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M(X ) and Priors on M(X )

2.1 Introduction

As mentioned in Chapter 1, in the nonparametric case the parameter space Θ is
typically the set of all probability measures on X . We denote the set of all probability
measures on X by M(X ). The cases of interest to us are when X is a finite set and
when X = R. The Bayesian aspect requires prior distributions on M(X ), in other
words, probabilities on the space of probabilities. In this chapter we develop some
measure-theoretic and topological features of the space M(X ) and discuss various
notions of convergence on the space of prior distributions.

The results in this chapter, except for the last section, are mainly used to assert
the existence of the priors discussed later. Thus, for a reader who is prepared to
accept the existence theorems mentioned later, a cursory reading of this chapter would
be adequate. On the other hand, for those who are interested in measure-theoretic
aspects, a careful reading of this chapter will provide a working familiarity with the
measure-theoretic subtleties involved. The last section where formal definitions of
consistency are discussed, can be read independently. While we generally consider
the case X =R, most of the arguments would go through when X is a complete
separable metric space.
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2.2 The Space M(X )

As before, let X be a complete separable metric space with B the corresponding
Borel σ-algebra on X . Denote by M(X ) the space of all probability measures on
(X , B).

As seen in the chapter 1 there are many reasonable notions of convergence on the
space M(X ) , but they are not all equally convenient for our purpose. We begin with
a brief discussion of these.

Total Variation Metric. Recall that the total variation metric was defined by

‖P − Q‖ = 2 sup
B

|P (B) − Q(B)|

If p and q are densities of P and Q with respect to some σ-finite measure µ, then
‖P − Q‖ is just the L1-distance

∫
|p − q| dµ between p and q. The total variation

metric is a strong metric. If x ∈ X and δx is the probability degenerate at x, then
Ux = {P : ‖P − δx‖ < ε} = {P : P (x) > 1 − ε} is a neighborhood of δx. Further
if x �= x′ then Ux ∩ Ux′ = ∅. Thus, when X is uncountable, {Ux : x ∈ X} is an
uncountable collection of disjoint open sets, the existence of which renders M(X )
nonseparable. Further, no sequence of discrete measures can converge to a continuous
measure and vice versa. These properties make the total variation metric uninteresting
when considered on all of M(X ).

The total variation metric when restricted to sets of the form Lµ—all probability
measures dominated by a σ-finite measure µ—is extremely useful and interesting. In
this context we will refer to the total variation as the L1-metric. It is a standard result
that Lµ with the L1-metric is complete and separable.

Hellinger Metric. This metric was also discussed in Chapter 1. Briefly the Hellinger
distance between P and Q is defined by

H(P, Q) =
[∫

(
√

p − √
q)2 dµ

]1/2

where p and q are densities with respect to µ. The Hellinger metric is equivalent to
the L1 metric. Associated with the Hellinger metric is a useful quantity A(P, Q) called
affinity, defined as A(P, Q) =

∫ √
p
√

q dµ. The relation H2(P n, Qn) = 2−2(A(P, Q))n,
where P n, Qn are n-fold product measures, makes the Hellinger metric convenient in
the i.i.d. context.

Setwise convergence. The metrics defined in the last section provide corresponding
notions of convergence. Another natural way of saying Pn converges to P is to require
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that Pn(B) → P (B) for all Borel sets B. A way of formalizing this topology is as
follows. Let F be the class of functions {P �→ P (B) : B ∈ B}. On M(X ) give the
smallest topology that makes the functions in F continuous. It is easy to see that
under this topology, if f is a bounded measurable function, then P �→

∫
f dP is

continuous. Sets of the form {P : |P (Bi) − P0(Bi)| < εi, B1, B2, . . . , Bk ∈ B} give a
neighborhood base at P0.

Setwise convergence is an intuitively appealing notion, but it has awkward topo-
logical properties that stem from the fact that convergence of Pn(B) to P (B) for sets
in an algebra does not ensure the convergence for all Borel sets. We summarize some
additional facts as a proposition.

Proposition 2.2.1. Under setwise convergence:

(i) M(X ) is not separable,

(ii) If P0 is a continuous measure then P0 does not have a countable neighborhood
base, and hence the topology of setwise convergence is not metrizable.

Proof. (i) Ux = {P : P{x} > 1 − ε} is a neighborhood of δx, and as x varies form
an uncountable collection of disjoint open sets.

(ii) Suppose that there is a countable base for the neighborhoods at P0. Let B0 be
a countable family of sets such that sets of the type

U = {P : |P (Bi) − P0(Bi)| < εi, B1, B2, . . . , Bk ∈ B0}

form a neighborhood base at P0. It then follows that Pn(B) → P (B) for all
Borel sets B iff Pn(B) → P (B) for all sets in B0.

Let Bn = σ(B1, B2, . . . , Bn) where B1, B2, . . . is an enumeration of B0. Denote by
Bn1, Bn2, . . . Bnk(n) the atoms of Bn. Define Pn to be the discrete measure that
gives mass P0(Bni) to xni where xni is a point in Bni. Clearly Pn(Bmj) → P0(Bmj)
for all mj. On the other hand Pn(∪i,m{xmi}) = 1 for all n but P0((∪i,m{xmi}) =
0.

These shortcomings persist even when we restrict attention to subsets M(X ) of the
form Lµ.

Supremum Metric. When X is R, the Glivenko-Cantelli theorem on convergence
of empirical distribution suggests another useful metric, which we call the supremum
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metric. This metric is defined by

dK(P, Q) = sup
t

|P (−∞, t] − Q(−∞, t]|

Under this metric M(X ) is complete but not separable.
Weak Convergence. In many ways weak convergence is the most natural and useful

topology on M(X ). Say that

Pn → P weakly or Pn
weakly→ P if∫

f dPn →
∫

f dP

for all bounded continuous functions f on X . For any P0 a neighborhood base consists
of sets of the form ∩k

1{P :
∣∣∫ fi dP0 −

∫
fi dP

∣∣ < ε} where fi, i = 1, 2, . . . , k are
bounded continuous functions on X . One of the things that makes the weak topology
so convenient is that under weak convergence M(X ) is a complete separable metric
space.

The main results that we need with regard to weak convergence are the Portman-
teau theorem and Prohorov’s theorem given in Chapter 1.

Because M(X ) is a complete separable metric space under weak convergence, we
define the Borel σ-algebra BM on M(X ) to be the smallest σ-algebra generated by
all weakly open sets, equivalently all weakly closed sets. This σ-algebra has a more
convenient description as the smallest σ-algebra that makes the functions {P �→
P (B) : B ∈ B} measurable. Let B0 be the σ-algebra generated by all weakly open
sets. Consider all B such that P �→ P (B) is B0-measurable. This class contains all
closed sets, and from the π-λ theorem (Theorem 1.2.1) it follows easily that BM is
the σ-algebra generated by all weakly open sets.

We have discussed two other modes of convergence on M(X ) : the total variation
and setwise convergence. It is instructive to pause and investigate the σ-algebras
corresponding to these and their relationship with BM .

Because these are nonseparable spaces, there is no good acceptable notion of a
Borel σ-algebra. In the case of total variation metric, the two common σ-algebras
considered are

(i) Bo—the σ-algebra generated by open sets and

(ii) Bb—the σ-algebra generated by open balls.
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The σ-algebra Bo generated by open sets is much larger than BM . To see this, restrict
the σ-algebra to the space of degenerate measures DX = {δx : x ∈ X}. Then each δx

is relatively open, and this will force the restriction of Bo to DX to be the power set.
On the other hand, BM restricted to DX is just the inverse of the Borel σ-algebra on
X under the map δx �→ x.

Because every open ball is in BM , so is every set in the σ-algebra generated by
these balls. It can be shown that Bb is properly contained in BM .

Similar statements hold when we consider the σ-algebras for setwise convergence.
The corresponding σ-algebras here would be those generated by open sets and those
generated by basic neighborhoods at a point. A discussion of these different σ-algebras
can be found in [71].

We next discuss measurability issues on M(X ) . Following are a few of elementary
propositions.

Proposition 2.2.2. (i) If B0 is an algebra generating B then

σ {P �→ P (B) : B ∈ B0} = BM

(ii) σ
{
P �→

∫
f dP : f bounded measurable

}
= BM

Proof. (i) Let B̃ = {B : P �→ P (B) is BM measurable}. Then B̃ is a σ-algebra and
contains B0. The result now follows from Theorem 1.2.1.

(ii) It is enough to show that P �→
∫

f dP is BM measurable. This is immediate for
f simple, and any bounded measurable f is a limit of simple functions.

Proposition 2.2.3. Let fP (x) be a bounded jointly measurable function of (P, x).
Then P �→

∫
fP (x) dP (x) is BM measurable.

Proof. Consider

G =
{
F ⊂ M(X ) × X such that P (F P ) is BM measurable

}
Here F P is the P -section {x : (P, x) ∈ F} of F . G is a λ-system that contains the
π-class of all sets of the form C × B; C ∈ BM , B ∈ B, and by Theorem 1.2.1 is the
product σ-algebra on M(X )×X . This proves the proposition when fP (x) = IF (P, x).
The proof is completed by verifying when fP (x) is simple, and by passing to limits.

Proposition 2.2.3 can be used to prove the measurability of the set of discrete
probabilities.
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Proposition 2.2.4. The set of discrete probabilities is a measurable subset of
M(X ).

Proof. If E = {(P, x) : P{x} > 0} is a measurable set, then setting fP (x) = IE(P, x),
the set of discrete measures is just {P :

∫
fP (x)dP = 1} and would be measurable by

Proposition 2.2.3. To see that E = {(P, x) : P{x} > 0} is measurable, we show that
(P, x) �→ P{x} is jointly measurable in (P, x). Consider the set of all a measurable
subsets F of X × X such that (P, x) �→ P (F x) is measurable in (P, x). As before,
F x = {y : (x, y) ∈ F}. This class contains all Borel sets of the form B1 × B2 and is
a λ-system, and by Theorem 1.2.1 is the Borel σ-algebra on X × X . In particular
(P, x) �→ P (F x) is measurable when F = {(x, x) : x ∈ X} is the diagonal and
E = {(P, x) : P (F x > 0)}.

Consider fP (x) used in Proposition 2.2.4. Then P is continuous iff
∫

fP (x)dP = 0.
It follows that the set of continuous measures is a measurable set.

If µ is a σ-finite measure on R, then Lµ is a measurable subset of M(X ). To see
this, assume without loss of generality that µ is a probability measure. Let Bn be an
increasing sequence of algebras, with finitely many atoms, whose union generates B.
Denote the atoms of Bn by Bn1, Bn2, . . . Bk(n), and for any probability measure P ,
set fP (x) = lim

∑k(n)
1 P (Bni)/µ(Bni) when it exists and 0 otherwise. To complete the

argument note that Lµ = {P :
∫

fP (x)dµ = 1}.

2.3 (Prior) Probability Measures on M(X )

2.3.1 X Finite

Suppose X = {1, 2, . . . , k}. In this case M(X ) can be identified with the (k − 1)
dimensional probability simplex Sk = {p1, p2, . . . , pk : 0 ≤ pi ≤ 1,

∑
pi = 1}. One

way of defining a prior on M(X ) is by defining a measure on Sk. Any such measure
defines the joint distribution of {P (A) : A ⊂ X}, because for any A, P (A) =

∑
i∈A pi,

where pk = 1 −
∑k−1

1 pi.
An example of a prior distribution on Sk is the uniform distribution—the normal-

ized Lebesgue measure on {p1, p2, . . . , pk−1 : 0 ≤ pi ≤ 1,
∑

pi ≤ 1}. Another example
is the Dirichlet density which is given by

Π(p1, p2, . . . , pk−1) =
Γ(

∑k
1 αi)∏

Γ(αi)
pα1−1

1 pα2−1
2 . . . p

αk−1−1
k−1 (1 −

k−1∑
1

pi)αk−1
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where α1, α2, . . . , αk are positive real numbers. This density will be studied in greater
detail later.

A different parametrization of M(X ) yields another method of constructing a prior
on M(X ). Assume for ease of exposition that X contains 2k elements {x1, x2, . . . , x2k}.
Let

B0 = {x1, x2, . . . , x2k−1} and B1 = {x2k−1+1, x2k−1+2, . . . , x2k}
be a partition of X into two sets. Let B00, B01 be a partition of B0 into two halves
and B10, B11 be a similar partition of B1. Proceeding this way we can get partitions
Bε1ε2...εi0, Bε1ε2...εi1 of Bε1ε2...εi

where each εi is 0 or 1 and i < k. Clearly, this partition
stops at i = k.

We next note that the partitions can be used to identify X with Ek = {0, 1}k.
Any x ∈ X corresponds to a sequence ε1(x)ε2(x) . . . εk(x) where εi(x) = 0 if x is in
Bε1(x)ε2(x)...εi−1(x)0 and 1 if x is in Bε1(x)ε2(x)...εi−1(x)1 . Conversely, any sequence ε1ε2 . . . εk

corresponds to the point ∩k
1Bε1ε2...εi

. Thus there is a correspondence—depending on
the partition—between the set M(X ) of probability measures on X and the set
M(Ek) of probability measures on Ek.

Any probability measure on Ek is determined by quantities like

yε1ε2...εk
= P (εi+1 = 0 | ε1, ε2, . . . , εi)

Specifically, let E∗
k be the set of all sequences of 0 and 1 of length less than k, including

the empty sequence ∅. If 0 ≤ yε ≤ 1 is given for all ε ∈ E∗
k , then there is a probability

on Ek by

P (ε1ε2 . . . εk) =
k∏

i=1,εi=0

yε1ε2...εi−1

k∏
i=1,εi=1

(1 − yε1ε2...εi−1)

where i = 1 corresponds to the empty sequence ∅. Hence construction of a prior on
Ek amounts to a specification of the joint distribution for {yε : ε ∈ E∗

k}.
A little reflection will show that all we have done is to reparametrize a probability

P on X by

P (B0), P (B00|B0), P (B10|B1), . . . , P (Bε1ε2...εk−10|Bε1ε2...εk−10)

Of interest to us is the case where the Yεs, equivalently P (Bε0|Bε)s, are all indepen-
dent. The case when these are independent beta random variables—the Polya tree
processes—will be studied in Chapter 3

Yet another method of obtaining a prior distribution on M(X ) is via De Finetti’
theorem. De Finetti’s theorem plays a fundamental role in Bayesian inference, and
we refer the reader to [144] for an extensive discussion.
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Let X1, X2, . . . , Xn be X -valued random variables. X1, X2, . . . , Xn is said to be ex-
changeable if X1, X2, . . . , Xn and Xπ(1), Xπ(2), . . . , Xπ(n) have the same distribution for
every permutation π of {1, 2, . . . , n}. A sequence X1, X1, . . . is said to be exchangeable
if X1, X2, . . . , Xn is exchangeable for every n.

Theorem 2.3.1. [De Finetti] A sequence of X -valued random variables is ex-
changeable iff there is a unique measure Π on M(X ) such that for all n,∫

M(X )

n∏
1

p(xi) dΠ(p) = Pr {X1 = x1, X2 = x2, . . . , Xn = xn}

In general it is not easy to construct Π from the distribution of the Xis. Typically,
we will have a natural candidate for Π. By uniqueness, it is enough to verify the
preceding equation. On the other hand, given Π, the behavior of X1, X1, . . . often
gives insight into the structure of Π.

As an example, let X = {x1, x2, . . . , xk}. Let α1, α2, . . . , αk be positive integers. Let
ᾱ(i) = αi/

∑
αj. Consider the following urn scheme: Suppose a box contains balls of

k- colors, with αi balls of color i. Choose a ball at random, so that P (X1 = i) = ᾱ(i).
Replace the ball and add one more of the same color. Clearly, P (X2 = j|X1 = i) =
(αj + δi(j))/(

∑
αi + 1) where δi(j) = 1 if i = j and 0 otherwise. Repeat this process

to obtain X3, X4, . . . Then

(i) X1, X2, . . . are exchangeable; and

(ii) the prior Π for this case is the Dirichlet density on Sk.

2.3.2 X = R

We next turn to construction of measures on M(X ) . Because the elements of M(X )
are functions on B, M(X ) can be viewed as a subset of [0, 1]B where the product
space [0, 1]B is equipped with the canonical product σ-algebra, which makes all the
coordinate functions measurable. Note that the restriction of the product σ-algebra
to M(X ) is just BM . A natural attempt to construct measures on M(X ) would be to
use Kolomogorov’s consistency theorem to construct a probability measure on [0, 1]B,
which could then be restricted to M(X ) . However M(X ) is not measurable as a
subset of [0, 1]B, and that makes this approach somewhat inconvenient. To see that
M(X ) is not measurable, note that singletons are measurable subsets of M(X ) but
not so in the product space.

When X = R, distribution functions turn out to be a useful crutch to construct
priors on M(R). To elaborate:
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(i) Let Q be a dense subset of R and let F∗ be all real-valued functions on Q such
that

(a) F is right-continuous on Q,

(b) F is nondecreasing, and

(c) limt→∞ = F (t) = 1, limt→−∞ F (t) = 0.

(ii) Let F be all real-valued functions on R such that

(a) F is right-continuous on R,

(b) F is non decreasing, and

(c) limt→∞ F (x) = 1, limt→−∞ F (x) = 0.

(iii) M(R) = {P : P is a probability measure on R}
There is a natural 1-1 correspondence between these three sets: Let φ1 : M(R) �→

F be the function that takes a probability measure P to its distribution function
FP (t) = P (−∞, t] and let φ2 : F → F∗ be the function that maps a distribution
function to its restriction on Q. These maps are 1-1, onto, and bi-measurable. Thus
any probability measure on F∗ can be transferred to a probability on F and then
to M(R). A prior on F∗ only involves the distributions of

(F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1))

for tis in Q. However, because any F (t) is a limit of F (tn), tn ∈ Q, the distributions of
quantities like (F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1)) for ti-real can be recovered,
at least as limits. On the other hand since a general Borel set B has no simple
description in terms of intervals, one can assert the existence of a distribution for
P (B) that is compatible with the prior on F∗, but it may not be possible to arrive
at anything resembling an explicit description of the distribution.

It is convenient to use the notation L(·|Π) to stand for the distribution or law of a
quantity under the distribution Π.

Theorem 2.3.2. Let Q be a countable dense subset of R. Suppose for every k and
every collection t1 < t2 < . . . < tk with {t1, t2, . . . , tk} ⊂ Q, Πt1,t2,...,tk is a probability
measure on [0, 1]k which is a specification of a distribution of ((F (t1), F (t2), . . . , F (tk))
such that

(i) if {t1, t2, . . . , tk} ⊂ {s1, s2, . . . , sl} then the marginal distribution on (t1, t2, . . . , tk)
obtained from Πs1,s2,...,sl

is Πt1,t2,...,tk ;
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(ii) if t1 < t2 then Πt1,t2{F (t1) ≤ F (t2)} = 1;

(iii) if (t1n, t2n, . . . , tkn) ↓ (t1, t2, . . . , tk) then Π(t1n,t2n,...,tkn) converges in distribution
to Π(t1,t2,...,tk); and

(iv) if tn ↓ −∞ then Πtn → 0 in distribution and if tn ↑ ∞ then Πtn → 1 in
distribution.

then there exists a probability measure Π on M(R) such that for every t1 < t2 < . . . <
tk, with {t1, t2, . . . , tk} ⊂ Q,

L ((F (t1), F (t2), , . . . , F (tk)) |Π) = Πt1,t2,...,tk .

Proof. By the Kolomogorov consistency theorem (i) ensures the existence of a proba-
bility measure Π on [0, 1]Q with Π(t1,t2,...,tk) as marginals. We will argue that Π(F∗) = 1

Suppose F∗
1 = ∩ti<tj

{
F ∈ [0, 1]Q : F (ti) ≤ F (tj)

}
. Because Q is countable by (ii),

Π(F∗
1 ) = 1.

Next, fix t and a sequence tn in Q decreasing to t. On F∗
1 , F (tn) as a function of F

is decreasing in n and hence has a limit. If F ∗(t) = limn F (tn) then F ∗(t) ≥ F (t) and
by assumption (iii) EΠF ∗(t) = EΠF (t), so that F ∗(t) = F (t) a.e. Π. Consequently

Π{F ∈ F∗
1 : F is right-continuous at t} = 1

and the countability of Q yields

Π{F : F is monotone and F is right-continuous at all t ∈ Q} = 1

A similar argument shows that with Π probability 1, for F in F∗
1 , limt→∞ = F (t) =

1, and limt→−∞ F (t) = 0. This shows that Π(F∗) = 1.
Thus we have established the existence of a probability measure on F∗. Using the

discussion preceding the theorem this prior can be lifted to all of M(R).

The assumptions of Theorem 2.3.2 require specification of finite-dimensional dis-
tribution only for tis in Q and the conclusion also involves only the finite dimensional
distributions for tis in Q. It is easy to see that if one starts with Π(t1,t2,...,tk) with ti’s
real and satisfying the conditions of Theorem 2.3.2 then one would get a Π for which
the marginals are Π(t1,t2,...,tk) for tis real.

A convenient way of specifying the distribution of (F (t1), F (t2), . . . , F (tk)) for t1 <
t2 < . . . , tk, is by specifying the distribution, say Π′

t1,t2,...,tk
, of

(F (t1), F (t2) − F (t1), . . . , F (tk − F (tk−1))
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The convenience arises from the fact that (−∞, t1], (t1, t2], . . . , (tk, ∞) can be thought
of as k + 1 cells and (p1, p2, . . . , pk+1) as the corresponding multinomial probabili-
ties. Note that Π′

t1,t2,...,tk
is a probability measure on Sk = {(p1, p2, . . . , pk : pi ≥

0,
k∑
1

pi ≤ 1}. If the specifications of the collection Π′
t1,t2,...,tk

satisfy assumptions

(ii),(iii), and (iv) of Theorem 2.3.2, then so would the collection Πt1,t2,...,tk = L((p1, p1+
p2, . . . ,

∑k
1 pi)|Π′

t1,t2,...,tk
). These observations give the following easy variant of Theo-

rem 2.3.2.

Theorem 2.3.3. Suppose that for every k and every collection t1 < t2 < . . . < tk
with {t1, t2, . . . , tk} ⊂ R, Πt1,t2,...,tk is a probability measure on Sk = {(p1, p2, . . . , pk) :

pi ≥ 0,
k∑
1

pi ≤ 1} such that

(i) if {t1, t2, . . . , tk} ⊂ {s1, s2, . . . , sl} then the marginal distribution on (t1, t2, . . . , tk)
obtained from Πs1,s2,...,sl

is Πt1,t2,...,tk ;

(ii) if (t1n, t2n, . . . , tkn) → (t1, t2, . . . , tk) then Π(t1n,t2n,...,tkn) converges in distribution
to Π(t1,t2,...,tk); and

(iii) if tn ↓ −∞ then Πtn → 0 in distribution and if tn ↑ ∞ then Πtn → 1 in
distribution.

then there exists a probability measure Π on F (equivalently on M(R) such that for
every t1 < t2 < . . . < tk, with {t1, t2, . . . , tk} ⊂ R,

L ((F (t1), F (t2) − F (t1), . . . , F (tk) − F (tk−1)) |Π) = Πt1,t2,...,tk

Suppose (B1, B2, . . . , Bk) is a collection of disjoint subsets of R; the next theorem
shows that if the distribution of P (B1), P (B2), . . . , P (Bk) are themselves prescribed
consistently then the prior Π would have the prescribed marginal distribution for
(P (B1), P (B2), . . . , P (Bk)).

Theorem 2.3.4. Suppose for each collection of disjoint Borel sets (B1, B2, . . . , Bk)
a distribution ΠB1,B2,...,Bk

is assigned for (P (B1), P (B2), . . . , P (Bk)) such that

(i) ΠB1,B2,...,Bk
is a probability measure on k-dimensional probability simplex Sk and

if A1, A2, . . . , Al is another collection of disjoint Borel sets whose elements are
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union of sets from (B1, B2, . . . , Bk) then

ΠA1,A2,...,Al
= distribution of

( ∑
Bi⊂A1

P (Bi),
∑

Bi⊂A2

P (Bi), . . . ,
∑

Bi⊂Al

P (Bi)

)

(ii) if Bn ↓ ∅; and ΠBn → 0 in distribution,

(iii) P (R) ≡ 1.

Then there exists a probability measure Π on M(R) such that for any collection of
disjoint Borel sets (B1, B2, . . . , Bk), the marginal distribution of (P (B1), . . . , P (Bk))
under Π is ΠB1,B2,...,Bk

.

Remark 2.3.1. Given ΠB1,B2,...,Bk
as earlier, we can extend the definition to obtain

ΠA1,A2,...,Am for any collection (not necessarily disjoint) of Borel sets A1, A2, . . . , Am.
Toward this, let B1 = A1, Bi = Ai−∪j<iAj, and define ΠA1,A2,...,Am as the distribution
of (P (B1, P (B1) + P (B2) + . . . ,

∑m
1 P (Bj)) under ΠB1,B2,...,Bm . The following proof

shows that the marginal distribution under Π of (P (A1), P (A2), . . . , P (Ak)) of any
collection of Borel sets is ΠA1,A2,...,Ak

.

Proof. As in the Theorem 2.3.3 start with partitions of the form Bi = (ti−1, ti] for
i = 1, 2, . . . , k; and let Π be the measure obtained on F . Let φ2 be the map from F to
M(R) defined by φ2(F ) = PF , where PF is the probability measure corresponding to
F . It is easy to see that this map is 1-1 and measurable. We will continue to denote
by Π the induced measure on M(R).

Π by construction sits on M(R). What we then need to show is that the marginal
distribution of (P (B1), P (B2), . . . , P (Bk)) under Π is ΠB1,B2,...,Bk

.
Step 1 (ii) implies that

if (B1n, B2n, . . . , Bkn) ↓ (B1, B2, . . . , Bk1) then

(P (B1n), P (B2n), . . . , P (Bkn)) → (P (B1), P (B2), . . . , P (Bk)) in distribution.

To see this,

((P (B1n), P (B2n), . . . , P (Bkn))
= (P (B1) + (P (B1n) − P (B1)), P (B2) + (P (B2n) − P (B2)), . . . ,

P (Bk) + (P (Bkn) − P (Bk)))
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and for each i, (Bin − Bi) ↓ ∅ and hence (P (Bin) − P (Bi)) goes to 0 in distribution
and hence in probability. As a result, the whole vector

((P (B1n) − P (B1)), (P (B2n) − P (B2)), . . . , (P (Bkn) − P (Bk))) ↓ 0 in probability

Step 2 Denote by B0 the algebra generated by intervals of the form (a, b]. For
any B1, B2, . . . , Bk, let L (P (B1), P (B2), . . . , P (Bk)|Π) denote the distribution of the
vector (P (B1), P (B2), . . . , P (Bk)) under Π. Fix k. Let Ci = (ai, bi], i = 2, . . . , k.
Consider

B̂ =
{
B1 : L (P (B1), P (C2), . . . , P (Ck)|Π) = Π(B1,C2,...,Ck)

}
Then B̂ contains all sets of the form (a, b], is closed under disjoint unions of such

sets, and hence contains B0. In addition, by Step 1 this is a monotone class. So B̂ is
B.

Step 3 Now consider{
B2 : L (P (B1), P (B2), P (C3), . . . , P (Ck)|Π) = Π(B1,B2,C3,...,Ck)

}
From step 2, this class contains all sets of the form (a, b], and their finite disjoint

unions and hence contains B0. Further, it is a monotone class and so is B. Continuing
similarly, it follows that for any Borel sets B1, B2, . . . , Bk ,

L (P (B1), P (B2), . . . , P (Bk)|Π) = ΠB1,B2,...,Bk

.

Example 2.3.1. Let α be a finite measure on R. For any partition (B1, B2, . . . , Bk),
let ΠB1,B2,...,Bk

on Sk be a Dirichlet (α(B1), α(B2), . . . , α(Bk)). We will show in Chap-
ter 3 that this assignment satisfies the conditions of Theorem 2.3.4.

Remark 2.3.2. Theorem 2.3.4 on constructing a measure Π on F through finite-
dimensional distribution can be viewed from a different angle. Toward this, for each
n, divide the interval [−2n, 2n] into intervals of length 2−n and let −2n = tn1 <
tn2 < . . . < tnk(n) = 2n denote the endpoints of the intervals. These define a partition
of R into k(n) + 1 cells in an obvious way. Any probability (p1, p2, . . . , pk(n)+1) on
these k(n) + 1 cells corresponds to a distribution function on R, which is constant on
each interval and thus any probability Πtn1,tn2,...,tnk(n) on Sk(n)+1 defines a probability
measure µn on Fn = all distribution functions, which are constant on the interval
(tni, tni+1]. The consistency assumption on Πtn1,tn2,...,tnk(n) shows that the marginal
distribution on Fn obtained from µn+1 is just µn. Now it can be shown that
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1. {µn}n≥1 is tight as a sequence of probability measures on F . To see this, let
εi ↓ 0 and let Ki be a sequence of compact subsets of R. Then

{P : P (Ki) ≥ 1 − εi for all i}

is a compact subset of M(R). What is needed to show tightness is that given δ,
there is a set of the form given earlier with µn measure greater than 1−δ for all n.
Use assumptions (i) and (iii) of Theorem 2.3.4 and show that for each i, you can
get an ni such that for all n, µn{F : F (tni0) > εi and 1−F (tni,k(ni)) > εi} < δ/2i;

2. {µn} converges to a measure Π; and

3. Π satisfies the conclusions of Theorem 2.3.4.

2.3.3 Tail Free Priors

When X is finite, we have seen that by partitioning X into

{B0, B1}, {B00, B01, B10, B11}, . . .

and reparametrizing a probability by P (B0), P (B00|B0) . . ., we can identify measures
on M(X ) with Ek—the set of sequences of 0s and 1s of length k. Tail free priors arise
when these conditional probabilities are independent. In this section we extend this
method to the case X =R.

Let E be all infinite sequences of 0s and 1s, i.e., E = {0, 1}N. Denote by Ek all
sequences ε1, ε2, . . . , εk of 0s and 1s of length k, and let E∗ = ∪kEk be all sequences
of 0s and 1s of finite length. We will denote elements of E∗ by ε.

Start with a partition
T 0 = {B0, B1}

of X into two sets. Let
T 1 = {B00, B01, B10, B11, }

where B00, B01 is a partition of B0 and B10, B11 is a partition of B1. Proceeding this
way,let T n be a partition consisting of sets of the form Bε, where ε ∈ En and further
Bε1 , Bε0 is a partition of Bε.

We assume that we are given a sequence of partitions T = {Tn}n≥1 constructed as
in the last paragraph such that the sets {Bε : ε ∈ E∗} generate the Borel σ-algebra.
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Definition 2.3.1. A prior Π on M(R) is said to be tail free with respect to
T = {Tn}n≥1 if rows in

{P (B0)}
{P (B00|B0), P (B10|B1)}

{P (B000|B00), P (B000|B00), P (B010|B01), P (B100|B10), P (B110|B11)}
· · · · · · · · ·

are independent.

To turn to the construction of tail free priors on M(R), start with a dense set of
numbers Q, like the binary rationals in (0, 1), and write it as Q = {aε : ε ∈ E∗} such
that for any ε ε0 < ε < ε1 and construct the following sequence of partitions of R:
T 0 = {B0, B1} is a partition of R into two intervals, say

B0 = (−∞, a0], B1 = (a0, ∞)

Let T 1 = {B00, B01, B10, B11, }, where

B00 = (−∞, a00], B01 = (a00, a0]

and
B10 = (a0, a01], B11 = (a01, ∞)

Proceeding this way, let T n be a partition consisting of sets of the form Bε1,ε2,...,εn ,
where ε1, ε2, . . . , εn are 0 or 1 and further Bε1,ε2,...,εn0, Bε1,ε2,...,εn1 is a partition of
Bε1,ε2,...,εn .

The assumption that Q is dense is equivalent to the statement that the sequence
of partitions T = {Tn}n≥1 constructed as in the last paragraph are such that the sets
{Bε : ε ∈ E∗} generate the Borel σ-algebra.

For each ε ∈ E∗, let Yε be a random variable taking values in [0, 1]. If we set
Yε = P (Bε0 |Bε), then for each k, {Yε : ε ∈ ∪i≤kEi} define a joint distribution for
P (Bε) : ε ∈ Ek. By construction, these are consistent. In order for these to define a
prior on M(R) we need to ensure that the continuity condition (ii) of Theorem 2.3.2
holds.

Theorem 2.3.5. If Yε = P (Bε0 |Bε), where Yε : ε ∈ E∗ is a family of [0, 1] valued
random variables such that

(i)
Y ⊥{Y0, Y1}⊥{Y00, Y01, Y10, Y11}⊥ . . .
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(ii) for each ε ∈ E∗,
Yε0Yε00Yε000 . . . = 0 and Y1Y11 . . . = 0 (2.1)

then there exists a tail free prior Π on M(R) (with respect to the partition under
consideration) such that Yε = P (Bε0|Bε).

Proof. As noted earlier we need to verify condition (ii) of Theorem 2.3.2. In the
current situation it amounts to showing that if εo = ε0

1ε
0
2 . . . ε0

k and as n → ∞, aεn

decreases to aε0 , then the distribution of F
(
aεn

)
converges to F

(
aε0

)
. Because any

sequence of aε decreasing to aε0 is a subsequence of aε01, aε010, aε0100, · · · ,

F
(
aε010...0

)
= F

(
aε0

)
+ P (Bε010...0)

and
P (Bε01,0...0) = P (Bε0)(1 − Yε0)Yε01Yε010 . . .

the result follows from (ii).

These discussions can be usefully and elegantly viewed by identifying R with the
space of sequences of 0s and 1s.

As before, let E be {0, 1}N. Any probability on E gives rise to the collection of
numbers {yε : ε ∈ E∗}, where yε1ε2...εn = P (εn+1 = 0|ε1ε2 . . . εn). Conversely, setting
yε1ε2...εn = P (εn+1 = 0|ε1ε2 . . . εn), any set numbers {yε : ε ∈ E∗}, with 0 ≤ yε ≤ 1
determines a probability on E. In other words,

P (ε1ε2 . . . εk) =
k∏

i=1,εi=0

yε1ε2...εi−1

k∏
i=1,εi=1

(1 − yε1ε2...εi−1) (2.2)

Hence, to define a prior on M(E), we need to specify a joint distribution for {Yε :
ε ∈ E∗}, where each Yε is between 0 and 1.

As in the finite case, we want to use the partitions T = {Tn}n≥1 to identify R

with sequences of 0s and 1s. and Let x ∈ R. φ(x) is the function that sends x to the
sequence ε in E, where

ε1(x) = 0 if x ∈ B0 ε1(x) = 1 if x ∈ B1

εi(x) = 0 if x ∈ Bε1,ε2,...,εi−10 εi(x) = 1 if x ∈ Bε1ε2...εi−11

Because each T n is a partition of R, φ defines a function from R into E. φ is 1-
1, measurable but not onto E. The range of φ will not contain sequences that are
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eventually 0. This is another way of saying that with binary expansions we consider
the expansion with 1 in the tails rather than 0s. If D = {ε ∈ E : εi = 0 for all i ≥
n for some n} ∪ {ε : εi = 1 for all i}, then φ is 1-1, measurable from R onto Dc ∩ E.
Further, φ−1 is measurable on Dc∩E. Thus, as before, the set of probability measures
M(R) can be identified with M0(E)—the set of probability measures on E that give
mass 0 to D. This reduces the task of defining a prior on M(R) to one of defining a
prior on M0(E).

The condition P (D) = 0 gets translated to

yε0(yε00) . . . = 0 for all ε ∈ E∗ and y1y11 . . . = 0 (2.3)

As before, defining a prior on M(R), equivalently on M0(E), amounts to defining
{Yε : ε ∈ E∗} such that (2.3) is satisfied almost surely. Satisfying (2.3) almost surely
corresponds to condition (ii) in Theorem 2.3.5.

A useful way to specify a prior on M(E) is by having Yε for ε of different lengths
be mutually independent, which yields tail free priors. In Chapter 3, we return to this
construction, to develop Polya tree priors.

Tail free prior are conjugate in the sense that if the prior is tail free, then so is the
posterior. To avoid getting lost in a notational mess we first state an easy lemma.

Lemma 2.3.1. Let ξ1, ξ2, . . . , ξk be independent random vectors (not necessarily
of the same dimension) with joint distribution µ =

∏k
1 µi. Let J be a subset of

{1, 2, . . . , k} and let µ∗ be the probability with

dµ∗

dµ
= C

∏
j∈J

ξj

Then ξ1, ξ2, . . . , ξk are independent under µ∗.

Proof. Clearly C =
∏

j∈J [
∫

ξjdµj]−1. Further,

Prob(ξi ∈ Bi : 1 ≤ i ≤ k) =
∫

(ξi∈Bi:1≤i≤k)
C[

∏
j∈J

ξj]dµ

=
∏
i/∈J

µi(Bi)
∏
j∈J

∫
Bj

ξjdµj∫
ξjdµj
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Theorem 2.3.6. Suppose Π is a tail free prior on M(R) with respect to the sequence
of partitions {T k}k≥1. Given P , let X1, X2, . . . , Xn be,i.i.d. P ; then the posterior is
also tail free with respect to {T k}k≥1.

Proof. We will prove the result for n = 1; the general case follows by iteration.
Consider the posterior distribution given T k. Because {Bε : ε ∈ Ek} are the atoms of
T k, it is enough to find the posterior distribution given X ∈ Bε′ for each ε′ ∈ Ek.

Let ε′ = ε1ε2 . . . εk. Then the likelihood of P (Bε′) is

k∏
1

P (Bε1,ε2,...,εj
|Bε1,ε2,...,εj−1)

so that the posterior density of {P (Bε1 |Bε)} with respect to Π is

C
n∏

i=1,εi=0

P (Bε1ε2...εi
|Bε1ε2...εi−1)

n∏
i=1,εi=1

(1 − P (Bε1ε2...εi
|Bε1ε2...εi−1)

From Lemma 2.3.1

{P (Bε1 |Bε) : ε ∈ E1}, {P (Bε1 |Bε) : ε ∈ E2}, . . . , {P (Bε1 |Bε) : ε ∈ Ek−1}

are independent under the posterior.
In particular if m < k, independence holds for

{P (Bε1 |Bε) : ε ∈ E1}, {P (Bε1 |Bε) : ε ∈ E2}, . . . , {P (Bε1 |Bε) : ε ∈ Em−1}.

Letting k → ∞, an application of the martingale convergence theorem gives the
conclusion for the posterior given X1.

In this section we have discussed two general methods of constructing priors on
M(R) . There are several other techniques for obtaining nonparametric priors. There
are priors that arise from stochastic processes. If f is the sample path of a stochastic
process then f̂ = k−1(f)ef yields a random density when k(f) = Eef is finite. We
will study a method of this kind in the context of density estimation. Or one can
look at expansions of a density using some orthogonal basis and put a prior on the
coefficients. A class of priors called neutral to the right priors, somewhat like tail free
priors, will be studied in Chapter 10 on survival analysis.
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2.4 Tail Free Priors and 0-1 Laws

Suppose Π is a prior on M(R) and {Bε : ε ∈ E∗} is a set of partitions as described
in the last section. To repeat, for each n, T n = {Bε : ε ∈ En} is a partition of R and
Bε0, Bε1 is a partition of Bε. Further B = σ {Bε : ε ∈ E∗}. Unlike the last section it
is not required that Bε be intervals. The choice of intervals as sets in the partition
played a crucial role in the construction of a probability measure on M(R). Given a
probability measure on M(R), the following notions are meaningful, even if the Bε

are not intervals.
For notational convenience, as before, denote by Yε = P (Bε0|Bε). Formally, Yε is a

random variable defined on M(R) with Yε(P ) = P (Bε0|Bε). Recall that Π is said to
be tail free with respect to the partition T = {Tn}n≥1 if

Y ⊥{Y0, Y1}⊥{Y00, Y01, Y10, Y11}⊥ . . .

Theorem 2.4.1. Let λ be any finite measure on R, with λ(Bε) > 0 for all ε. If
0 < Yε < 1 for all ε then

Π{P : P << λ} = 0 or 1

Proof. Assume without loss of generality that λ is a probability measure.
Let Z0 = Y, Z1 = {Y0, Y1}, Z2 = {Y00, Y01, Y10, Y11}, . . . . By assumption, Z1, Z2, . . .

are independent random vectors. The basic idea of the proof is to show that L(λ) =
{P : P << λ} is a tail set with respect to the Zis. The Kolmogorov 0 − 1 law
then yields the conclusion. In the next two lemmas it is shown that for each n, L(λ)
depends only on Zn, Zn+1, . . . and is hence a tail set.

Lemma 2.4.1. When P (Bε) > 0, define P (·|Bε) to be the probability P (A|Bε) =
P (A ∩ Bε)/P (Bε) . Define λ(·|Bε) similarly. Fix n; then

L(λ) = {P : P (·|Bε) << λ(·|Bε) for all ε ∈ En such that P (Bε) > 0}

Proof. Because

P (A) =
∑
ε∈En

P (A|Bε)P (Bε) and λ(A) =
∑
ε∈En

λ(A|Bε)λ(Bε)

the result follows immediately.
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Lemma 2.4.2. Let Y = {Yε(P ) : ε ∈ E∗, P ∈ M(R)}. The elements y of Y are
thus a collection of conditional probabilities arising from a probability. Conversely
any element y of Y gives rise to a probability which we denote by Py. Then for each
ε ∈ En, for all A ∈ B, and for every y in Y

Py(A|Bε) depends only on Zn, Zn+1, . . .

Proof. Let

B0 =
{

A : for all y, Py(A|Bε) depends only on Zn, Zn+1, . . .
}

Because 0 < Yε < 1 for all ε ∈ E∗, Py (Bε) > 0 for all ε ∈ E∗. Hence B0 contains the
algebra of finite disjoint unions of elements in {Bε′ : ε′ ∈ ∪m>nEm} and is a monotone
class. Hence B0 = B.

Remark 2.4.1. Let Π be tail free with respect to T = {Tn}n≥1 such that 0 < Yε <
1; for all ε ∈ E∗. Argue that P is discrete iff P (.|Bε) is discrete for all ε ∈ En. Now
use the Kolmogorov 0-1 law to conclude that Π{P : P is discrete } = 0 or 1.

The next theorem, due to Kraft, is useful in constructing priors concentrated on
sets like L(λ).

Let Π, {Bε : ε ∈ E∗}, {Yε : ε ∈ E∗} be as in the Theorem 2.4.1, and, as before
given any realization y = {yε : ε ∈ E∗}, let Py denote the corresponding probability
measure on R.

Theorem 2.4.2. Let λ be a probability measure on R such that λ(Bε) > 0 for all
ε ∈ E∗. Suppose

fn
y (x) =

∑
ε∈En

Py (Bε)
λ(Bε)

IBε(x) =
∑
ε∈En

∏k
i=1,εi=0 yε1ε2...εi−1

∏k
i=1,εi=1(1 − yε1ε2...εi−1)

λ(Bε)

If supn EΠ

[
fn

y (x)
]2

≤ K for all x then Π{P : P << λ} = 1

Proof. For each y ∈ Y , by the martingale convergence theorem fn
y converges almost

surely λ to a function fy . Consider the measure Π×λ, which is the joint distribution

of y and x, on
∏
ε∈E∗

Yε × R.
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Because for each y , fn
y → fy a.s λ, we have fn

y → fy a.s Π × λ. Further, under

our assumption
{

fn
y (x) : n ≥ 1

}
is uniformly integrable with respect to Π × λ and

hence EΠ×λ

∣∣∣fn
y (x) − fy (x)

∣∣∣ → 0. Now for each y , by Fatou’s lemma, Eλfy ≤ 1.
On the other hand, EΠ×λf

n
y (x) = 1 for all n, and by the L1-convergence mentioned

earlier, EΠ×λfy (x) = 1. Thus Eλfy = 1 a.e. π and this shows π{L(λ)} = 1.

The next theorem is an application of the last theorem. It shows how, given a
probability measure λ, by suitably choosing both the partitions and the parameter
of the Yεs , we can obtain a prior that concentrates on L(λ).

Theorem 2.4.3. Let λ be a continuous probability distribution on R. Denote by
F the distribution function of λ and construct a partition as follows:

B0 = F−1(0, 1/2] B1 = F−1(1/2, 1]
B00 = F−1(0, 1/4], B01 = F−1(1/4, 1/2] B10 = F−1(1/2, 3/4], B11 = F−1(3/4, 1]

and in general

Bε1,ε2,...,εn = F−1

(
n∑
1

εi

2n
,

n∑
1

εi

2n
+

1
2n

]

Suppose E(Yε) = 1/2 for all ε ∈ E∗ and sup
ε∈En

V (Yε) ≤ bn, with
∑

bn < ∞. Then

the resulting prior satisfies Π(L(λ)) = 1.

Proof. λ(Bε) > 0, because λ(Bε0|Bε) = 1/2, for all Bε. Fix x. If x ∈ Bε1ε2,...εn , then

fn
Y (x) =

n∏
i=0

Y 1−εi
ε1ε2,...εi−1

(1 − Yε1ε2,...εi−1)
εi

1/2

and

E[fn
Y (x)]2 =

n∏
o

4E
[
[Y 2

ε1ε2,...εi−1
]1−εi [(1 − Yε1ε2,...εi−1)

2]εi

]

≤
n∏
0

4ai

where ai = max
(
EY 2

ε1ε2,...εi−1
, E(1 − Yε1ε2,...εi−1)

2
)
. Now



78 2. M(X ) AND PRIORS ON M(X )

EY 2
ε1ε2,...εi−1

= V (Yε1ε2,...εi−1) + (1/2)2 ≤ bi + 1/4

and
E

(
1 − Yε1ε2,...,εi−1)

2) ≤ bi + 1/4

Thus
∏n

1 4ai ≤
∏n

1 (1 + 4bi) converges, because
∑

bn < ∞.

2.5 Space of Probability Measures on M(R)

We next turn to a discussion of probability measures on M(R). To get a feeling for
what goes on we begin by asking when are two probability measures Π1 and Π2

equal?
Clearly Π1 = Π2 if for any finite collection B1, B2, . . . , Bk of Borel sets,

(P (B1), P (B2), . . . , P (Bk))

has the same distribution under both Π1 and Π2. This is an immediate consequence
of the definition of BM .

Next suppose that (C1, C2, . . . , Ck) are Borel sets. Consider all intersections of the
form

Cε1
1 ∩ Cε2

2 ∩ · · · ∩ Cεk
k

where εi = 0, 1, C1
i = Ci and C0

i = Cc
i . These intersections would give rise to a

partition of X , and since every Ci can be written as a union of elements of this
partition, the distribution of (P (C1), P (C2), . . . , P (Ck)) is determined by the joint
distribution of the probability of elements of this partition. In other words, if the
distribution of (P (B1), P (B2), . . . , P (Bk)) under Π1 and Π2 are the same for every
finite disjoint collection of Borel sets then Π1 = Π2. Following is another useful
proposition.

Proposition 2.5.1. Let B0 = {Bi : i ∈ I} be a family of sets closed under finite
intersection that generates the Borel σ-algebra B on X . If for every B1, B2, . . . , Bk

in B0, (P (B1), P (B2), . . . , P (Bk)) has the same distribution under Π1 and Π2, then
Π1 = Π2.

Proof. Let B0
M = {E ∈ BM : Π1(E) = Π2(E)}. Then B0

M is a λ-system. For any J
finite subset of I, by our assumption Π1 and Π2 coincide on the σ-algebra BJ

M—the
σ-algebra generated by {P (Bj) : j ∈ J} and hence BJ

M ⊂ B0
M . Further the union of

BJ
M over all finite subsets of I forms a π-system. Because these also generate BM ,

B0
M = BM .
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Remark 2.5.1. A convenient choice of B0 is the collection of all open balls, all closed
balls, etc. When X = R a very useful choice is the collection {(−∞, a] : a ∈ Q}, where
Q is a dense set in R.

As noted earlier M(R) when equipped with weak convergence becomes a complete
separable metric space with BM as the Borel σ-algebra. Thus a natural topology
on M(R) is the weak topology arising from this metric space structure of M(R).
Formally, we have the following definitions.

Definition 2.5.1. A sequence of probability measure {Π}n on M(R) is said to
converge weakly to a probability measure Π if∫

φ(P ) dΠn →
∫

φ(P ) dΠ

for all bounded continuous functions φ on M(R).

Note that continuity of φ is with respect to the weak topology on M(R). If f is a
bounded continuous function on R then φ(P ) =

∫
fdP is bounded and continuous on

M(R) . However in general there is no clear description of all the bounded continuous
functions on M(R). If X is compact metric, then the following description is available.

If X is compact metric then, by Prohorov’s theorem, so is M(X ) under weak
convergence. It follows from the Stone-Weirstrass theorem that the set of all functions
of the form ∑ ki∏

j=1

φri
fi,j

where φri
fi,j

(P ) =
∫

fi,j(x)dP (x) with fi,j(x) continuous on X , is dense in the space of
all continuous functions on M(X ).

The following result is an extension of a similar result in Sethuraman and Tiwari
[149].

Theorem 2.5.1. A family of probability measures {Πt : t ∈ T} on M(R) is tight
with respect to weak convergence on M(R) iff the family of expectations {EΠt : t ∈ T},
where EΠt(B) =

∫
P (B) dΠt(P ), is tight in R.

Proof. Let µt = EΠt . Fix δ > 0. By the tightness of {µt : t ∈ T}, for every positive
integer d there exists a sequence of compact sets Kd in R, such that sup

t
µt(Kc

d) ≤
6δ/(d3π2).
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For d = 1, 2, . . . , let, Md = {P ∈ M(R) : P (Kc
d) ≤ 1/d}, and let M = ∩dMd. Then,

by the pormanteau and Prohorov theorems, M is a compact subset of M(R), in the
weak topology. Further, by Markov’s inequality,

Πn(M c
d) ≤ dEΠt(P (Kc

d))
= dµt(Kc

d)

≤ 6δ
d2π2

Hence, for any t ∈ T, Πt(M) ≤
∑

d 6δ/(d3π2) = δ. This proves that {µt}t∈T is
tight. The converse is easy.

Theorem 2.5.2. Suppose Π, Πn, n ≥ 1 are probability measures on M . If any of
the following holds then Πn converges weakly to Π.

(i) For any (B1, B2, . . . , Bk) of Borel sets

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(ii) For any disjoint collection (B1, B2, . . . , Bk) of Borel sets

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(iii) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (ai, bi],

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(iv) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (ai, bi],ai, bi rationals,

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(v) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k, Bi = (−∞, ti],

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))

(vi) For any (B1, B2, . . . , Bk) where for = i = 1, 2, . . . , k,Bi = (−∞, ti], ti rationals

LΠn (P (B1), P (B2), . . . , P (Bk)) → LΠ (P (B1), P (B2), . . . , P (Bk))
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Proof. Because (vi) is the weakest, we will show that (vi) implies Πn
weakly→ Π. Note

that for all rationals t, EΠn (P (−∞, t)) → EΠ (P (−∞, t)) and hence EΠn converges
weakly to EΠ. By the Theorem 2.5.1 this shows that {Πn} is tight. If Π∗ is the limit
of any subsequence of {Πn}, then it follows, using Proposition 2.5.1, that Π∗ = Π.

Remark 2.5.2. Note that Πn
weakly→ Π does not imply any of the preceding. The

modifications are easy, however. For example (i) would be changed to “For any
(B1, B2, . . . , Bk) of Borel sets such that (P (B1), P (B2), . . . , P (Bk)) is continuous a.e
Π.”

We have considered other topologies on M(R) namely, total variation, setwise con-
vergence and the supremum metric. It is tempting to consider the weak topologies on
probabilities on M(R) induced by these topologies. But as we have observed, these
topologies possess properties that make the notion of weak convergence awkward to
define and work with. Besides, the σ-algebras generated by these topologies, via either
open sets or open balls do not coincide with BM [57]. Our interests do not demand
such a general theory. Our chief interest is when the limit measure Π is degenerate
at P0, and in this case we can formalize convergence via weak neighborhoods of P0.

When Π = δP0 , Πn
weakly→ δP0 iff Πn(U) → Π(U) for every open neighborhood U .

Because weak neighborhoods of P0 are of the form U = {P :
∣∣∫ fi dP −

∫
fi dP0

∣∣},
weak convergence to a degenerate measure δP0 can be described in terms of continuous
functions of R rather than those on M(R) and can be verified more easily. The next
proposition is often useful when we work with weak neighborhoods of a probability
P0 on R.

Proposition 2.5.2. Let Q be a countable dense subset of R. Given any weak neigh-
borhood U of P0 there exist a1 < a2 . . . < an in Q and δ > 0 such that

{P : |P [ai, ai+1) − P0[ai, ai+1)| < δ for 1 ≤ i ≤ n} ⊂ U

Proof. Suppose U = {P : |
∫

fdP −
∫

fdP0| < ε}, where f is continuous with compact
support. Because Q is dense in R given δ there exist a1 < a2 . . . < an in Q such that
f(x) = 0 for x ≤ a1, x ≥ an, and |f(x) − f(y)| < δ for x ∈ [ai, ai+1], 1 ≤ i ≤ n − 1.
Then the function f ∗ defined by

f ∗(x) = f(ai) for x ∈ [ai, ai+1), i = 1, 2, . . . n − 1

satisfies sup
x

|f ∗(x) − f(x)| < δ.
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For any P ,
∫

f ∗dP =
∑

f(ai)P [ai, ai+1),

|
∫

f ∗dP −
∫

f ∗dP0| < ckδ where c = sup
x

|f(x)|

In addition, if P is in U then we have

|
∫

fdP −
∫

fdP0| < 2δ + ckδ

Thus with Bi = [ai, ai+1] for small enough δ,{P : |P (Bi) − P0(Bi)| < δ} is contained
in U . The preceding argument is easily extended if U is of the form

{P : |
∫

fidP −
∫

fidP0| ≤ εi, 1 ≤ i ≤ k, fi continuous with compact support}

Following is another useful proposition.

Proposition 2.5.3. Let U = {F : sup−∞<x<∞ |F0(s) − F (x)| < ε} be a supre-
mum neighborhood of a continuous distribution function F0. Then U contains a weak
neighborhood of F0.

Proof. Choose −∞ = x0 < x1 < x2 < . . . < xk = ∞ such that F (xi+1) −F (xi) < ε/4
for i = 1, . . . , k − 1. Consider

W = {F : |F (xi) − F0(xi)| < ε/4}, i = 1, 2, . . . , k

If x ∈ (xi−1, xi),

|F (x) − F0(x)| ≤|F (xi−1) − F0(xi)| ∨ |F (xi) − F0(xi−1)|
≤|F (xi−1) − F0(xi−1)| + |F0(xi−1) − F0(xi)|

+ |F (xi) − F0(xi)| + |F0(xi−1) − F0(xi)|

which is less than ε if F ∈ W .
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2.6 De Finetti’s Theorem

Much of classical statistics has centered around the conceptually simplest setting of
independent and identically distributed observations. In this case, X1, X2, . . . are
a sequence of i.i.d. random variables with an unknown common distribution P . In
the parametric case, P would be constrained to lie in a parametric family, and in
the general nonparametric situation P could be any element of M(R). The Bayesian
framework in this case consists of a prior Π on the parameter set M(R); given P
the X1, X2, . . . is modeled as i.i.d. P . In a remarkable theorem, De Finetti showed
that a minimal judgment of exchangeability of the observation sequence leads to the
Bayesian formulation discussed earlier.

In this section we briefly discuss De Finetti’s theorem. A detailed exposition of
the theorem and related topics can be found in Schervish [144] in the section on De
Finetti’s theorem and the section on Extreme models.

As before, let X1, X2, . . . be a sequence of X -valued random variables defined on
Ω = R∞.

Definition 2.6.1. Let µ be a probability measure on R
∞. The sequence X1, X2, . . .

is said to be exchangeable if, for each n and for every permutation g of {1, . . . , n}, the
distribution of X1, X2, . . . , Xnis the same as that of Xg(1), Xg(2), . . . , Xg(n).

Theorem 2.6.1 (De Finetti). Let µ be a probability measure on R
∞. Then

X1, X2, . . . is exchangeable iff there is a unique probability measure Π on M(R) such
that for all n and for any Borel sets B1, B2, . . . , Bn,

µ {X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn} =
∫

M(R)

n∏
1

P (Bi) dΠ(P ) (2.4)

Proof. We begin by proving the theorem when all the Xis take values in a finite set
X = {1, 2, . . . , k}. This proof follows Heath and Sudderth [95].

So let X = {1, 2, . . . , k} and µ be a probability measure on X ∞ such that X1, X2, . . .
is exchangeable. For each n, let Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk), where rj =

n∑
i=1

I{j}(Xi) is the number of occurrences of js in X1, X2, . . . , Xn. Let µ∗
n denote the

distribution of Tn/n = (r1/n, r2/n, . . . , rk/n) under µ. µ∗
n is then a discrete probability

measure on M(X ) supported by points of the form (r1/n, r2/n, . . . , rk/n), where for
j = 1, 2, . . . , k, rj ≥ 0 is an integer and

∑
rj = n. Because M(X ) is compact, there

is a subsequence {ni} that converges to a probability measure Π on M(X ). We will
argue that Π satisfies (2.4).
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Because X1, X2, . . . , Xn is exchangeable, it is easy to see that the conditional distri-
bution of X1, X2, . . . , Xn given Tn is also exchangeable. In particular, the conditional
probability given Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk) is just the uniform distribution
on T−1

n (r1, r2, . . . , rk). In other words, the conditional distribution of X1, X2, . . . , Xn

given Tn = (r1, r2, . . . , rk) is the same as the distribution of n successive draws from
an urn containing n balls with ri of color i, for i = 1, 2, . . . , k.

Fix m and n > m. Then, given Tn(X1, X2, . . . , Xn) = (r1, r2, . . . , rk), the conditional
probability that(

X1 = 1, . . . , Xs1 = 1, Xs1+1 = 2, . . . , Xs1+s2 = 2, . . . , Xm−sk−1+1 = k, . . . , Xm = k
)

is (r1)s1(r2)s2 . . . (rk)sk
/(n)m, where for any real a and integer b, (a)b =

∏b−1
0 (a − i).

Because

∑
(r1,r2,...,rk),

∑
rj=n

(r1)s1(r2)s2 . . . (rk)sk

(n)m

µ

(
Tn

n
= (

r1

n
,
r2

n
, . . . ,

rk

n
)
)

=
∫

M(X )

(p1n)s1(p2n)s2 . . . (pkn)sk

(n)m

dµ∗
n(p1, p2, . . . , pk)

As n → ∞ the sequence of functions

(p1n)s1(p2n)s2 . . . (pkn)sk

(n)m

converges uniformly on M(X )to
∏

p
sj

j so that by taking the limit through the sub-
sequence {ni}, the probability of

(Xi = 1, 1 ≤ i ≤ s1; Xi = 2, s1 + 1 ≤ i ≤ s1 + s2, . . . , Xi = k, m − sk−1 + 1 ≤ i ≤ m)

is ∫
M(X )

∏
p

sj

j dΠ(p1, p2, . . . , pk) (2.5)

Uniqueness is immediate because if Π1, Π2 are two probability measures on M(X )
satisfying (2.5) then it follows immediately that they have the same moments.

To move on to the general case X = R, let B1, B2, . . . , Bk be any collection of
disjoint Borel sets in R. Set B0 =

(
∪k

1Bi

)c
.
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Define Y1, Y2, . . . by Yi = j if Xi ∈ Bj. Because X1, X2, . . . is exchangeable, so are
Y1, Y2, . . .. Since each Yi takes only finitely many values, we use what we have just
proved and writing Xi ∈ Bj for Yi = j, there is probability measure ΠB1,B2,...,Bk

on
{p1, p2, . . . , pk : pj ≥ 0,

∑
pj ≤ 1} such that for any m,

µ (X1 ∈ Bi1, X2 ∈ Bi2, . . . , Xm ∈ Bim) =
∫ m∏

1

P (Bij) dΠB1,B2,...,Bk
(P ) (2.6)

where i1, i2, . . . , im are all elements of {0, 1, 2, . . . , k} and P (B0) = 1 −
∑k

1 P (Bi).
We will argue that these ΠB1,B2,...,Bk

s satisfy the conditions of Theorem 2.3.4.
If A1, A2, . . . , Al is a collection of disjoint Borel sets such that Bi are union of sets

from A1, A2, . . . , Al then the distribution of P (B1), P (B2), . . . , P (Bk) obtained from
P (A1), P (A2), . . . , P (Al) and ΠB1,B2,...,Bk

both would satisfy (2.5). Uniqueness then
shows that both distributions are same.

If (B1n, B2n, . . . , Bkn) → (B1, B2, . . . , Bk) then (2.6) again shows that moments of
ΠB1n,B2n,...,Bkn

converges to the corresponding moment of ΠB1,B2,...,Bk
.

It is easy to verify the other conditions of Theorem 2.3.4. Hence there exists a Π
with ΠB1,B2,...,Bk

s as marginals. It is easy to verify that Π satisfies (2.4).

De Finetti’s theorem can be viewed from a somewhat general perspective. Let Gn

be the group of permutations on {1, 2, . . . , n} and let G = ∪Gn. Every g ∈ G induces
in a natural way a transformation on Ω = X ∞ through the map, if, say g in Gn, then
(x1, . . . , xn, . . .) �→ (xg(1), . . . , xg(n), . . .). It is easy to see that the set of exchangeable
probability measures is the same as the set of probability measures on Ω that are
invariant under G. This set is a convex set, and De Finetti’s theorem asserts that the
set of extreme points of this convex set is {P∞ : P ∈ M(X )} and that every invariant
measure is representable as an average over the set of extreme points. This view of
exchangeable measures suggests that by suitably enlarging G it would be possible
to obtain priors that are supported by interesting subsets of M(X ) . Following is a
simple, trivial example.

Example 2.6.1. Let H = {h, e}, where h(x) = −x and e(x) = x. Set H =
∪Hn. If (h1, h2, . . . , hn)) ∈ Hn, then the action on Ω is defined by (x1, x2, . . . , xn) �→
(h(x1), h(x2), . . . , h(xn). Then an exchangeable probability measure µ is H invariant
iff it is a mixture of symmetric i.i.d. probability measures. To see this by De Finetti’s
theorem

µ(A) =
∫

P∞(A)dΠ(P )
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Because by H invariance µ (X1 ∈ A, X2 ∈ −A) = µ (X1 ∈ A, X2 ∈ A), it is not hard
to see that EΠ(P (A) − P (−A))2 = 0. Letting A run through a countable algebra
generating the σ-algebra on X , we have the result.

More non trivial examples are in Freedman [68]
Sufficiency provides another frame through which De Finetti’s theorem can be use-

fully viewed. The ideas leading to such a view and the proofs involve many measure-
theoretic details. Most of the interesting examples involve invariance and sufficiency
in some form. We do not discuss these aspects here but refer the reader to the excel-
lent survey in Schervish [144], the paper by Diaconis and Freedman [[44]] and Fortini,
Ladelli, and Regazzini [67].

To use DeFinetti’s theorem to construct a specific prior on M(R), we need to know
what to expect from the prior in terms of the observables X1, X2, . . . , Xn. Although
this method of assigning a prior is attractive from a philosophical point of view, it
is not easy to either describe explicitly an exchangeable sequence or identify a prior,
given such a sequence. We will not pursue this aspect here.


