
3.1 RELATIONALE DATENSTRUKTUREN
Relationale Datenbanken speichern alle Daten in einfachen zweidimensionalen
Tabellen, die man Relationen nennt. Tabelle 3.1 zeigt ein Beispiel einer Relation
mit Daten über Angestellte einer Firma.

Tabelle 3.1: Die Relation Ang

Alle Tabellen in relationalen Datenbanken sehen so aus. Wie gesagt bezeichnet man
Tabellen korrekterweise als Relationen; wir verwenden jedoch beide Begriffe. In
einem sehr vagen Sinn entspricht eine Relation ungefähr (aber wirklich nicht genau)

3
RELATIONALE DATENBANKEN 1 –
DIE WESENTLICHEN IDEEN

Relationale Datenbanken dominieren zur Zeit den Markt. Sie stellen bemer-
kenswert einfache Mittel zur Darstellung und Manipulation von Daten zur
Verfügung. Daneben besitzen sie auch fundierte theoretische Grundlagen.
In diesem Kapitel werden wir die wichtigsten Aspekte des relationalen
Modells mit Hilfe einfacher Definitionen und Beispiele umreißen.

Wer dieses Kapitel durchgearbeitet hat, sollte Folgendes können:

1. Die wichtigsten Eigenschaften relationaler Datenbanken beschreiben

2. Die wichtigsten Bestandteile der relationalen Theorie erläutern, als da
sind: relationale Datenstrukturen, relationale Datenmanipulation und
relationale Datenintegrität

3. Die Bedeutung der Ausdrücke „minimal relational“, „relational vollstän-
dig“ und „voll relational“ verstehen

Die relationale Theorie hat drei wesentliche Komponenten: Datenstruktu-
ren, Datenmanipulation und Datenintegrität. Diese werden wir nacheinan-
der untersuchen.

ANG

ANGNR ANGNAME ABTNAME STUFE

1 F JONES VERKAUF 6

2 P SMITH BUCHHALTUNG 6

3 K CHAN VERKAUF 4

4 J PETERS VERKAUF 5

9 S ABDUL BUCHHALTUNG 3

Datenbanksysteme im Klartext
ISBN 3-8273-7066-3

52 RELATIONALE DATENSTRUKTUREN 3

einer Entität in einem E/R-Diagramm. Für jeden relevanten Gegenstand in einer
Datenbank erstellen wir eine Relation. Alle Gegenstände mit den gleichen Eigenschaf-
ten werden in derselben Relation abgelegt. Die Eigenschaften von Gegenständen sind
in den Überschriften der Spalten festgehalten (ANGNR, ANGNAME, ABTNAME, STUFE).
Die konkreten einzelnen Vorkommen der Relation ANG sind durch die Zeilen von
Daten in der Tabelle repräsentiert. Die Bedeutung jeder Zeile erschließt sich leicht:
Zum Beispiel beschreibt die erste Zeile ein ANG mit der ANGNR 1, dem ANGNAME F

JONES, dem ABTNAME VERKAUF und der STUFE 6. Wir sehen bei dieser Tabelle eine Reihe
von Eigenschaften, die allen Tabellen in relationalen Datenbanken zu Eigen sind.

3.1.1 ÜBERSCHRIFTEN UND EINTRÄGE

1. Die Überschrift. Alle Relationen haben eine. Sie besteht aus dem Namen der
Relation (ANG) und den Namen der Spalten, aus denen die Relation besteht. Der
korrekte Begriff für die Spalten einer Relation ist „Attribute“. Die Anzahl Attri-
bute bestimmt den Grad der Relation. Diese Relation hat den Grad vier. In der
relationalen Theorie ist die Anzahl Attribute einer Relation nicht beschränkt,
doch in der Praxis setzen die meisten relationalen DBMS eine obere Schranke.

2. Die Einträge. Diese sind durch die Zeilen der Relation gegeben. Korrekt bezeich-
net man sie als Tupel. Ein Tupel ist eine geordnete Liste von Werten. Die Bedeu-
tung jedes Wertes ist durch seine Position im Tupel bestimmt. So ist im ersten
Tupel der erste Wert (1) die ANGNR, der zweite (F JONES) der ANGNAME und so wei-
ter. Die Kardinalität einer Relation ist die Anzahl Tupel, die sie enthält. Hier ha-
ben wir somit eine Relation der Kardinalität fünf.

Jede Relation verfügt über eine Menge von Tupeln. Es ist wichtig, dass es sich hierbei
tatsächlich um eine Menge im mathematischen Sinn handelt. Mengen sind ungeord-
nete Ansammlungen verschiedener Gegenstände. Oben haben wir die Tupelmenge in
der Reihenfolge ihrer ANGNR angegeben. Diese Reihenfolge ist an sich ohne Bedeu-
tung; es gibt keine implizite Information der Art, dass die ANGNR 1 „größer“ wäre als
ANGNR 6. Tupel einer Relation können in beliebiger Reihenfolge gespeichert und aus-
gegeben werden. Die meisten relationalen Systeme verwenden einfach die Reihen-
folge, in der die Tupel der Tabelle hinzugefügt wurden. Falls wir einen neuen Ange-
stellten mit der ANGNR 5 hinzufügen, würden wir dann die Tabelle 3.2 erhalten.

Tabelle 3.2: Nach dem Einfügen eines neuen Tupels

ANG

ANGNR ANGNAME ABTNAME STUFE

1 F JONES VERKAUF 6

2 P SMITH BUCHHALTUNG 6

3 K CHAN VERKAUF 4

4 J PETERS VERKAUF 5

9 S ABDUL BUCHHALTUNG 3

5 J LEWIS FORSCHUNG 5

3 RELATIONALE DATENBANKEN 1 – DIE WESENTLICHEN IDEEN 53

3.1.2 DOMÄNEN

Für jedes Attribut gibt es offensichtliche Einschränkungen hinsichtlich der Daten, die
es enthalten kann. Für ANGNR haben wir ganze Zahlen, ANGNAME ist eine Zeichenkette
und so weiter. Der Wertebereich, den ein Attribut annehmen kann, heißt seine
Domäne. Auf einer gewissen Ebene ist eine Domäne etwas sehr Ähnliches wie ein
Datentyp bei der Programmierung. Wie ein Datentyp legt eine Domäne nicht nur den
Wertebereich eines Attributes fest, sie bestimmt auch, welche Operationen auf diese
Werte anwendbar sind: Addition oder Subtraktion von Zahlen, Aufteilen oder Anein-
anderreihen von Zeichenketten und so fort. Auf einer höheren Ebene haben Domänen
jedoch darüber hinaus eine semantische Nebenbedeutung. Zum Beispiel könnten wir
eine Domäne „Kilogramm“ verwenden, um Gewichte darzustellen, und eine weitere
Domäne „Geld“ für Geldbeträge. Beide Domänen würden einen Bereich von Dezimal-
zahlen umfassen, aber ihre Werte wären nicht miteinander kompatibel. Diese höhere
Ebene der Domänenunterstützung trifft man bei relationalen Modellen meist nicht an.

Wenn wir ein Attribut einführen, müssen wir ihm einen Namen und einen Wertebereich
zuweisen. Von da an muss jeder Wert des Attributes zu der Domäne passen. Domänen
können sehr allgemein gewählt sein, zum Beispiel „alle positiven ganzen Zahlen zwi-
schen 00000 und 99999“ oder „alle Zeichenketten mit höchstens 20 Buchstaben“; sie
können aber auch sehr speziell sein, zum Beispiel „eines aus VERKAUF, BUCHHALTUNG,
FORSCHUNG“. Die meisten relationalen Datenbankprodukte stellen allgemeine Domänen
in der Form elementarer Datentypen zur Verfügung. Nur wenige erlauben den Daten-
bankbenutzern mehr, als sehr rudimentäre eigene Domänen zu definieren.

Eine wichtige Eigenschaft aller relationalen Domänen ist Primitivität; dies bedeutet,
dass Domänen nur aus einzelnen Werten bestehen können. Jedes Tupel in ANG
besitzt genau einen Wert für jedes der Attribute ANGNR, ANGNAME, ABTNAME und
STUFE. Mehrwertige Domänen gibt es nicht. Finden wir eine Entität mit einem mehr-
wertigen Attribut, so müssen wir weitere Relationen erzeugen, um dieses Attribut
relational abzubilden.

Als Beispiel stellen wir uns vor, wir wollten die Kenntnisse jedes Angestellten in
einer Datenbank ablegen. Dabei kann ein Angestellter mehrere Kenntnisse haben.
Eine Darstellung wie in Tabelle 3.3 wäre nicht erlaubt.

Tabelle 3.3: Eine verbotene (nicht atomare) Domäne

ANGNR ANGNAME ABTNAME STUFE QUALIFIKATION

1 F JONES VERKAUF 6 (DEUTSCH)

2 P SMITH BUCHHALTUNG 6 (SCHREIBMASCHINE, STENO,

FRANZÖSISCH)

3 K CHAN VERKAUF 4 (DEUTSCH, FRANZÖSISCH)

4 J PETERS VERKAUF 5 (FRANZÖSISCH, SCHREIBMASCHINE)

9 S ABDUL BUCHHALTUNG 3 (FRANZÖSISCH, DEUTSCH, COBOL)

5 J LEWIS FORSCHUNG 5 (KLAVIER)

54 RELATIONALE DATENSTRUKTUREN 3

Hier haben wir eine Domäne QUALIFIKATION eingeführt, die nicht atomar ist. Damit ist
gemeint, dass Werte vorkommen können, die nicht atomar, also unteilbar, sind. In rela-
tionalen Datenbanken müssen alle Domänen atomar sein. In dieser Situation sind wir
gezwungen, unsere Datenbank umzustrukturieren, so dass wir zwei Tabellen erhalten:
neben der alten Relation ANG die neue QUALIFIKATIONEN, die wir in Tabelle 3.4 zeigen.

Tabelle 3.4: Eine Relation mit atomaren Werten

Die neue Tabelle QUALIFIKATIONEN verwendet nur atomare Werte: Jede Zeile
beschreibt eine Qualifikation eines Angestellten. Kennt ein Angestellter sich mit drei
Dingen aus, so gibt es dafür drei Tupel in der Tabelle QUALIFIKATIONEN.

3.1.3 NULL-WERTE
Angenommen wir wollten unserer Datenbank einen Angestellten hinzufügen, der
keiner bestimmten Abteilung angehört (und angenommen, die Semantik unserer
Datenbank gestatte dies). Wir würden dann ein neues Tupel einfügen; Tabelle 3.5
zeigt das Ergebnis.

Tabelle 3.5: Ein Tupel mit Null-wertigem Attribut

QUALIFIKATIONEN

ANGNR QUALIFIKATION

1 DEUTSCH

2 SCHREIBMASCHINE

2 STENO

2 FRANZÖSISCH

3 DEUTSCH

3 FRANZÖSISCH

6 FRANZÖSISCH

6 SCHREIBMASCHINE

9 FRANZÖSISCH

9 DEUTSCH

9 COBOL

5 KLAVIER

ANG

ANGNR ANGNAME ABTNAME STUFE

1 F JONES VERKAUF 6

2 P SMITH BUCHHALTUNG 6

3 K CHAN VERKAUF 4

4 J PETERS VERKAUF 5

9 S ABDUL BUCHHALTUNG 3

5 J LEWIS FORSCHUNG 5

10 J MAJOR 1

3 RELATIONALE DATENBANKEN 1 – DIE WESENTLICHEN IDEEN 55

In diesem Fall sagen wir, das Tupel von ANG mit der ANGNR 10 habe den Wert NULL für
ABTNAME. Das kann bedeuten, dass der Angestellte keiner Abteilung angehört oder
dass wir nicht wissen, welcher Abteilung er angehört. NULL ist ein spezieller Wert, der
keinem anderen Wert gleicht (nicht einmal sich selbst). Wir können nicht behaupten,
zwei Angestellte mit NULL-Einträgen für ABTNAME hätten für jenes Attribut den glei-
chen Wert. Wir können jedoch sagen, dass für alle anderen Angestellten ABTNAME

nicht NULL ist (beachten Sie, dass wir sagen „nicht NULL“ und nicht „ungleich NULL“).

Wenn wir ein Attribut definieren, müssen wir nicht nur seine Domäne angeben, son-
dern auch festlegen, ob seine Domäne den Wert NULL enthält. Falls nicht, müssen
alle Tupel der betroffenen Relation für dieses Attribut einen Wert haben. Offenbar
sollten solche Attribute, die einem Tupel seine eindeutige Identität verleihen, nicht
null sein dürfen; ein Beispiel dafür ist ANGNR in der Relation ANG. Wir werden hie-
rauf in Abschnitt 3.2.2 über Entitätenintegrität noch näher eingehen. Ob andere
Attribute NULL-Werte annehmen dürfen, hängt von den semantischen Anforderun-
gen der Datenbank ab.

3.1.4 BASISRELATIONEN UND SICHTEN

Bis jetzt haben wir nur Beispiele einer besonderen Art von Relation gesehen, die
man auch Basisrelation nennt. Basisrelationen bilden die unterste Ebene der Daten-
repräsentation, die dem Benutzer relationaler Datenbanken zugänglich ist. Alle
Daten in relationalen Datenbanken werden letztendlich in Basisrelationen gespei-
chert. Die Daten können jedoch auch über Sichten abgefragt und verändert werden.
Eine Sicht ist eine logische Relation, die ihre Daten direkt oder indirekt aus Basis-
relationen bezieht.

Eine Sicht kann einfach eine Teilmenge einer Basisrelation sein. Tabelle 3.6 zeigt
eine Sicht mit dem Namen VERKAUF, die eine Teilmenge der Relation ANG ist.

Tabelle 3.6: Eine einfache Sicht

In dieser Sicht haben wir eine Relation aufgestellt, die alle ANGS enthält, deren ABT-
NAME gleich VERKAUF ist. Offenbar gibt es hier ein gewisses Maß an Redundanz. Dass
alle Tupel den gleichen Wert für ABTNAME haben, brauchen wir nicht zu zeigen. Sich-
ten können auch auf Teilmengen von Attributen aufsetzen (Tabelle 3.7).

VERKAUF

ANGNR ANGNAME ABTNAME STUFE

1 F JONES VERKAUF 6

3 K CHAN VERKAUF 4

6 J PETERS VERKAUF 5

56 RELATIONALE DATENSTRUKTUREN 3

Tabelle 3.7: Eine etwas komplexere Sicht

Sichten können nicht nur Teilmengen von Tupeln und Attributen zeigen, sondern
auch Daten aus mehreren Tabellen zusammenfassen. Tabelle 3.8 zeigt eine Sicht,
die das Attribut ANGNAME aus ANG mit denjenigen Tupeln aus QUALIFIKATIONEN verbin-
det, die zu deutsch sprechenden Angestellten gehören.

Tabelle 3.8: Eine Sicht, die auf zwei Basistabellen aufbaut

Nun können wir die Sichten VERKAUF_1 und DEUTSCHSPRECHEND kombinieren, um
eine Sicht wie die in Tabelle 3.9 zu erhalten, die alle in der Abteilung VERKAUF
beschäftigten Angestellten zeigt, welche deutsch sprechen.

Tabelle 3.9: Eine Sicht, die auf zwei Sichten aufbaut

Bis zu einem gewissen Grad kann man Sichten in relationalen Datenbanken wie
Basistabellen behandeln: Man kann sie verwenden, um Daten abzufragen und (mit
Einschränkungen) auch um Daten einzufügen, zu löschen und zu ändern. Diese Ein-
schränkungen werden in einem späteren Abschnitt behandelt. Wenn man eine Sicht
anlegt, sind die Domänen schon durch die Basistabellen gegeben, in denen die
Daten der Sicht liegen. Dies betrifft auch Regeln bezüglich NULL-Werten. Für die
Definition einer Sicht muss man die Sichten und/oder Basistabellen angeben, die an
der Sicht beteiligt sind. Wird eine Basistabelle aus einer relationalen Datenbank ent-
fernt, so müssen alle Sichten, die diese Tabelle brauchen, aufhören zu existieren –
egal, ob sie sie ganz oder teilweise, direkt oder indirekt brauchen.

VERKAUF_1

ANGNR ANGNAME STUFE

1 F JONES 6

3 K CHAN 4

6 J PETERS 5

DEUTSCHSPRECHEND

ANGNR ANGNAME

1 F JONES

3 K CHAN

6 J PETERS

DEUTSCHSPRECHEND_VERKAUF

ANGNR ANGNAME

1 F JONES

3 K CHAN

3 RELATIONALE DATENBANKEN 1 – DIE WESENTLICHEN IDEEN 57

3.2 RELATIONALE DATENINTEGRITÄT

3.2.1 SCHLÜSSEL

Datenintegrität in relationalen Datenbanken basiert auf dem Konzept des Schlüs-
sels. Es gibt drei Arten von Schlüsseln in relationalen Datenbanken: Kandidaten-
schlüssel, Primärschlüssel und Fremdschlüssel.

Ein Kandidatenschlüssel ist ein Attribut oder eine Menge von Attributen, die jedes Tupel
einer Relation eindeutig identifizieren. Zum Beispiel ist ANGNR ganz offensichtlich ein
Schlüssel für die Relation ANG. Jede Zeile in ANG hat einen anderen Wert für ANGNR.
Gelegentlich kann man Attribute zusammenfassen, um Tupel zu identifizieren. In der
QUALIFIKATIONEN-Tabelle, sind weder die Werte für ANGNR noch die für QUALIFIKATION für
sich genommen einzigartig. Da jedoch kein Angestellter die gleiche Qualifikation zwei-
mal haben kann, wird jede Zeile eine einzigartige Kombination von ANGNR und QUALI-

FIKATION enthalten. Dies nennt man einen zusammengesetzten Kandidatenschlüssel.

Ein Primärschlüssel ist ein Spezialfall eines Kandidatenschlüssels. Es kann für eine
Relation mehr als einen Kandidatenschlüssel geben. Zum Beispiel könnten wir in
unserer Tabelle ANG ein Attribut STEUERNUMMER einführen, um die Angestellten mit
anderswo verwendeten eindeutigen Steuernummern zu verknüpfen. Falls die
STEUERNUMMER für jeden Angestellten eindeutig ist, hätten wir hier zwei Kandi-
datenschlüssel. In einer solchen Situation müssen wir einen der beiden als Primär-
schlüssel auswählen. Wenn man ein Attribut oder eine Menge von Attributen als Pri-
märschlüssel wählt, ergeben sich daraus einige Konsequenzen für die betroffenen
Attribute (siehe unten). Jede Tabelle kann beliebig viele Kandidatenschlüssel haben,
aber es muss genau einen Primärschlüssel geben. Falls es nur einen Kandidaten-
schlüssel gibt, ist dieser automatisch der Primärschlüssel.

Ein Fremdschlüssel ist ein Attribut (oder eine Menge von Attributen), das in mehr als
einer Tabelle vorkommt und in einer dieser Tabellen den Primärschlüssel bildet.
ANGNR kommt sowohl in der Tabelle ANG als auch in der Tabelle QUALIFIKATIONEN vor;
da es der Primärschlüssel für ANG ist, tritt es folglich in QUALIFIKATIONEN als Fremd-
schlüssel auf. Fremdschlüssel sind in relationalen Datenbanken außerordentlich wich-
tig. Sie sind die wichtigste Methode, um Daten in verschiedenen Tabellen zu verknüp-
fen. Wir können zwischen den Zeilen von ANG und den entsprechenden Zeilen von
QUALIFIKATIONEN eine Verbindung herstellen, indem wir den Fremdschlüssel ANGNR in
QUALIFIKATIONEN benutzen. Man spricht dann davon, dass zwischen den beiden Tabel-
len eine Beziehung aufgebaut wird. Damit solche Beziehungen gültig sind, gibt es
eigene Regeln für den Gebrauch von Fremdschlüsseln (siehe Abschnitt 3.2.3 unten).

3.2.2 ENTITÄTENINTEGRITÄT

Eine Entität ist definiert als ein Gegenstand, der zu unabhängiger Existenz in der
Lage ist. Eine Entitätenmenge ist eine Menge von Gegenständen mit den gleichen
Eigenschaften. Damit die Gegenstände in einer Entitätenmenge eine unabhängige
Existenz besitzen können, muss es möglich sein, sie zu unterscheiden. In relationa-

58 RELATIONALE DATENINTEGRITÄT 3

len Datenbanken setzt man Basisrelationen ein, um Entitätenmengen zu modellie-
ren. Eine Basisrelation besteht aus einer Menge von Tupeln, die alle die gleichen
Attribute haben. Damit die Tupel einer Relation zu einer echten Menge unterschied-
licher Gegenstände gehören und damit so eine Menge einer Entitätenmenge ent-
spricht, muss jedes Tupel eine unterscheidbare Identität besitzen.

Aus diesem Grund braucht jede Basisrelation in relationalen Datenbanken einen Pri-
märschlüssel. Darüber hinaus müssen wir sicherstellen, dass jede Zeile einen eige-
nen Wert für ihren Primärschlüssel hat, denn sonst hat sie keine eindeutige Identi-
tät. Daher lassen wir nicht zu, dass ein Attribut, das Teil des Primärschlüssels ist,
NULL-Werte annimmt. In der Tabelle ANG müssen deshalb alle Zeilen einen Wert für
ANGNR enthalten. In der Tabelle QUALIFIKATIONEN, die einen zusammengesetzten Pri-
märschlüssel hat, muss jede Zeile sowohl einen Wert für ANGNR als auch einen für
QUALIFIKATION enthalten. Wenn wir für eines der beiden Attribute NULL-Werte zulie-
ßen, könnte es vorkommen, dass zwei Zeilen die gleichen Werte für QUALIFIKATION

enthielten und keine ANGNR; solche Zeilen könnte man nicht unterscheiden. Entitä-
tenintegrität verbietet deswegen NULL-Werte für Attribute, die Teile des Primär-
schlüssels sind.

Entitätenintegrität betrifft nur den Primärschlüssel. Hat eine Tabelle noch weitere
Kandidatenschlüssel, so dürfen die nichtprimären Kandidatenschlüssel ganz oder in
Teilen NULL-Werte annehmen. Je nach den semantischen Anforderungen des Sys-
tems kann der Datenbankentwickler sich jedoch entscheiden, NULL-Werte auch für
solche Schlüssel oder sogar für Nichtschlüsselattribute zu verbieten. Solche Ent-
scheidungen sind dann jedoch spezielle Eigenschaften dieses konkreten Systems,
während Entitätenintegrität eine theoretische Forderung an alle relationalen Sys-
teme ist. („Theoretisch“ nennen wir sie deshalb, weil es viele relationale Datenbank-
produkte gibt, die Tabellen ohne Primärschlüssel zulassen.)

Entitätenintegrität bedeutet, dass Entitäten unterscheidbar sein müssen. Insbeson-
dere müssen sie sich in den Werten des Primärschlüsselattributes unterscheiden;
daraus folgt, dass kein Attribut, das Teil des Primärschlüssels ist, den Wert NULL

annehmen darf.

3.2.3 REFERENTIELLE INTEGRITÄT

Referentielle Integrität betrifft den Gebrauch von Fremdschlüsseln. In unserer
Tabelle QUALIFIKATIONEN kommt ANGNR als Fremdschlüssel für ANG vor. Wie stellen
wir sicher, dass in dieser Tabelle nur gültige Verweise auf ANG stehen? Indem wir die
Regel der referentiellen Integrität anwenden.

Referentielle Integrität bedeutet, dass jeder von NULL abweichende Wert in einem
Fremdschlüsselattribut auch in der Relation vorkommen muss, in der dieses Attribut
als Primärschlüssel auftritt. Wir können also keine ANGNR in QUALIFIKATIONEN haben,
die nicht auch in ANG vorkäme. Somit sind alle Verweise von QUALIFIKATIONEN auf ANG
gültig. Wir können nur für solche Angestellten Qualifikationen eintragen, die auch
tatsächlich existieren.

3 RELATIONALE DATENBANKEN 1 – DIE WESENTLICHEN IDEEN 59

Referentielle Integrität bringt hinsichtlich der Änderung oder des Löschens von Zei-
len in Tabellen besondere Probleme mit sich. Was passiert, wenn wir einen Wert von
ANGNR in ANG ändern und damit alle Verweise auf den alten Wert ungültig machen?
Drei Verfahren sind möglich:

1. Einschränkung. Dieses Verfahren unterbindet jegliche Änderungen eines Primär-
schlüssels, solange Fremdschlüsselreferenzen darauf existieren. Es wäre dann
verboten, ANGNR 1 aus der Tabelle ANG zu entfernen oder den Wert von ANGNR 1

in ANGNR 7 zu ändern. Wir könnten nur die ANGNR-Werte von solchen Angestell-
ten ändern oder löschen, für die keine Einträge in QUALIFIKATIONEN existierten.

2. Kaskadieren. Hierbei setzt man die Änderung an der ursprünglichen Zeile auf alle
Zeilen in allen referenzierenden Tabellen fort. Wollten wir ANGNR 1 aus ANG
löschen, so müssten wir damit auch alle Zeilen mit ANGNR 1 aus QUALIFIKATIONEN

löschen. Wenn wir einen Wert von ANGNR in ANG ändern, müssen wir auch die
entsprechenden Werte von ANGNR in QUALIFIKATIONEN ändern.

3. Auf NULL setzen. Hiermit gestattet man die Änderung oder Löschung in der ur-
sprünglichen Tabelle. Um die referentielle Integrität zu erhalten, werden danach
alle entsprechenden Werte von Fremdschlüsseln auf NULL gesetzt. Im Beispiel
oben würde dies dazu führen, dass Zeilen aus der Tabelle QUALIFIKATIONEN ge-
löscht werden, weil ANGNR Teil des Primärschlüssels für QUALIFIKATIONEN ist. Wir
erhalten ein besseres Beispiel, wenn wir eine Tabelle ABT wie folgt einführen:

In dieser Tabelle ist ABTNAME der Primärschlüssel und somit in ANG ein Fremd-
schlüssel. Wenn wir also den Namen der Verkaufsabteilung ändern, würden bei
der Auf-NULL-setzen-Strategie alle Zeilen aus ANG, in denen VERKAUF als ABTNAME

eingetragen ist, einen NULL-Wert erhalten. Die Entitätenintegrität dieser Zeilen
wäre davon unberührt, da ABTNAME nicht Teil des Primärschlüssels ist.

Ihnen ist vielleicht das Attribut LEITERANGNR in der Tabelle ABT aufgefallen. Dieses ist
ein Fremdschlüssel, der auf die Tabelle ANG verweist und die ANGNR des Abteilungs-
leiters enthält. Fremdschlüssel müssen nicht in allen Tabellen, in denen sie vorkom-
men, den gleichen Namen haben. Referentielle Integrität gilt trotzdem. Wir müssen
entscheiden, was mit Zeilen aus ABT passiert, wenn ANGNR-Werte in ANG geändert
oder gelöscht werden. Was passiert zum Beispiel, wenn wir versuchen, ANGNR 2 zu
löschen – verbieten wir die Operation, weil der Wert noch in ABT vorkommt (Strate-
gie „Einschränkung“) oder entfernen wir die entsprechende Zeile aus ABT (Strategie
„Kaskadieren“) oder setzen wir den Wert von LEITERANGNR in der Zeile für BUCHHAL-
TUNG auf NULL? Diese Entscheidung müssen wir für jeden Fremdschlüssel in der
Datenbank treffen.

ABT

ABTNAME LEITERANGNR BUDGET

VERKAUF 3 200.000

BUCHHALTUNG 2 5.000.000

FORSCHUNG 5 100

60 RELATIONALE DATENMANIPULATION 3

Beachten Sie, dass referentielle Integrität nur in eine Richtung wirkt. Wir können die
Werte von ANGNR in der Tabelle QUALIFIKATIONEN, die Werte von ABTNAME in der
Tabelle ABT oder die Werte von LEITERANGNR in der Tabelle ABT nach Belieben ändern,
so lange sie weiterhin eine Referenz auf den Wert eines tatsächlich existierenden Pri-
märschlüssels enthalten. Wenn eine solche Referenz nicht mehr hergestellt werden
kann, muss der entsprechende Wert des Fremdschlüssels auf NULL gesetzt werden.

Zusammenfassend ist referentielle Integrität die Forderung, dass jeder Wert eines
Fremdschlüssels eine Referenz auf einen Wert eines Primärschlüssels sein muss, der
wirklich existiert. Falls kein entsprechender Wert eines Primärschlüssels existiert,
muss der Wert des Fremdschlüssels auf NULL gesetzt werden.

3.3 RELATIONALE DATENMANIPULATION
Einer der großen Vorteile relationaler Datenbanken besteht darin, dass Daten aus
beliebigen Ansammlungen relationaler Tabellen mittels Kombinationen von nur
acht intuitiv einfachen relationalen Operationen ausgelesen werden können. Diese
Operationen bilden etwas, das man die relationale Algebra nennt. Die relationale
Algebra enthält fünf Basisoperationen, RESTRICT, PROJECT, TIMES, UNION und
MINUS. Daneben gibt es drei abgeleitete relationale Operationen JOIN, INTERSECT
und DIVIDE. Sie sind insofern abgeleitet, als man sie aus den Basisoperationen auf-
bauen kann; es ist jedoch bequem, sie wie Basisoperationen zu behandeln. Insbe-
sondere der Operator JOIN bezeichnet eine der am meisten eingesetzten relationa-
len Operationen und verdient erhebliche Aufmerksamkeit.1

Alle relationalen Systeme setzen die Algebra ein, um Daten aus Tabellen abzufragen.
Es gibt jedoch nur sehr wenige Systeme, die die Algebra direkt unterstützen. Meist
wird eine eigene Schnittstelle, häufig in Form der Sprache SQL, zur Verfügung
gestellt. SQL werden wir in Kapitel 5 behandeln; es ist eine deklarative Datenbank-
sprache, die Benutzern erlaubt, Ausdrücke zu schreiben, die Datenmengen „beschrei-
ben“. Die Aufgabe des SQL-Interpretierers besteht darin, SQL-Ausdrücke in Folgen
algebraischer Operationen umzuformen, die die verlangte Datenmenge liefern.

Ein wichtiges Prinzip der relationalen Algebra besagt, dass alle ihre Operationen
ausschließlich auf der Ebene der Relationen arbeiten. Als Argument akzeptieren sie
nur eine Relation oder eine Menge von Relationen, und sie geben immer nur eine
einzige Relation zurück, welche die durch die Operation spezifizierten Bedingungen
erfüllt. Definitionsgemäß muss jede als Argument übergebene Relation Teil der
Datenbank sein, sei es als Basisrelation oder als Sicht. Das Ergebnis einer relationa-
len Operation ist eine temporäre Relation, die durch Anwendung der Operation auf
die Argumentrelationen entsteht.

Wir beschreiben nun die Operationen, aus denen die relationale Algebra aufgebaut ist.

1 Anm. d. Übers.: Üblicherweise repräsentiert man diese Operationen mit folgenden Symbolen: σ für
RESTRICT, π für PROJECT, × für TIMES, ∪ für UNION, für MINUS, \Join für JOIN, ∩ für INTERSECT
und ÷ für DIVIDE.

