
2
Probability

2.1. Examples of probability

We learned something about sets in Chapter 1; now we are going to measure
them. The most primitive way of measuring is to count the number, so we
will begin with such an example.

Example 1. In Example (a′) of §1.1, suppose that the number of rotten
apples is 28. This gives a measure to the set A described in (a′), called
its size and denoted by |A|. But it does not tell anything about the total
number of apples in the bushel, namely the size of the sample space Ω
given in Example (a). If we buy a bushel of apples we are more likely to be
concerned with the relative proportion of rotten ones in it rather than their
absolute number. Suppose then the total number is 550. If we now use the
letter P provisionarily for “proportion,” we can write this as follows:

P (A) =
|A|
|Ω| =

28
550

. (2.1.1)

Suppose next that we consider the set B of unripe apples in the same
bushel, whose number is 47. Then we have similarly

P (B) =
|B|
|Ω| =

47
550

.

It seems reasonable to suppose that an apple cannot be both rotten and
unripe (this is really a matter of definition of the two adjectives); then the
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2.1 Examples of probability 21

two sets are disjoint so their members do not overlap. Hence the number
of “rotten or unripe apples” is equal to the sum of the number of “rotten
apples” and the number of “unripe apples”: 28 + 47 = 75. This may be
written in symbols as:

|A + B| = |A| + |B|. (2.1.2)

If we now divide through by |Ω|, we obtain

P (A + B) = P (A) + P (B). (2.1.3)

On the other hand, if some apples can be rotten and unripe at the same
time, such as when worms got into green ones, then the equation (2.1.2)
must be replaced by an inequality:

|A ∪ B| ≤ |A| + |B|,

which leads to

P (A ∪ B) ≤ P (A) + P (B). (2.1.4)

Now what is the excess of |A|+ |B| over |A∪B|? It is precisely the number
of “rotten and unripe apples,” that is, |A ∩ B|. Thus

|A ∪ B| + |A ∩ B| = |A| + |B|,

which yields the pretty equation

P (A ∪ B) + P (A ∩ B) = P (A) + P (B). (2.1.5)

Example 2. A more sophisticated way of measuring a set is the area of a
plane set as in Examples (f) and (f′) of §1.1, or the volume of a solid. It
is said that the measurement of land areas was the origin of geometry and
trigonometry in ancient times. While the nomads were still counting on
their fingers and toes as in Example 1, the Chinese and Egyptians, among
other peoples, were subdividing their arable lands, measuring them in units
and keeping accounts of them on stone tablets or papyrus. This unit varied
a great deal from one civilization to another (who knows the conversion
rate of an acre into mou’s or hectares?). But again it is often the ratio
of two areas that concerns us as in the case of a wild shot that hits the
target board. The proportion of the area of a subset A to that of Ω may
be written, if we denote the area by the symbol | |:

P (A) =
|A|
|Ω| . (2.1.6)
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This means also that if we fix the unit so that the total area of Ω is 1
unit, then the area of A is equal to the fraction P (A) in this scale. Formula
(2.1.6) looks just like formula (2.1.1) by the deliberate choice of notation
in order to underline the similarity of the two situations. Furthermore, for
two sets A and B the previous relations (2.1.3) to (2.1.5) hold equally well
in their new interpretations.

Example 3. When a die is thrown there are six possible outcomes. If
we compare the process of throwing a particular number [face] with
that of picking a particular apple in Example 1, we are led to take
Ω = {1, 2, 3, 4, 5, 6} and define

P ({k}) =
1
6
, k = 1, 2, 3, 4, 5, 6. (2.1.7)

Here we are treating the six outcomes as “equally likely,” so that the same
measure is assigned to all of them, just as we have done tacitly with the ap-
ples. This hypothesis is usually implied by saying that the die is “perfect.”
In reality, of course, no such die exists. For instance, the mere marking of
the faces would destroy the perfect symmetry; and even if the die were a
perfect cube, the outcome would still depend on the way it is thrown. Thus
we must stipulate that this is done in a perfectly symmetrical way too, and
so on. Such conditions can be approximately realized and constitute the
basis of an assumption of equal likelihood on grounds of symmetry.

Now common sense demands an empirical interpretation of the “proba-
bility” given in (2.1.7). It should give a measure of what is likely to happen,
and this is associated in the intuitive mind with the observable frequency of
occurrence . Namely, if the die is thrown a number of times, how often will
a particular face appear? More generally, let A be an event determined by
the outcome; e.g., “to throw a number not less than 5 [or an odd number].”
Let Nn(A) denote the number of times the event A is observed in n throws;
then the relative frequency of A in these trials is given by the ratio

Qn(A) =
Nn(A)

n
. (2.1.8)

There is good reason to take this Qn as a measure of A. Suppose B is
another event such that A and B are incompatible or mutually exclusive
in the sense that they cannot occur in the same trial. Clearly we have
Nn(A + B) = Nn(A) + Nn(B), and consequently

Qn(A + B) =
Nn(A + B)

n

=
Nn(A) + Nn(B)

n
=

Nn(A)
n

+
Nn(B)

n
= Qn(A) + Qn(B).

(2.1.9)
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Similarly for any two events A and B in connection with the same game,
not necessarily incompatible, the relations (2.1.4) and (2.1.5) hold with the
P ’s there replaced by our present Qn. Of course, this Qn depends on n and
will fluctuate, even wildly, as n increases. But if you let n go to infinity,
will the sequence of ratios Qn(A) “settle down to a steady value”? Such a
question can never be answered empirically, since by the very nature of a
limit we cannot put an end to the trials. So it is a mathematical idealization
to assume that such a limit does exist, and then write

Q(A) = lim
n→∞ Qn(A). (2.1.10)

We may call this the empirical limiting frequency of the event A. If you
know how to operate with limits, then you can see easily that the relation
(2.1.9) remains true “in the limit.” Namely when we let n → ∞ everywhere
in that formula and use the definition (2.1.10), we obtain (2.1.3) with P
replaced by Q. Similarly, (2.1.4) and (2.1.5) also hold in this context.

But the limit Q still depends on the actual sequence of trials that are
carried out to determine its value. On the face of it, there is no guarantee
whatever that another sequence of trials, even if it is carried out under the
same circumstances, will yield the same value. Yet our intuition demands
that a measure of the likelihood of an event such as A should tell something
more than the mere record of one experiment. A viable theory built on the
frequencies will have to assume that the Q defined above is in fact the same
for all similar sequences of trials. Even with the hedge implicit in the word
“similar,” that is assuming a lot to begin with. Such an attempt has been
made with limited success, and has a great appeal to common sense, but we
will not pursue it here. Rather, we will use the definition in (2.1.7) which
implies that if A is any subset of Ω and |A| its size, then

P (A) =
|A|
|Ω| =

|A|
6

. (2.1.11)

For example, if A is the event “to throw an odd number,” then A is iden-
tified with the set {1, 3, 5} and P (A) = 3/6 = 1/2.

It is a fundamental proposition in the theory of probability that un-
der certain conditions (repeated independent trials with identical die), the
limiting frequency in (2.1.10) will indeed exist and be equal to P (A) de-
fined in (2.1.11), for “practically all” conceivable sequences of trials. This
celebrated theorem, called the Law of Large Numbers, is considered to be
the cornerstone of all empirical sciences. In a sense it justifies the intuitive
foundation of probability as frequency discussed above. The precise state-
ment and derivation will be given in Chapter 7. We have made this early
announcement to quiet your feelings or misgivings about frequencies and
to concentrate for the moment on sets and probabilities in the following
sections.
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2.2. Definition and illustrations

First of all, a probability is a number associated with or assigned to a set
in order to measure it in some sense. Since we want to consider many sets
at the same time (that is why we studied Chapter 1), and each of them will
have a probability associated with it, this makes probability a “function
of sets.” You should have already learned in some mathematics course
what a function means; in fact, this notion is used a little in Chapter 1.
Nevertheless, let us review it in the familiar notation: a function f defined
for some or all real numbers is a rule of association, by which we assign
the number f(x) to the number x. It is sometimes written as f(·), or more
painstakingly as follows:

f : x → f(x). (2.2.1)

So when we say a probability is a function of sets we mean a similar asso-
ciation, except that x is replaced by a set S:

P : S → P (S). (2.2.2)

The value P (S) is still a number; indeed it will be a number between 0 and
1. We have not been really precise in (2.2.1), because we have not specified
the set of x there for which it has a meaning. This set may be the interval
(a, b) or the half-line (0,∞) or some more complicated set called the domain
of f . Now what is the domain of our probability function P? It must be a set
of sets or, to avoid the double usage, a family (class) of sets. As in Chapter 1
we are talking about subsets of a fixed sample space Ω. It would be nice
if we could use the family of all subsets of Ω, but unexpected difficulties
will arise in this case if no restriction is imposed on Ω. We might say that
if Ω is too large, namely when it contains uncountably many points, then
it has too many subsets, and it becomes impossible to assign a probability
to each of them and still satisfy a basic rule [Axiom (ii*) ahead] governing
the assignments. However, if Ω is a finite or countably infinite set, then
no such trouble can arise and we may indeed assign a probability to each
and all of its subsets. This will be shown at the beginning of §2.4. You are
supposed to know what a finite set is (although it is by no means easy to
give a logical definition, while it is mere tautology to say that “it has only
a finite number of points”); let us review what a countably infinite set is.
This notion will be of sufficient importance to us, even if it only lurks in
the background most of the time.

A set is countably infinite when it can be put into 1-to-1 correspondence
with the set of positive integers. This correspondence can then be exhibited
by labeling the elements as {s1, s2, . . . , sn, . . . }. There are, of course, many
ways of doing this, for instance we can just let some of the elements swap
labels (or places if they are thought of being laid out in a row). The set of
positive rational numbers is countably infinite, hence they can be labeled
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Figure 11

in some way as {r1, r2, . . . , rn, . . . }, but don’t think for a moment that
you can do this by putting them in increasing order as you can with the
positive integers 1 < 2 < · · · < n < · · · . From now on we shall call a set
countable when it is either finite or countably infinite. Otherwise it is called
uncountable. For example, the set of all real numbers is uncountable. We
shall deal with uncountable sets later, and we will review some properties
of a countable set when we need them. For the present we will assume the
sample space Ω to be countable in order to give the following definition in
its simplest form, without a diverting complication. As a matter of fact, we
could even assume Ω to be finite as in Examples (a) to (e) of §1.1, without
losing the essence of the discussion below.
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Figure 12

Definition. A probability measure on the sample space Ω is a function of
subsets of Ω satisfying three axioms:

(i) For every set A ⊂ Ω, the value of the function is a nonnegative
number: P (A) ≥ 0.

(ii) For any two disjoint sets A and B, the value of the function for
their union A + B is equal to the sum of its value for A and its
value for B:

P (A + B) = P (A) + P (B) provided AB = ∅.

(iii) The value of the function for Ω (as a subset) is equal to 1:

P (Ω) = 1.

Observe that we have been extremely careful in distinguishing the func-
tion P (·) from its values such as P (A), P (B), P (A + B), P (Ω). Each of
these is “a probability,” but the function itself should properly be referred
to as a “probability measure” as indicated.

Example 1 in §2.1 shows that the proportion P defined there is in fact
a probability measure on the sample space, which is a bushel of 550 apples.
It assigns a probability to every subset of these apples, and this assignment
satisfies the three axioms above. In Example 2 if we take Ω to be all the
land that belonged to the Pharaoh, it is unfortunately not a countable set.
Nevertheless we can define the area for a very large class of subsets that
are called “measurable,” and if we restrict ourselves to these subsets only,
the “area function” is a probability measure as shown in Example 2 where
this restriction is ignored. Note that Axiom (iii) reduces to a convention:
the decree of a unit. Now how can a land area not be measurable? While
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this is a sophisticated mathematical question that we will not go into in
this book, it is easy to think of practical reasons for the possibility: the
piece of land may be too jagged, rough, or inaccessible (see Fig. 13).

Figure 13

In Example 3 we have shown that the empirical relative frequency is
a probability measure. But we will not use this definition in this book.
Instead, we will use the first definition given at the beginning of Example
3, which is historically the earliest of its kind. The general formulation will
now be given.

Example 4. A classical enunciation of probability runs as follows. The
probability of an event is the ratio of the number of cases favorable to that
event to the total number of cases, provided that all these are equally likely
.

To translate this into our language: the sample space is a finite set of
possible cases: {ω1, ω2, . . . , ωm}, each ωi being a “case.” An event A is a
subset {ωi1 , ωi2 , . . . , ωin

}, each ωij
being a “favorable case.” The probabil-

ity of A is then the ratio

P (A) =
|A|
|Ω| =

n

m
. (2.2.3)

As we see from the discussion in Example 1, this defines a probability
measure P on Ω anyway, so that the stipulation above that the cases be
equally likely is superfluous from the axiomatic point of view. Besides, what
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does it really mean? It sounds like a bit of tautology, and how is one going
to decide whether the cases are equally likely or not?

A celebrated example will illustrate this. Let two coins be tossed.
D’Alembert (mathematician, philosopher, and encyclopedist, 1717–83)
argued that there are three possible cases, namely:

(i) both heads, (ii) both tails, (iii) a head and a tail.

So he went on to conclude that the probability of “a head and a tail” is
equal to 1/3. If he had figured that this probability should have something
to do with the experimental frequency of the occurrence of the event, he
might have changed his mind after tossing two coins more than a few times.
(History does not record if he ever did that, but it is said that for centuries
people believed that men had more teeth than women because Aristotle
had said so, and apparently nobody bothered to look into a few mouths.)
The three cases he considered are not equally likely. Case (iii) should be
split into two:

(iiia) first coin shows head and second coin shows tail.
(iiib) first coin shows tail and second coin shows head.

It is the four cases (i), (ii), (iiia) and (iiib) that are equally likely by sym-
metry and on empirical evidence. This should be obvious if we toss the
two coins one after the other rather than simultaneously. However, there
is an important point to be made clear here. The two coins may be physi-
cally indistinguishable so that in so far as actual observation is concerned,
D’Alembert’s three cases are the only distinct patterns to be recognized.
In the model of two coins they happen not to be equally likely on the basis
of common sense and experimental evidence. But in an analogous model
for certain microcosmic particles, called Bose–Einstein statistics (see Ex-
ercise 24 of Chapter 3), they are indeed assumed to be equally likely in
order to explain some types of physical phenomena. Thus what we regard
as “equally likely” is a matter outside the axiomatic formulation. To put it
another way, if we use (2.2.3) as our definition of probability then we are
in effect treating the ω’s as equally likely, in the sense that we count only
their numbers and do not attach different weights to them.

Example 5. If six dice are rolled, what is the probability that all show
different faces?

This is just Example (e) and (e′). It is stated elliptically on purpose to
get you used to such problems. We have already mentioned that the total
number of possible outcomes is equal to 66 = 46656. They are supposed to
be all “equally likely” although we never breathed a word about this as-
sumption. Why, nobody can solve the problem as announced without such
an assumption. Other data about the dice would have to be given before we
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could begin—which is precisely the difficulty when similar problems arise
in practice. Now if the dice are all perfect, and the mechanism by which
they are rolled is also perfect, which excludes any collusion between the
movements of the several dice, then our hypothesis of equal likelihood may
be justified. Such conditions are taken for granted in a problem like this
when nothing is said about the dice. The solution is then given by (2.2.3)
with n = 66 and m = 6! (see Example 2 in §3.1 for these computations):

6!
66 =

720
46656

= .015432

approximately.
Let us note that if the dice are not distinguishable from each other,

then to the observer there is exactly one pattern in which the six dice show
different faces. Similarly, the total number of different patterns when six
dice are rolled is much smaller than 66 (see Example 3 of §3.2). Yet when we
count the possible outcomes we must think of the dice as distinguishable,
as if they were painted in different colors. This is one of the vital points to
grasp in the counting cases; see Chapter 3.

In some situations the equally likely cases must be searched out. This
point will be illustrated by a famous historical problem called the “problem
of points.”

Example 6. Two players A and B play a series of games in which the
probability of each winning a single game is equal to 1/2, irrespective [in-
dependent] of the outcomes of other games. For instance, they may play
tennis in which they are equally matched, or simply play “heads or tails”
by tossing an unbiased coin. Each player gains a “point” when he wins a
game, and nothing when he loses. Suppose that they stop playing when
A needs 2 more points and B needs 3 more points to win the stake. How
should they divide it fairly?

It is clear that the winner will be decided in 4 more games. For in those
4 games either A will have won ≥2 points or B will have won ≥3 points,
but not both. Let us enumerate all the possible outcomes of these 4 games
using the letter A or B to denote the winner of each game:

AAAA AAAB AABB ABBB BBBB
AABA ABAB BABB
ABAA ABBA BBAB
BAAA BAAB BBBA

BABA
BBAA

These are equally likely cases on grounds of symmetry. There are∗ (4
4

)
+(4

3

)
+

(4
2

)
= 11 cases in which A wins the stake; and

(4
3

)
+

(4
4

)
= 5 cases

∗See (3.2.3) for notation used below.
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in which B wins the stake. Hence the stake should be divided in the ratio
11:5. Suppose it is $64000; then A gets $44000, B gets $20000. [We are
taking the liberty of using the dollar as currency; the United States did not
exist at the time when the problem was posed.]

This is Pascal’s solution in a letter to Fermat dated August 24, 1654
. [Blaise Pascal (1623–62); Pierre de Fermat (1601–65); both among the
greatest mathematicians of all time.] Objection was raised by a learned
contemporary (and repeated through the ages) that the enumeration above
was not reasonable, because the series would have stopped as soon as the
winner was decided and not have gone on through all 4 games in some
cases. Thus the real possibilities are as follows:

AA ABBB
ABA BABB
ABBA BBAB
BAA BBB
BABA
BBAA

But these are not equally likely cases. In modern terminology, if these 10
cases are regarded as constituting the sample space, then

P (AA) =
1
4
, P (ABA) = P (BAA) = P (BBB) =

1
8
,

P (ABBA) = P (BABA) = P (BBAA) = P (ABBB)

= P (BABB) = P (BBAB) =
1
16

since A and B are independent events with probability 1/2 each (see §2.4).
If we add up these probabilities we get of course

P (A wins the stake) =
1
4

+
1
8

+
1
16

+
1
8

+
1
16

+
1
16

=
11
16

,

P (B wins the stake) =
1
16

+
1
16

+
1
16

+
1
8

=
5
16

.

Pascal did not quite explain his method this way, saying merely that “it
is absolutely equal and indifferent to each whether they play in the natural
way of the game, which is to finish as soon as one has his score, or whether
they play the entire four games.” A later letter by him seems to indicate
that he fumbled on the same point in a similar problem with three players.
The student should take heart that this kind of reasoning was not easy
even for past masters.
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2.3. Deductions from the axioms

In this section we will do some simple “axiomatics.” That is to say, we
shall deduce some properties of the probability measure from its definition,
using, of course, the axioms but nothing else. In this respect the axioms
of a mathematical theory are like the constitution of a government. Unless
and until it is changed or amended, every law must be made to follow from
it. In mathematics we have the added assurance that there are no divergent
views as to how the constitution should be construed.

We record some consequences of the axioms in (iv) to (viii) below. First
of all, let us show that a probability is indeed a number between 0 and 1.

(iv) For any set A, we have

P (A) ≤ 1.

This is easy, but you will see that in the course of deducing it we shall
use all three axioms. Consider the complement Ac as well as A. These two
sets are disjoint and their union is Ω:

A + Ac = Ω. (2.3.1)

So far, this is just set theory, no probability theory yet. Now use Axiom
(ii) on the left side of (2.3.1) and Axiom (iii) on the right:

P (A) + P (Ac) = P (Ω) = 1. (2.3.2)

Finally use Axiom (i) for Ac to get

P (A) = 1 − P (Ac) ≤ 1.

Of course, the first inequality above is just Axiom (i). You might object
to our slow pace above by pointing out that since A is contained in Ω, it
is obvious that P (A) ≤ P (Ω) = 1. This reasoning is certainly correct, but
we still have to pluck it from the axioms, and that is the point of the little
proof above. We can also get it from the following more general proposition.

(v) For any two sets such that A ⊂ B, we have

P (A) ≤ P (B), and P (B − A) = P (B) − P (A).

The proof is an imitation of the preceding one with B playing the role
of Ω. We have

B = A + (B − A),

P (B) = P (A) + P (B − A) ≥ P (A).



32 Probability

The next proposition is such an immediate extension of Axiom (ii) that
we could have adopted it instead as an axiom.

(vi) For any finite number of disjoint sets A1, . . . , An, we have

P (A1 + · · · + An) = P (A1) + · · · + P (An). (2.3.3)

This property of the probability measure is called finite additivity . It
is trivial if we recall what “disjoint” means and use (ii) a few times; or
we may proceed by induction if we are meticulous. There is an important
extension of (2.3.3) to a countable number of sets later, not obtainable by
induction!

As already checked in several special cases, there is a generalization of
Axiom (ii), hence also of (2.3.3), to sets that are not necessarily disjoint.
You may find it trite, but it has the dignified name of Boole’s inequality.
Boole (1815–64) was a pioneer in the “laws of thought” and author of
Theories of Logic and Probabilities.

(vii) For any finite number of arbitrary sets A1, . . . , An, we have

P (A1 ∪ · · · ∪ An) ≤ P (A1) + · · · + P (An). (2.3.4)

Let us first show this when n = 2. For any two sets A and B, we can
write their union as the sum of disjoint sets as follows:

A ∪ B = A + AcB. (2.3.5)

Now we apply Axiom (ii) to get

P (A ∪ B) = P (A) + P (AcB). (2.3.6)

Since AcB ⊂ B, we can apply (v) to get (2.3.4).
The general case follows easily by mathematical induction, and you

should write it out as a good exercise on this method. You will find that
you need the associative law for the union of sets as well as that for the
addition of numbers.

The next question is the difference between the two sides of the inequal-
ity (2.3.4). The question is somewhat moot since it depends on what we
want to use to express the difference. However, when n = 2 there is a clear
answer.

(viii) For any two sets A and B, we have

P (A ∪ B) + P (A ∩ B) = P (A) + P (B). (2.3.7)
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This can be gotten from (2.3.6) by observing that AcB = B − AB, so
that we have by virtue of (v):

P (A ∪ B) = P (A) + P (B − AB) = P (A) + P (B) − P (AB),

which is equivalent to (2.3.7). Another neat proof is given in Exercise 12.
We shall postpone a discussion of the general case until §6.2. In practice,

the inequality is often more useful than the corresponding identity which
is rather complicated.

We will not quit formula (2.3.7) without remarking on its striking re-
semblance to formula (1.4.8) of §1.4, which is repeated below for the sake
of comparison:

IA∪B + IA∩B = IA + IB . (2.3.8)

There is indeed a deep connection between the pair, as follows. The proba-
bility P (S) of each set S can be obtained from its indicator function IS by
a procedure (operation) called “taking expectation” or “integration.” If we
perform this on (2.3.8) term by term, their result is (2.3.7). This procedure
is an essential part of probability theory and will be thoroughly discussed
in Chapter 6. See Exercise 19 for a special case.

To conclude our axiomatics, we will now strengthen Axiom (ii) or its
immediate consequence (vi), namely the finite additivity of P , into a new
axiom.

(ii*) Axiom of countable additivity . For a countably infinite collection
of disjoint sets Ak, k = 1, 2, . . . , we have

P

( ∞∑
k=1

Ak

)
=

∞∑
k=1

P (Ak). (2.3.9)

This axiom includes (vi) as a particular case, for we need only put
Ak = ∅ for k > n in (2.3.9) to obtain (2.3.3). The empty set is disjoint
from any other set including itself and has probability zero (why?). If Ω is
a finite set, then the new axiom reduces to the old one. But it is important
to see why (2.3.9) cannot be deduced from (2.3.3) by letting n → ∞. Let
us try this by rewriting (2.3.3) as follows:

P

(
n∑

k=1

Ak

)
=

n∑
k=1

P (Ak). (2.3.10)

Since the left side above cannot exceed 1 for all n, the series on the right
side must converge and we obtain

lim
n→∞ P

(
n∑

k=1

Ak

)
= lim

n→∞

n∑
k=1

P (Ak) =
∞∑

k=1

P (Ak). (2.3.11)



34 Probability

Comparing this established result with the desired result (2.3.9), we see
that the question boils down to

lim
n→∞ P

(
n∑

k=1

Ak

)
= P

( ∞∑
k=1

Ak

)
,

which can be exhibited more suggestively as

lim
n→∞ P

(
n∑

k=1

Ak

)
= P

(
lim

n→∞

n∑
k=1

Ak

)
. (2.3.12)

See end of §1.3 (see Fig. 14).

Figure 14

Thus it is a matter of interchanging the two operations “lim” and “P” in
(2.3.12), or you may say, “taking the limit inside the probability relation.”
If you have had enough calculus you know this kind of interchange is often
hard to justify and may be illegitimate or even invalid. The new axiom is
created to secure it in the present case and has fundamental consequences
in the theory of probability.
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2.4. Independent events

From now on, a “probability measure” will satisfy Axioms (i), (ii*), and
(iii). The subsets of Ω to which such a probability has been assigned will
also be called an event.

We shall show how easy it is to construct probability measures for any
countable space Ω = {ω1, ω2, . . . , ωn, . . . }. To each sample point ωn let us
attach an arbitrary “weight” pn subject only to the conditions

∀n: pn ≥ 0,
∑

n

pn = 1. (2.4.1)

This means that the weights are positive or zero, and add up to 1 altogether.
Now for any subset A of Ω, we define its probability to be the sum of the
weights of all the points in it. In symbols, we put first

∀n: P ({ωn}) = pn; (2.4.2)

and then for every A ⊂ Ω:

P (A) =
∑

ωn∈A

pn =
∑

ωn∈A

P ({ωn}).

We may write the last term above more neatly as

P (A) =
∑
ω∈A

P ({ω}). (2.4.3)

Thus P is a function defined for all subsets of Ω and it remains to check
that it satisfies Axioms (i), (ii*), and (iii). This requires nothing but a bit
of clearheaded thinking and is best done by yourself. Since the weights
are quite arbitrary apart from the easy conditions in (2.4.1), you see that
probability measures come “a dime a dozen” in a countable sample space.
In fact, we can get them all by the above method of construction. For
if any probability measure P is given, never mind how, we can define pn

to be P ({ωn}) as in (2.4.2), and then P (A) must be given as in (2.4.3),
because of Axiom (ii*). Furthermore the pn’s will satisfy (2.4.1) as a simple
consequence of the axioms. In other words, any given P is necessarily of
the type described by our construction.

In the very special case that Ω is finite and contains exactly m points,
we may attach equal weights to all of them, so that

pn =
1
m

, n = 1, 2, . . . ,m.

Then we are back to the “equally likely” situation in Example 4 of §2.2.
But in general the pn’s need not be equal, and when Ω is countably infinite
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they cannot all be equal (why?). The preceding discussion shows the degree
of arbitrariness involved in the general concept of a probability measure.

An important model of probability space is that of repeated independent
trials : this is the model used when a coin is tossed, a die thrown, a card
drawn from a deck (with replacement) several times. Alternately, we may
toss several coins or throw several dice at the same time. Let us begin with
an example.

Example 7. First toss a coin, then throw a die, finally draw a card from
a deck of poker cards. Each trial produces an event; let

A = coin falls heads;

B = die shows number 5 or 6;

C = card drawn is a spade.

Assume that the coin is fair, the die is perfect, and the deck thoroughly
shuffled. Furthermore assume that these three trials are carried out “inde-
pendently” of each other, which means intuitively that the outcome of each
trial does not influence that of the others. For instance, this condition is
approximately fulfilled if the trials are done by different people in different
places, or by the same person in different months! Then all possible joint
outcomes may be regarded as equally likely. There are respectively 2, 6, and
52 possible cases for the individual trials, and the total number of cases for
the whole set of trials is obtained by multiplying these numbers together:
2 · 6 · 52 (as you will soon see it is better not to compute this product).
This follows from a fundamental rule of counting, which is fully discussed
in §3.1 and which you should read now if need be. [In general, many parts
of this book may be read in different orders, back and forth.] The same
rule yields the numbers of favorable cases to the events A, B, C, AB, AC,
BC, ABC given below, where the symbol | . . . | for size is used:

|A| = 1 · 6 · 52, |B| = 2 · 2 · 52, |C| = 2 · 6 · 13,

|AB| = 1 · 2 · 52, |AC| = 1 · 6 · 13, |BC| = 2 · 2 · 13,

|ABC| = 1 · 2 · 13.

Dividing these numbers by |Ω| = 2 ·6 ·52, we obtain after quick cancellation
of factors:

P (A) =
1
2
, P (B) =

1
3
, P (C) =

1
4
,

P (AB) =
1
6
, P (AC) =

1
8
, P (BC) =

1
12

,

P (ABC) =
1
24

.
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We see at a glance that the following set of equations holds:

P (AB) = P (A)P (B), P (AC) = P (A)P (C), P (BC) = P (B)P (C) (2.4.4)

P (ABC) = P (A)P (B)P (C).

The reader is now asked to convince himself that this set of relations will
also hold for any three events A,B,C such that A is determined by the
coin, B by the die, and C by the card drawn alone. When this is the case
we say that these trials are stochastically independent as well as the events
so produced. The adverb “stochastically” is usually omitted for brevity.

The astute reader may observe that we have not formally defined the
word “trial,” and yet we are talking about independent trials! A logical
construction of such objects is quite simple but perhaps a bit too abstract
for casual introduction. It is known as “product space”; see Exercise 29.
However, it takes less fuss to define “independent events” and we shall do
so at once.

Two events A and B are said to be independent if we have P (AB) =
P (A)P (B). Three events A, B, and C are said to be independent if the
relations in (2.4.4) hold. Thus independence is a notion relative to a given
probability measure (by contrast, the notion of disjointness, e.g., does not
depend on any probability). More generally, the n events A1, A2, . . . , An

are independent if the intersection [joint occurrence] of any subset of them
has as its probability the product of probabilities of the individual events.
If you find this sentence too long and involved, you may prefer the following
symbolism. For any subset (i1, i2, . . . , ik) of (1, 2, . . . , n), we have

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1)P (Ai2) · · · P (Aik

). (2.4.5)

Of course, here the indices i1, . . . , ik are distinct and 1 ≤ k ≤ n.
Further elaboration of the notion of independence is postponed to §5.5,

because it will be better explained in terms of random variables. But we
shall briefly describe a classical scheme—the grand daddy of repeated trials,
and subject of intensive and extensive research by J. Bernoulli, De Moivre,
Laplace, . . . , Borel, . . . .

Example 8. (The coin-tossing scheme). A coin is tossed repeatedly n
times. The joint outcome may be recorded as a sequence of H’s and T ’s,
where H = “head,” T = “tail.” It is often convenient to quantify by putting
H = 1, T = 0; or H = 1, T = −1; we shall adopt the first usage here. Then
the result is a sequence of 0’s and 1’s consisting of n terms such as 110010110
with n = 9. Since there are 2 outcomes for each trial, there are 2n possible
joint outcomes. This is another application of the fundamental rule in §3.1.
If all of these are assumed to be equally likely so that each particular joint
outcome has probability 1/2n, then we can proceed as in Example 7 to
verify that the trials are independent and the coin is fair. You will find this
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a dull exercise, but it is recommended that you go through it in your head
if not on paper. However, we will turn the table around here by assuming
at the outset that the successive tosses do form independent trials. On the
other hand, we do not assume the coin to be “fair,” but only that the
probabilities for head (H) and tail (T ) remain constant throughout the
trials. Empirically speaking, this is only approximately true since things
do not really remain unchanged over long periods of time. Now we need
a precise notation to record complicated statements, ordinary words being
often awkward or ambiguous. Then let Xi denote the outcome of the ith
trial and let εi denote 0 or 1 for each i, but of course varying with the
subscript. Then our hypothesis above may be written as follows:

P (Xi = 1) = p; P (Xi = 0) = 1 − p; i = 1, 2, . . . , n; (2.4.6)

where p is the probability of heads for each trial. For any particular, namely
completely specified, sequence (ε1, ε2, . . . , εn) of 0’s and 1’s, the probability
of the corresponding sequence of outcomes is equal to

P (X1 = ε1, X2 = ε2, . . . , Xn = εn)

= P (X1 = ε1)P (X2 = ε2) . . . P (Xn = εn)
(2.4.7)

as a consequence of independence. Now each factor on the right side above
is equal to p or 1 − p depending on whether the corresponding εi is 1 or 0.
Suppose j of these are 1’s and n − j are 0’s; then the quantity in (2.4.7) is
equal to

pj(1 − p)n−j . (2.4.8)

Observe that for each sequence of trials, the number of heads is given by
the sum

∑n
i=1 Xi. It is important to understand that the number in (2.4.8)

is not the probability of obtaining j heads in n tosses, but rather that
of obtaining a specific sequence of heads and tails in which there are j
heads. In order to compute the former probability, we must count the total
number of the latter sequences since all of them have the same probability
given in (2.4.8). This number is equal to the binomial coefficient

(
n
j

)
; see

§3.2 for a full discussion. Each one of these
(
n
j

)
sequences corresponds to

one possibility of obtaining j heads in n trials, and these possibilities are
disjoint. Hence it follows from the additivity of P that we have

P

(
n∑

i=1

Xi = j

)
= P (exactly j heads in n trials)

=
(

n

j

)
P (any specified sequence of n trials with exactly j heads)

=
(

n

j

)
pj(1 − p)n−j .
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This famous result is known as Bernoulli’s formula. We shall return to it
many times in the book.

2.5. Arithmetical density∗

We study in this section a very instructive example taken from arithmetic.

Example 9. Let Ω be the first 120 natural numbers {1, 2, . . . , 120}. For
the probability measure P we use the proportion as in Example 1 of §2.1.
Now consider the sets

A = {ω | ω is a multiple of 3},

B = {ω | ω is a multiple of 4}.

Then every third number of Ω belongs to A, and every fourth to B. Hence
we get the proportions

P (A) = 1/3, P (B) = 1/4.

What does the set AB represent? It is the set of integers that are divisible
by 3 and by 4. If you have not entirely forgotten your school arithmetic,
you know this is just the set of multiples of 3·4 = 12. Hence P (AB) = 1/12.
Now we can use (viii) to get P (A ∪ B):

P (A ∪ B) = P (A) + P (B) − P (AB) = 1/3 + 1/4 − 1/12 = 1/2. (2.5.1)

What does this mean? A ∪ B is the set of those integers in Ω which are
divisible by 3 or by 4 (or by both). We can count them one by one, but
if you are smart you see that you don’t have to do this drudgery. All you
have to do is to count up to 12 (which is 10% of the whole population Ω),
and check them off as shown:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.

� � � � � �
�

Six are checked (one checked twice), hence the proportion of A ∪ B among
these 12 is equal to 6/12 = 1/2 as given by (2.5.1).

An observant reader will have noticed that in the case above we have
also

P (AB) = 1/12 = 1/3 · 1/4 = P (A) · P (B).

∗This section may be omitted.
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This is true because the two numbers 3 and 4 happen to be relatively
prime, namely they have no common divisor except 1. Suppose we consider
another set:

C = {ω | ω is a multiple of 6}.

Then P (C) = 1/6, but what is P (BC) now? The set BC consists of those
integers that are divisible by both 4 and 6, namely divisible by their least
common multiple (remember that?), which is 12 and not the product 4·6 =
24. Thus P (BC) = 1/12. Furthermore, because 12 is the least common
multiple we can again stop counting at 12 in computing the proportion of
the set B ∪C. An actual counting gives the answer 4/12 = 1/3, which may
also be obtained from the formula (2.3.7):

P (B ∪ C) = P (B) + P (C) − P (BC) = 1/4 + 1/6 − 1/12 = 1/3. (2.5.2)

This example illustrates a point that arose in the discussion in Example
3 of §2.1. Instead of talking about the proportion of the multiples of 3, say,
we can talk about its frequency. Here no rolling of any fortuitous dice is
needed. God has given us those natural numbers (a great mathematician
Kronecker said so), and the multiples of 3 occur at perfectly regular periods
with the frequency 1/3. In fact, if we use Nn(A) to denote the number of
natural numbers up to and including n which belong to the set A, it is a
simple matter to show that

lim
n→∞

Nn(A)
n

=
1
3
.

Let us call this P (A), the limiting frequency of A. Intuitively, it should
represent the chance of picking a number divisible by 3, if we can reach into
the whole bag of natural numbers as if they were so many indistinguishable
balls in an urn. Of course, similar limits exist for the sets B, C, AB, BC,
etc. and have the values computed above. But now with this infinite sample
space of “all natural numbers,” call it Ω∗, we can treat by the same method
any set of the form

Am = {ω | ω is divisible by m}, (2.5.3)

where m is an arbitrary natural number. Why then did we not use this
more natural and comprehensive model?

The answer may be a surprise for you. By our definition of probability
measure given in §2.2, we should have required that every subset of Ω∗ have
a probability, provided that Ω∗ is countable, which is the case here. Now
take for instance the set that consists of the single number {1971} or, if you
prefer, the set Z = {all numbers from 1 to 1971}. Its probability is given
by limn→∞ Nn(Z)/n according to the same rule that was applied to the set
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A. But Nn(Z) is equal to 1971 for all values of n ≥ 1971; hence the limit
above is equal to 0 and we conclude that every finite set has probability 0
by this rule. If P were to be countably additive as required by Axiom (ii*)
in §2.3, then P (Ω∗) would be 0 rather than 1. This contradiction shows
that P cannot be a probability measure on Ω∗. Yet it works perfectly well
for sets such as Am.

There is a way out of this paradoxical situation. We must abandon
our previous requirement that the measure be defined for all subsets (of
natural numbers). Let a finite number of the sets Am be given, and let
us consider the composite sets that can be obtained from these by the
operations complementation, union, and intersection. Call this class of sets
the class generated by the original sets. Then it is indeed possible to define
P in the manner prescribed above for all sets in this class. A set that is
not in the class has no probability at all. For example, the set Z does
not belong to the class generated by A,B,C. Hence its probability is not
defined, rather than zero. We may also say that the set Z is nonmeasurable
in the context of Example 2 of §2.1. This saves the situation, but we will
not pursue it further here except to give another example.

Example 10. What is the probability of the set of numbers divisible by
3, not divisible by 5, and divisible by 4 or 6?

Using the preceding notation, the set in question is ADc(B ∪C), where
D = A5. Using distributive law, we can write this as ADcB ∪ ADcC. We
also have

(ADcB)(ADcC) = ADcBC = ABC − ABCD.

Hence by (v),

P (ADcBC) = P (ABC) − P (ABCD) =
1
12

− 1
60

=
1
15

.

Similarly, we have

P (ADcB) = P (AB) − P (ABD) =
1
12

− 1
60

=
4
60

=
1
15

,

P (ADcC) = P (AC) − P (ACD) =
1
6

− 1
30

=
4
30

=
2
15

.

Finally we obtain by (viii):

P (ADcB ∪ ADcC) = P (ADcB) + P (ADcC) − P (ADcBC)

=
1
15

+
2
15

− 1
15

=
2
15

.

You should check this using the space Ω in Example 9.
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The problem can be simplified by a little initial arithmetic, because the
set in question is seen to be that of numbers divisible by 2 or 3 and not by
5. Now our method will yield the answer more quickly.

Exercises

1. Consider Example 1 in §2.1. Suppose that each good apple costs 1/c
while a rotten one costs nothing. Denote the rotten ones by R, an
arbitrary bunch from the bushel by S, and define

Q(S) = |S \ R|/|Ω − R|.

Q is the relative value of S with respect to that of the bushel. Show
that it is a probability measure.

2. Suppose that the land of a square kingdom is divided into three strips
A,B,C of equal area and suppose the value per unit is in the ratio
of 1:3:2. For any piece of (measurable) land S in this kingdom, the
relative value with respect to that of the kingdom is then given by the
formula:

V (S) =
P (SA) + 3P (SB) + 2P (SC)

2

where P is as in Example 2 of §2.1. Show that V is a probability
measure.

*3. Generalizing No. 2, let a1, . . . , an be arbitrary positive numbers and
let A1 + · · ·+An = Ω be an arbitrary partition. Let P be a probability
measure on Ω and

Q(S) = [a1P (SA1) + · · · + anP (SAn)]/[a1P (A1) + · · · + anP (An)]

for any subset of Ω. Show that P is a probability measure.
4. Let A and B denote two cups of coffee you drank at a lunch counter.

Suppose the first cup of coffee costs 15/c, and a second cup costs 10/c.
Using P to denote “price,” write down a formula like Axiom (ii) but
with an inequality (P is “subadditive”).

5. Suppose that on a shirt sale each customer can buy two shirts at $4
each, but the regular price is $5. A customer bought 4 shirts S1, . . . , S4.
Write down a formula like Axiom (ii) and contrast it with Exercise 3.
Forget about sales tax! (P is “superadditive.”)

6. Show that if P and Q are two probability measures defined on the same
(countable) sample space, then aP + bQ is also a probability measure
for any two nonnegative numbers a and b satisfying a + b = 1. Give a
concrete illustration of such a mixture.
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*7. If P is a probability measure, show that the function P/2 satisfies
Axioms (i) and (ii) but not (iii). The function P 2 satisfies (i) and (iii)
but not necessarily (ii); give a counterexample to (ii) by using Example
1.

*8. If A,B,C are arbitrary sets, show that
(a) P (A ∩ B ∩ C) ≤ P (A) ∧ P (B) ∧ P (C),
(b) P (A ∪ B ∪ C) ≥ P (A) ∨ P (B) ∨ P (C).

*9. Prove that for any two sets A and B, we have

P (AB) ≥ P (A) + P (B) − 1.

Give a concrete example of this inequality. [Hint: Use (2.3.4) with n = 2
and De Morgan’s laws.]

10. We have A ∩ A = A, but when is P (A) · P (A) = P (A)? Can P (A) = 0
but A �= ∅?

11. Find an example where P (AB) < P (A)P (B).
12. Prove (2.3.7) by first showing that

(A ∪ B) − A = B − (A ∩ B).

13. Two groups share some members. Suppose that Group A has 123,
Group B has 78 members, and the total membership in both groups is
184. How many members belong to both?

14. Groups A,B,C have 57, 49, 43 members, respectively. A and B have
13, A and C have 7, B and C have 4 members in common; and there
is a lone guy who belongs to all three groups. Find the total number
of people in all three groups.

*15. Generalize Exercise 14 when the various numbers are arbitrary but, of
course, subject to certain obvious inequalities. The resulting formula,
divided by the total population (there may be any nonjoiners!), is the
extension of (2.3.7) to n = 3.

16. Compute P (AB) in terms of P (A), P (B), and P (AB); also in terms
of P (A), P (B), and P (A ∪ B).

*17. Using the notation (2.5.3) and the probability defined in that context,
show that for any two m and n we have

P (AmAn) ≥ P (Am)P (An).

When is there equality above?
*18. Recall the computation of plane areas by double integration in calculus;

for a nice figure such as a parallelogram, trapezoid, or circle, we have

area of S =
∫∫

S

1 dxdy.
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Show that this can be written in terms of the indicator IS as

A(S) =
∫∫

IS(x, y) dxdy,

where Ω is the whole plane and IS(x, y) is the value of the function IS

for (at) the point (x, y) (denoted by ω in §1.4). Show also that for two
such figures S1 and S2, we have

A(S1) + A(S2) =
∫∫

(IS1 + IS2),

where we have omitted some unnecessary symbols.
*19. Now you can demonstrate the connection between (2.3.7) and (2.3.8)

mentioned there, in the case of plane areas.
20. Find several examples of {pn} satisfying the conditions in (2.4.1); give

at least two in which all pn > 0.
*21. Deduce from Axiom (ii*) the following two results. (a) If the sets An

are nondecreasing, namely An ⊂ An+1 for all n ≥ 1, and A∞ =
⋃

n An,
then P (A∞) = limn→∞ P (An). (b) If the sets An are nonincreasing,
namely An ⊃ An+1 for all n ≥ 1, and A∞ =

⋂
n An, then P (A∞) =

limn→∞ P (An). [Hint: For (a), consider A1+(A2−A1)+(A3−A2)+· · · ;
for (b), dualize by complementation.]

22. What is the probability (in the sense of Example 10) that a natural
number picked at random is not divisible by any of the numbers 3, 4,
6 but is divisible by 2 or 5?

*23. Show that if (m1, . . . ,mn) are co-prime positive integers, then the
events (Am1 , . . . , Amn

) defined in §2.5 are independent.
24. What can you say about the event A if it is independent of itself? If

the events A and B are disjoint and independent, what can you say of
them?

25. Show that if the two events (A,B) are independent, then so are
(A,Bc), (Ac, B), and (Ac, Bc). Generalize this result to three indepen-
dent events.

26. Show that if A,B,C are independent events, then A and B ∪ C are
independent, and A \ B and C are independent.

27. Prove that

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

− P (AB) − P (AC) − P (BC) + P (ABC)

when A,B,C are independent by considering P (AcBcCc). [The for-
mula remains true without the assumption of independence; see §6.2.]



Exercises 45

28. Suppose five coins are tossed; the outcomes are independent but the
probability of heads may be different for different coins. Write the prob-
ability of the specific sequence HHTHT and the probability of exactly
three heads.

*29. How would you build a mathematical model for arbitrary repeated
trials, namely without the constraint of independence? In other words,
describe a sample space suitable for recording such trials. What is the
mathematical definition of an event that is determined by one of the
trials alone, two of them, etc.? You do not need a probability measure.
Now think how you would cleverly construct such a measure over the
space in order to make the trials independent. The answer is given in,
e.g., [Feller 1, §V.4], but you will understand it better if you first give
it a try yourself.


