
CHAPTER I
Derivatives

§ 1. FIRST DERIVATIVE

As was said in the Introduction, in this chapter and the next we shall study the
infinitesimal properties of functions which are defined on a subset of the real field R
and take their values in a Hausdorff topological vector space E over the field R; for
brevity we shall say that such a function is a vector function of a real variable. The
most important case is that where E � R (real-valued functions of a real variable).
When E � Rn, consideration of a vector function with values in E reduces to the
simultaneous consideration of n finite real functions.

Many of the definitions and properties stated in chapter I extend to functions which
are defined on a subset of the field C of complex numbers and take their values in a
topological vector space over C (vector functions of a complex variable). Some of these
definitions and properties extend even to functions which are defined on a subset of an
arbitrary commutative topological field K and take their values in a topological vector
space over K.

We shall indicate these generalizations in passing (see in particular I, p. 10, Remark 2),
emphasising above all the case of functions of a complex variable, which are by far the
most important, together with functions of a real variable, and will be studied in greater
depth in a later Book.

1. DERIVATIVE OF A VECTOR FUNCTION

DEFINITION 1. Let f be a vector function defined on an interval I ⊂ R which
does not reduce to a single point. We say that f is differentiable at a point x0 ∈ I if

lim
x→x0,x∈I,x ��x0

f(x) − f(x0)

x − x0
exists (in the vector space where f takes its values); the

value of this limit is called the first derivative (or simply the derivative) of f at the
point x0, and it is denoted by f ′(x0) or Df(x0).

If f is differentiable at the point x0, so is the restriction of f to any interval J ⊂ I
which does not reduce to a single point and such that x0 ∈ J; and the derivative of
this restriction is equal to f ′(x0). Conversely, let J be an interval contained in I and
containing a neighbourhood of x0 relative to I; if the restriction of f to J admits a
derivative at the point x0, then so does f.
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We summarise these properties by saying that the concept of derivative is a local
concept.

Remarks. ∗1) In Kinematics, if the point f(t) is the position of a moving point in the

space R3 at time t, then
f(t) − f(t0)

t − t0
is termed the average velocity between the instants

t0 and t, and its limit f ′(t0) is the instantaneous velocity (or simply velocity) at the time
t0 (when this limit exists).∗

2) If a function f, defined on I, is differentiable at a point x0 ∈ I, it is necessarily
continuous relative to I at this point.

DEFINITION 2. Let f be a vector function defined on an interval I ⊂ R, and let
x0 be a point of I such that the interval I ∩ [[[x0, +∞[[[ (resp. I ∩ ]]] − ∞, x0]]]) does
not reduce to a single point. We say that f is differentiable on the right (resp. on
the left) at the point x0 if the restriction of f to the interval I ∩ [[[x0, +∞[[[ (resp.
I ∩ ]]] − ∞, x0]]]) is differentiable at the point x0; the value of the derivative of this
restriction at the point x0 is called the right (resp. left) derivative of f at the point
x0 and is denoted by f ′

d (x0) (resp. f ′
g(x0)).

Let f be a vector function defined on I, and x0 an interior point of I such that f is
continuous at this point; it follows from defs. 1 and 2 that for f to be differentiable at
x0 it is necessary and sufficient that f admit both a right and a left derivative at this
point, and that these derivatives be equal; and then

f ′(x0) � f ′
d (x0) � f ′

g(x0).

Examples. 1) A constant function has zero derivative at every point.
2) An affine linear function x �→ ax + b has derivative equal to a at every point.
3) The real function 1/x (defined for x �� 0) is differentiable at each point x0 �� 0,

for we have
(

1

x
− 1

x0

) /
(x − x0) � − 1

xx0
, and, since 1/x is continuous at x0, the limit

of the preceding expression is −1/x2
0 .

4) The scalar function |x | , defined on R, has right derivative +1 and left derivative
−1 at x � 0; it is not differentiable at this point.

∗5) The real function equal to 0 for x � 0, and to x sin 1/x for x �� 0, is defined and
continuous on R, but has neither right nor left derivative at the point x �� 0.∗ One can give
examples of functions which are continuous on an interval and fail to have a derivative at
every point of the interval (I, p. 35, exerc. 2 and 3).

DEFINITION 3. We say that a vector function f defined on an interval I ⊂ R is
differentiable (resp. right differentiable, left differentiable) on I if it is differentiable
(resp. right differentiable, left differentiable) at each point of I; the function x �→
f ′(x) (resp. x �→ f ′

d (x) , x �→ f ′
g(x)) defined on I, is called the derived function,

or (by abuse of language) the derivative (resp. right derivative, left derivative) of f,
and is denoted by f ′ or Df or df/dx (resp. f ′

d , f ′
g).

Remark. A function may be differentiable on an interval without its derivative being
continuous at every point of the interval (cf. I, p. 36, exerc. 5); ∗this is shown by the
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example of the function equal to 0 for x � 0 and to x2 sin 1/x for x �� 0; it has a derivative
everywhere, but this derivative is discontinuous at the point x � 0.∗

2. LINEARITY OF DIFFERENTIATION

PROPOSITION 1. The set of vector functions defined on an interval I ⊂ R, taking
values in a given topological vector space E, and differentiable at the point x0, is
a vector space over R, and the map f �→ Df(x0) is a linear mapping of this space
into E.

In other words, if f and g are defined on I and differentiable at the point x0,

then f + g and fa (a an arbitrary scalar) are differentiable at x0 and their derivatives
there are f ′(x0) + g′(x0) and f ′(x0)a respectively. This follows immediately from the
continuity of x + y and of xa on E × E and E respectively.

COROLLARY. The set of vector functions defined on an interval I, taking values in
a given topological vector space E, and differentiable on I, is a vector space over
R, and the map f �→ Df is a linear mapping of this space into the vector space of
mappings from I into E.

Remark. If one endows the vector space of mappings from I into E and its subspace of
differentiable mappings (cf. Gen. Top., X, p. 277) with the topology of simple convergence
(or the topology of uniform convergence), the linear mapping f �→ Df is not continuous (in
general) ∗for example, the sequence of functions fn(x) � sin n2x/n converges uniformly to
0 on R, but the sequence of derivatives f ′

n(x) � n cos n2x does not converge even simply
to 0.∗

PROPOSITION 2. Let E and F be two topological vector spaces over R, and u a
continuous linear map from E into F. If f is a vector function defined on an interval
I ⊂ R, taking values in E, and differentiable at the point x0 ∈ I, then the composite
function u ◦ f has a derivative equal to u(f ′(x0)) at x0 .

Indeed, since
u(f(x)) − u(f(x0))

x − x0
� u

(
f(x) − f(x0)

x − x0

)
, this follows from the con-

tinuity of u.

COROLLARY. If ϕ is a continuous linear form on E, then the real function ϕ ◦ f
has a derivative equal to ϕ(f ′(x0)) at the point x0.

Examples. 1) Let f � ( fi )1�i�n be a function with values in Rn, defined on an
interval I ⊂ R; each real function fi is none other than the composite function pri ◦ f, so
is differentiable at the point x0 if f is, and, if so, f ′(x0) � ( f ′

i (x0))1�i�n .
∗2) In Kinematics, if f(t) is the position of a moving point M at time t, if g(t) is the

position at the same instant of the projection M′ of M onto a plane P (resp. a line D)
with kernel a line (resp. a plane) not parallel to P (resp. D), then g is the composition of
the projection u of R3 onto P (resp. D) and of f; since u is a (continuous) linear mapping
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one sees that the projection of the velocity of a moving point onto a plane (resp. a line)
is equal to the velocity of the projection of the moving point onto the plane (resp. line).∗

3) Let f be a complex-valued function defined on an interval I ⊂ R, and let a be an
arbitrary complex number; prop. 2 shows that if f is differentiable at a point x0 then so
is a f, and the derivative of this function at x0 is equal to a f ′(x0).

3. DERIVATIVE OF A PRODUCT

Let us now consider p topological vector spaces Ei (1 � i � p) over R, and a
continuous multilinear 1 map (which we shall denote by

(x1, x2, . . . , xp) �→ [[[x1.x2 . . . xp])

of E1 × E2 × · · · × Ep into a topological vector space F over R.

PROPOSITION 3 . For each index i (1 � i � p) let fi be a function defined on an
interval I ⊂ R, taking values in Ei , and differentiable at the point x0 ∈ I. Then the
function

x �→ [f1(x).f2(x) . . . fp(x)]

defined on I with values in F has a derivative equal to
p∑

i�1

[
f1(x0) . . . fi−1(x0).f ′

i (x0).fi+1(x0) . . . fp(x0)
]

(1)

at x0.

Let us put h(x) � [f1(x).f2(x) . . . fp(x)]; then, by the identity

[
b1.b2 . . . bp

] − [
a1.a2 . . . ap

] �
p∑

i�1

[
b1 . . . bi−1.(bi − ai ).ai+1 . . . ap

]
,

we can write

h(x) − h(x0) �
p∑

i�1

[
f1(x) . . . fi−1(x).(fi (x) − fi (x0)).fi+1(x0) . . . fp(x0)

]
.

On multiplying both sides by
1

x − x0
and letting x approach x0 in I, we obtain the

expression (1), since both the map

(x1, x2, . . . , xp) �→ [x1.x2 . . . xp]

and addition in F are continuous.
1 Recall (Alg., II, p. 265) that a map f of E1 × E2 × · · · × Ep into F is said to be multilinear

if each partial mapping

xi �→ f(a1, . . . , ai−1, xi , ai+1, . . . , ap)

from Ei into F (1 � i � p) is a linear map, the a j for indices j �� i being arbitrary
in E j . We note that if the Ei are finite dimensional over R then every multilinear map of
E1 × E2 × · · · × Ep into F is necessarily continuous; this need not be so if some of these
spaces are topological vector spaces of infinite dimension.



§ 1. FIRST DERIVATIVE 7

When some of the functions fi are constant, the terms in the expression (1)
containing their derivatives f′i (x0) are zero.

Let us consider in detail the particular case p � 2, the most important in applica-
tions: if (x, y) �→ [

x.y
]

is a continuous bilinear map of E × F into G,
(
E, F, G being

topological vector spaces over R
)
, and f and g are two vector functions, differentiable

at x0, with values in E and F respectively, then the vector function x �→ [
f(x).g(x)

]
(which we denote by

[
f.g

]
) has a derivative equal to

[
f ′(x0).g(x0)

] + [
f(x0).g′(x0)

]
at x0. In particular, if a is a constant vector, then

[
a.f

]
(resp.

[
f.a

]
) has a derivative

equal to
[
a.f ′(x0)

]
(resp.

[
f ′(x0).a

]
) at x0.

If f and g are both differentiable on I then so is
[
f.g

]
, and we have

[
f.g

]′ � [
f ′.g

] + [
f.g′]. (2)

Examples. 1) Let f be a real function, g a vector function, both differentiable at
a point x0; the function g f has a derivative equal to g′(x0) f (x0) + g(x0) f ′(x0) at x0. In
particular, if a is constant, then a f has derivative a f ′(x0). This last remark, in conjunction
with example 1 of I, p. 5, proves that if f � ( fi )1�i�n is a vector function with values in
Rn, then for f to be differentiable at the point x0 it is necessary and sufficient that each of
the real functions fi (1 � i � n) be differentiable there: for, if (ei )1�i�n is the canonical

basis of Rn, we can write f �
n∑

i�1
ei fi .

2) The real function xn arises from the multilinear function

(x1, x2, . . . , xn) �→ x1x2 . . . xn

defined on Rn, by substituting x for each of the xi ; so prop. 3 shows that xn is differentiable
on R and has derivative nxn−1. As a result the polynomial function a0xn + a1xn−1 + · · · +
an−1x + an (the ai being constant vectors) has derivative

na0xn−1 + (n − 1)a1xn−2 + · · · + an−1;

when the ai are real numbers this function coincides with the derivative of a polynomial
function as defined in Algebra (A, IV).

3) The euclidean scalar product (x | y) (Gen. Top., VI, p. 40) is a bilinear map
(necessarily continuous) of Rn ×Rn into R. If f and g are two vector functions with values
in Rn, and differentiable at the point x0, then the real function x �→ (f(x) | g(x)) has a
derivative equal to (f ′(x0) | g(x0)) + (f(x0) | g′(x0)) at the point x0. There is an analogous
result for the hermitian scalar product on Cn, this space being considered as a vector space
over R.

Let us consider in particular the case where the euclidean norm ‖f(x)‖ is constant,
so that (f(x) | f(x)) � ‖f(x)‖2 is also constant; on writing that the derivative of (f(x) | f(x))
vanishes at x0 we obtain (f(x0) | f ′(x0)) � 0; in other words, f ′(x0) is orthogonal to f(x0).

4) If E is a topological algebra over R (cf. Introduction), the product xy of two
elements of E is a continuous bilinear function of (x, y); if f and g have their values in E
and are differentiable at the point x0, then the function x �→ f(x)g(x) has a derivative equal
to f ′(x0)g(x0) + f(x0)g′(x0) at x0. In particular, if U (x) � (αi j (x)) and V (x) � (βi j (x)) are
two square matrices of order n, differentiable at x0, their product U V has a derivative
equal to U ′(x0)V (x0) + U (x0)V ′(x0) at x0 (where U ′(x) � (α′

i j (x)) and V ′(x) � (β ′
i j (x))).

5) The determinant det(x1, x2, . . . , xn) of n vectors xi � (xi j )1� j�n from the space Rn

(Alg., III, p. 522) being a (continuous) multilinear function of the xi , one sees that if the
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n2 real functions fi j are differentiable at x0, then their determinant g(x) � det( fi j (x)) has
a derivative equal to

n∑
i�1

[
f1(x0), . . . , fi−1(x0), f ′

i (x0), fi+1(x0), . . . , fn(x0)
]

at x0, where fi (x) � ( fi j (x))1� j�n ; in other words, one obtains the derivative of a deter-
minant of order n by taking the sum of the n determinants formed by replacing, for each
i, the terms of the i th column by their derivatives.

Remark. If U (x) is a square matrix which is differentiable and invertible at the point
x0, then the derivative of its determinant ∆(x) � det(U (x)) can be expressed through
the derivative of U (x) by the formula

∆′(x0) � ∆(x0).Tr(U ′(x0)U−1(x0)). (3)

Indeed, let us put U (x0 +h) � U (x0)+hV ; then, by definition, V tends to U ′(x0)
when h tends to 0. One can write

∆(x0 + h) � ∆(x0). det(I + hV U−1(x0)).

Now det(I + h X ) � 1 + hTr(X ) +
n∑

k�2
λkhk, the λk (k � 2) being polynomials in

the elements of the matrix X ; since the elements of V U−1(x0) have a limit when h
tends to 0, we indeed obtain the formula (3).

4. DERIVATIVE OF THE INVERSE OF A FUNCTION

PROPOSITION 4. Let E be a complete normed algebra with a unit element over
R and let f be a function defined on an interval I ⊂ R, taking values in E, and
differentiable at the point x0 ∈ I. If y0 � f(x0) is invertible 2 in E, then the
function x �→ (f(x))−1 is defined on a neighbourhood of x0 (relative to I), and has
a derivative equal to −(

f(x0)
)−1

f ′(x0)
(
f(x0)

)−1
at x0.

Indeed, the set of invertible elements in E is an open set on which the function
y �→ y−1 is continuous (Gen. Top., IX, p. 178); since f is continuous (relative to I) at
x0,

(
f(x)

)−1
is defined on a neighbourhood of x0, and we have

(
f(x)

)−1 − (
f(x0)

)−1 � (
f(x)

)−1
(

f(x0) − f(x)
)(

f(x0)
)−1

.

The proposition thus follows from the continuity of y−1 on a neighbourhood of y0

and the continuity of xy on E × E.

2 Recall from (Alg., I, p. 15) that an element z ∈ E is said to be invertible if there exists an
element of E, denoted by z−1, such that zz−1 � z−1z � e (e being the unit element of
E).
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Examples. 1) The most important particular case is that where E is one of the fields
R or C : if f is a function with real or complex values, differentiable at the point x0, and
such that f (x0) �� 0, then 1/ f has derivative equal to − f ′(x0)/( f (x0))2 at x0.

2) If U � (αi j (x)) is a square matrix of order n, differentiable at x0 and invertible at
this point, then U−1 has derivative equal to −U−1U ′U−1 at x0.

5. DERIVATIVE OF A COMPOSITE FUNCTION

PROPOSITION 5. Let f be a real function defined on an interval I ⊂ R, and g a
vector function defined on an interval of R containing f (I). If f is differentiable at
the point x0 and g is differentiable at the point f (x0) then the composite function
g ◦ f has a derivative equal to g′( f (x0)) f ′(x0) at x0.

Let us put h � g ◦ f ; for x �� x0 we can write

h(x) − h(x0)

x − x0
� u(x)

f (x) − f (x0)

x − x0

where we set u(x)� g( f (x)) − g( f (x0))

f (x) − f (x0)
if f (x) �� f (x0), and u(x) � g′( f (x0))

otherwise. Now f (x) has limit f (x0) when x tends to x0, so u(x) has limit g′( f (x0)),
from which the proposition follows in view of the continuity of the function yx on
E × R.

6. DERIVATIVE OF AN INVERSE FUNCTION

PROPOSITION 6. Let f be a homeomorphism of an interval I ⊂ R onto an interval
J � f (I) ⊂ R, and let g be the inverse homeomorphism3 . If f is differentiable at
the point x0 ∈ I, and if f ′(x0) �� 0, then g has a derivative equal to 1/ f ′(x0) at
y0 � f (x0).

For each y ∈ J we have g(y) ∈ I and u � f (g(y)); we thus can write
g(y) − g(y0)

y − y0
� g(y) − x0

f (g(y)) − f (x0)
, for y �� y0. When y tends to y0 while remaining

in J and �� y0, then g(y) tends to x0 remaining in I and �� x0, and the right-hand side
in the preceding formula thus has limit 1/ f ′(x0), since by hypothesis f ′(x0) �� 0.

COROLLARY. If f is differentiable on I and if f ′(x) �� 0 on I, then g is differ-
entiable on J and its derivative at each point y ∈ J is 1/ f ′(g(y)).

For example, for each integer n > 0, the function x1/n is a homeomorphism of R+
onto itself, is the inverse of xn, and has derivative 1

n x
1
n −1 at each x > 0.

One deduces easily, from prop. 5, that for every rational number r � p/q > 0 the
function xr � (

x1/q
)p

has derivative r xr−1 at every x > 0.

3 For f to be a homeomorphism of I onto a subset of R we know that it is necessary and
sufficient that f be continuous and strictly monotone on I (Gen. Top., IV, p. 338, th. 5).
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Remarks. 1) All the preceding propositions, stated for functions differentiable at a point
x0, immediately yield propositions for functions which are right (resp. left) differentiable
at x0, when, instead of the functions themselves, one considers their restrictions to the
intersection of their intervals of definition with the interval [[[x0, +∞[[[ (resp. ]]] − ∞, x0]]]);
we leave it to the reader to state them.

2) The preceding definitions and propositions (except for those concerning right and left
derivatives) extend easily to the case where one replaces R by an arbitrary commutative non-
discrete topological field K, and the topological vector spaces (resp. topological algebras)
over R by topological vector spaces (resp. topological algebras) over K. In def. 1 and
props. 1, 2 and 3 it is enough to replace I by a neighbourhood of x0 in K; in prop. 4 one
must assume further that the map y �→ y−1 is defined and continuous on a neighbourhood
of f(x0) in E. Prop. 5 generalizes in the following manner: let K′ be a non-discrete subfield
of the topological field K, let E be a topological vector space over K; let f be a function
defined on a neighbourhood V ⊂ K′ of x0 ∈ K′, with values in K (considered as a
topological vector space over K′), differentiable at x0, and let g be a function defined on
a neighbourhood of f (x0) ∈ K, with values in E, and differentiable at the point f (x0);
then the map g ◦ f is differentiable at x0 and has derivative g′( f (x0)) f ′(x0) there (E being
then considered as a topological vector space over K′).

With the same notation, let f be a function defined on a neighbourhood V of a ∈ K,
with values in E, and differentiable at the point a; if a ∈ K′, then the restriction of f to
V ∩ K′ is differentiable at a, and has derivative f ′(a) there. These considerations apply
above all, in practice, to the case where K � C and K′ � R.

Finally, prop. 6 extends to the case where one replaces I by a neighbourhood of x0 ∈ K,
and f by a homeomorphism of I onto a neighbourhood J � f (I) of y0 � f (x0) in K.

7. DERIVATIVES OF REAL-VALUED FUNCTIONS

The preceding definitions and propositions may be augmented in several respects
when we deal with real-valued functions of a real variable.

In the first place, if f is such a function, defined on an interval I ⊂ R, and
continuous relative to I at a point x0 ∈ I, it can happen that when x tends to x0 while

remaining in I and �� x0, that
f (x) − f (x0)

x − x0
has a limit equal to +∞ or to −∞; one

then says that f is differentiable at x0 and has derivative +∞ (resp. −∞) there; if
the function f has a derivative f ′(x) (finite or infinite) at every point x of I, then
the function f ′ (with values in R) is again called the derived function (or simply the
derivative) of f. One generalizes the definitions of right and left derivative similarly.

Example. At the point x � 0 the function x1/3 (the inverse function of x3, a home-
omorphism of R onto itself) has a derivative, equal to +∞; at x � 0 the function |x |1/3

has right derivative +∞ and left derivative −∞.

The formulae for the derivative of a sum, of a product of differentiable real
functions, and for the inverse of a differentiable function (props. 1, 3 and 4), as well
as for the derivative of a (real-valued) composition of functions (prop. 5) remain
valid when the derivatives that occur are infinite, so long as all the expressions that
occur in these formulae make sense (Gen. Top., IV, p. 345–346). In fact, if in prop. 6
one supposes that f is strictly increasing (resp. strictly decreasing) and continuous
on I, and if f ′(x0) � 0, then the inverse function g has a derivative equal to +∞
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(resp. −∞) at the point y0 � f (x0); if f ′(x0) � +∞ (resp. −∞), then g has
derivative 0. There are similar results for right and left derivatives, which we leave
to the care of the reader.

Let C be the graph or representing curve of a finite real function f, the subset
of the plane R2 formed by the points (x, f (x)) where x runs through the set where
f is defined. If the function f has a finite right derivative at a point x0 ∈ I, then
the half-line with origin at the point Mx0 � (x0, f (x0)) of C, and direction numbers
(1, f ′

d (x0)) is called the right half-tangent to the curve C at the point Mx0 ; when
f ′
d (x0) � +∞ (resp. f ′

d (x0) � −∞) we use the same terminology for the half-line
with origin Mx0 and direction numbers (0, 1) (resp. (0, −1)). In the same way one
defines the left half-tangent at Mx0 when f ′

g(x0) exists. With these definitions one
can verify quickly that the angle which the right (resp. left) half-tangent makes with
the abscissa is the limit of the angle made by this axis with the half-line originating
at Mx0 and passing through the point Mx � (x, f (x)) of C, as x tends to x0 while
remaining > x0 (resp. < x0).

One can also say that the right (resp. left) half-tangent is the limit of the half-line
originating at Mx0 passing through Mx , on endowing the set of half-lines having the same
origin with the quotient space topology C∗/R∗

+ (Gen. Top., VIII, p. 107).

If the two half-tangents exist at a point Mx0 of C, they are in opposite directions
only when f has a derivative (finite or not) at the point x0 (assumed interior to I);
they are identical only when f ′

d (x0) and f ′
g(x0) are infinite and of opposite sign. In

these two cases we say that the line containing these two half-tangents is the tangent
to C at the point Mx0 .

When the tangent at Mx0 exists it is the limit of the line passing through Mx0 and Mx

as x tends to x0 remaining �� x0, the topology on the set of lines which pass through a
given fixed point being that of the quotient space C∗/R∗ (Gen. Top., VIII, p. 114).

The concepts of tangent and half-tangent to a graph are particular cases of general
concepts which will be defined in the part of this Series devoted to differentiable varieties.

DEFINITION 4. We say that a real function f, defined on a subset A of a topological
space E, has a relative maximum (resp. strict relative maximum, relative minimum,
strict relative minimum) at a point x0 ∈ A, relative to A, if there is a neighbourhood
V of x0 in E such that at every point x ∈ V∩A distinct from x0 one has f (x) � f (x0)
(resp. f (x) < f (x0), f (x) � f (x0), f (x) > f (x0)).

It is clear that if f attains its least upper bound (resp. greatest lower bound) over
A at a point of A, then it has a relative maximum (resp. relative minimum) relative
to A at this point; the converse is of course incorrect.

Note that if B ⊂ A, and if f admits (for example) a relative maximum at a point
x0 ∈ B relative to B, then f does not necessarily have a relative maximum relative to A
at this point.

PROPOSITION 7. Let f be a finite real function, defined on an interval I ⊂ R. If
f admits a relative maximum (resp. relative minimum) at a point x0 interior to I,
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and has both right and left derivatives at this point, then one has f ′
d (x0) � 0 and

f ′
g(x0) � 0 (resp. f ′

d (x0) � 0 and f ′
g(x0) � 0); in particular, if f is differentiable

at the point x0, then f ′(x0) � 0.

The proposition follows trivially from the definitions.
We can say further that if at a point x0 interior to I the function f is differentiable

and admits a relative maximum or minimum, then the tangent to its graph is parallel
to the abscissa. The converse is incorrect, as is shown by the example of the function
x3 which has zero derivative at the point x � 0, but has neither relative maximum
nor minimum at this point.

§ 2. THE MEAN VALUE THEOREM

The hypotheses and conclusions demonstrated in § 1 are local in character: they
concern the properties of the functions under consideration only on an arbitrarily
small neighbourhood of a fixed point. In contrast, the questions which we treat in
this section involve the properties of a function on all of an interval.

1. ROLLE’S THEOREM

PROPOSITION 1 (“Rolle’s theorem”). Let f be a real function which is finite and
continuous on a closed interval I � [[[a, b]]] (where a < b), has a derivative (finite
or not) at every point of ]]]a, b[[[, and is such that f (a) � f (b). Then there exists a
point c of ]]]a, b[[[ such that f ′(c) � 0.

The proposition is evident if f is constant: if not, f takes, for example, values
> f (a), and so attains its least upper bound at a point c interior to I (Gen. Top.,
IV, p. 359, th. 1). Since f has a relative maximum at this point we have f ′(c) � 0
(I, p. 20, prop. 7).

COROLLARY. Let f be a real function which is finite and continuous on [[[a, b]]]
(where a < b), and has a derivative (finite or not) at every point. Then there exists
a point c of ]]]a, b[[[ such that f (b) − f (a) � f ′(c)(b − a).

We need only apply prop. 1 to the function f (x) − f (b) − f (a)

b − a
(x − a).

This corollary signifies that there is a point Mc � (c, f (c)) on the graph C of f
such that a < c < b and such that the tangent to C at this point is parallel to the line
joining the points Ma � (a, f (a)) and Mb � (b, f (b)).
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2. THE MEAN VALUE THEOREM FOR REAL-VALUED FUNCTIONS

The following important result is a consequence of the corollary to prop. 1: if one

has m � f ′(x) � M on ]]]a, b[[[, then also m � f (b) − f (a)

b − a
� M. In other words,

a bound for the derivative of f ′ on the whole interval with endpoints a, b implies

the same bound for
f (b) − f (a)

b − a
(the ratio of the “increment” of the function to the

“increment” of the variable on the interval). We shall make this fundamental result
more precise, and generalize it, in the sequel.

PROPOSITION 2. Let f be a real function which is finite and continuous on the
closed bounded interval I � [[[a, b]]] (where a < b) and has a right derivative (finite
or not) at all the points of the relative complement in [[[a, b) of a countable subset
A of this interval. If f ′

d (x) � 0 at every point of [[[a, b[[[ not belonging to A, then
one has f (b) � f (a); if, further, f ′

d (x) > 0 for at least one point of [[[a, b[[[, then
f (b) > f (a).

Let ε > 0 be arbitrary, and denote by (an)n�1 a sequence obtained by listing the
countable set A. Let J be the set of points y ∈ I such that one has

f (x) − f (a) � −ε(x − a) − ε
∑
an<x

1

2n
(1)

for all x with a � x � y, the sum in the second term of the right-hand side being
taken over all indices n for which an < x . We shall show that if f ′

d (x) � 0 at every
point of [[[a, b[[[ distinct from the an, then J � I.

It is clear that J is not empty, since a ∈ J; moreover the definition of this set
shows that if y ∈ J one has x ∈ J for a � x � y, so J is an interval with left-hand
endpoint a (Gen. Top., IV, p. 336, prop. 1); let c be its right-hand endpoint. One has
c ∈ J; this is clear if c � a; if not, for every x < c we have the inequality (1), and a
fortiori

f (x) − f (a) � −ε(c − a) − ε
∑
an<c

1

2n

from which it follows, on letting x tend to c in this inequality (since f is continuous),
that c satisfies (1).

This being so, we shall see that we must have c � b. Indeed, if one had c < b,

then certainly one would have c /∈ A; now f ′
d (c) exists, and since f ′

d (c) � 0 by
hypothesis, there exists a y such that c < y � b and such that for c � x � y one has

f (x) − f (c) � −ε(x − c)

from which, taking account of (1), where x is replaced by c,

f (x) − f (a) � −ε(x − a) − ε
∑
an<c

1

2n
� −ε(x − a) − ε

∑
an<x

1

2n
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which signifies that y ∈ J, contradicting the definition of c. Thus we have c � ak for
some index k; since f is continuous at the point ak there is a y such that c < y � b
and such that for c < x � y one has

f (x) − f (c) � − ε

2k

from which, taking account of (1), where x is replaced by c,

f (x) − f (a) � −ε(c − a) − ε
∑
an<x

1

2n
� −ε(x − a) − ε

∑
an<x

1

2n

which again leads to a contradiction; we thus have c � b, and in consequence

f (b) − f (a) � −ε(b − a) − ε
∑
an<b

1

2n
� −ε(b − a) − ε. (2)

Since ε > 0 is arbitrary we deduce from (2) that f (b) � f (a), which demon-
strates the first part of the proposition.

We remark now that this result applied to an interval [[[x, y]]] where
a � x < y � b proves that f is increasing on I; if one had f (b) � f (a) one
could deduce that f is constant on I, and then that f ′

d (x) � 0 at every point of [[[a, b[[[;
the second part follows from this.

COROLLARY. Let f be a finite continuous real function on [[[a, b]]] (where a < b)
and have a right derivative at all points of the complement in [[[a, b[[[ of a countable
subset A of this interval. For f to be increasing on I it is necessary and sufficient
that f ′

d (x) � 0 at every point of [[[a, b[[[ that does not belong to A; for f to be strictly
increasing it is necessary and sufficient that that the preceding condition holds, and
further that the set of points x where f ′

d (x) > 0 be dense in [[[a, b]]].

Remarks. 1) Prop. 2 remains true when one replaces the interval [[[a, b[[[ by ]]]a, b]]] and
the words “right derivative” by “left derivative”.

2) The hypothesis of continuity on f on the closed interval I (and not just right
continuity 4 at every point of [[[a, b[[[) is essential for the validity of prop. 2 (cf. I, p. 36,
exerc. 8 ).

3) The conclusion of prop. 2 is not guaranteed if one merely supposes that the set A
of “exceptional” points is nowhere dense in I, but not countable (cf. I, p. 37, exerc. 3).

Prop. 2 entails the following fundamental theorem (which appears to be more
general):

THEOREM 1 (mean value theorem). Let f and g be two finite continuous real-
valued functions defined on a closed bounded interval I � [[[a, b]]] and having a

4 A function defined on an interval I ⊂ R is said to be right continuous at a point x0 ∈ I if its
restriction to the interval I ∩ [[[x0, +∞[[[ is continuous at the point x0 relative to this interval;
it comes to the same to say that the right limit of this function exists at this point and is equal
to the value of the function at this point.
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right derivative (finite or not) at all points of the relative complement in [[[a, b[[[ of
a countable subset of this interval. Suppose further that f ′

d (x) and g′
r (x) are not

simultaneously infinite except at the points of a countable subset of I and that there
are finite numbers m, M such that

mg′
r (x) � f ′

d (x) � Mg′
r (x) (3)

except at the points of a countable subset of I (replacing Mg′
r (x) (resp. mg′

r (x)) by
0 if M � 0 (resp. m � 0) and g′

r (x) � ±∞). Under these conditions one has

m (g(b) − g(a)) < f (b) − f (a) < M (g(b) − f (a)) (4)

except when one has f (x) � Mg(x) + k, or f (x) � mg(x) + k (k constant) for all
x ∈ I.

It suffices to apply prop. 2 to the functions Mg − f and f − mg, which, under
our hypotheses, have a positive right derivative except at the points of a countable
subset of I.

Remark. Th. 1 fails if one allows f ′
d and g′

r to be simultaneously infinite on an
uncountable subset of I (cf. I, p. 37, exerc. 3).

COROLLARY. Let f be a finite continuous function on [[[a, b]]] (where a < b)
and have a right derivative (finite or not) at all points of the relative complement B
in [[[a, b[[[ of a countable subset of this interval. If m and M are the greatest lower
and least upper bounds of f ′

d on B then one has

m(b − a) < f (b) − f (a) < M(b − a) (5)

if f is not an affine linear function; if f is affine linear one has

m � M � f (b) − f (a)

b − a
.

The inequalities (5) are consequences of (4) when m and M are finite; the case
when one or the other of these numbers is infinite is trivial.

Remark. The inequalities (5) prove that a continuous function cannot have right
derivative equal to +∞ at all points of an interval (cf. I, p. 38, exerc. 6).

3. THE MEAN VALUE THEOREM FOR VECTOR FUNCTIONS

THEOREM 2. Let f be a vector function defined and continuous on a closed bounded
interval I � [[[a, b]]] of R (where a < b) and taking values in a normed space E over
R; let g be a continuous increasing real function on I. Suppose that f and g have
right derivatives at all points of the relative complement in [[[a, b[[[ of a countable
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subset A of this interval (allowing g′
r (x) to be infinite at some of the points x /∈ A),

and suppose that at each of these points we have
∥∥f ′

d (x)
∥∥ � g′

r (x). (6)

Under these hypotheses one has

‖f(b) − f(a)‖ � g(b) − g(a). (7)

The proof proceeds similarly to that of prop. 2. Let ε > 0 be arbitrary, and (an)
the sequence obtained by enumerating A in some order. Let J be the set of points
y ∈ I such that, for all x such that a � x � y one has

‖f(x) − f(a)‖ � g(x) − g(a) + ε(x − a) + ε
∑
an<x

1

2n
; (8)

we shall show that J � I. One sees immediately, as in prop. 2, that J is an interval
with left-hand endpoint a; if c is its right-hand endpoint then c ∈ J; indeed, for all
x < c one has (8), and a fortiori

‖f(x) − f(a)‖ � g(c) − g(a) + ε(c − a) + ε
∑
an<c

1

2n

from which, letting x tend to c in this inequality, it follows from the continuity of f
that c satisfies (8).

Let us show that we must have c � b. So suppose that c < b and that moreover
c /∈ A : then f ′

d (c) and g′
r (c) exist and satisfy (6); suppose in the first place that g′

r (c)
(which is necessarily � 0) is finite; then one can always write f ′

d (c) � ug′
r (c), with

‖u‖ � 1; since the function f(x)−ug(x) has zero right derivative at the point c there
must exist a y such that c < y � b and such that for c � x � y one has

‖f(x) − f(c) − u(g(x) − g(c))‖ � ε(x − c)

from which
‖f(x) − f(c)‖ � g(x) − g(c) + ε(x − c)

and, taking account of (8), in which x is replaced by c,

‖f(x) − f(a)‖ � g(x) − g(a) + ε(x − a) + ε
∑
an<c

1

2n

� g(x) − g(a) + ε(x − a) + ε
∑
an<x

1

2n
.

Thus one has y ∈ J, which is a contradiction. Suppose next that c /∈ A and that
g′

r (c) � +∞; then there is a y such that c < y � b and such that for c � x � y one
has on the one hand
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‖f(x) − f(c)‖ �
(∥∥f ′

d (c)
∥∥ + 1

)
(x − c)

while on the other hand

g(x) − g(c) �
(∥∥f ′

d (c)
∥∥ + 1

)
(x − c)

from which
‖f(x) − f(c)‖ � g(x) − g(c)

and one concludes as above. Finally, if one has c � ak, then there is a y such that
c < y � b, and such that for c < x � y one has

‖f(x) − f(c)‖ � ε

2k

from which, taking account of (8), with x replaced by c,

‖f(x) − f(a)‖ � g(c) − g(a) + ε(c − a) + ε
∑
an<x

1

2n

� g(x) − g(a) + ε(x − a) + ε
∑
an<x

1

2n

which again entails a contradiction. The proof finishes as that of prop. 2.
Q.E.D.

Remarks. 1) Here again, in the statement of th. 2 one can replace the interval [[[a, b[[[
by ]]]a, b]]] and “right derivative” by “left derivative”.

2) We shall show later how to identify the case of equality in (7), and also how to
generalize th. 2 to the case where E is an arbitrary locally convex space, with the help of
another method of proof which allows one to deduce th. 2 from th. 1.

COROLLARY. For a continuous vector function on an interval I ⊂ R, with values
in a normed space E over R, to be constant on I it suffices that it have zero right
derivative at all points of the complement (relative to I) of a countable subset of I.

Remark. The proofs of ths. 1 and 2 rely in an essential manner on the special
topological properties of the field R; one can give examples of valued fields K for which
there are nonconstant linear maps of K to itself with zero derivative at every point (cf. I,
p. 37, exerc. 2).

PROPOSITION 3. Let f be a vector function with values in a normed space E
over R, defined and continuous on an interval I ⊂ R, and right differentiable
on the complement B (relative to I) of a countable subset of I; then for all points
x0 ∈ B, x ∈ I, y ∈ I, one has (supposing that x < y, for example)∥∥f(y) − f(x) − f ′

d (x0)(y − x)
∥∥ � (y − x) sup

z∈B, x<z<y

∥∥f ′
d (z) − f ′

d (x0)
∥∥ . (9)

Indeed it suffices to apply th. 2, replacing f by the function

f(z) − f ′
d (x0)z,

and g by the linear function whose derivative is sup
z∈B, x<z<y

∥∥f ′
d (z) − f ′

d (x0)
∥∥ .
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Theorem 2 extends to vector functions of a complex variable:

PROPOSITION 4. Let f be a continuous differentiable function of a complex vari-
able defined on a convex open subset A of the field C, with values in a normed
space E over the field C. If one has

∥∥f ′(z)
∥∥ � m for all z ∈ A, then one has

‖f(b) − f(a)‖ � m |b − a| for every pair of points a, b of A.

We put g(t) � 1

b − a
f(a + t(b − a)) for 0 � t � 1; since

g′(t) � f ′(a + t(b − a)), applying th. 2 to the function g yields the proposition
immediately.

COROLLARY. For a vector function f of a complex variable, defined and continuous
on an open set A ⊂ C, and with values in a normed space over C, to be constant,
it suffices that it have zero derivative at every point of A.

Indeed, let a be an arbitrary point of A; the set B of points z of A where f(z) � f(a)
is closed because f is continuous; it is also open, as is shown by applying prop. 4
(with m � 0) to a convex open neighbourhood, contained in A, of an arbitrary point
of B; so is identical to A.

PROPOSITION 5. Let f be a vector function of a complex variable, defined, con-
tinuous and differentiable on a convex open set A ⊂ C, taking values in a normed
space over the field C; then, no matter what the points x0, x and y in A, one has

∥∥f(y) − f(x) − f ′
d (x0)(y − x)

∥∥ � |y − x | sup
z∈A

∥∥f ′(z) − f ′(x0)
∥∥ . (10)

It suffices to apply th. 2 to the function

g(t) � f(x + t(y − x)) − f ′(x0)(y − x)t

on the interval [[[0, 1]]].

4. CONTINUITY OF DERIVATIVES

PROPOSITION 6. Let I be an open interval in R, let x0 be one of the endpoints
of I, and f a vector function defined and continuous on I, with values in a complete
normed space E over R; suppose that f has a right derivative at the points of the
complement B in I of a countable subset of I. Then for f ′

d (x) to have a limit as x tends

to x0 while remaining in B and �� x0 it is necessary and sufficient that
f(y) − f(x)

y − x
have a limit c as (x, y) tends to (x0, x0) subject to x ∈ I, y ∈ I, x �� x0, y �� x0

and x �� y. Under these conditions f extends by continuity to the point x0, the right
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derivative f ′
d (x) tends to c as x tends to x0 (while remaining in B) and the function

f extended (defined on I ∪ {x0}) has derivative at x0 equal to c.

Suppose for example that x0 is the right-hand endpoint of I. Let us first show that

if f ′
d (x) tends to c as x tends to x0 while remaining in B and �� x0, then

f(y) − f(x)

y − x
tends to c; this follows immediately from th. 2 applied to the function f(z) − cz,
which yields

‖f(y) − f(x) − c(y − x)‖ � (y − x) sup
z∈B, x<z<y

∥∥f ′
d (z) − c

∥∥

for x < y < x0. Conversely, if
f(y) − f(x)

y − x
tends to c, then for every ε > 0 there

exists an h > 0 such that the conditions |x − x0| < h, |y − x0| < h (x �� x0, y �� x0)
imply

‖f(y) − f(x) − c(y − x)‖ � ε |y − x | . (11)

But for all x ∈ B and �� x0 such that |x − x0| < h there exists a k > 0 (depending
on x) such that the relation x < y < x + k entails∥∥f(y) − f(x) − f ′

d (x)(y − x)
∥∥ � ε |y − x | (12)

from which, considering (11): ∥∥f ′
d (x) − c

∥∥ � 2ε

for |x − x0| < h, x ∈ B and x �� x0, which proves that f ′
d (x) tends to c. Moreover,

from the relation (11) one has immediately that

‖f(y) − f(x)‖ � (‖c‖ + ε) |y − x | ,
which proves (by Cauchy’s criterion) that f has a limit d at the point x0 as x tends
to this point while remaining in I and �� x0; now, letting x approach x0 in (11), for
y ∈ I, y �� x0 and |y − x0| � h, we have∥∥∥∥ f(y) − d

y − x0
− c

∥∥∥∥ � ε

which proves that c is the derivative at the point x0 of the function f extended by
continuity to I ∪ {x0}.

Remark. A similar argument, based on th. 1, shows that if f is a real function such
that f ′

d (x) tends to +∞ at the point x0 then the ratio

( f (y) − f (x))/(y − x)

also tends to +∞, and conversely; if moreover f has a finite limit at the point x0 (which
is not a consequence of the present hypothesis), then the function f extended by continuity
to x0 has a derivative equal to +∞ at this point.
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§ 3. DERIVATIVES OF HIGHER ORDER

1. DERIVATIVES OF ORDER n

Let f be a vector function of a real variable, defined, continuous and differentiable
on an interval I. If the derivative f ′ exists on a neighbourhood (with respect to I)
of a point x0 ∈ I, and is differentiable at the point x0, then its derivative is called
the second derivative of f at the point x0, and is denoted by f ′′(x0) or D2f(x0). If
this second derivative exists at every point of I (which implies that f ′ exists and is
continuous on I), then x �→ f ′′(x) is a vector function which one denotes by f ′′ or
D2f. We define, in the same way, recursively, the nth derivative (or derivative of
order n) of f, and denote it by f (n) or Dnf; by definition, its value at the point x0 ∈ I
is the derivative of the function f (n−1) at the point x0 : this definition presupposes
the existence of all the derivatives f (k) of order k � n − 1 on a neighbourhood of x0

relative to I, and the differentiability of f (n−1) at the point x0.

We will say that f is n times differentiable at the point x0 (resp. in an interval)
if it admits an nth derivative at this point (resp. in this interval). One says that f is
indefinitely differentiable on I if for each integer n > 0 it admits a derivative of order
n on I.

By induction on m one sees that

Dm(Dnf) � Dm+nf. (1)

More precisely, when one of the two terms in (1) is defined, then so is the other, and
is equal to it.

PROPOSITION 1. The set of vector functions defined on an interval I ⊂ R, taking
values in a given topological vector space E, and having an nth derivative on I, is a
vector space over R, and f �→ Dnf is a linear mapping of this space into the vector
space of linear mappings from I into E.

One proves the formulae

Dn(f + g) � Dnf + Dng (2)

Dn(fa) � Dnf.a (3)

by induction on n when f and g have an nth derivative on I (a being constant).

PROPOSITION 2
(
“Leibniz’ formula”

)
. Let E, F, G be three topological vector

spaces over R, and (x, y) �→ [x.y] a continuous bilinear mapping of E × F into G.
If f (resp. g) is defined on an interval I ⊂ R, takes its values in E (resp. F) and has
an nth derivative on I, then [f.g] has an nth derivative on I, given by the formula

Dn[f.g] � [f (n).g] +
(

n

1

)
[f (n−1).g′] + · · · +

(
n

p

)
[f (n−p).g(p)] + · · · + [f.g(n)]. (4)
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Formula (4) is proved by induction on n (using the relation
(n

p

) � (n−1
p

) + (n−1
p−1

)
for the binomial coefficients).

In the same way one can verify the following formula (where the hypotheses are
the same as in prop. 2):

[f (n).g] + (−1)n−1[f.g(n)] � D
(
[f (n−1).g] − [f (n−2).g′] + · · ·

+ (−1)n−1[f.g(n−1)]
)
.

(5)

The preceding propositions have been stated for functions that are n times differentiable
on an interval; we leave it to the reader to formulate the analogous propositions for functions
that are n times differentiable at a point.

2. TAYLOR’S FORMULA

Let f be a vector function defined on an interval I ⊂ R, with values in a normed
space E over R; to say that f has a derivative at a point a ∈ I signifies that

lim
x→a, x∈I, x ��a

f(x) − f(a) − f ′(a)(x − a)

x − a
� 0; (6)

or, otherwise, that f is “approximately equal” to the linear function f(a)+f ′(a)(x −a)
on a neighbourhood of a (cf. chap. V, where this concept is developed in a general
manner). We shall see that the existence of the nth order derivative of f at the point
a entails in the same way that f is “approximately equal” to a polynomial of degree
n in x, with coefficients in E (Gen. Top., X, p. 315) on a neighbourhood of a. To be
precise:

THEOREM 1. If the function f has an nth derivative at the point a then

lim
x→a, x∈I, x ��a

f(x) − f(a) − f ′(a) (x−a)
1! − · · · − f (n)(a) (x−a)n

n!

(x − a)n
� 0. (7)

We proceed by induction on n. The theorem holds for n � 1. For arbitrary n one
can, by the induction hypothesis, apply it to the derivative f ′ of f : for any ε > 0
there is an h > 0 such that, if one puts

g(x) � f(x) − f(a) − f ′(a)
(x − a)

1!
− f ′′(a)

(x − a)2

2!
− · · · − f (n)(a)

(x − a)n

n!

one has, for |y − a| � h and y ∈ I,

∥∥g′(y)
∥∥ �

∥∥∥∥f ′(y) − f ′(a) − f ′′(a)
(y − a)

1!
− · · · − f (n)(a)

(y − a)n−1

(n − 1)!

∥∥∥∥
� ε |y − a|n−1 .

We apply the mean value theorem (I, p. 15, th. 2) on the interval with endpoints
a, x (with |x − a| � h) to the vector function g and to the real increasing function
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equal to ε |y − a|n /n if x > a, and to −ε |y − a|n /n if x < a; it follows that
‖g(x)‖ � ε |x − a|n /n, which proves the theorem.

We thus can write

f(x) � f(a) + f ′(a)
(x − a)

1!
+ f ′′(a)

(x − a)2

2!
+ · · ·

+ f (n)(a)
(x − a)n

n!
+ u(x)

(x − a)n

n!

(8)

where u(x) approaches 0 as x approaches a while remaining in I; this formula is
called Taylor’s formula of order n at the point a, and the right-hand side of (8) is
called the Taylor expansion of order n of the function f at the point a. The last term
rn(x) � u(x)(x − a)n/n! is called the remainder in the Taylor formula of order n.

When f has a derivative of order n + 1 on I, one can estimate ‖rn(x)‖ in terms
of this n + 1th derivative, on all of I, and not just on an unspecified neighbourhood
of a :

PROPOSITION 3. If
∥∥f (n+1)(x)

∥∥ � M on I, then we have

‖rn(x)‖ � M
|x − a|n+1

(n + 1)!
(9)

on I.

Indeed, the formula holds for n � 0, by I, p. 15, th. 2. Let us prove it by induction
on n : by the induction hypothesis applied to f ′, one has

∥∥r′
n(y)

∥∥ � M
|y − a|n

n!
from which the formula (9) follows by the mean value theorem (I, p. 23, th. 2).

COROLLARY. If f is a finite real function with a derivative of order n + 1 on I,
and if m � f (n+1)(x) � M on I, then for all x � a in I one has

m
(x − a)n+1

(n + 1)!
� rn(x) � M

(x − a)n+1

(n + 1)!
(10)

and the second term cannot be equal to the first (resp. to the third) unless f (n+1) is
constant and equal to m (resp. M) on the interval [[[a, x]]].

The proof proceeds in the same way, but applying th. 1 of I, p. 14.

Remarks. 1) We have already noticed in the proof of th. 1 that if f has a derivative
of order n on I, and if

f(x) � a0 + a1(x − a) + a2(x − a)2 + · · · + an(x − a)n + rn(x) (11)

is its Taylor expansion of order n at the point a, then the Taylor expansion of order
n − 1 for f ′ at the point a is

f ′(x) � a1 + 2a2(x − a) + · · · + nan(x − a)n−1 + r′
n(x). (12)
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We say that it is obtained from the expansion (11) of f by differentiating term-
by-term.

2) With the same hypotheses, the coefficients ai in (11) are determined recursively
by the relations

a0 � f(a)

a1 � lim
x→a

f(x) − f(a)

x − a

a2 � lim
x→a

f(x) − f(a) − a1(x − a)

(x − a)2

. . .

an � lim
x→a

f(x) − f(a) − a1(x − a) − · · · − an−1(x − a)n−1

(x − a)n
·

In the case a � 0 one concludes, in particular, that if f(x p) (p an integer > 0)
has a derivative of order pn on a neighbourhood of 0 then the Taylor expansion of
order pn of this function is simply

f(x p) � a0 + a1x p + a2x2p + · · · + an xnp + rn(x p) (13)

where rn(x p) is the remainder in the expansion (cf. V, p. 222).
3) The definition of the derivative of order n and the preceding results generalize

immediately to functions of a complex variable; we shall not pursue this topic further
here; it will be treated in detail in a later Book in this Series.

§ 4. CONVEX FUNCTIONS OF A REAL VARIABLE

Let H be a subset of R, f a finite real function defined on H, and let G be the graph or
representative set of the function f in R×R � R2, the set of points Mx � (x, f (x)),
where x runs through H. It is convenient to say that a point (a, b) of R2 such that
a ∈ H lies above (resp. strictly above, below, strictly below) G if one has b � f (a)
(resp. b > f (a), b � f (a), b < f (a)). If A � (a, a′) and B � (b, b′) are two
points of R2 we denote by AB the closed segment with endpoints A and B; if a < b

then AB is the graph of the linear function a′ + b′ − a′

b − a
(x − a) defined on [[[a, b]]];

we denote the slope
b′ − a′

b − a
of this segment by p(AB), and will make use of the

following lemma, whose verification is immediate:

Lemma. Let A � (a, a′), B � (b, b′), C � (c, c′) be three points in R2 such that
a < b < c. The following statements are equivalent:

a) B is below AC;
b) C lies above the line passing through A and B;
c) A is above the line passing through B and C;
d) p(AB) � p(AC);
e) p(AC) � p(BC).
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The lemma still holds when one replaces “above” (resp. “below”) by “strictly
above” (resp. “strictly below”) and the sign � by < (fig. 1).
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Fig. 1

1. DEFINITION OF A CONVEX FUNCTION

DEFINITION 1. We say that a finite numerical function f, defined on an interval
I ⊂ R, is convex on I if, no matter what the points x, x ′ of I, (x < x ′), every point
Mz of the graph G of f such that x � z � x ′ lies below the segment Mx Mx ′ (or,
what comes to the same, if every point of this segment lies above G) (fig. 2).
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Fig. 2
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Taking account of the parametric representation of a segment (Gen. Top., VI,
p. 35), the condition for f to be convex on I is that one has the inequality

f (λx + (1 − λ)x ′) � λ f (x) + (1 − λ) f (x ′) (1)

for each pair of points (x, x ′) of I and every λ ∈ [[[0, 1]]].
Definition 1 is equivalent to the following: the set of points in R2 lying above the

graph G of f is convex. Indeed, this condition is clearly sufficient for f to be convex
on I; it is also necessary, for if f is convex on I, and if (x, y), (x ′, y′) are two points
lying above G, then one has y � f (x), y′ � f (x ′), from which, for 0 � λ � 1,

λy + (1 − λ)y′ � λ f (x) + (1 − λ) f (x ′) � f (λx + (1 − λ)x ′)

by (1), which shows that every point of the segment with endpoints (x, y) and (x ′, y′)
lies above G.

Remark. On sees in the same way that the set of points lying strictly above G is
convex. Conversely, if this set is convex one has

λy + (1 − λ)y′ > f (λx + (1 − λ)x ′)

for 0 � λ � 1 and y > f (x), y′ > f (x ′); on letting y tend to f (x) and y′ approach f (x ′)
in this formula it follows that f is convex.

Examples. 1) Every (real) affine linear function ax + b is convex on R.
2) The function x2 is convex on R, since one has

λx2 + (1 − λ)x ′2 −
(
λx + (1 − λ)x ′

)2
� λ(1 − λ)(x − x ′)2 � 0

for 0 � λ � 1.

3) The function |x | is convex on R, since∣∣λx + (1 − λ)x ′∣∣ � λ |x | + (1 − λ)
∣∣x ′∣∣

for 0 � λ � 1.

It is clear that if f is convex on I, then its restriction to any interval J ⊂ I is
convex on J.

Let f be a convex function on I, and x, x ′ two points of I such that x < x ′; if
z ∈ I is exterior to [[[x, x ′]]] then Mz lies above the line D joining Mx and Mx ′ ; this is
an immediate consequence of the lemma.

One deduces from this that if z is a point such that x < z < x ′ and such that Mz

lies on the segment Mx Mx ′ , then, for every other point z′ such that x < z′ < x ′ the
point Mz′ also lies on the segment Mx Mx ′ , for it follows from the above that Mz′ is
at the same time both above and below this segment; in other words, f is then equal
to an affine linear function on [[[x, x ′]]].

DEFINITION 2. We say that a finite real function f defined on an interval I ⊂ R
is strictly convex on I if, for any points x, x ′ of I (x < x ′), every point Mz of the
graph G of f such that x < z < x ′ lies strictly below the segment Mx Mx ′ (or,
what comes to the same, if every point of the segment, apart from the endpoints, lies
strictly above G).
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In other words, we must have the inequality

f (λx + (1 − λ)x ′) < λ f (x) + (1 − λ) f (x ′) (2)

for every pair of distinct points (x, x ′) of I and every λ such that 0 < λ < 1.

The remarks that precede def. 2 show that for a convex function f to be strictly
convex on I it is necessary and sufficient that there be no interval contained in I (not
reducing to a single point) such that the restriction of f to this interval is affine linear.

Of the examples above, the first and third are not strictly convex; on the other hand, x2

is strictly convex on R; a similar calculation shows that 1/x is strictly convex on ]]]0, +∞[[[.

PROPOSITION 1. Let f be a finite real function, convex (resp. strictly convex) on
an interval I ⊂ R. For every family (xi )1�i�p of p � 2 distinct points of I , and

every family (λi )1�i�p of p real numbers such that 0 < λi < 1 and
p∑

i�1
λi � 1, we

have

f

(
p∑

i�1

λi xi

)
�

p∑
i�1

λi f (xi ) (3)

(resp.

f

(
p∑

i�1

λi xi

)
<

p∑
i�1

λi f (xi )). (4)

Since the proposition (for convex functions) reduces to the inequality (1) for

p � 2 we argue by induction for p > 2. The number µ �
p−1∑
i�1

λi is > 0; it is immedi-

ate that if a and b are the smallest and largest of the xi then a �
p−1∑
i�1

λi xi

/ p−1∑
i�1

λi � b;

in other words, the point x � 1
µ

p−1∑
i�1

λi xi belongs to I, and the induction hypothesis

implies that µ f (x) �
p−1∑
i�1

λi f (xi ); moreover we have, from (1), that

f

(
p∑

i�1

λi xi

)
� f (µx + (1 − µ)x p) � µ f (x) + (1 − µ) f (x p) �

p∑
i�1

λi f (xi ).

One argues in the same way for strictly convex functions, starting from the inequality
(2).

We say that a finite real function f is concave (resp. strictly concave) on I if − f
is convex (resp. strictly convex) on I. It comes to the same to say that for every pair
(x, x ′) of distinct points of I and every λ such that 0 < λ < 1 one has

f (λx + (1 − λ)x ′) � λ f (x) + (1 − λ) f (x ′)

(resp. f (λx + (1 − λ)x ′) > λ f (x) + (1 − λ) f (x ′)).
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2. FAMILIES OF CONVEX FUNCTIONS

PROPOSITION 2. Let fi (1 � i � p) be p convex functions on an interval I ⊂ R,

and ci (1 � i � p) be p arbitrary positive numbers; then the function f �
p∑

i�1
ci fi

is convex on I. Further, if for at least one index j the function f j is strictly convex
on I, and c j > 0, then f is strictly convex on I.

This follows immediately by applying the inequality (1) (resp. (2)) to each of the
fi , multiplying the inequality for fi by ci , and then adding term-by-term.

PROPOSITION 3. Let ( fα) be a family of convex functions on an interval I ⊂ R;
if the upper envelope g of this family is finite at every point of I then g is convex
on I .

Indeed, the set of points (x, y) ∈ R2 lying above the graph of g is the intersection
of the convex sets formed by the points lying above the graph of each of the functions
fα; so it is convex.

PROPOSITION 4. Let H be a set of convex functions on an interval I ⊂ R; if F is
a filter on H which converges pointwise on I to a finite real function f0, then this
function is convex on I .

To see this it suffices to pass to the limit along F in the inequality (1).

3. CONTINUITY AND DIFFERENTIABILITY OF CONVEX FUNCTIONS

PROPOSITION 5. For a real finite function f to be convex (resp. strictly convex)
on an interval I it is necessary and sufficient that for all a ∈ I the gradient

p(MaMx ) � f (x) − f (a)

x − a

be an increasing (resp. strictly increasing) function of x on I ∩ �{a}.

This proposition is an immediate consequence of definitions 1 and 2 and of the
lemma of I, p. 23.

PROPOSITION 6. Let f be a finite real function convex on an interval I ⊂ R.

Then at every interior point a of I the function f is continuous, has finite right and
left derivatives, and f ′

g(a) � f ′
d (a).

Indeed, for x ∈ I and x > a the function x �→ f (x) − f (a)

x − a
is increasing

(prop. 5) and bounded below, since if y < a and y ∈ I we have
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f (y) − f (a)

y − a
� f (x) − f (a)

x − a
(5)

by prop. 5; this function therefore has a finite right limit at the point a; in other words,
f ′
d (a) exists and is finite; further, letting x approach a (x > a) in (5), it follows that

f (y) − f (a)

y − a
� f ′

d (a) (6)

for all y < a belonging to I. In the same way one shows that f ′
g(a) exists and that

f ′
d (a) � f (x) − f (a)

x − a
(7)

for x ∈ I and x > a. On letting x approach a (x > a) in this last inequality we obtain
f ′
g(a) � f ′

d (a). The existence of the left and right derivatives at the point a clearly
ensures the continuity of f at this point.

COROLLARY 1. Let f be a convex (resp. strictly convex) function on I; if a and
b are two interior points of I such that a < b one has (fig. 3)
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f ′
d (a) � f (b) − f (a)

b − a
� f ′

g(b) (8)

(resp.

f ′
d (a) <

f (b) − f (a)

b − a
< f ′

g(b) ). (9)
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The double inequality (8) results from (6) and (7) by a simple change of notation.
On the other hand, if f is strictly convex and c is such that a < c < b one has, from
(8) and prop. 5,

f ′
d (a) � f (c) − f (a)

c − a
<

f (b) − f (a)

b − a
<

f (b) − f (c)

b − c
� f ′

g(b)

from which (9).

COROLLARY 2. If f is convex (resp. strictly convex) on I then f ′
d and f ′

g are
increasing (resp. strictly increasing) on the interior of I; the set of points in I at
which f is not differentiable is countable, and f ′

d and f ′
g are continuous at every

point where f is differentiable.

The first part follows immediately from (8) (resp. (9)) and the inequality

f ′
g(a) � f ′

d (a).

On the other hand, let E be the set of interior points x of I where f is not differentiable
(that is f ′

g(x) < f ′
d (x)). For each x ∈ E let Jx be the open interval ]]] f ′

g(x), f ′
d (x)[[[; it

follows from (8) that if x and y are two points of E such that x < y, then u < v for
all u ∈ Jx and all v ∈ Jy ; in other words, as x runs through E the open nonempty
intervals Jx are pairwise disjoint; the set of such intervals is thus countable, and hence
so is E. Finally, f ′

d (resp. f ′
g) being increasing, it has a right limit and a left limit at

every interior point x of I; prop. 6 of I, p. 18 now shows that the right limit of f ′
d

(resp. f ′
g) at the point x is equal to f ′

d (x), and its left limit is f ′
g(x); from which we

have the last part of the corollary.
Let f be a convex function on I, a an interior point of I, and D a line passing

through the point Ma, with equation y − f (a) � α(x − a). It follows from the
inequalities (8) that if f ′

g(a) � α � f ′
d (a) then every point of the graph G lies above

D, and, if f is strictly convex, Ma is the only point common to D and G; one says
that D is a support line to G at the point Ma . Conversely, if G lies above D, one

has f (x) − f (a) � α(x − a) for every x ∈ I, from which
f (x) − f (a)

x − a
� α for

x > a, and
f (x) − f (a)

x − a
� α for x < a; on letting x tend to a in these inequalities

it follows that f ′
g(a) � α � f ′

d (a).
In particular, if f is differentiable at the point a there is only one supporting line

to G at the point Ma, the tangent to G at Ma .

Remark. If f is a strictly convex function on an open interval I then f ′
d is strictly

increasing on I, so there are three possible cases, according to prop. 2 of I, p. 13:
1◦ f is strictly decreasing on I;
2◦ f is strictly increasing on I;
3◦ there is an a ∈ I such that f is strictly decreasing for x � a, and is strictly increasing

for x � a.
When f is convex on I, but not strictly convex, f can be constant on an interval

contained in I; let J � ]]]a, b[[[ be the largest open interval on which f is constant (that is
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to say, the interior of the interval where f ′
d (x) � 0); then f is strictly decreasing on the

interval formed by the points x ∈ I such that x � a (if it exists), strictly increasing on the
interval formed by the points x ∈ I such that x � b (if it exists).

In all cases one sees that f possesses a right limit at the left-hand endpoint of I (in
R), and a left limit at the right-hand endpoint; these limits may be finite or infinite (cf. I,
p. 46, exerc. 5, 6 and 7). By abuse of language one sometimes says that the continuous
function (with values in R), equal to f on the interior of I, and extended by continuity to
the endpoints of I, is convex on I.

4. CRITERIA FOR CONVEXITY

PROPOSITION 7. Let f be a finite real function defined on an interval I ⊂ R. For
f to be convex on I it is necessary and sufficient that for every pair of numbers a, b
of I such that a < b, and for every real number µ, the function f (x) + µx attains
its supremum on [[[a, b]]] at one of the points a, b.

The condition is necessary; indeed, since µx is convex on R, the function
f (x) + µx is convex on I; one can therefore restrict oneself to the case µ � 0.

Then, for
x � λa + (1 − λ)b (0 � λ � 1),

one has
f (x) � λ f (a) + (1 − λ) f (b) � Max( f (a), f (b)).

The condition is sufficient. Let us take µ � − f (b) − f (a)

b − a
and let g(x) �

f (x) + µx ; one has g(a) � g(b) and therefore g(x) � g(a) for all x ∈ [[[a, b]]], and
one can check immediately that this inequality is equivalent to the inequality (1)
where one replaces z by a and x ′ by b.

PROPOSITION 8. For a finite real function f to be convex (resp. strictly convex)
on an open interval I ⊂ R it is necessary and sufficient that it be continuous on I,
have a derivative at every point of the complement B relative to I of a countable
subset of this interval, and that the derivative be increasing (resp. strictly increasing)
on B.

The condition is necessary, from prop. 6 and its corollary 2 (I, p. 27); let us
show that it is sufficient. Suppose, therefore, that f ′ is increasing on B, and that f
is not convex; there then exist (I, p. 27, prop. 5) three points a, b, c of I, such that

a < c < b, and
f (c) − f (a)

c − a
>

f (b) − f (c)

b − c
; but from the mean value theorem

(I, p. 14, th. 1) one has

f (c) − f (a)

c − a
� sup

x∈B, a<x<c
f ′(x) and

f (b) − f (c)

b − c
� inf

x∈B, c<x<b
f ′(x).
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One thus has sup
x∈B, a<x<c

f ′(x) > inf
x∈B, c<x<b

f ′(x), contrary to the hypothesis that

f ′ is increasing on B.
If now we assume that f ′ is strictly increasing on B, then f is convex and cannot

be equal to an affine linear function on any open interval contained in I, for then f ′

would be constant on this interval, contrary to the hypothesis.

COROLLARY. Let f be a finite real function, continuous and twice differentiable
on an interval I ⊂ R; for f to be convex on I it is necessary and sufficient that
f ′′(x) � 0 for all x ∈ I; for f to be strictly convex on I it is necessary and sufficient
that the previous condition be satisfied and further that the set of points x ∈ I where
f ′′(x) > 0 be dense in I.

This follows immediately from the preceding proposition, and from the corollary
at I, p. 14.

Example. ∗On the interval ]]]0, +∞[[[ the function xr (r any real number) has a second
derivative equal to r (r − 1)xr−2; thus it is strictly convex if r > 1 or r < 0, and strictly
concave if 0 < r < 1 .∗

In order to be able to formulate another criterion for convexity we make the
following definition: given the graph G of a finite real function defined on an interval
I ⊂ R and an interior point a of I, we shall say that a line D passing through Ma �
(a, f (a)) is locally above (resp. locally below) G if there exists a neighbourhood
V ⊂ I of a such that every point of D contained in V × R is above (resp. below) G;
we shall say that D is locally on G at the point Ma if there is a neighbourhood V ⊂ I
of a such that the intersection of D and V × R is identical to that of G and V × R (in
other words, if D is simultaneously locally above and locally below G).

PROPOSITION 9. Let f be a real finite function which is upper semi-continuous
on an open interval I ⊂ R. For f to be convex on I it is necessary and sufficient
that for every point Mx of the graph G of f every line locally above G at this point
should be locally on G (at the point Mx ).

The condition is necessary: indeed, if f is convex on I then at every point Ma of
the graph G of f there exists a support line ∆ to G; now ∆ is below G, so a fortiori
locally below G (I, p. 29); if a line D is locally above G at the point Ma it is locally
above ∆, so must coincide with ∆, and consequently is locally on G at the point Ma .

The condition is sufficient. Indeed, suppose it is satisfied, and suppose that f
is not convex on I; then there are two points a, b of I (a < b) such that there are
points Mx of G strictly above the segment MaMb (fig. 4). In other words, the function

g(x) � f (x) − f (a) − f (b) − f (a)

b − a
(x − a) takes values > 0 on [[[a, b]]]; since g is

finite and upper semi-continuous on this compact interval its least upper bound k on
[[[a, b]]] is finite and > 0, and
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the set
−1
g (k) is closed and not empty (Gen. Top., IV, p. 361, th. 3 and prop. 1). Let c

be the greatest lower bound of
−1
g (k); we have a < c < b, and at the point Mc the line

D with equation y � f (c) + f (b) − f (a)

b − a
(x − c) lies locally above G; but it cannot

be locally on G at this point, since, for a < x < c, one has g(x) < k, which signifies
that Mx is strictly below D. This has led us to a contradiction, which establishes the
proposition.

COROLLARY 1. For a real finite function f defined on an open interval I ⊂ R
and upper semi-continuous on I to be convex on I it is necessary and sufficient that
for all x ∈ I there should exist an ε > 0 such that the relation |h| � ε entails

f (x) � 1

2
( f (x + h) + f (x − h)) .

We have only to show that the condition is sufficient. Indeed, if at a point Ma of
the graph G of f a line D is locally above G, then it is locally on G at this point; for,
in the opposite case, for example, a point Ma+h would be strictly below D, while a
point Ma−h would be below D; the mid-point of the segment Ma−hMa+h would thus
be strictly above D (fig. 5), and, in virtue of the hypothesis, Ma would a fortiori be
strictly below D, which is absurd.
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COROLLARY 2. Let f be a finite real function defined on an open interval I ⊂ R.

If for every point x ∈ I there is an open interval Jx ⊂ I containing x and such that
the restriction of f to Jx is convex on Jx , then f is convex on I.

It is clear that f satisfies the criterion of prop. 9.





EXERCISES

§ 1.

1) Let f be a vector function of a real variable, defined on an interval I ⊂ R and
differentiable at a point x0 interior to I. Show that the quotient

f (x0 + h) − f (x0 − k)

h + k

tends to f ′(x0) as h and k tend to 0 through values > 0. Converse.

∗Show that the function f equal to x2 sin 1/x for x �� 0, and to 0 for x � 0, is
everywhere differentiable, but that ( f (y) − f (z))/(y − z) does not approach f ′(0) as y and
z tend to 0, while remaining distinct and > 0.∗

2) On the interval I � [[[0, 1]]] we define a sequence of continuous real functions ( fn)
inductively as follows: We take f0(x) � x ; for each integer n � 1 the function fn is affine

linear on each of the 3n intervals
[[[ k

3n
,

k + 1

3n

]]]
for 0 � k � 3n − 1; further, we take

fn+1

(
k

3n

)
� fn

(
k

3n

)

fn+1

(
k

3n
+ 1

3n+1

)
� fn

(
k

3n
+ 2

3n+1

)
, fn+1

(
k

3n
+ 2

3n+1

)
� fn

(
k

3n
+ 1

3n+1

)
.

Show that the sequence ( fn) converges uniformly on I to a continuous function which has
no derivative (finite or infinite) at any point of the interval ]]]0, 1[[[ (use exerc. 1).

3) Let C(I) be the complete space of continuous finite real functions defined on the compact
interval I � [[[a, b]]] of R, and endow C(I) with the topology of uniform convergence (Gen.
Top., X, p. 277). Let A be the subset of C(I) formed by the functions x such that for at
least one point t ∈ [[[a, b[[[ (depending on the function x) the function x has a finite right
derivative. Show that A is a meagre set in C(I) (Gen. Top., IX, p. 192), and hence its
complement, that is, the set of continuous functions on I not having a finite right derivative
at any point of [[[a, b[[[ is a Baire subspace of C(I) (Gen. Top., IX, p. 192). (Let An be the set
of functions x ∈ C(I) such that for at least one value of t satisfying a � t � b − 1/n (and
depending on x) one has |x(t ′) − x(t)| � n |t ′ − t | for all t ′ such that t � t ′ � t + 1/n.
Show that each An is a closed nowhere dense set in C(I) : remark that in C(I) each ball
contains a function having bounded right derivative on [[[a, b[[[; on the other hand, for every
ε > 0 and every integer m > 0 there exists on I a continuous function having at every
point of [[[a, b[[[ a finite right derivative such that, for all t ∈ [[[a, b[[[ one has |y(t)| � ε and∣∣y′

r (t)
∣∣ � m.)
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4) Let E be a topological vector space over R and f a continuous vector function defined
on an open interval I ⊂ R, and having a right derivative and a left derivative at every
point of I.

a) Let U be a nonempty open set in E, and A the subset of I formed by the points x
such that f ′

d (x) ∈ U. Given a number α > 0 let B be the subset of I formed by the points
x such that there exists at least one y ∈ I satisfying the conditions x − α � y < x and
(f(x) − f(y))/(x − y) ∈ U; show that the set B is open and that A ∩ �B is countable
(remark that this last set is formed by the left-hand endpoints of intervals contiguous to
�B). Deduce that the set of points x ∈ A such that f ′

g(x) /∈ U is countable.

b) Suppose that E is a normed space; the image f(I) is then a metric space having a
countable base, and the same is true for the closed vector subspace F of E generated by
f(I), a subspace which contains f ′

d (I) and f ′
g(I). Deduce from a) that the set of points x ∈ I

such that f ′
d (x) �� f ′

g(x) is countable. (If (Um) is a countable base for the topology of F
note that for two distinct points a, b of F there exist two disjoint sets Up, Uq such that
a ∈ Up and b ∈ Uq .)

c) Take for E the product RI (the space of mappings from I into R, endowed with the
topology of simple convergence), and for each x ∈ I denote by g(x) the map t �→ |x − t |
of I into R. Show that g is continuous and that, for every x ∈ I, one has g′

r (x) �� g′
l (x).

5) Let f be a continuous vector function defined on an open interval I ⊂ R with values in
a normed space E over R, and admitting a right derivative at every point of I.

a) Show that the set of points x ∈ I such that f ′
d is bounded on a neighbourhood of x is

an open set dense in I (use th. 2 of Gen. Top., IX, p. 194).

b) Show that the set of points of I where f ′
d is continuous is the complement of a meagre

subset of I (cf. Gen. Top., IX, p. 255, exerc. 21).

6) Let (rn) be the sequence formed by the rational numbers in [[[0, 1]]], arranged in a certain

order. Show that the function f (x) �
∞∑

n�0

2−n(x − rn)1/3 is continuous and differentiable

at every point of R, and has an infinite derivative at every point rn . (To see that f is
differentiable at a point x distinct from the rn, distinguish two cases, according to whether
the series with general term 2−n(x −rn)−2/3 has sum +∞ or converges; in the second case,
note for all x �� 0 and all y �� x, one has

0 � (y1/3 − x1/3)/(y − x) � 4/3x2/3).

7) Let f be a real function defined on an interval I ⊂ R, admitting a right derivative
f ′
d (x0) � 0 at a point of I, and let g be a vector function defined on a neighbourhood of

y0 � f (x0), having a right derivative and a left derivative (not necessarily equal) at this
point. Show that g ◦ f has a right derivative equal to 0 at the point x0.

8) Let f be a mapping from R to itself such that the set C of points of R where f
is continuous is dense in R, and such that the complement A of C is also dense. Show
that the set D of points of C where f is right differentiable is meagre. (For each integer
n, let En be the set of points a ∈ R such that there exist two points x, y such that
0 < x − a < 1/n, 0 < y − a < 1/n and

f (x) − f (a)

x − a
− f (y) − f (a)

y − a
> 1.
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Show that the interior of En is dense in R. For this, note that for every open nonempty
interval I in R there is a point b ∈ I ∩ A; show that for a < b and b − a sufficiently small
one has a ∈ En .)

9) Let B(N) be the space of bounded sequences x � (xn)n∈N of real numbers, endowed
with the norm ‖x‖ � sup |xn| ; give an example of a continuous map t �→ f(t) � ( fn(t))n∈N

of R into B(N) such that each of the functions fn is differentiable for t � 0, but f is not
differentiable at this point.

§ 2.

1) Let f be a real function defined and left continuous on an open interval I � ]]]a, b[[[ in R;
suppose that at all the points of the complement B with respect to I of a countable subset
of I the function f is increasing to the right, that is, at every point x ∈ B there exists a
y such that x < y � b and such that for all z such that x � z < y one has f (x) � f (z).
Show that f is increasing on I (argue as in prop. 2).

2) In the field Qp of p-adic numbers (Gen. Top., III, p. 322, exerc. 23) every p-adic integer
x ∈ Zp has one and only one expansion in the form x � a0 + a1 p + · · · + an pn + · · · ,
where the a j are rational integers such that 0 � a j � p − 1 for each j. For each z ∈ Zp

put
f (x) � a0 + a1 p2 + · · · + an p2n + · · · ;

show that, on Zp, f is a continuous function which is not constant on a neighbourhood
of any point yet has a zero derivative at every point.

3) a) Let K be the triadic Cantor set (Gen. Top., IV, p. 338), let In,p be the 2n contiguous
intervals of K with length 1/3n+1 (1 � p � 2n), and Kn,p the 2n+1 closed intervals of
length 1/3n+1 whose union is the complement of the union of the Im,p for m � n. Let α
be a number such that 1 < α < 3/2; for each n we denote by fn the continuous increasing
function on [[[0, 1]]] which is equal to 0 for x � 0, constant on each of the intervals Im,p

for m � n, is affine linear on each of the intervals Kn,p (1 � p � 2n+1) and such that
f ′
d (x) � αn+1 on each of the interiors of these last intervals. Show that the series with

general term fn is uniformly convergent on [[[0, 1]]], that its sum is a function f which
admits a right derivative (finite or not) everywhere in [[[0, 1[[[, and that one has f ′

r (x) � +∞
at every point of K distinct from the left-hand endpoints of the contiguous intervals In,p.

b) Let g be a continuous increasing map of [[[0, 1]]] onto itself, constant on each of the
intervals In,p (Gen. Top., IV, p. 403, exerc. 9). If h � f + g, show that h admits a right
derivative equal to f ′

d (x) at every point x of [[[0, 1[[[.

4) Let f be a finite real function, continuous on a compact interval [[[a, b]]] in R, and having
a right derivative at every point of the open interval ]]]a, b[[[. Let m and M be the greatest
lower bound and least upper bound (finite or not) of f ′

d over ]]]a, b[[[.

a) Show that when x and y run through ]]]a, b[[[ keeping x �� y, the set of values of
( f (x) − f (y))/(x − y) contains ]]]m, M[[[ and is contained in [[[m, M]]]. (Reduce to proving
that if f ′

d takes two values of opposite sign at the two points c, d of ]]]a, b[[[ (with c < d),
then there exist two distinct points of the interval ]]]c, d[[[ where f takes the same value).

b) If, further, f has a left derivative at every point of ]]]a, b[[[ then the infima (resp. suprema)
of f ′

d and f ′
g over ]]]a, b[[[ are equal.
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c) Deduce that if f is differentiable on ]]]a, b[[[ then the image under f ′ of every interval
contained in ]]]a, b[[[ is itself an interval, and consequently connected (use a)).

5) Let f be the vector mapping of I � [[[0, 1]]] into R3 defined as follows: for 0 � t � 1
4 ,

f(t) � (−4t, 0, 0); for 1
4 � t � 1

2 let f(t) � (−1, 4t − 1, 0); for 1
2 � t � 3

4 let f(t) �
(−1, 1, 4t − 2); finally, for 3

4 � t � 1 take f(t) � (4t − 4, 1, 1). Show that the convex set

generated by the set f ′
d (I) is not identical to the closure of the set of values of

f(y) − f(x)

y − x
as (x, y) runs through the set of pairs of distinct points of I (cf. exerc. 4 a)).

6) On the interval I � [[[−1, +1]]] consider the vector function f, with values in R2, defined
as follows: f(t) � (0, 0) for −1 � t � 0;

f(t) �
(

t2 sin
1

t
, t2 cos

1

t

)

for 0 � t � 1. Show that f is differentiable on ]]]−1, +1[[[ but that the image of this interval
under f ′ is not a connected set in R2 (cf. exerc. 4 c)).

7) Let f be a continuous vector function defined on an open interval I ⊂ R, with values in
a normed space E over R, and admitting a right derivative at every point of I. Show that
the set of points of I where f admits a derivative is the complement of a meagre subset of
I (use exerc. 5 b) of I, p. 36, and prop. 6 of I, p. 18).

8) Consider, on the interval [[[0, 1]]], a family (In,p) of pairwise disjoint open intervals,
defined inductively as follows: the integer n takes all values � 0; for each value of n the
integer p takes the values 1, 2, . . . , 2n ; one has I0,1 � ]]] 1

3 , 2
3 [[[; if Jn is the union of the

intervals Im,p corresponding to the numbers m � n, the complement of Jn is the union
of 2n+1 pairwise disjoint closed intervals Kn,p (1 � p � 2n+1). If Kn,p is an interval

[[[a, b]]] one then takes for In+1,p the open interval with endpoints b − b − a

3

(
1 + 1

2n

)
and

b − b − a

3.2n
. Let E be the perfect set which is the complement with respect to [[[0, 1]]] of

the union of the In,p. Define on [[[0, 1]]] a continuous real function f which admits a right
derivative at every point of [[[0, 1[[[, but fails to have a left derivative at the uncountable
subset of E of points distinct from the endpoints of intervals contiguous to E (cf. exerc. 7).
(Take f (x) � 0 on E, define f suitably on each of the intervals In,p in such a way that
for every x ∈ E there are points y < x not belonging to E, arbitrarily close to x, and such

that
f (y) − f (x)

y − x
� −1.)

9) Let f and g be two finite real functions, continuous on [[[a, b]]], both having a finite
derivative on ]]]a, b[[[; show that there exists a c such that a < c < b and that

∣∣∣ f (b) − f (a) g(b) − g(a)
f ′(c) g′(c)

∣∣∣ � 0.

¶ 10) Let f and g be two finite real functions, strictly positive, continuous and differentiable
on an open interval I. Show that if f ′ and g′ are strictly positive and f ′/g′ is strictly
increasing on I, then either f/g is strictly increasing on I, or else there exists a number
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c ∈ I such that f/g is strictly decreasing for x � c and strictly increasing for x � c (note
that if one has f ′(x)/g′(x) < f (x)/g(x) then also

f ′(y)/g′(y) < f (y)/g(y)

for all y < x).

11) Let f be a complex function, continuous on an open interval I, vanishing nowhere,
and admitting a right derivative at every point of I. For | f | to be increasing on I it is
necessary and sufficient that R( f ′

d/ f ) � 0 on I.

¶ 12) Let f be a differentiable real function on an open interval I, g its derivative on I,
and [[[a, b]]] a compact interval contained in I; suppose that g is differentiable on the open
interval ]]]a, b[[[ but not necessarily right (resp. left) continuous at the point a (resp. b);
show that there exists c such that a < c < b and that

g(b) − g(a) � (b − a)g′(c)

(use exerc. 4 c) of I, p. 36).

13) One terms the symmetric derivative of a vector function f at a point x0 interior to the

interval where f is defined, the limit (when it exists) of
f(x0 + h) − f(x0 − h)

2h
as h tends

to 0 remaining > 0.

a) Generalize to the symmetric derivative the rules of calculus established in § 1 for the
derivative.

b) Show that theorems 1 and 2 of § 2 remain valid when one replaces the words “right
derivative” by “symmetric derivative”.

14) Let f be a vector function defined and continuous on a compact interval I � [[[a, b]]] in
R, with values in a normed space over R. Suppose that f admits a right derivative at all
points of the complement with respect to [[[a, b[[[ of a countable subset A of this interval.
Show that there exists a point x ∈ ]]]a, b[[[ ∩ �A such that

‖f(b) − f(a)‖ �
∥∥f ′

d (x)
∥∥ (b − a).

(Argue by contradiction, decomposing [[[a, b[[[ into three intervals [[[a, t[[[, [[[t, t + h[[[ and
[[[t + h, b[[[ with t /∈ A; if k � ‖f(b) − f(a)‖ /(b − a), note that for h sufficiently small one
has ‖f(t + h) − f(t)‖ < k.h, and use th. 2 of I, p. 15 for the other intervals.)

§ 3.

1) With the same hypotheses as in prop. 2 of I, p. 20 prove the formula

[f (n).g] �
n∑

p�0

(−1)p

(
n

p

)
Dn−p[f.g(p)].

2) With the notation of prop. 2 of I, p. 28 suppose that the relation [a.y] � 0 for all
y ∈ F implies that a � 0 in E. Under these conditions, if gi (0 � i � n) are n + 1 vector
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functions with values in E, defined on an interval I of R and such that for every vector
function f with values in F and n times differentiable on I, one has identically

[g0.f] + [g1.f ′] + · · · + [gn .f (n)] � 0

then the functions gi are identically zero.

3) With the notation of exerc. 2 and the same hypothesis on [x.y] suppose that each
of the functions gk is n times differentiable on I; for each function f which is n times
differentiable on I, with values in F, put

[g0.f] − [g1.f]′ + [g2.f]′′ + · · · + (−1)n[gn .f](n) � [h0.f] + [h1.f ′] + · · · + [hn .f (n)],

which defines the functions hi (0 � i � n) without ambiguity (exerc. 2); show that one
has

[h0.f] − [h.f]′ + [h2.f]′′ + · · · + (−1)n[hn .f](n) � [g0.f] + [g1.f ′] + · · · + [gn .f (n)]

identically.

4) Let f be a vector function which is n times differentiable on an interval I ⊂ R. Show
that for 1/x ∈ I one has identically

1
xn+1

f (n)

(
1

x

)
� (−1)nDn

(
xn−1f

(
1

x

))

(argue inductively on n).

5) Let u and v be two real functions which are n times differentiable on an interval I ⊂ R.
If one puts Dn(u/v) � (−1)nwn / vn+1 at every point where v(x) �� 0, show that

wn �

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 0 . . . 0
u′ v′ v 0 . . . 0
u ′′ v′′ 2v′ v . . . 0

· · · · · · · · · · · · · · · · · ·

u(n−1) v(n−1)
(n−1

1

)
v(n−2)

(n−1
2

)
v(n−3) . . . v

u(n) v(n)
(n

1

)
v(n−1)

(n
2

)
v(n−2) . . .

( n
n−1

)
v′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(put w � u/v and differentiate n times the relation u � wv).

6) Let f be a vector function defined on an open interval I ⊂ R, taking values in a normed
space E.

Put ∆f(x ; h1) � f(x + h1) − f(x), and then, inductively, define

∆pf(x ;h1, h2, . . . , h p−1, h p)�∆p−1f(x + h p;h1, . . . , h p−1) − ∆p−1f(x ;h1, . . . , h p−1);

these functions are defined for each x ∈ I when the hi are small enough.
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a) If the function f is n times differentiable at the point x (and so n −1 times differentiable
on a neighbourhood of x), one has

lim
(h1, . . . , hn) → (0, . . . , 0)

h1h2 . . . hn �� 0

∆nf(x ; h1, . . . , hn)

h1h2 . . . hn
� f (n)(x)

(argue by induction on n, using the mean value theorem).

b) If f is n times differentiable on the interval I, one has
∥∥∆nf(x ; h1, . . . , hn) − f (n)(x0)h1h2 . . . hn

∥∥
� |h1h2 . . . hn| sup

∥∥f (n)(x + t1h1 + · · · + tnhn) − f (n)(x0)
∥∥

the supremum being taken over the set of (ti ) such that 0 � ti � 1 for 1 � i � n (same
method).

c) If f is a real function which is n times differentiable on I, one has

∆n f (x ; h1, h2, . . . , hn) � h1h2 . . . hn f (n)(x + θ1h1 + · · · + θnhn)

the numbers θi belonging to [[[0, 1]]] (same method, using I, p. 22, corollary).

7) Let f be a finite real function n times differentiable at the point x0, and g a vector
function which is n times differentiable at the point y0 � f (x0). Let

f (x0 + h) � a0 + a1h + · · · + anhn + rn(h)

g(y0 + k) � b0 + b1k + · · · + bnkn + sn(k)

be the Taylor expansions of order n of f and g at the points x0 and y0 respectively. Show
that the sum of the n+1 terms of the Taylor expansion of order n of the composite function
g ◦ f at the point x0 is equal to the sum of the terms of degree � n in the polynomial

b0 + b1(a1h + · · · + anhn) + b2(a1h + · · · + anhn)2 + · · · + bn(a1h + · · · + anhn)n .

Deduce the two following formulae:

a)

Dn(g( f (x))) �
∑ n!

m1!m2! . . . mq !
g(p)( f (x))

(
f ′(x)

1!

)m1

. . .

(
f (q)(x)

q!

)mq

the sum being taken over all systems of positive integers (mi )1�i�q such that

m1 + 2m2 + · · · + qmq � n

where p denotes the sum m1 + m2 + · · · + mq .

b)

Dn(g( f (x))) �
n∑

p�1

1

p!
g(p)( f (x))

(
p∑

q�1

(
p

q

)
(− f (x))p−q Dn(( f (x))q

)
.

8) Let f be a real function defined and n times differentiable on an interval I, let
x1, x2, . . . , x p be distinct points of I, and ni (1 � i � p) be p integers > 0 such that

n1 + n2 + · · · + n p � n.
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Suppose that at the point xi the function f vanishes together with its first ni −1 derivatives
for 1 � i � p : show that there is a point ξ interior to the smallest interval that contains
the xi and such that f (n−1)(ξ ) � 0.

9) With the same notation as in exerc. 8 suppose that f is n times differentiable on I but
otherwise arbitrary. Let g be the polynomial of degree n − 1 (with real coefficients) such
that at the point xi (1 � i � p) both g and its first ni − 1 derivatives are respectively
equal to f and its first ni − 1 derivatives. Show that we have

f (x) � g(x) + (x − x1)n1 (x − x2)n2 . . . (x − x p)n p

n!
f (n)(ξ )

where ξ is interior to the smallest interval containing the points xi (1 � i � p) and x .
(Apply exerc. 8 to the function of t

f (t) − g(t) − a
(t − x1)n1 (t − x2)n2 . . . (t − x p)n p

n!

where a is a suitably chosen constant.)

10) Let g be an odd real function defined on a neighbourhood of 0, and 5 times differentiable
on this neighbourhood. Show that

g(x) � x

3

(
g′(x) + 2g′(0)

) − x5

180
g(5)(ξ ) (ξ � θx, 0 < θ < 1)

(same method as in exerc. 9).

Deduce that if f is a real function defined on [[[a, b]]] and 5 times differentiable on
this interval, then

f (b) − f (a) � b − a

6

[
f ′(a) + f ′(b) + 4 f ′

(
a + b

2

)]
− (b − a)5

2880
f (5)(ξ )

with a < ξ < b (“Simpson’s formula”).

11) Let f1, f2, . . . , fn and g1, g2, . . . , gn be 2n real functions which are n − 1 times
differentiable on an interval I. Let (xi )1�i�n be a strictly increasing sequence of points in
I. Show that the ratio of the two determinants

∣∣∣∣∣∣∣∣∣∣

f1(x1) f1(x2) · · · f1(xn)
f2(x1) f2(x2) · · · f2(xn)

· · · · · · · · · · · ·

fn(x1) fn(x2) · · · fn(xn)

∣∣∣∣∣∣∣∣∣∣
:

∣∣∣∣∣∣∣∣∣∣

g1(x1) g1(x2) · · · g1(xn)
g2(x1) g2(x2) · · · g2(xn)

· · · · · · · · · · · ·

gn(x1) gn(x2) · · · gn(xn)

∣∣∣∣∣∣∣∣∣∣
is equal to the ratio of the two determinants

∣∣∣∣∣∣∣∣∣∣∣

f1(ξ1) f ′
1(ξ2) · · · f (n−1)

1 (ξn)
f2(ξ1) f ′

2(ξ2) · · · f (n−1)
2 (ξn)

· · · · · · · · · · · ·

fn(ξ1) f ′
n(ξ2) · · · f (n−1)

n (ξn)

∣∣∣∣∣∣∣∣∣∣∣
:

∣∣∣∣∣∣∣∣∣∣∣

g1(ξ1) g′
1(ξ2) · · · g(n−1)

1 (ξn)
g2(ξ1) g′

2(ξ2) · · · g(n−1)
2 (ξn)

· · · · · · · · · · · ·

gn(ξ1) g′
n(ξ2) · · · g(n−1)

n (ξn)

∣∣∣∣∣∣∣∣∣∣∣
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where
ξ1 � x1, ξ1 < ξ2 < x2, ξ2 < ξ3 < x3, . . . , ξn−1 < ξn < xn

(apply exerc. 9 of I, p. 38).

Particular case where g1(x) � 1, g2(x) � x, . . . , gn(x) � xn−1.

¶ 12) a) Let f be a vector function defined and continuous on the finite interval I � [[[−a, +a]]],
taking its values in a normed space E over R and twice differentiable on I. If one puts
M0 � sup

x∈I
‖f(x)‖ , M2 � sup

x∈I
‖f ′′(x)‖ , show that for all x ∈ I one has

∥∥f ′(x)
∥∥ � M0

a
+ x2 + a2

2a
M2

(express each of the differences f(a) − f(x), f(−a) − f(x)).

b) Deduce from a) that if f is a twice differentiable function on an interval I (bounded or
not), and if M0 � sup

x∈I
‖f(x)‖ and M2 � sup

x∈I
‖f ′′(x)‖ are finite, then so is M1 � sup

x∈I
‖f ′(x)‖ ,

and one has:

M1 � 2
√

M0M2 if I has length � 2

√
M0

M2

M1 �
√

2
√

M0M2 if I � R.

Show that in these two inequalities the numbers 2 and
√

2 respectively cannot be
replaced by smaller numbers (consider first the case where one supposes merely that f
admits a second right derivative, and show that in this case the two terms of the preceding
inequalities can become equal, taking for f a real function equal “in pieces” to second
degree polynomials).

c) Deduce from b) that if f is p times differentiable on R, and if Mp � sup
x∈R

∥∥f (p)(x)
∥∥

and M0 � sup
x∈R

‖f(x)‖ are finite, then each of the numbers Mk � sup
x∈R

∥∥f (k)(x)
∥∥ is finite (for

1 � k � p − 1) and
Mk � 2k(p−k)/2 M1−k/p

0 Mk/p
p .

¶ 13) a) Let f be a twice differentiable real function on R, such that ( f (x))2 � a and
( f ′(x))2 + ( f ′′(x))2 � b on R; show that

( f (x))2 + ( f ′(x))2 � max(a, b)

on R (argue by contradiction, noting that if the function f 2+ f ′2 takes a value c > max(a, b)
at a point x0 then there exist two points x1, x2 such that x1 < x0 < x2 and that at x1 and
x2 the function f ′ takes values small enough that f 2 + f ′2 takes values < c; then consider
a point of [[[x1, x2]]] where f 2 + f ′2 attains its supremum on this interval).

b) Let f be a real function n times differentiable on R, and such that ( f (x))2 � a and
( f (n−1(x))2 + ( f (n)(x))2 � b on R; show that then

( f (k−1(x))2 + ( f (k)(x))2 � max(a, b)

on R for 1 � k � n. (Argue by induction on n; note that, by exerc. 12 the supremum
c of ( f ′(x))2 on R is finite; show that one necessarily has c � max(a, b) by reducing
to a contradiction: assuming that c > max(a, b) choose the constants λ and µ so that
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for the function g � λ f + µ one has |g(x)| � 1, |g′(x)| � 1, yet one cannot have
(g(x))2 + (g′(x))2 � 1 for all x .)

¶ 14) Let f be a function which is n − 1 times differentiable on an interval I containing 0,
and let fn be the vector function defined for x �� 0 on I by the relation

f(x) � f(0) + f ′(0)
x

1!
+ f ′′(0)

x2

2!
+ · · · + f (n−1)(0)

xn−1

(n − 1)!
+ fn(x)xn .

a) Show that if f has an (n + p)th derivative at the point 0 then fn has a pth derivative at
the point 0 and an (n + p − 1)th derivative at all points of a neighbourhood of 0 distinct

from 0; moreover, one has f(k)
n (0) � k!

(n + k)!
f (n+k)(0) for 0 � k � p, and f(p+k)

n (x)xk tends

to 0 with x, for 1 � k � n − 1 (express the derivatives of fn with the help of the Taylor
expansions of the successive derivatives of f, and use prop. 6 of I, p. 18).

b) Conversely, let fn be a vector function admitting an (n + p − 1)th derivative on a
neighbourhood of 0 in I, and such that f(p+k)

n (x)xk has a limit for 0 � k � n − 1. Show
that the function fn(x)xn has an (n + p − 1)th derivative on I; if, further, fn admits a pth

derivative at the point 0, then fn(x)xn admits an (n + p)th derivative at the point 0.

c) Suppose that I is symmetric with respect to 0 and that f is even (f(−x) � f(x) on I).
Show, with the help of a), that if f is 2n times differentiable on I, then there exists a
function g defined and n times differentiable on I, such that f(x) � g(x2) on I.

¶ 15) Let I be an open interval in R, and f a vector function defined and continuous on I;
suppose that there are n vector functions gi (1 � i � n) defined on I, and such that the
function of x

1

hn

(
f(x + h) − f(x) −

n∑
p�1

h p

p!
gp(x)

)

tends uniformly to 0 on every compact interval contained in I as h tends to 0.

a) We put fp(x, h) � ∆pf(x ; h, h, . . . , h) (I, p. 40, exerc. 6). Show that, for
1 � p � n, (1/h p)fp(x, h) tends uniformly to gp(x) on every compact subinterval of
I as h tends to 0, and that the gp are continuous on I (prove this successively for
p � n, p � n − 1, etc.)

b) Deduce from this that f has a continuous nth derivative and that f (p) � gp for 1 � p � n
(taking account of the relation fp+1(x, h) � f(x + h, h) − fp(x, h)).

¶ 16) Let f be a real function n times differentiable on I � ]]] − 1, +1[[[, and such that
| f (x)| � 1 on this interval.

a) Show that if mk(λ) denotes the minimum of
∣∣ f (k)(x)

∣∣ on an interval of length λ contained
in I then one has

mk(λ) � 2k(k+1)/2 kk

λk
(1 � k � n).

(Note that if the interval of length λ is decomposed into three intervals of lengths
α, β, γ, one has

mk(λ) � 1

β
(mk−1(α) + mk−1(γ )).)

b) Deduce from a) that there exists a number µn depending only on the integer n such
that if | f ′(0)| � µn, then the derivative f (n)(x) vanishes on at least n − 1 distinct points
of I (show by induction on k that f (k) vanishes at least k − 1 times on I).



§ 4. EXERCISES 45

17) a) Let f be a vector function having derivatives of all orders on an open interval I ⊂ R.
Suppose that, on I, one has

∥∥f (n)(x)
∥∥ � a n!rn, where a and r are two numbers > 0 and

independent of x and n; show that at each point x0 the “Taylor series” with general term
(1/n!) f (n)(x0) (x − x0)n is convergent, and has sum f(x) on some neighbourhood of x0.

b) Conversely, if the Taylor series for f at a point x0 converges on a neighbourhood of
x0 there exist two numbers a and r (depending on x0) such that

∥∥f (n)(x0)
∥∥ � a.n!rn for

every integer n > 0.

c) Deduce from a) and exerc. 16 b) that if, on an open interval I ⊂ R, a real function f
is indefinitely differentiable and if there is an integer p independent of n such that, for all
n, the function f (n) does not vanish at more than p distinct points of I, then the Taylor
series of f on a neighbourhood of each point x0 ∈ I is convergent, and has sum f (x) at
every point of a neighbourhood of x0.

18) Let (an)n�0 be an arbitrary sequence of complex numbers. For each n � 0 put s(0)
n � an,

and, inductively, for k � 0, define

s(k+1)
n � s(k)

0 + s(k)
1 + · · · + s(k)

n−1.

a) Prove “Taylor’s formula for sequences”: for each integer∣∣∣∣s(k)
n+h − s(k)

n − hs(k−1)
n −

(
h

2

)
s(k−2)

n − · · · −
(

h

k − 1

)
s(1)

n

∣∣∣∣ �
(

h

k

)
sup

0� j�h−1

∣∣an+ j

∣∣
(proceed by induction on k).

b) Suppose that there is a number C such that |nan| � C for all n, and that the sequence
(s(2)/n) formed by the arithmetic means (s0 + · · · + sn−1)/n of the partial sums sn �
a0 + · · · + an−1 tends to a limit σ. Show that the series with general term an is convergent
and has sum σ (“Hardy-Littlewood tauberian theorem”). (Write

sn � 1

h

(
s(2)

n+h − s(2)
)

+ h − 1

2
rn

where |rn| is bounded above with the aid of the inequality |nan| � C, and h is chosen
suitably as a function of n.)

§ 4.

1) a) Let H be a set of convex functions on a compact interval [[[a, b]]] ⊂ R; suppose that
the sets H(a) and H(b) are bounded above in R and that there exists a point c such that
a < c < b and that H(c) is bounded below in R; show that H is an equicontinuous set
on ]]]a, b[[[ (Gen. Top., X, p. 283).

b) Let H be a set of convex functions on an interval I ⊂ R, and let F be a filter on H
which converges pointwise on I to a function f0; show that F converges uniformly to f0

on every compact interval contained in I.

2) Show that every convex function f on a compact interval I ⊂ R is the limit of a
decreasing uniformly convergent sequence of convex functions on I which admit a second
derivative on I (first consider the function (x − a)+, and approximate f by the sum of an
affine linear function and a linear combination

∑
j

c j (x − a j )+ with coefficients c j � 0).
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3) Let f be a convex function on an interval I ⊂ R.

a) Show that if f is not constant it cannot attain its least upper bound at an interior point
of I.

b) Show that if I is relatively compact in R then f is bounded below on I.

c) Show that if I � R and f is not constant, then f is not bounded above on I.

4) For a function f to be convex on a compact interval [[[a, b]]] ⊂ R it is necessary and
sufficient that it be convex on ]]]a, b[[[ and that one has f (a) � f (a+) and f (b) � f (b−).

5) Let f be a convex function on an open interval ]]]a, +∞[[[; if there exists a point c > a
such that f is strictly increasing on ]]]c, +∞[[[ then lim

x→+∞
f (x) � +∞.

6) Let f be a convex function on an interval ]]]a, +∞[[[; show that f (x)/x has a limit (finite
or equal to +∞) as x tends to +∞; this limit is also that of f ′

d (x) and of f ′
g(x); it is > 0

if f (x) tends to +∞ as x tends to +∞.

7) Let f be a convex function on the interval ]]]a, b[[[ where a � 0; show that on this interval
the function x �→ f (x) − x f ′(x) (the “ordinate at the origin” of the right semi-tangent at
the point x to the graph of f ) is decreasing (strictly decreasing if f is strictly convex).

Deduce that:

a) If f admits a finite right limit at the point a then (x − a) f ′
d (x) has a right limit equal

to 0 at this point.

b) On ]]]a, b[[[ either f (x)/x is increasing, or f (x)/x is decreasing, or else there exists a
c ∈ ]]]a, b[[[ such that f (x)/x is decreasing on ]]]a, c[[[ and increasing on ]]]c, b[[[.

c) Suppose that b � +∞ : show that if

β � lim
x→+∞

(
f (x) − x f ′

d (x)
)

is finite, then so is α � lim
x→+∞

f (x) / x, and that the line y � αx + β is asymptotic 5 to

the graph of f, and lies below this graph (strictly below if f is strictly convex).

8) Let f be a finite real function, upper semi-continuous on an open interval I ⊂ R. Then

f is convex if and only if lim sup
h→0,h ��0

f (x + h) + f (x − h) − 2 f (x)

h2
� 0 for all x ∈ I. (First

show that, for all ε > 0 the function f (x) + εx2 is convex, using prop. 9 of I, p. 31.)

¶ 9) Let f be a finite real function, lower semi-continuous on an interval I ⊂ R. For f
to be convex on I it suffices that, for every pair of points a, b of I such that a < b there
exists one point z such that a < z < b, and that Mz be below the segment MaMb (argue
by contradiction, noting that the set of points x such that Mx lies strictly above MaMb is
open).

¶ 10) Let f be a finite real function defined on an interval I ⊂ R, such that

f

(
x + y

2

)
� 1

2

(
f (x) + f (y)

)

5 That is to say, lim
x→+∞

(
f (x) − (αx + β)

)
� 0.
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for all x, y in I. Show that if f is bounded above on one open interval ]]]a, b[[[ contained
in I, then f is convex on I (show first that f is bounded above on every compact interval
contained in I, then that f is continuous at every interior point of I).

¶ 11) Let f be a continuous function on an open interval I ⊂ R, having a finite right
derivative at every point of I. If for every x ∈ I and every y ∈ I such that y > x the
point My � (y, f (y)) lies above the right semi-tangent to the graph of f at the point
Mx � (x, f (x)), show that f is convex on I (using the mean value theorem show that

f ′
d (y) � f (y) − f (x)

y − x
for x < y).

Give an example of a function which is not convex, has a finite right derivative
everywhere, and such that for every x ∈ I there exists a number hx > 0 depending on
x such that My lies above the right semi-tangent at the point Mx for all y such that
x � y � x + hx . This last condition is nevertheless sufficient for f to be convex, if one
supposes further that f is differentiable on I (use I, p. 12, corollary).

¶ 12) Let f be a continuous real function on an open interval I ⊂ R; suppose that for
every pair (a, b) of points of I such that a < b the graph of f lies either entirely above
or entirely below the segment MaMb on the interval [[[a, b]]]. Show that f is convex on all
of I or concave on all I (if in ]]]a, b[[[ there is a point c such that Mc lies strictly above the
segment MaMb show that for every x ∈ I such that x > a the graph of f lies above the
segment MaMx on the interval [[[a, x]]]).

13) Let f be a differentiable real function on an open interval I ⊂ R. Suppose that for
every pair (a, b) of points of I such that a < b there exists a unique point c ∈ ]]]a, b[[[ such
that f (b) − f (a) � (b − a) f ′(c); show that f is strictly convex on I or strictly concave
on I (show that f ′ is strictly monotone on I).

14) Let f be a convex real function and strictly monotone on an open interval I ⊂ R; let
g be the inverse function of f (defined on the interval f (I)). Show that if f is decreasing
(resp. increasing) on I, then g is convex (resp. concave) on f (I).

15) Let I be an interval contained in ]]]0, +∞[[[; show that if f (1/x) is convex on I then so
is x f (x), and conversely.

∗ 16) Let f be a positive convex function on ]]]0, +∞[[[, and a, b two arbitrary real numbers.
Show that the function xa f (x−b) is convex on ]]]0, +∞[[[ in the following cases:

1◦ a � 1
2 (b + 1), |b| � 1;

2◦ xa f (x−b) is increasing, a(b − a) � 0, a � 1
2 (b + 1);

3◦ xa f (x−b) is decreasing, a(b − a) � 0, a � 1
2 (b + 1).

Under the same hypotheses on f show that ex/2 f (e−x ) is convex (use exerc. 2 of I,
p. 45).∗

17) Let f and g be two positive convex functions on an interval I � [[[a, b]]]; suppose that
there exists a number c ∈ I such that in each of the intervals [[[a, c]]] and [[[c, b]]] the functions
f and g vary in the same sense. Show that the product f g is convex on I.
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18) Let f be a convex function on an interval I ⊂ R and g a convex increasing function
on an interval containing f (I); show that g ◦ f is convex on I.

¶ 19) Let f and g be two finite real functions, f being defined and continuous on an
interval I, and g defined and continuous on R. Suppose that for every pair (λ, µ) of real
numbers the function g( f (x) + λx + µ) is convex on I.
a) Show that g is convex and monotone on R.
b) If g is increasing (resp. decreasing) on R, show that f is convex (resp. concave) on I
(use prop. 7).

20) Show that the set K of convex functions on an interval I �� R is reticulated for the order
“ f (x) � g(x) for every x ∈ I” (Set Theory, III, p. 146). Give an example of two convex
functions f, g on I such that their infimum in K takes a value different from inf( f (x), g(x))
at certain points. Give an example of an infinite family ( fα) of functions in K such that
inf
α

fα(x) is finite at every point x ∈ I and yet there is no function in K less than all the fα.

21) Let f be a finite real function, upper semi-continuous on an open interval I ⊂ R. For
f to be strictly convex on I it is necessary and sufficient that there be no line locally
above the graph G of f at a point of G.

22) Let f1, . . . , fn be continuous convex functions on a compact interval I ⊂ R; suppose
that for all x ∈ I one has sup( f j (x)) � 0. Show that there exist n numbers α j � 0 such

that
n∑

j�1
α j � 1 and that

n∑
j�1

α j f j (x) � 0 on I. (First treat the case n � 2, considering a

point x0 where the upper envelope sup( f1, f2) attains its minimum; when x0 is interior
to I determine α1 so that the left derivative of α1 f1 + (1 − α1) f2 is zero at x0. Pass to
the general case by induction on n; use the induction hypothesis for the restrictions of
f1, . . . , fn−1 to the compact interval where fn(x) � 0.)

23) Let f be a continuous real function on a compact interval I ⊂ R; among the functions
g � f which are convex on I there exists one, g0, larger than all the others. Let F ⊂ I be
the set of x ∈ I where g0(x) � f (x); show that F is not empty and that on each of the
open intervals contiguous to F the function g0 is equal to an affine linear function (argue
by contradiction).

24) Let P(x) be a polynomial of degree n with real coefficients all of whose roots are real
and contained in the interval [[[ − 1, 1]]]. Let k be an integer such that 1 � k � n. Show that
the rational function

f (x) � x + P(k−1)(x)

P(k)(x)

is increasing on every interval of R on which it is defined; if c1 < c2 < · · · < cr are its
poles (contained in [[[−1, 1]]]), then f is convex for x < c1 and concave for x > cr . Deduce
that when a runs through [[[ − 1, 1]]] the length of the largest interval containing the zeros
of the kth derivative of (x − a)P(x) attains its largest value when a � 1 or a � −1.

25) One says that a real function f defined on [[[0, +∞[[[ is superadditive if one has
f (x + y) � f (x) + f (y) for x � 0, y � 0, and if f (0) � 0.

a) Give examples of discontinuous superadditive functions.
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b) Show that every convex function f on [[[0, +∞[[[ such that f (0) � 0 is superadditive.

c) If f1 and f2 are superadditive then so is inf( f1, f2); using this, exhibit examples of
nonconvex continuous superadditive functions.

d) If f is continuous and � 0 on an interval [[[0, a]]] (a > 0), such that f (0) � 0 and
f (x/n) � f (x)/n for each integer n � 1, show that f has a right derivative at the point
0 (argue by contradiction). In particular, every continuous superadditive function which is
� 0 admits a right derivative at the point 0.




