
Introduction

David D. Denison, Mark H. Hansen,
Christopher C. Holmes, Bani Mallick,
and Bin Yu

Background

Researchers in many disciplines now face the formidable task of processing
massive amounts of high-dimensional and highly-structured data. Advances
in data collection and information technologies have coupled with innova-
tions in computing to make commonplace the task of learning from complex
data. As a result, fundamental statistical research is being undertaken in a
variety of different fields. Driven by the difficulty of these new problems, and
fueled by the explosion of available computer power, highly adaptive, non-
linear procedures are now essential components of modern “data analysis,”
a term that we liberally interpret to include speech and pattern recognition,
classification, data compression and image processing. The development of
new, flexible methods combines advances from many sources, including ap-
proximation theory, numerical analysis, machine learning, signal processing
and statistics. This volume collects papers from a unique workshop designed
to promote communication between these different disciplines.

History

In 1999, Hansen and Yu were both Members of the Technical Staff at Bell
Laboratories in Murray Hill, New Jersey. They were exploring the con-
nections between information theory and statistics. At that time, Denison
and Mallick were faculty members at Imperial College, London, researching

2 Denison, Hansen, Holmes, Mallick, and Yu

Bayesian methods for function estimation; and Holmes was a graduate stu-
dent at Imperial, studying with Mallick. In the summer of 1999, Denison,
Holmes and Mallick (together with Robert Kohn at the University of New
South Wales, and Martin Tanner at Northwestern University), began to
think about a conference to explore Bayesian approaches to classification
and regression. Holmes spent part that summer visiting Hansen and Yu at
Bell Labs, and invited them to join the organizing committee of his confer-
ence. Very quickly, the focus of the meeting expanded to include a broad
range of ideas relating to modern computing, information technologies, and
large-scale data analysis. The event took on a strong interdisciplinary fla-
vor, and soon we had a list of invited speakers from machine learning,
artificial intelligence, applied mathematics, image analysis, signal process-
ing, information theory, and optimization. Within each broad area, we tried
to emphasize complex applications like environmental modeling, network
analysis, and bioinformatics.

In the fall of 1999, the Mathematical Sciences Research Institute (MSRI)
in Berkeley, California agreed to sponsor the workshop. Given the size of the
problem area and the diversity of disciplines represented, we planned on
a two week affair. In addition to the invited speakers mentioned above,
the program also included a series of excellent contributed talks. This
volume contains several of the papers given at the workshop, organized
roughly around the sessions in which they were presented (the heading
“Longer papers” refers to chapters written by invited participants; while
the “Shorter papers” were submitted through the contributed track). The
MSRI video taped all of the talks given during the workshop, and have
graciously made them available in streaming format on their Web site,
http://www.msri.org. In addition to videos, the MSRI also distributes
electronic versions of each speaker’s talk materials, an invaluable resource
for anyone interested in the areas represented in this volume.

In preparing these papers for publication, we are reminded of the excite-
ment that came from the interplay between researchers in different fields.
We hope that that spirit comes through in this book.

Thanks

First, the MSRI workshop was supported by the National Science Founda-
tion under Grant No. DMS9810361, by the National Security Agency under
grant MDA904-02-1-0003, and by the US Army Research Office under grant
number 41900-MA-CF.

Next, we would like to thank Joe Buhler, (then) Deputy Director of
MSRI, for his encouragement, guidance and seemingly tireless enthusiasm
for this workshop. David Eisenbud, Director of MSRI was also instrumental
in arranging funding and providing support for the event. Margaret Wright,

Introduction 3

(then) head of the Scientific Advisory Committee (SAC) for MSRI helped
us navigate the workshop approval process; and Wing Wong, (then) Statis-
tics representative on the SAC helped sharpen our initial concept. Perhaps
the most important practical contributions to this workshop were made by
the Program Coordinator Loa Nowina-Sapinski who managed virtually ev-
ery detail, from funding applications, to local arrangements, visas and travel
reimbursements, to advertising and administrative support. Dave Zetland,
Assistant to the Director of MSRI, and Rachelle Summers, Head of Com-
puting at MSRI, were responsible for collecting presentation materials and
organizing the streaming videos we mentioned above.

Finally, we are grateful to everyone who took the time to participate
in this workshop, and are especially thankful for the impressive list of
researchers who contributed to this volume.

2

Coarse-to-Fine Classification
and Scene Labeling

Donald Geman1

2.1 Introduction

The semantic interpretation of natural scenes, so effortless for humans, is
perhaps the main challenge of artificial vision, having largely resisted any
satisfying solution, at least in searching for multiple objects in real, clut-
tered scenes with arbitrary illumination. This problem is the motivation for
the work in this chapter. Specifically, the models and algorithms presented
here result from making computational efficiency the organizing principle
for vision, a proposal recently explored in both theory [8, 2] and practice
[1, 3, 4]; see also [9] and [6] for related examples of efficient visual search.
“Theory” refers to analyzing the efficiency of coarse-to-fine (CTF) search
under various statistical models and cost structures; summarized here are
the general mathematical framework, including an abstract formulation
of CTF classification based on multiresolution “tests,” and some results
about optimal testing strategies. “Practice” refers to designing computer
algorithms for detecting objects in natural scenes; several such experiments
on face detection are included together with a brief description of how the
tests are realized as image functionals.

We model scene interpretation as a dynamic and adaptive process, gen-
erating a sequence of increasingly precise interpretations. At the beginning
the labels are crude and too plentiful; there are confusions among objects
of interest and between objects and clutter. Eventually, the labels become
more precise, for instance object categories and presentations are refined,
and confusions are removed. Certain fundamental tradeoffs then evolve –
between invariance and discrimination, and between false positive error and
computation. Similar themes are explored in [10] for visual processing in
cortex.

1Donald Geman is Professor, Department of Mathematics and Statistics, University
of Massachusetts at Amherst.

32 Geman

Figure 2.1. An example illustrating multifont optical character recognition where
the objective is to identify the main symbols on the license plate.

For practical convenience, we separate the whole process of scene clas-
sification into two rough phases: non-contextual and contextual. (This
distinction was previously explored in [1].) Noncontextual classification,
or simply detection, comes first. The goal is to infer from the image data
instances of highly visible objects of interest under the constraint that no
objects be overlooked (no “missed detections”), but allowing for a limited
number of false positives. Detection is the focus in this chapter. As con-
ceived here, it is based on sparse representations and performed with very
simple operations – essentially just counting local features. The result is a
list of “classes” of objects and their “presentations” in the scene. The de-
sired level of detail is application-dependent; for example, the class might
be “face” rather than a specific individual and the presentation might be
no more specific than a range of values for certain pose parameters (e.g.,
position, scale and orientation). Other aspects of the presentation might
be of interest, such as the font of a character or the gender of a face.

An example of multifont optical character recognition is shown in Fig-
ure 2.1 where the objective is to identify the main symbols on the license
plate. The detection phase is illustrated in Figure 2.2. For each of the six
characters, there are multiple detections; some but not all of the detections
“near” each symbol are erroneous, due to clutter or confusions. There are
also false alarms away from the symbols of interest. This is ongoing work
with Yali Amit and will be described elsewhere.

2. Coarse-to-Fine Classification and Scene Labeling 33

Figure 2.2. Characters detected during detection.

Contextual classification, not treated here, involves more intensive com-
putation in the vicinity of detections in order to determine which of these
are in fact objects of interest and to disambiguate among confusions, such
as D’s, 0’s and O’s detected at roughly the same location. The underly-
ing process is again coarse-to-fine. Moreover, ultimately there is no way to
avoid a fully contextual analysis in order to discover partially visible ob-
jects and other complex spatial arrangements. Processing which accounts
for context and relationships is likely to require dense representations and
be computationally intensive (e.g., involve online functional optimization).
One proposal is “compositional vision” (cf. [7]).

If scene labeling is driven by computational efficiency, a natural and ef-
fective mechanism is CTF classification. It is certainly one way of gaining
(online) efficiency and I would argue that any other way ultimately boils
down to something similar. CTF classification depends on a CTF repre-
sentation for the family of interpretations under investigation. In other
words, the representation of objects and presentations must be structured
to accommodate coarse-to-fine search. Thus, the events of interest must
be characterized by “attributes” at many levels of resolution. CTF search
then means investigating those attributes in a particular order, namely
from coarse ones to fine ones. This is the way we play Twenty Questions.

We develop an abstract formulation of CTF classification. Roughly
speaking, we consider a series of nested (hence increasingly fine) parti-
tions of the set of possible explanations, and we define a binary “test” for
each cell Λ of each partition. The test XΛ associated with Λ must always
respond “yes” to interpretations in Λ. The tests also have varying levels of
“cost” and “discrimination” (statistical power); both increase as cell size
decreases, and hence there is a tradeoff with invariance. The “detector”
Ŷ is a (set-valued) function of these tests; it consists of all interpretations
which are confirmed at all levels of resolution, and is the primary object of
our mathematical analysis. More specifically, we ask: Which sequential (test
by test) adaptive evaluation of Ŷ minimizes average computation? The an-

34 Geman

swer is that under wide-ranging assumptions on the statistical distribution
of the tests and how cost is measured, and among all testing strategies
based on performing tests one at a time until a decision is reached (i.e.,
Ŷ is determined), CTF questioning minimizes the mean of the sum of the
costs of the all the tests which are utilized.

Further remarks about invariance and discrimination, and about parallel
vs. serial processing, follow in Section 2.2. The abstract formulation is given
in Section 2.3, where the statistical framework is laid out, including the def-
initions of cost, invariance and discrimination, and the definition of Ŷ . In
Section 2.4 we introduce the family of possible evaluations of the detector
and a model for measuring the computational efficiency of each candidate.
Several results on optimal strategies are mentioned in Section 2.5 without
proof and the error rates of the detector are specified in Section 2.6. In Sec-
tion 2.7, we return to the scene interpretation problem and put everything
in concrete terms, including how Ŷ is constructed from image intensity
data. Finally, some experiments on face detection and concluding remarks
appear in Section 2.8.

2.2 Invariance vs. Discrimination

The rationale for CTF search is intuitive and transparent. Start with prop-
erties of objects and presentations which are simple and common, almost
regardless of discriminating power; in other words, look for tests which
invariably accept as many object/pose pairings as possible, even if many
instances of clutter and non-targeted objects are found as well. Rejecting
even a small percentage of background instances with cheap and universal
tests is efficient. Then proceed to more discriminating properties, albeit
more complex and specialized; whereas a greater number of tests must be
designed or learned in order to “cover” all objects and poses, only rela-
tively few of them will be needed during any given search due to pruning
by coarser tests. Also the still significant false alarm rate is compensated by
invariance (no missed detections) and low cost termination of the search.
Finally, reserve computationally intensive, highly discriminating filters (ba-
sically, object-specific and pose-specific “template-matching”) for the very
end – for those inevitable and diabolical arrangements of clutter which
“look” like objects in the eyes of the features.

This program amounts to creating “invariants” at many levels of power.
But these are not the geometric and algebraic types sought after in con-
tinuum, shape-based approaches to object recognition. The invariants here
are based on generic local features, not special points on curves, etc. And
our requirements are more modest: Find binary image functionals which
always respond positively for a given set of shapes but may respond pos-
itively to other shapes and image structures. It is only at the level of low

2. Coarse-to-Fine Classification and Scene Labeling 35

invariance (specific poses) that we demand high discrimination. Conse-
quently, during the course of processing there is then a steady progression
from high invariance to low invariance and from low discrimination to high
discrimination.

The image functionals we consider in Section 2.7 are of the form

X =

{
1 if

∑
l∈L ξl ≥ t

0 otherwise

where each ξl is a local binary feature which signals an “edge” is present
“near” location zl and with orientation φl; L is a distinguished set of edges
dedicated to a set of poses and t is an appropriate threshold. (How “near”
depends on the desired level of invariance; see Section 2.7.) Thus, evaluat-
ing X consists of checking for at least t edges among a special ensemble
which characterizes a particular set of shapes – certain types of objects
at certain geometric poses. The complexity of such as test might simply
be |L|. High discrimination and high complexity corresponds to “template-
matching” and the set L might then provide a rather dense representation
of the shapes. However, for such elementary tests, achieving high invariance
(covering many poses) and high discrimination at the same time is likely
to be impossible, regardless of cost.

It is clearly impossible to find common but localized attributes of two
object presentations with significantly different (geometric) poses, say far
apart in the scene. As a result, we use a simple, “divide-and-conquer”
strategy based on object location. (Every object is assumed to have a vis-
ible, distinguished point.) One “base” detector, Ŷ , is designed to find all
instances of objects with presentations in a “reference” cell, for example
locations confined to a k × k block and scale confined to a [σmin, 2σmin]
where σmin is the smallest scale entertained. The scene is partitioned into
non-overlapping k × k blocks, and the detector Ŷ is applied to the image
data I(z), z ∈ W in a window W centered at each such block; the dimen-
sion of W is sufficiently large to capture all objects at the given locations
and scales. Objects at scales larger than 2σmin are detected by repeatedly
downsampling and parsing the scene in the same way.

In principle, the detector could be applied to each window simul-
taneously; this is the parallel component of the algorithm. The serial
component – the CTF implementation of Ŷ is each window – is the heart
of the algorithm and the real source of efficient computation.

2.3 CTF Classification: Abstract Formulation

Let S = {λ1, λ2, ...} denote a set of states or interpretations. Each subset
Λ ⊂ S will be called an index. In addition, fix a probability space (I, P)
and suppose there is a true index Y (I) for each I ∈ I. Although we allow

36 Geman

more than one true interpretation, we are primarily interested in the case
in which either Y = {λ} or Y = ∅.

In the application to detecting objects, λ is a pair (c, θ) where c is the
“class” of an object and θ stands for the “presentation.” Even one object
class is challenging and frequently considered in computer vision. I is then
the set of subimages I = {I(z), z ∈ W} and P could be taken as an
empirical measure; we shall be more specific about this later on. Finally,
Y (I) is the list of the objects and presentations appearing in I. In general,
there is at most one object which is both visible and centered in a given W .

An important feature of the detection problem, and one that motivates
an upcoming approximation of P , is that P (Y = ∅) P (Y = Λ) for any
given Λ. We might even assume that P (Y = ∅) P (Y �= ∅), so that the
most likely interpretation is that there are no states “present” in I. Write
Pλ for P (.|λ ∈ Y) and P0 for P (.|Y = ∅).

Shortly we shall define a detector Ŷ based on a family of functions X :
I �−→ {0, 1} called tests. The basic constraint on Ŷ is zero false negative
error:

P (Y ⊂ Ŷ) = 1 (2.1)

Equivalently,

Pλ(λ ∈ Ŷ) = 1, ∀λ ∈ S.

Assume each test has a cost or complexity c(X) which represents the
amount of online computation (or time) necessary to evaluate X and of
course depends on how X is constructed. The invariant set for X is Λ(X) =
{λ : Pλ(X = 1) = 1}. Finally, the discrimination or power of X is defined
as β(X) = P0(X = 0). The tradeoff between cost and discrimination at
different levels of invariance is shown in the lefthand panel of Figure 2.3; the
righthand panel shows the tradeoff between invariance and discrimination
at different costs.

Suppose we are given a family of tests X = {XΛ,Λ ∈ Λ} where the
notation XΛ means that Λ = Λ(X). The reason for indexing the tests by
their invariant sets is that we will build tests to a set of specifications.
Basically, we first design a hierarchy of subsets of S and then, for each Λ
in the hierarchy, we build a test XΛ which is invariant with respect to the
classes and poses in Λ.

Now define Ŷ (I) ⊂ S, I ∈ I, by

Ŷ (I) = Ŷ (X(I)) = {λ : XΛ(I) = 1 ∀λ ∈ Λ}. (2.2)

The rationale is that we accept a state λ as part of our interpretation if and
only if this state it is “verified” at all levels of resolution, in the sense that
each test X which “covers” λ (meaning λ ∈ Λ(X)) responds positively.

2. Coarse-to-Fine Classification and Scene Labeling 37

β(X) 1

c (X)

β(X) 1

 (X)Λ ||

Figure 2.3. Left: The cost vs. discrimination tradeoff at two levels of invariance,
“high” (solid line) and “low” (dashed line). Right: The invariance vs. discrim-
ination tradeoff at two levels of cost, “low” (solid line) and “high” (dashed
line).

2.4 Computation

Consider now adaptive (sequential) evaluations of Ŷ , i.e., tree-structured
representations of Ŷ . Let T be the family of such evaluations. Each internal
node of T ∈ T is labeled by a test XΛ and each external node is labeled by
an index – a subset of states. Our goal is to find the T which minimizes the
mean cost of determining Ŷ under assumptions on how c(X) varies with
β(X), and how X is distributed under the “background model” P0.

To illustrate such a computational procedure, take a simple example
with S = {λ1, λ2} and three tests corresponding to Λ1,2 = {λ1, λ2}, Λ1 =
{λ1}, Λ2 = {λ2}. One evaluation of Ŷ is shown in Figure 2.4 where
branching left means X = 0 and branching right means X = 1.

{λ }2

XΛ 2

O

O

XΛ 12

XΛ 1

XΛ 2

XΛ 2

O {λ } O1 {λ ,λ }21

XΛ 12

Figure 2.4. An example of a tree-structured evaluation of the detector Ŷ

38 Geman

Notice that Ŷ = ∅ if and only if there is a null covering of Λ: a subfamily
{Λi} such that

⋃
i Λi = S and and XΛi

= 0 for each i. In Figure 2.4, one
null covering corresponds to {XΛ1 = 0,XΛ2 = 0} and one to {XΛ1,2 = 0}.

2.4.1 Mean Cost

The cost of T is defined as

C(T) =
∑

r∈T◦
1Hr

c(Xr)

where T ◦ is the set of internal nodes of T , Xr is the test at node r and
Hr is the history of node r – the sequence of test results leading to r.
(Equivalently, C(T) is the aggregated cost of reaching the (unique) terminal
node in T determined by X.) Notice that C(T) is a random variable. The
mean cost EC(T) is then

EC(T) =
∑

r∈T◦
c(Xr)P (Hr) (2.3)

=
∑
X

c(X)P (X performed in T) (2.4)

The second expression (2.4) is useful in proving the results mentioned in
the following section.

Our optimization problem is then

min
T∈T

EC(T) (2.5)

In other words, find the best testing strategy. As it turns out, the best
strategies are often far more efficient than T ’s constructed with top-down,
greedy procedures, such as those utilized in machine learning for building
decision trees; see [5] for comparisons.

2.4.2 Hierarchical Tests

In order to rank computational strategies we must impose some structure
on both Λ and the law of X. From here on we consider the case of nested
binary partitions of S:

Λ = {Λm,j , j = 1, ..., 2m, m = 0, 1, ...,M}.

Thus, Λ0,1 = Λ1,1 ∪ Λ1,2, Λ1,1 = Λ2,1 ∪ Λ2,2, etc. In Section 2.7, in experi-
ments with a single object class, the hierarchy Λ is a “pose decomposition”
wherein “cells” at level m+1 represent more constrained poses than cells at
level m. As m increases, the level of invariance decreases and, in the models
below, the level of discrimination increases. This tree-structured hierarchy
should not be confused with a tree-structured evaluation T of Ŷ . The label
Ŷ at a terminal node of T depends on X and consists of all states in any

2. Coarse-to-Fine Classification and Scene Labeling 39

Y= Λ
^

1,2

Y=
^

Figure 2.5. Examples of Ŷ for two realizations of the tests in a nested hierarchy
with three levels. Dark circles represent X = 1 and open circles represent X = 0.
Top: There are two “chains of ones”. Bottom: There is a null covering.

level M cell of Λ for which there is a “1-chain” back to Λ0,1, i.e., XΛ′ = 1
for every Λ′ ⊃ Λ.

As a simple illustration, consider the case M = 2, in which case there
are exactly seven sets in the hierarchy. Notice that the most refined cells
Λ2,j , j = 1, 2, 3, 4, may each contain numerous states λ, i.e., may provide
an interpretation at a level of resolution which is still rather “coarse.”
Figure 2.5 shows Ŷ (X) for two realizations of X. For the same hierarchy
and realizations of X, the lefthand panel of Figure 2.6 illustrates a “depth-
first” CTF evaluation of Ŷ and the righthand panel a “breadth-first” CTF
evaluation.

Another way to interpret Ŷ is the following: For each level m in the
hierarchy define

Ŷm(X) =
⋃

j∈Jm(X)

Λm,j

where Jm = {1 ≤ j ≤ 2m : Xm,j = 1}. The detector Ŷ is ∩mŶm. We can
think of Ŷm as an estimate of Y at “resolution” m. Necessarily, Y ⊂ Ŷm

40 Geman

Figure 2.6. As in Figure 2.5, dark and light circles indicate positive and negative
tests for a three level hierarchy. Left: A “depth-first” coarse-to-fine search. Right:
A “breadth-first” coarse-to-fine search.

for each m, although in general it needn’t happen that Ŷm+1 ⊂ Ŷm (or
vice-versa).

2.4.3 An Approximation

We are going to assume that the mean cost is computed with respect to the
background distribution P0. This is motivated by the following argument.
Recall that labeling the entire scene means applying the detector Ŷ to
subimages I centered on a sparse sublattice of the original scene. Whereas
the likelihood of having some objects in the entire scene may be large, the
a priori probability of the “null hypothesis” Y = ∅ is approximately one
when evaluating Ŷ for an arbitrary subimage at the scale of the objects.
Therefore, the average amount of computation involved in executing our
detection algorithm with a particular strategy T can be approximated by
taking the expectation of C(T) under P0. Of course this approximation
degrades along branches with many positive test responses, especially to
discriminating tests associated with “small” class/pose cells, in which case
the probability of an object being present may no longer be negligible. If
one were to measure the mean computation under an appropriate (mixture)
distribution, the conditional distribution of the tests under the various ob-
ject hypotheses would come into play. Nonetheless, we continue to compute
the likelihood of events under P0 alone, thereby avoiding the need to model
the behavior of the tests given objects are present.

2.5 Optimality Results

For simplicity, write Xm,j for XΛm,j
. From here on, we make the following

assumptions about the the distribution of X:

• {Xm,j} are independent random variables under P0;

2. Coarse-to-Fine Classification and Scene Labeling 41

• βm,j
.= P0(Xm,j = 0) = βm, m = 0, 1, ...,M ;

• β0 ≤ β1 ≤ · · · ≤ βM ;

• c(Xm,j) = cm, m = 0, 1, ...,M ;

• cm = Φ(βm) with Φ(0) = 0 and Φ increasing.

The independence assumption is violated in practice, but we make it in
order to facilitate a theoretical analysis. The other assumptions are realistic,
partly by design, although the power of the tests may differ slightly within
levels.

2.5.1 Testing Ŷ = ∅ vs.Ŷ �= ∅
Consider first the problem of determining whether or not Ŷ = ∅, in other
words, evaluating Ẑ = 1{Ŷ �=∅}. The set-up is the same, except the terminal
labels of T are simply “0” or “1.” This problem was studied in [3] and [8]
under the assumption that Φ is convex, i.e., cost is a convex, increasing
function of power. One strategy is the depth-first CTF strategy, illustrated
in Figure 2.7 for the case M = 2.

In Figure 2.8 two particular sample paths (branches) are depicted from a
depth-first, CTF search of a five level hierarchy. The path on the left leads
to the label Ẑ = 0 and the one on the right leads to Ẑ = 1.

The following result is proved in [8]; earlier, [3] had shown that the coars-
est test (X0,1) is necessarily at the root. The convexity assumption can be
relaxed to supposing that cm

βm
is increasing, m = 0, ...,M .

Theorem: If Φ is convex, and P = P0, depth-first CTF search is the
optimal strategy for evaluating Ẑ.

2.5.2 Determining Ŷ

Here the objective is to determine all 1-chains instead of merely whether
or not one such chain exists. For either CTF strategy, the expected cost
under P0 is

E0C(T) = c0 +
M∑

m=1

cm2m
m−1∏
j=0

(1 − βj).

As it turns out, this is the smallest possible mean cost:

Theorem: The CTF strategy is optimal for any increasing cost sequence
if β0 > .5

The proof of this result, and others based on varying cost models and test
hierarchies, will appear in [2].

42 Geman

0 X

X

X

0 X

X

0

1

1

X

X 1

1
X

0 X

X

0

1

1

0,1

1,1

1,2 2,1

2,2

1,2

2,3

2,4

2,3

2,4

Figure 2.7. The CTF strategy tree for the case M = 2.

2.6 Error

We briefly discuss the theoretical error rates of the detector Ŷ defined
in (2.2).

In principle, the false negative rate is null. (Of course, in practice, this
requires that XΛ be invariant for Λ, which can be difficult to achieve.) The
false positive error

δ(Ŷ) .= P0(Ŷ �= ∅)

is determined by the (joint) distribution of {Xm,j} under P0, and depends

on β0, ..., βM . The rate per pixel is then δ(Ŷ)
k2 ; recall that the search for

object locations is conducted in non-overlapping k × k blocks. A crude
bound is to replace the probability of at least one 1-chain under P0 by the

2. Coarse-to-Fine Classification and Scene Labeling 43

Figure 2.8. Two branches from a depth-first CTF search for a hierarchy with
five levels. The tests are explored in the indicated order, with gray indicating a
positive answer and white in bold outline indicating a negative answer; the other
tests were not evaluated. Left: A null covering is encountered, ending the search.
Right: A chain of ones is encountered (Gray in bold outline), ending the search
when the goal is to determine if Ŷ = ∅.

sum of the probabilities, yielding

δ(Ŷ) ≤ 2M
M∏

m=0

(1 − βm)

≤ 1
2
γM+1, γ = 2(1 − β0).

To calculate δ(Ŷ) exactly, notice that there is a correspondence between
realizations of a breath-first CTF evaluation of Ŷ and realizations of a
branching process with M generations starting from a single individual.
Consequently,

Theorem: The false positive error δ(Ŷ) is the probability of no extinc-
tion for a non-homogeneous branching process with binomial family law
Bin(2, 1 − βm) at generation m = 0, ...,M .

2.7 Application to Face Detection

Recall that each λ ∈ S corresponds to the presentation or instantiation of
an “object” in a predetermined library. The presentation includes informa-
tion about the position, scale and other aspects of the geometric pose, and
perhaps other properties of interest.

44 Geman

2.7.1 One Generic Class

Consider the simplified scenario of one generic object class and linear pose.
More specifically, consider the problem of detecting all instances of frontal
views of faces. The global procedure is to parse the scene at various scales,
and at a sampling of locations, with a window of size 64 × 64, in each
case applying a detector which computes the list of poses present in the
window. In this case, the output Ŷ of processing a window is simply a list
of poses. What follows is a brief description of the algorithm; the details
can be found in [4].

2.7.2 Pose Decomposition

The pose of a face is defined in the image plane, given by θ = (z, σ, ψ),
where z is the center point between the eyes, σ is the distance (in pixels)
between the eyes and ψ is the “tilt.” The image is partitioned into non-
overlapping 8 × 8 blocks, and the basic detector Ŷ is applied to the image
data in a window centered at each such block. These windows are the
subimages in I in the previous sections. The detector Ŷ produces a list of
poses with z ∈ [28, 36]2, 8 ≤ σ ≤ 16,−20◦ ≤ ψ ≤ 20◦; of course in this case
these are either false alarms or responses to the same face. Call this set of
poses the “reference cell” Λ0,1. Faces of scale 16 ≤ σ ≤ 32 are found by
downsampling the original scene and parsing again, etc.

The hierarchy {Λm,j} of subsets of (reference) poses is constructed by
recursively partitioning Λ0,1 into a sequence of nested partitions; each cell
Λ of each partition is a subset of poses which is included in exactly one of
the cells in the preceding, coarser partition. At each level m = 1, 2, ...,M ,
one component of the pose θ is subdivided into equal parts – binary splits
for scale and tilt and quaternary splits for position. Thus, for example, each
cell Λ1,j , j = 1, 2, 3, 4, of the the first partition corresponds constraining z
to one of the four 4× 4 subsquares of of the initial 8× 8 square. There are
two splits on z, two on σ and two on ψ, resulting in M = 6 levels (excluding
the root).

2.7.3 Learning

Each test Xm,j = XΛm,j
checks for a certain number of distinguished edge

fragments, and hence is defined by a list Lm,j of edges and a threshold (as
described in Section 2.2) both determined during training. Consequently,
the tests X are simply counting operators. Checking for an edge means
evaluating a binary local feature ξl indexed by a position zl and an ori-
entation φl as described in Section 2.2.However, there is another, crucial,
parameter – the “tolerance” of the edge – which allows one to achieve in-
variance to the poses in Λ. (The MAX filter in [10] has the same aim.) The
tolerance η is the length of a strip of pixels centered at zl and perpendicular

2. Coarse-to-Fine Classification and Scene Labeling 45

to the direction of the edge. The feature ξl = 1 if there is an edge at the
given orientation at any location in the strip. Thus, η controls the amount
of ORing, which in turn depends on the desired degree of invariance. All
ξ in the list have the same η. The tolerance η is “large” for the coarse
cells Λm,j and “small” for the fine cells. It controls the tradeoff between
invariance and discrimination.

All the tests Xm,j in the hierarchy are built with the same learning
algorithm; the lists differ due to varying training sets, corresponding to
varying constraints on the set of poses. The experiments shown here are
based on the ORL database which contains 400 grayscale face pictures of
size 112×96 pixels. For each cell Λm,j , a synthetic training set of 1600 face
images is constructed whose poses are in Λm,j . Again, the details are in [4],
including how the lists of edges ξl, l ∈ L are chosen.

2.8 Experiments and Conclusions

The experiments use a breadth-first CTF evaluation of Ŷ . Nearby detec-
tions are clustered, resulting in one estimated pose per face, indicated by
a triangle. The false negative rate is not null, and there are false positives,
on the order of 1 − 10 per scene on average. Thus, when computation is
efficiently organized, one can use very simple components (such as the coun-
ters X described in the previous section) and still achieve reasonable error
rates, in fact comparable to the best ones reported in the literature for high
resolution images; see for example [11].In addition, detection is extremely
fast, well under one second for a scene on the order of 400 × 400, which
is faster than previously reported results. Two results are shown In Fig-
ures 2.9 and 2.11. As seen in Figure 2.12, coarse-to-fine processing leads to
highly asymmetric scene processing in terms of spatial concentration, with
orders of magnitude differences in the application of resources to different
regions of the scene.

Recall that detection is far from a complete solution to scene interpre-
tation. It leaves confusions unresolved and does not address occlusion and
other complicating factors. Many examples of such specific class/pose con-
fusions can be seen in a higher resolution rendering (not shown here) of
the labeled detections in Figure 2.11. However, if highly visible objects are
sure to be detected with a limited number of false alarms, it may then
be computationally feasible to entertain very intense processing which is
optimization-based but highly localized.

Finally, for detection, we can suppose that each test is constructed during
an offline training phase, as in the previous section. Indeed, since we are
not anticipating the specific confusions and occlusion patterns that might
arise, we can afford to make a list of all the tests we wish to construct, learn
them during training, and store all the instructions for execution. On the

46 Geman

Figure 2.9. An experiment from the CNN website.

Figure 2.10. An experiment with a group photograph.

contrary, during contextual classification we might be obliged to generate
hypotheses and construct tests online, i.e., during scene parsing. Such ideas
are currently being explored in the context of character recognition.

2. Coarse-to-Fine Classification and Scene Labeling 47

Figure 2.11. The detections for the group photo.

Figure 2.12. The coarse-to-fine nature of the algorithm is illustrated for the group
photo by counting, for each pixel, the number of times the detector checks for
the presence of an edge in its vicinity. The level of darkness is proportional to
this count.

References

[1] Amit, Y. and D. Geman. 1999. A computational model for visual
selection. Neural Computation, 11:1691-1715.

[2] Blanchard, G. and D. Geman. 2002. Computational models for coarse-
to-fine search, in preparation.

[3] Fleuret, F. 2000. Detection hierarchique de visages par apprentissage
statistique. Ph.D. thesis, University of Paris VI, Jussieu, France.

48 Geman

[4] Fleuret, F. and D. Geman. 2001. Coarse-to-fine face detection. Inter.
J. Computer Vision, 41:85-107.

[5] Geman, D. and B. Jedynak. 2001. Model-based classification trees.
IEEE Trans. Info. Theory, 47:1075-1082.

[6] Geman, S., K. Manbeck, and D. McClure. 1995. Coarse-to-fine search
and rank-sum statistics in object recognition. Technical Report,
Division of Applied Mathematics, Brown University.

[7] Geman, S., D. Potter, and Z. Chi. 2001. Composition systems.
Quarterly of Applied Mathematics, to appear.

[8] Jung, F. 2001. Reconnaissance d’objects par focalisation et detection
de changements. PhD thesis, Ecole Polytechnique, Paris, France.

[9] Lambdan, Y. and J.T. Schwartz and H.J. Wolfson. 1988. Object recog-
nition by affine invariant matching. Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, 335-344.

[10] Riesenhuber, M. and T. Poggio. 1999. Hierarchical models of object
recognition in cortex. Nature Neuroscience, 2:1019-1025.

[11] Rowley, A.R. 1999. Neural network-based face detection. PhD Thesis,
Carnegie Mellon University.

This is page 49
Printer: Opaque this

3

Environmental Monitoring
Using a Time Series of Satellite
Images and Other Spatial Data
Sets

Harri Kiiveri, Peter Caccetta,
Norm Campbell, Fiona Evans,
Suzanne Furby, and Jeremy Wallace1

3.1 Introduction

As a result of extensive farmland clearing over the last hundred years or
so, dry-land salinity is a major problem in Western Australia. In fact, in
some parts of the state, over 20 percent of Agricultural land is no longer
productive. Prior to the work to be described in this chapter, no reliable
large scale estimates of the extent or progression of salinity were available.
This chapter describes a methodology for monitoring the historical extent
of salinity, using a time series of satellite imagery, landform information
derived from digital elevation models and ground truth data collected by
experts with local knowledge. This work has served to highlight the salinity
problem to decision makers in government and to provide input into the
process of developing and applying remedial measures to arrest the spread
of salinity.

Although the chapter primarily refers to salinity monitoring, the method-
ology is quite general and can be used in any situation in which the
relationships amongst a number of images can be represented by a directed
or undirected graph.

The chapter is structured as follows. The area monitored and the
data used are described in Section 3.2. A short description of the data
(pre)processing is given in Section 3.3. Whilst we don’t not spend much

1The authors are all with the CSIRO Division of Mathematical and Information
Sciences, Floreat Park, Western Australia.

50 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

time in Section 3.3, this part of the work is the most time consuming and
critical to the success of the project. In Section 3.4 a model for integrating
a time series of satellite images with other spatial data sets is constructed.
Since the model contains latent (unobserved) images we consider the is-
sue of identifiability of parameters in the model and also describe an EM
algorithm for estimating the parameters. The model also explicitly allows
for uncertainty in the inputs and outputs of the monitoring process. In
Section 3.5, the chapter concludes with an example of the output products
produced by the methodology.

3.2 Description of the data

The study area is covered by 15 Landsat TM scenes [18] and covers ap-
proximately 18 million hectares. This area, with satellite scenes overlaid,
is shown in Figure 3.1. For each scene we have 6 satellite images, roughly
every two years over the time period 1988 to 1999. Each satellite image
has 8000 by 8000 pixels (picture elements). The images were re-sampled
to give a pixel size of 25 metres and consist of six wavelength channels or
bands. Hence for each date, at each pixel we have a data vector with six
components. Previous work [10] has identified September/October to be
the optimal time to discriminate salt from other ground classes and the
images were acquired as close to this window as possible.

In addition, we have a landform map (image) derived from a digital
elevation model for each scene. This is a five-class map identifying hilltops,
valley floors and varying degrees of slopes.

Training data in the form of interpreted salinity maps over relatively
small regions was available for each scene. These were supplied by local
experts.

All in all for each scene we have approximately 4.5 gigabytes of data to
store and process. Any methods we use to process this data need to take
the large data volumes into consideration.

3.3 Data pre-processing

To produce input data for the model to be discussed in the next sec-
tion required a large amount of data processing. Firstly, contour data was
interpolated to produce grided digital elevation models. These were pro-
cessed to produce water accumulation maps which were then converted
into Landform maps, see [5].

Secondly, for each scene, the time series of satellite images needed to be
accurately geo-coded or rectified. This was done carefully to ensure that

3. Environmental monitoring 51

Figure 3.1. Location of satellite scenes over the study area

location errors were less than the pixel size [7]. This is essential to ensure
that changes in ground cover are not confounded with locational errors.

Thirdly, images were calibrated to like values to ensure that areas which
are not changing over time look the same in each image. To do this, linear
transformations were defined using robust regression techniques to make
the values of the images over a common set of (pseudo) invariant targets
as close as possible [11].

Finally, each image was classified into approximately 12 ground cover
classes, e.g., bush, water, agriculture, bare ground and different types of
salt. The method used was Gaussian maximum likelihood [19] and this
required the careful and time-consuming selection of training sites within
each image. Using canonical variate analysis [6] the training site separation
was studied and the training sites were eventually amalgamated into the
final ground cover training classes. Figure 3.2 shows an idealised canonical
variate plot and also illustrates the difficulty in using the satellite imagery
to map salinity. The circles/ellipses in Figure 3.2 show the locations in
canonical variate space of the cover types of interest. Unfortunately, there
is an over lap with salt and bare, salt and bush and salt and agriculture

52 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

Figure 3.2. Idealised canonical variate plot showing ground cover separation

which indicated that the satellite imagery on its own could not discriminate
between salt and other significant ground cover types.

Note that for each scene, the image for each date was classified i.e. 6
classifications were done.

Previous work had shown that the Gaussian assumption was reasonable
for this problem. Although we used the Gaussian maximum likelihood clas-
sifier, any method which produces probabilities of class membership and
has a notion of typicality could have been used.

3.4 A conditional probability network for
image data

In the previous section we mentioned the difficulty in mapping salinity
given a satellite image on one single date as the satellite sensor is unable to
distinguish between salt and certain other ground cover classes. However,
some simple prior knowledge about the process of salinisation suggests that
a time series of images in conjunction with landform information can be
used to effectively map salinity. It is known that salt is stable over time,
so for example, paddocks which appear salt affected but in fact are bare,
can be correctly mapped by noticing the temporal cover class sequence. If
apparent salt is followed by healthy crop cover then we can deduce that
the paddock is not salt affected. Similarly we know that salt tends to occur
mainly in valley floors so that apparent salt in hill tops or upland regions

3. Environmental monitoring 53

Figure 3.3. A conditional probability network (CPN) to integrate all the data for
an area.

can also be down weighted. In this section we will develop a model for each
scene which enables us to take this type of prior information into account.

3.4.1 The model

Conditional probability networks (CPNs) are typically represented by a
directed acyclic graph, where the nodes represent variables and the edges
define parent child relationships amongst the variables. Associated with
the graph is a factorisation of the joint probability distribution of all the
variables [12]. If we allow the nodes of the graph to represent images, then
a model for a time series of images could be represented as follows in
Figure 3.3.

In Figure 3.3, the six classified satellite images are denoted u, v, w, x, y, z,
the true ground cover images are denoted by a, b, c, d, e, f and the land-
form image is denoted by L. The circles denote latent (unobserved) images
and the squares denote observed images. By analogy with CPNs, the joint
distribution of all the images would factorize as

p(u|a) p(v|b) p(w|c) p(x|d) p(y|e) p(z|f)×
p(b|a, L) p(c|b, L) p(d|c, L) p(e|d, L) p(f |e, L) p(a|L) p(L)

(3.1)

Aside from the fact the the distributions are high dimensional e.g. u and a
have 8000 by 8000 variables, this simply looks like a conditional probability
network with latent variables.

To implement such a model we need to have tractable models for the
probabilities in (3.1), determine the identifiability of the parameters in the
model and have a method for estimating the parameters. Having fitted
such a model, we then need to predict the unobserved true images given
the observed images. Given the large volumes of data, we also need to have
efficient algorithms for doing the calculations.

54 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

Figure 3.4. CPN model assuming independent pixels

3.4.2 Construction of a contextual “CPN” model for raster
images

To build a suitable model we put together two pieces, the first piece will
consider the relationship between images and the second piece will focus
on the within image structure.

The first piece is a CPN for images assuming independent pixels i.e. the
same CPN is applied to each pixel in the image data. Let u, v, w, x, y, z
denotes the classified images for years 89, 90, 93, 94, 96, and 98 and
a, b, c, d, e, f denotes the “true” images for the same years. Here, for example

u = (ui, i = 1, . . . , n), a = (ai, i = 1, . . . , n), z = (zi, i = 1, . . . , n)

and n is the number of pixels. L denotes the landform image. The
probability density for all the images is

p = p(a, b, c, d, e, f, u, v, w, x, y, z, L) (3.2)

=
n∏

i=1

p(ui|ai)p(ai|Li)p(vi|bi)p(bi|ai, Li) · · · p(zi|fi)p(fi|ei, Li)p(Li)

The second piece we will use is a Markov Random Field model for im-
ages [2]. First define n(i) to be the set of neighbours of pixel i and r(i)
the set of pixels excluding pixel i, i.e. the rest of the pixels. For concrete-
ness we take the set of neighbours to be the eight nearest neighbours with
appropriate modifications at the edges of the image. Writing an(i) for the
neighbouring set of image values and ar(i) for the image values at all pix-
els except pixel i, these models have the property that the conditional
distribution of ai given ar(i) depends only on an(i) that is

p(ai|ar(i)) = p(ai|an(i))

3. Environmental monitoring 55

We use similar notation for the other unobserved images. We can make a
hybrid model from the two components as follows

p∗(a, b, c, d, e, f, u, v, w, x, y, z, L) =

exp {log p + log p(a) + · · · + log p(f)

+ log p(u) + · · · + log p(z) + log p(L)} /U

(3.3)

where p is the CPN model (3.2) for the images assuming independent pixels
and the remaining terms in brackets correspond to Markov random field
models for each of the images. The term U is simply a normalising constant.
Note that (3.3) defines a Gibbs distribution.

To predict the unobserved true maps a, b, c, d, e, f we want to calculate
the conditional probability

p∗(a, b, c, d, e, f |u, v, w, x, y, z, L) (3.4)

and find the images a, b, c, d, e, f which maximise this probability. To see
how to do this we first do a calculation. Writing

(a, b, c, d, e, f) = (ai, bi, ci, di, ei, fi, ar(i), br(i), cr(i), dr(i), er(i), fr(i))

and using factorisations for each term in (3.3) we get

p∗(a, b, c, d, e, f |u, v, w, x, y, z, L)

= p∗(ai, bi, ci, di, ei, fi|ar(i), br(i), cr(i), dr(i), er(i), fr(i), u, v, w, x, y, z, L)

× p∗(ar(i), br(i), cr(i), dr(i), er(i), fr(i)|u, v, w, x, y, z, L)

= p∗(ai, bi, ci, di, ei, fi|an(i), bn(i), cn(i), dn(i), en(i), fn(i), u, v, w, x, y, z, L)

× p∗(ar(i), br(i), cr(i), dr(i), er(i), fr(i)|u, v, w, x, y, z, L)

Given this result, a cyclic ascent algorithm for doing the maximisation
can be constructed as follows:

1. Start with initial estimates of the unobserved images a, b, c, d, e, f
e.g. by using the results for the independent pixels case

2. Visit each pixel i in turn keeping all labels fixed except ai, bi, ci, di,
ei, fi and compute

p∗(a, b, c, d, e, f |u, v, w, x, y, z, L)

= p∗(ai, bi, ci, di, ei, fi|an(i), bn(i), cn(i), dn(i), en(i), fn(i), u, v, w, x, y, z, L)

× p∗(ar(i), br(i), cr(i), dr(i), er(i), fr(i)|u, v, w, x, y, z, L)

It can be shown [13] that

p∗(ai, bi, ci, di, ei, fi|an(i), bn(i), cn(i), dn(i), en(i), fn(i), u, v, w, x, y, z, L)

factorises so that it can be computed from a CPN with a graph aug-
mented with dummy neighbourhood nodes as in Figure 3.5. Choose

56 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

Figure 3.5. CPN augmented with neighbour information

map classes ai, bi, ci, di, ei and fi to maximise (3.1). Another strategy
at this point is to choose labels for the unobserved maps individually
by maximising the marginal distributions

p∗(ai|an(i), bn(i), cn(i), dn(i), en(i), fn(i), u, v, w, x, y, z, L)

and similarly for bi, ci, di, ei, and fi.

3. Continue cycling over all pixels until convergence. For the present
application we only do a few iterations.

3.4.3 Estimation of parameters

To use the algorithm in practice requires the specification of parameters
in the model. The specific Markov random field model we used for each
unobserved image was

p(ai|an(i)) = exp{α + βN(ai)} (3.5)

where N(ai) is the number of 8 nearest neighbours of pixel i with label ai,
see for example [2]. For parameter values we used α = 0 and β = 1. These
parameters can be varied to change the relative weighting between image
data and contextual information. The probabilities p(ui|ai), . . . , p(zi|fi) are
assumed to be the same for each pixel (within a zone) and are estimated
from error rates derived from the classification process. The remaining
probabilities in (3.1) are estimated by the EM algorithm [9],[4] ignoring
spatial dependence. Ignoring this dependence should not be too critical
since we have large sample sizes. The transition probabilities for the ground
cover classes are identifiable, see the Appendix. Alternative estimation
procedures such as coding or pseudo likelihood could also be used [1, 2].

The EM algorithm is implemented as follows:

3. Environmental monitoring 57

1. Guess initial values for all the unknown probabilities in (3.2), e.g., by
random generation.

2. Perform the E step. For the model of Figure 3.4 this could be done
by calculating the table of expected counts

m(ai, bi, ci, di, ei, fi|ui, vi, wi, xi, yi, zi, Li) =
n∑

i=1

p(ai, bi, ci, di, ei, fi|ui, vi, wi, xi, yi, zi, Li) (3.6)

where the conditional probability is computed using the model (3.2).
Next, we could then calculate the expected marginal tables of
counts defined by m(ai, Li), m(bi, ai, Li), m(ci, bi, Li), m(di, ci, Li),
m(ei, di, Li), m(fi, ei, Li), where for example arguments not appear-
ing in m(·) are summed over in (3.6). However this can be done more
efficiently, see [17].

3. Perform the M step. Estimate probabilities by calculating rel-
ative frequencies assuming the expected counts were observed
data. For example p(ai|Li) = m(ai, Li)/m(Li) and p(bi|ai, Li) =
m(bi, ai, Li)/m(ai, Li).

4. Go to 2 until convergence.

3.4.4 A model for handling uncertainty in input class labels

When computing the probability of true class labels from the model in
Figure 3.4, it is assumed that class labels are known. However, the Gaussian
maximum likelihood classifier also produces posterior probabilities of class
membership and we can use these in the mapping process. A graphical
representation of a model for doing this is given in Figure 3.6.

In Figure 3.6 variable u∗
i , for example, refers to the six bands of the

satellite image at pixel i on the first date in the series. Spatial context
could also be included in the same manner as in Figure 3.5. Details about
the modifications to the usual calculations are given in the Appendix.

3.5 An example

An example of a classification for a single date produced by using the
methods described above is given in Figure 3.7. The figure is represented
in gray scale, however colour would be more impactful.

To provide a (salinity) accuracy assessment for the classification, 124
validation sites were visited, and their salinity status noted. The results
are given in Table 3.1 below. Of the 124 sites 6 were incorrectly labeled
and 118 were correctly labeled, or in other words an overall salinity mapping

58 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

Figure 3.6. Modified CPN for handling uncertainty in input classification maps

Table 3.1. Accuracy assessment for example region

Truth
Saline non-saline

Map Saline 40 5
Non-saline 1 78

accuracy of approximately 95%. For the broader region, estimates of the
percentage of this catchment affected by salinity range from 0 to 9.8%.
Maps such as in Figure 3.7 are available for six dates for this area.

Figure 3.7. Example single date “true” map

3. Environmental monitoring 59

There are of course significant issues in how to assess the accuracy of
such large scale maps given limited resources, however we will not go into
these here.

In conclusion, the methods discussed in this chapter seem promising for
handling large scale environmental monitoring problems involving the use
of time series of satellite imagery. A particularly desirable feature of the
methods is the ability to propagate uncertainties in the inputs to the output
products.

3.6 Appendix: Modifications to calculations when
there is uncertainty in the classification input
maps

We consider the independent pixels case and omit the subscript i on the
variables. For generality and compactness we represent the classified satel-
lite image class at pixel i at times 1, 2, 3, . . . as u1, u2, u3, . . . and the true
classes as a1, a2, a3,

The joint distribution is

p(u1, . . . , up, a1, . . . , ap, L) =
p∏

j=1

p(u∗
j |uj)p(uj |aj)p(a1, . . . , ap, L)

From this we can see that

p(a1, . . . , ap|u∗
1, . . . , u

∗
p, L)

∝
p∏

j=1

[∑
uj

p(u∗
j |uj)p(uj |aj)

]
p(a1, . . . , ap, L)

(3.7)

Writing

p(uj |u∗
j) =

p(u∗
j |uj)∑

uj

p(u∗
j |uj)

for the posterior probability obtained from the Gaussian maximum like-
lihood classier using uniform prior probabilities (3.7) can be written
as

p(a1, . . . , ap|u∗
1, . . . , u

∗
p, L)

∝
p∏

j=1

[∑
uj

p(uj |u∗
j)p(uj |aj)

]
p(a1, . . . , ap, L)

(3.8)

When p(uj |u∗
j) is an indicator vector i.e. zero everywhere except in one

position (3.8) reduces to the usual formula for p(a1, . . . , ap|u1, . . . , up, L).

60 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

Note that all calculations can be done efficiently using the algorithm in
[15]. See also [16]. We can also include spatial dependence as in Figure 3.5.

3.7 Appendix: Identifiability of the CPN model in
the independent pixels case

Theorem 2. If the G by G matrices Ai with elements defined by p(ui|ai)
for ui, ai = 1, . . . , G are known and full rank for all i then p(a1, ..., ap, L)
can be determined from the distribution q(u1, ..., up, L) of the observed
variables.

Proof. We use induction on p. First when p = 1 we have∑
a1

p(u1|a1)p(a1, l) = q(u1, l)

where u1 = 1, . . . , G and l = 1 . . . , L, say. This is a linear equation which
can be solved uniquely for p(a1, l) since the matrix with elements p(u1|a1)
is full rank.

Next assume the result is true for p and we will demonstrate that it is
true for p + 1. We have

∑
a1,...,ap+1

p+1∏
i=1

p(ui|ai)p(a1, . . . , ap+1, l) = q(u1, . . . , up+1, l) (3.9)

Summing both sides of this equation over up+1 gives∑
a1,...,ap

p∏
i=1

p(ui|ai)p(a1, . . . , ap, l) = q(u1, . . . , up, l) (3.10)

where we omit arguments of q which have been summed over. By the induc-
tive hypothesis it follows that we can obtain p(a1, ..., ap, l). It remains to
show that we can obtain p(ap, ap+1, l). This is sufficient since the joint dis-
tribution is defined by its marginals over the cliques, see [8] and Figure 3.4.
Summing (3.9) over u1, . . . , up−1 gives∑

ap,ap+1

p(up+1|ap+1)p(up|ap)p(ap, ap+1, l) = q(up, up+1, l) (3.11)

Now writing B(l) for the matrix with elements p(ap, ap+1, l) and Q(l) for
the matrix q(up, up+1, l) (3.11) can be written as the matrix equation

ApB(l)Ap+1 = Q(l)

Where Ap and Ap+1 are square and full rank. Hence the result follows.

3. Environmental monitoring 61

References

[1] Besag, J. E. Spatial interaction and the statistical analysis of lattice
systems (with discussion). Journal of the Royal Statistical Society
B, 36, 1974, pp. 192-326.

[2] Besag, J. E. On the statistical analysis of dirty pictures. Journal of
the Royal Statistical Society B 48, 1986, pp. 259-302.

[3] Caccetta, P., Campbell, N., West, G., Kiiveri, H., and Gahegan, M.
Aspects of reasoning with uncertainty in an agricultural GIS envi-
ronment. The New Review of Applied Expert Systems 1, 1995, pp.
161-177.

[4] Caccetta, P. Remote Sensing, GIS and Bayesian Knowledge-based
Methods for Monitoring Land Condition. PhD thesis, Department
of Computer Science, Curtin University of Technology, Western
Australia, 1997.

[5] Caccetta, P. C., Campbell, N. A. C., Evans, F., Furby, S. L., Kiiveri,
H. T., and Wallace, J. F. (2000). Mapping and monitoring land use
and condition change in the south west of Western Australia using
remote sensing and other data. In Proceedings of the Europa 2000
Conference, Barcelona.

[6] Campbell, N. A. and Atchley, W. R. (1981), ’The geometry of
canonical variate analysis’, Syst. Zoology, Vol. 30, No. 3, pp.
268-280.

[7] Subpixel matching using cross correlation and second derivatives.
Submitted to ISPRS Journal of Photogrammetry and Remote
Sensing.

[8] Darroch, J. N., Lauritzen, S. L. and Speed, T. P. Log-linear models
for contingency tables and Markov fields over graphs. Annals of
Statistics 8, 1980, pp. 522-539.

[9] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society B 39, 1977, pp.1-21.

[10] Furby, S . L., (1994) Discriminating between pasture and barley grass
and saltbush using multi-temporal imagery. CMIS technical report.

[11] Furby, S. L. and Campbell (2001), ’Calibrating images from differ-
ent dates to like value digital counts’, Remote Sensing of the
Environment, 77, 186-196.

[12] Jensen, F. V. An Introduction to Bayesian Networks. Springer Verlag,
New York, 1996.

62 Kiiveri, Caccetta, Campbell, Evans, Furby, and Wallace

[13] Kiiveri, H. T. and Caccetta, P. Data fusion, uncertainty and causal
probabilistic networks for monitoring the salinisation of farmland.
Digital signal processing, 8, 225-230

[14] Kiiveri, H. T. Some statistical models for remotely sensed data. In
SISC96 Imaging Interface Workshop Proceedings, 1996.

[15] Lauritzen, S. L., and Spiegelhalter, D. Local computations with prob-
abilities on graphical structures and their application to expert
systems. Journal of the Royal Statistical Society B 50, 1988, pp.
157-224

[16] Lauritzen, S. L. Propagation of probabilities, means, and variances
in mixed graphical association models. Journal of the American
Statistical Association 87, 1992, pp. 1098-1108

[17] Lauritzen, S. L. (1995). ‘The EM algorithm for graphical associa-
tion models with missing data’, Computational Statistics and Data
Analysis, 19, pp. 191-201.

[18] NASA, (2001). Landsat 7 Science data users handbook. Avail-
able on line at http://ltpwww.gsfc.nasa.gov/IAS/handbook/
handbook_toc.html.

[19] Rao, C. R. (1966),Linear statistical inference and its applications.
Second Edition, Wiley, New York.

