complex-
ity of its verification procedures.

In general, the expressiveness of temporal logics is well understood
(cf. Theorem 5.76 on page 382). Kamp has already proved in 1968 that tem-
poral logic is expressively complete w.r.t. the monadic first order theories
of linear order MFO<. In 1971, McNaughton and Papert [364] characterized
the corresponding subset of ω-automata whose expressiveness matches that
of temporal logics and also introduced star-free regular expressions for the
characterization of this class. As temporal logics are less expressive than ω-
automata, there are properties that can not be expressed by temporal logics,
but with ω-automata. As an example, Wolper [519] mentioned the property
that a variable a should hold for at least all even points of time. As these
properties can, however, be expressed as µ-calculus formulas and also as ω-
automata, Wolper suggested to extend temporal logic by operators based on
regular languages [523]. Wolper also proposed a deductive proof system for
his logic, which was shown to be complete, after some corrections, by Ban-
ieqbal and Barringer in 1986 [28]. The branching time analog was considered
by Vardi and Wolper [500] in 1984. Wolper’s extension had also some rela-
tionship to quantified temporal logic which was considered in [460, 519], and
its complexity has been analyzed by Sistla, Vardi and Wolper in 1987 [459].

We conclude this section with some further historical remarks and a list-
ing of temporal logics that are not considered in this book. First applications
of temporal logics for the specification of computer systems were given in
1977 by Kröger [294] and Pnueli [407], who used temporal logics for the speci-
fication of sequential and concurrent program properties, respectively. Other
authors that used temporal logics around the early 1980s as specification lan-
guage were Hailpern [228], Owicki [229], and Lamport [311], and Manna and
Pnueli [344, 346, 347]. Bochmann [53] was probably the first who specified
the behavior of hardware circuits by temporal logics. Using temporal logic,
Malachi and Owicki specified ‘self-timed systems’ [340] in 1981, and Manna
and Wolper described the synchronization of communication processes by
temporal logics in 1984 [353]. There are many more of these early applica-
tions that are not listed.

New directions of research mainly consider the state-explosion problem,
which roughly means that the number of states that must be considered for
verification grows exponentially with the size of the system. Promising re-
sults has been obtained by (data) abstraction (see Appendix C.4) by Clarke,

1.2 Genealogy of Formal Verification 33

Grumberg, and Long [108, 109, 332] and also by Graf, Loiseaux, Sifakis, Boua-
jjani, and Bensalem [222, 331]. Other methods of solving the state explosion
problem have been considered in the previous decade. Among them are re-
duction by exploiting symmetry of the structures [113, 178, 180, 181, 260] (see
Appendix C.5), partial order reductions [400] that abstract away from differ-
ent interleavings of asynchronous threads, on-the-fly methods [208], as well
as combinations of these approaches [164].

So far, we have only discussed temporal logics whose semantics are based
on discrete Kripke structures. However, there are also temporal logics that
have different semantics. We will not consider these logics in this book, but
list at least some of them to conclude this section. For example, there are
real-time temporal logics which are either based on a continuous time model
[9, 30, 90, 91] or on a discrete time model where transitions may require more
than one unit of time [10, 11, 95, 238, 243, 316, 329, 330, 392, 427]. Furthermore,
there are other variants such as first order temporal logics [1, 345], partial
order temporal logics [406], and interval temporal logics [377, 450].

The semantics of the temporal interval logic ITL [232] maps sequences of
states to variables, so that the truth value of a variable does not simply de-
pend on a state of the Kripke structure, but on a sequence of states. The im-
portant operator of ITL is the chop operator ‘;’ that has the following mean-
ing: ϕ;ψ holds on a sequence of states s0, . . . , sn iff this sequence can be split
into two parts s0, . . . , si and si, . . . , sn such that ϕ holds on s0, . . . , si and
ψ holds on si, . . . , sn. Using this chop operator, many other interval based
temporal operators can be described. However, the major drawback of ITL
is that the satisfiability is no longer decidable [232]. Moszkowski [378, 379]
used ITL to establish executable specifications and in this way verified entire
arithmetic-logic units of microprocessors at the transistor level. Leeser [319]
extended Moszkowski’s model by setup and hold times and used temporal
PROLOG to also verify an arithmetic-logic unit at transistor level.

1.2.6 Decidable Theories and ω-Automata

A lot of decision procedures for special logics have been developed inde-
pendently of the research in the verification of computer systems and the
development of automated theorem proving procedures for first and higher
order predicate logics. Based on the disappointing result of Gödel’s incom-
pleteness theorem in 1931 and the undecidability theorem of first order logic
of Church and Turing in 1936/1937 [99, 492], a considerable amount of work
has been put on the investigation of decidable mathematical theories.

The first investigations to find decidable fragments were to study quan-
tifier prefix classes (see Section 6.2.3). This means that first order formulas
of the form Θ1x1. . . . Θnxn.ϕ with Θi ∈ {∀, ∃} and quantifier-free ϕ are con-
sidered with restricted patterns of quantifiers Θi. For example, Bernays and
Schönfinkel [39], and Ramsey [422] showed that the sat-problem of the for-
mulas where only one change from ∃ to ∀ quantifiers is allowed, i.e., the frag-

34 1 Introduction

ment FO(∃∗∀∗), is decidable. Other fragments with decidable sat-problem
have been found by Ackermann [3] (FO(∃∗∀∃∗)) and Gödel, Kalmár, and
Schütte [213, 273, 448] (FO(∃∗∀2∃∗)). These are the maximal decidable classes,
since there are formulas with quantifier prefixes ∀3∃ (Surányi [479], 1959) and
∀∃∀ (Kahr, Wang, and Moore [272], 1962) that can describe undecidable prob-
lems. Hence, the prefix classes FO(α) were completely classified in 1962 for
first order logic without equality. Only the result for FO(∃∗∀2∃∗) with equal-
ity was missing, that has been answered by Goldfarb [214] in 1984 to the neg-
ative. Besides the quantifier prefix classes, also restrictions to a finite number
of variables have been considered. It is remarkable that first order logic with
only two variables, but arbitrary quantification, is decidable [218, 219, 375],
which has been essentially shown by Mortimer in 1975. As modal logic can
be embedded in predicate logic with only two variables, Vardi posed the
question [495] whether this could be a reason for the robust decidability of
modal logic. Section 6.2.3 gives more details on these classes, and for further
reading, we refer to the original literature, and excellent books on this topic
like [56, 146, 323].

Many other decidable theories have been considered, in particular frag-
ments of arithmetic such as Presburger arithmetic [415] or Skolem arithmetic,
and interesting decision procedures have been found for them [83, 84, 336,
446, 447, 521, 522]. Furthermore, the monadic second order theory of one
successor S1S [80, 455, 486], which is equivalent to the monadic second or-
der theory of linear orders MSO< is another decidable theory that subsumes
Presburger arithmetic (see page 433).

We have to explain, what a ‘theory’ in this sense is. We have already ex-
plained that the domain D that is used for interpreting the variables of pred-
icate logic is chosen arbitrarily for the interpretation. For special theories,
one accepts certain axioms which are formulas that are assumed to be valid.
Hence, the set of domains is thereby restricted to those domains that satisfy
these axioms. The theory that is induced by these axioms is then the set of
formulas that can be derived from this set3.

For example, to only consider domains with more than n elements, we
could establish the axiom ∃x1. . . . ∃xn.

∧n
i=1

∧n
j=1,j 6=i .xi 6= xj . As another ex-

ample, one could set up the following axioms to specify that ≤ is a total
order:

Reflexivity: ∀x. x ≤ x
Antisymmetry: ∀x.∀y. x ≤ y ∧ y ≤ x→ x

.= y
Transitivity: ∀x.∀y.∀z. x ≤ y ∧ y ≤ z → x ≤ z

Totality: ∀x.∀y. x ≤ y ∨ y ≤ x
3 As first order logic has complete proof procedures, this is the same as the set of

formulas that are logical consequences of the axioms. For higher order logic, which
is not complete, we must distinguish between theories that are derived by a special
calculus and others that are obtained by logical consequence.

1.2 Genealogy of Formal Verification 35

All first order formulas that can be derived from the above set of axioms
form the first order theory of total orders. However, for the monadic first and
second order theories of linear order MFO< and MSO<, the domain is further
restricted such that the elements are lined up in a chain. Hence, the domain
is either a finite string, or isomorphic to the natural or the integer numbers.
To axiomatize this, one has to add the Peano axioms (see page 405), which
requires second order logic.

These theories are important for the formalisms we will consider in this
book. However, at the beginning of the research, MSO< has not been dis-
cussed. Instead, an equivalent variant of the logic has been considered, which
is called the ‘monadic second order logic of one successor’ S1S. Note, how-
ever, that although the second order logics MSO< and S1S are equally ex-
pressive, this is not the case for their first order fragments. Indeed, MFO< is
strictly more expressive than the first order fragment of S1S.

In 1960, J.R. Büchi succeeded in proving the decidability of S1S by re-
ducing S1S to ω-automata. These ω-automata differ from classical finite state
automata as introduced by Kleene4 in 1956 [285] as follows: Kleene’s finite
state automata are used to decide whether a finite word belongs to a regular
language or not. This is done by an automaton by reading the word letter by
letter, and possibly changing the internal state each time a letter of the word
is read. A word is accepted, iff the automaton is in one of its designated final
states after reading the entire word.

In contrast to that, ω-automata accept or reject infinite words, and there-
fore their acceptance condition must be defined differently. A natural con-
dition imposed by Büchi was that a word should be accepted if there is a
run over this word that reaches at least one of the designated states infinitely
often. As this acceptance condition has been introduced by Büchi, these au-
tomata are nowadays called Büchi automata. A lot of other variants of ω-
automata were defined after Büchi’s pioneering work including Muller au-
tomata [363, 380] (1963), Rabin automata [363, 418] (1969), Streett automata
[476] (1982), and Parity automata [376] (1984). The other kinds of ω-automata
have been introduced mainly for one reason: while for finite automata on fi-
nite words, it is possible to construct for any nondeterministic automaton an
equivalent deterministic one, this does not hold for Büchi automata. How-
ever, for Muller, Rabin, Streett, and Parity automata this can be achieved.
The complexity for determinizing these ω-automata automata is higher than
for automata on finite words, although still exponential: While for the lat-
ter 2n states are sufficient, the optimal construction of a deterministic Rabin
automaton from a Büchi automaton requires 2O(n log(n)) states (where n is
the number of states of the given automaton). We will see that the automa-
ton classes form a strict hierarchy that has moreover a strong relationship to
4 Kleene’s paper was actually a mathematical reworking of the ideas of W. McCul-

loch and W. Pitts [359], who, in 1943, had presented a logical model for the behav-
ior of nerve systems that is in principle a finite automaton.

36 1 Introduction

the Borel hierarchy known in topology. Details on the different kinds of ω-
automata, the automaton hierarchy, and various translation procedures be-
tween ω-automata are given in detail in Chapter 4. We will also outline the
relationship between algebraic structures and automata, and will character-
ize the important class of noncounting automata by algebraic properties.

The translation of S1S or MSO< formulas of length n to equivalent Büchi
automata is nonelementary. This means that the procedure runs in a time
that can not be bound by a finite nesting of exponentials and has therefore
been considered to be useless for a long time. However, recently the proce-
dure has been implemented and been successfully applied to the verifica-
tion of generic hardware circuits [31, 240, 265, 278, 442]. A possible future
direction of research is therefore to develop decision procedures for timing
diagrams which can be understood as graphical representations of S1S or
MSO< formulas. We consider translations between S1S and MSO<, and also
to equivalent ω-automata in Chapter 6.

ω-automata are strongly related to temporal logic, in that they also es-
tablish a temporal relationship on the input sequences they accept. There-
fore, translations from temporal logics to ω-automata have been considered,
mainly for the construction of efficient decision procedures for temporal lo-
gics. We have already mentioned that Wolper [523] suggested the use of ω-
automata as special temporal operators to extend the expressiveness of tem-
poral logics. We will consider such a branching time temporal logic Lω in
detail in Chapter 4. A basic translation from linear time temporal logic to
Lω is then considered in Section 5.4. It is remarkable that the translation can
be performed in linear time w.r.t. to the length of the given temporal logic
formula, when a symbolic description of the automaton is derived (that can
be directly used for symbolic model checking). We will study this transla-
tion procedure in detail, and will show some novel improvements. These
improvements will then lead to the definition of temporal logic classes TLκ
in correspondence with the automaton hierarchy: We define for any automa-
ton class κ, a logic TLκ that can be translated to the automata in the class κ.
We will also prove the completeness of the logics TLκ, which follows from
related results of Manna and Pnueli [350–352].

Moreover, we will see in Chapter 6 that both S1S and MSO< can be eas-
ily translated to quantified temporal logic which can in turn be converted
to ω-automata with a nonelementary translation procedure. Finally, we will
prove in Chapter 6 Kamp’s result that temporal logic is equal expressive as
MFO<, the first order fragment of of MSO<. In Section 5.5.1, we will show
how noncounting automata can be translated to temporal logic, the converse
is simple. Hence, robust characterizations of all of these logics exists.

Therefore,ω-automata have served as a basic formalism whose decidabil-
ity and the corresponding complexity is well-known. In order to prove the
decidability of a theory such as MSO<, one simply has to give a translation to
equivalent ω-automata. To determine the complexity, one simply has to add

1.2 Genealogy of Formal Verification 37

the complexity of the translation procedure to the complexity of the remain-
ing decision procedure for the obtained ω-automaton.

We have also seen that the µ-calculus is a ‘basic machinery’ that can be
used as a foundation for other formalisms. It is therefore natural to ask how
ω-automata and µ-calculus are related to each other. However, this relation-
ship has been considered relatively late. Thomas showed in 1988 [485] that
the temporal logic that is obtained by using ω-automata as temporal opera-
tors is strictly less expressive than the second order theory of two successors
(S2S). In contrast to S1S, where only one successor is available, the monadic
second order logic of two successors, S2S has two successors. For this reason,
its domains are not lined up, but form trees that may be finite or infinite. In
particular, domains for S2S are binary trees, and for SnS trees of branching
degree n. As Niwiński [389] has shown that S2S has the same expressiveness
as the propositional µ-calculus, it follows that the µ-calculus is strictly more
expressive than this temporal logic.

The same result follows by translating Lω to the µ-calculus (see Sec-
tion 4.8). Such a translation procedure has been given by Dam in 1994 [135]
where a given Büchi automaton with n states is translated to an equivalent
µ-calculus formula of size 2O(n) and an alternation depth ≤ 2. By Bradfield’s
and Lenzi’s recent result (that the alternation hierarchy is strict), it thus fol-
lows that the µ-calculus is strictly more expressive than Lω. We will present
in Section 4.8 a translation procedure that constructs for given ω-automata
equivalent vectorized µ-calculus formulas of size O(n) with an alternation
depth ≤ 2. Using this translation, the decision procedures obtained from the
µ-calculus match the lower bounds of other decision procedures that directly
work on ω-automata. Hence, the µ-calculus is indeed a very expressive lan-
guage that can serve as a basic machinery for various problems.

If one restricts the consideration to single paths or linear time structures,
where each state has a unique successor state, it is interesting to note that
Lω and the µ-calculus become equal expressive. This shows that the addi-
tional expressiveness of the µ-calculus is due to statements on the branching
behavior of the structures: while any formula of Lω can only have a finite
number of nested E and A quantifiers, there are only finitely many choices of
taking a new path along a considered path. In contrast to that, the fixpoint
iterations for µ-calculus formulas can look arbitrarily deep in the branching
of the structure. We will explain this in more detail in Section 4.8.

The situation changes when ω-automata on infinite trees are considered.
Pioneering work of Rabin in 1969 [418] proved that the second order theory
of two successors (S2S) is decidable by reducing it to equivalent ω-automata
on infinite trees. Hence, this is a branching time analogon to Büchi’s result
of the equivalence of S1S and ω-automata on words. However, not all results
that hold for ω-automata on infinite words have corresponding results for
the tree automata. In particular, it can be shown that Rabin tree automata
are equal expressive as the µ-calculus (see Appendix B.3), but strictly more
expressive than Büchi tree automata.

38 1 Introduction

Due to lack of space, we will not consider ω-automata on infinite trees in
this book (apart from Appendix B.3), although their theory gives further in-
sights into the formalisms considered here. The interested reader is referred
to Thomas’ survey [486, 489] that contains many more references and the
new book of Grädel, Thomas, and Wilke [221]. Also, we will not consider
alternating ω-automata [82, 96, 374] which are a generalization of nondeter-
ministic automata. However, the symbolic descriptions that we use to embed
automata in temporal logic are somehow related to alternating automata.

1.2.7 Summary

As can be seen, a plethora of formalisms for the verification of programs,
and, in particular, for the verification of concurrent programs has been pro-
posed. Up to now, their relationship is almost clear and for many differ-
ent formalisms we already know if translations between them exist and
how to translate them efficiently. In this book, the most important classical
formalisms, namely µ-calculus, ω-automata, temporal logics, and predicate
logic are considered and their relationship is outlined in detail. A special em-
phasis is thereby the existence of algorithms either for translation between
these formalisms or for the implementation of decision procedures for the
formalisms.

In particular, two basic machineries can be selected for the verification of
most properties: we can reduce the property to an ω-automaton problem, or
we could use the µ-calculus as a basic formalism. We have already discussed
that Lω can be translated to the µ-calculus, so the decision procedure for
the µ-calculus can be used to solve these problems with essentially the same
complexity.

However, this complexity is determined in a theoretical manner. If the
procedures are implemented, they behave rather differently. Therefore, we
consider both solutions in the following: Given the ω-automaton A, a Kripke
structure K and a state s of the Kripke structure, suppose we have to decide
whether EA holds in s or not, i.e., we have to solve the model checking pro-
blem (K, s) |= EA. Then, as a first solution, we translate EA to an equivalent
µ-calculus formula ΦEA, and check the equivalent problem (K, s) |= ΦEA by
means of the model checking procedures for the µ-calculus. The second solu-
tion is to interpret the transition system of A as a Kripke structure Struct (A).
Hence, the problem can be reduced to check whether the product structure
K × Struct (A) contains a path that satisfies the acceptance condition of A5.

Both solutions have advantages and disadvantages: while the structure
Struct (A) can be symbolically represented, this is not the case for the for-
mula ΦEA, whose representation may therefore be exponentially larger than
that of Struct (A). On the other hand, the product structure K × Struct (A)
5 This is not quite correct, but we omit details here. Consider the discussion in Sec-

tion 4.8

1.2 Genealogy of Formal Verification 39

that must be considered in the ω-automaton based approach may suffer from
a state explosion, so that it may not be representable. However, this need
not necessarily be the case. In fact, many combinations of states of K and
Struct (A) are inconsistent and therefore do not occur in the product struc-
ture K × Struct (A). Hence, this structure may even be smaller than K. This
effect is best seen, when the automaton A is deterministic and does only ac-
cept a single input sequence. In this case, the structure K × Struct (A) will
also consist of only one path.

This effect is exploited in on-the-fly approaches that aim at construct-
ing the product structure K × Struct (A) in such a way that inconsistencies
between K and Struct (A) are detected as soon as possible. Hence, the ω-
automaton based approach may be much more efficient than the one ob-
tained by a translation to the µ-calculus. However, in some cases, there may
be not many inconsistencies, and therefore the structure K × Struct (A) may
really suffer from the state explosion. In these cases, the solution via the
translation to the µ-calculus will probably be more efficient. However, this
crucially depends on A and K, and can hardly be estimated before the com-
putations are actually performed.

Apart from the choice of a basic machinery, it is important to have dif-
ferent ways to specify a particular property. Some properties can be better
expressed by ω-automata, others better by temporal logics, and others even
directly in MSO<. For reasons of redundancy, it is also desirable that a prop-
erty is given in different formalisms, and additionally in natural language
to explain the essential idea of the specification (preciseness is not necessary,
and not even desired for the natural language description for that purpose).

The readability of specifications is a major issue. Considering the formalisms
in this light, the µ-calculus may only be seen as a basic machinery since its
formulas really tend to be unreadable. Therefore, specifications are rarely
given directly in the µ-calculus. Another issue that is related with the com-
plexity of the decision procedures and the expressiveness of a logic is how
succinct the formalisms are. For example, it has already been noted that the
translation from MSO< to Lω suffers from a nonelementary blow-up. This
means that there are formulas in MSO< that can express something that can
also be expressed in Lω, but with an enormous blow-up of the formula’s size.

This observation holds for many formalisms. For example, the tempo-
ral logic LeftCTL∗ is equally expressive as the temporal logic CTL. However,
the translation from LeftCTL∗ to CTL involves an exponential blow-up, so
that the model checking procedure for LeftCTL∗ runs in time O(|K| |Φ| 22|Φ|),
while the one for CTL runs in time O(|K| |Φ|). But is this an advantage or a
disadvantage of CTL? It can be shown that there are formulas in LeftCTL∗

that can only be expressed by CTL formulas whose size can not be bound
by a polynomial [4, 266, 513]. To illustrate this, simply take a NP-complete
problem and describe it with a polynomially sized LeftCTL∗ formula (see
Section 5.2.2). As the model checking procedure for CTL runs in polynomial
time, the existence of polynomially sized CTL formulas for that LeftCTL∗ for-

40 1 Introduction

mula would imply P = NP, which probably does not hold (this is to date an
unsolved problem). The necessity of the exponential blow-up for the transla-
tion from LeftCTL∗ to CTL follows from results given in [4, 266, 513].

Hence, the complexity of the decision procedures for the formalisms
should be taken with some care as an argument for or against a formalism.
In fact, the complexity of a given verification problem is more inherent to the
problem itself than to the formalism in which we describe it. Therefore, the
readability should be of more interest. However, readability is a subjective
issue and can not be quantified in a reasonable manner, unless by the length
of the formulas. Therefore, there are good reasons to consider all the mentioned for-
malisms, and to use whichever one best suits the problem. Succinctness can also be
viewed as the reciprocal of the complexity of the decision procedure. Hence,
we may say that LeftCTL∗ is exponentially more succinct than CTL, or that
MSO< is nonelementarily more succinct than ω-automata or temporal logic.

1.3 Outline of the Book

There is still no complete survey of all formal methods and their relation-
ships, so we have to refer instead to a couple of surveys and books such as
[158, 223, 486]. Clarke and Wing give an interesting survey on some formal
methods and examples in [114]. Verification tools that are particularly well-
suited for hardware verification are presented Kropf in [295] and also in the
new book [38]. Furthermore, a good introductory textbook to model check-
ing is given by Clarke, Grumberg, and Peled in [112].

The contents of this book is a self-contained and detailed treatment of the
basic ‘finite-state’ formalisms, namely the µ-calculus, ω-automata, temporal
logics, and (monadic) predicate logics. We describe translation procedures
for any of these formalisms whenever they exist, and compare the expres-
sivenesses and complexities of these logics. We will see that the µ-calculus
is the most expressive logic of the ones mentioned, and that ω-automata
and the second order theory of linear order MSO< are equally expressive.
Moreover, temporal logics are strictly less expressive than ω-automata, and
equally expressive than the monadic first order theory of linear order MFO<.
It is also well-known which subset of the ω-automata corresponds with the
temporal logic formulas, namely the noncounting ω-automata, which fur-
thermore correspond with star-free ω-regular expressions (cf. page 382). We
will refine these relationships by considering many sublogics, such as µ-
calculus formulas of a certain alternation depth, ω-automata with special ac-
ceptance conditions, and many temporal logics. We will consider in detail
how these fragments are related to each other. In particular, we will con-
sider the already mentioned temporal logics LeftCTL∗ and AFCTL∗ that can
be translated to the alternation-free µ-calculus. Moreover, we consider a hier-
archy of temporal logics TLκ that corresponds with the automaton hierarchy
(i.e., the Borel hierarchy).

1.3 Outline of the Book 41

For a comparison of these formalisms, we will combine them to obtain a
unified specification languageLspec that is essentially the union of µ-calculus,
ω-automata, and temporal logics (formulas of different formalisms may how-
ever be nested). The semantics ofLspec is defined over finite Kripke structures
that are general models for reactive finite state systems.

Beyond the translation of the various formalisms into each other, and
proving the expressiveness results of these formalisms, we will also consider
verification procedures for these logics. For this reason, we will use both the
µ-calculus and ω-automata as basic mechanisms. In particular, we also show
how to translate ω-automata to µ-calculus so that µ-calculus can be used as
our single basic decision procedure. However, as we have already discussed,
the decision procedures for ω-automata have some advantages for practi-
cal usage. Therefore, both decision procedures, i.e., those for µ-calculus and
those for ω-automata, have their own merits.

It has to be emphasized that the book is almost self-contained. Most of
the theorems are given with detailed proofs so that the reader will find ex-
planations in any detail that he or she wants. However, those who are only
interested in the facts and do not want to find out (at least in a first reading)
why these facts hold, may skip the proofs.

The outline of the book is as follows: in the next chapter, we define the
unified specification logic Lspec, its models, and its semantics. We will also
discuss some normal forms that will be used throughout the book. We will
also present the syntax and semantics of the vectorized µ-calculus. This chap-
ter is not meant for understanding the formalisms that are presented there in
terms of their syntax and semantics. It simply lists the basic definitions of
syntax and semantics of the different formalisms that are considered in more
detail in the following chapters of the book. However, it presents the theory
of Kripke structures, simulation and bisimulation relations, as well as prod-
ucts and quotients of Kripke structures that are fundamental constructions
used in verification.

Chapter 3 will then define the µ-calculus both in its basic form as well as
in its vectorized form. The vectorized form can be exponentially more suc-
cinct since it allows us to share common subformulas in equation systems
without representing them several times. Starting from the theory of lattices
and the fundamental theorem of Tarski and Knaster, we will develop efficient
model checking procedures for the µ-calculus that are to date the best known
algorithms to solve this problem. We will give detailed proofs and will de-
termine the runtime complexity of the discussed model checking procedures.
Appendix B discusses moreover local model checking procedures and deci-
sion procedures for the satisfiability of µ-calculus formulas. To this end, we
need ω-tree automata, which is a formalism that is not used elsewhere in
the book. At the end of Chapter 3, we consider reductions by (bi)simulation
relations and the relationship to dynamic logic and infinite games.

Chapter 4 considers ω-automata on words. In order to incorporate ω-
automata in our logic Lspec, we use symbolic descriptions of ω-automata.

42 1 Introduction

In these descriptions, the states are encoded by a finite number of Boolean
state variables. The initial states and the transition relation can then be given
by an almost propositional formula. In particular, we will define different
kinds of ω-automata, compute Boolean combinations of them and convert
different acceptance conditions into each other. Moreover, we consider their
expressiveness and therefore reveal the Borel hierarchy. It is straightforward
to define, in Section 4.8, a branching time temporal logic Lω whose temporal
operators are ω-automata. We will present transformations between differ-
ent kinds of ω-automata and also procedures to check if such a reduction
is possible. In Section 4.7, we explain the relationship between finite state
automata and monoids. In particular, we consider aperiodic monoids and
noncounting automata. Furthermore, we consider the determinization of ω-
automata which will allow us to flatten nested expressions in Lω (however
with a nonelementary blow-up). Finally, we will discuss model checking pro-
cedures for our automaton based logic Lω in Section 4.8, and translations to
the µ-calculus.

Temporal logics are considered in Chapter 5. We will first consider well-
known temporal logics, including CTL, LTL, CTL∗, and some other variants
like CTL2 and the logic LeftCTL∗. We will show basic translation principles
in Section 5.3.3 and Section 5.3.4 that allow us to translate LeftCTL∗ to CTL.
We note that these principles are not restricted to LeftCTL∗, and can be ap-
plied to general CTL∗ formulas to reason about their equivalence, or to trans-
late temporal logic to the µ-calculus. Translations of CTL and LeftCTL∗ to
the µ-calculus are given in Section 5.3, and an optimized version is given
in Section 5.3.5 by directly translating to the vectorized µ-calculus. In Sec-
tion 5.4, we will consider the translation of temporal logics to ω-automata.
We start with a simple translation procedure and consider improvements
of it, which then lead to the definition of the temporal logic hierarchy (Sec-
tion 5.4.3). This hierarchy was investigated by Manna and Pnueli in [350–
352]. However, they only considered a restricted normal form of the logics
that we will discuss in Section 5.4.3. A novel contribution is the definition
of the logics TLκ [437] and the observation that the future time fragments of
these logics are expressively complete w.r.t. to the corresponding full logic
TLκ. This enables us to define, in Section 5.4.5, on page 373, the branching
time logic AFCTL∗ that corresponds with the set of CTL∗ formulas that can
be translated to the alternation-free µ-calculus. We will moreover present a
translation from AFCTL∗ to Lω that runs in linear time (note however the
symbolic representation of Lω). Section 5.5.1 considers then the relationship
between noncounting automata and temporal logic, and Section 5.5.2 shows
the completeness of the TLκ logics, because they have the separation prop-
erty (Section 5.5.3). In Section 5.6, we briefly consider the complexity of some
temporal logics.

Chapter 6 presents the relationship between ω-automata, temporal logics,
and (monadic) predicate logics. After listing basic results on first and second
order predicate logic, we list known results about decidable fragments of

1.3 Outline of the Book 43

first order logic. In Section 6.3, we prove Büchi’s result, i.e., the equal expres-
siveness of S1S, MSO< and ω-automata, and in Section 6.4, we prove Kamp’s
result, i.e., the equal expressiveness of MFO< and temporal logic. The equal
expressiveness between noncounting ω-automata and temporal logic is pre-
sented in Section 5.5.1. Hence, the book covers all relevant translation proce-
dures between different formalism used for the specification and verification
of reactive systems. Finally, we will give some conclusions in Chapter 7.

http://www.springer.com/978-3-540-00296-3

