

COBOL and Visual Basic
on .NET:

A Guide for the
Reformed Mainframe

Programmer

CHRIS RICHARDSON

0481ch00cmp3.fm Page i Thursday, March 13, 2003 4:19 PM

COBOL and Visual Basic on .NET: A Guide for the Reformed Mainframe Programmer
Copyright © 2003 by Chris Richardson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-048-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Hung Tran

Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Sofia Marchant

Developmental Editor: Valerie Perry

Copy Editor: Nicole LeClerc

Compositor: Argosy Publishing

Artist: Faith Bradford

Indexer: Kevin Broccoli

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email

orders@springer-ny.com

, or visit

http://
www.springer-ny.com

. Outside the United States, fax +49 6221 345229, email

orders@springer.de

,
or visit

http://www.springer.de

.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email

info@apress.com

, or visit

http://www.apress.com

.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at

http://www.apress.com

 in the Downloads
section.

0481ch00cmp3.fm Page ii Thursday, March 13, 2003 4:19 PM

xxvii

About the
Foreword Writer

Jerome Garfunkel is an international consultant and specialist in learning
systems design. In the international commercial information technology (IT)
community, he is recognized as one of the leading authorities in the field of pro-
gramming languages and international computer standards. He has served as a
senior technical advisor to the U.S. Department of Commerce. In addition, he sat
on several American and international IT industry committees and has repre-
sented the United States in both the international and domestic IT
standardization community in the ANSI Standards Planning and Requirements
Committee, the ANSI Programming Language Study Group, the
International Committee on Programming Language Guidelines, the American
COBOL Committee, the International COBOL Committee, the CODASYL COBOL
Committee, and the Object-Oriented COBOL Committee.

Jerome Garfunkel is a lecturer, an author, a consultant, an educator, an actor, a
calligrapher, and a passionate motorcycle rider. As an educator and technologist,
he lectures about leading-edge technologies such as the integration of legacy
systems with Web-based services. Mr. Garfunkel was awarded the degree of
Doctorate, Honoris Causa in Technology from De Montfort University in Leicester,
England, for his lifetime contributions to the software engineering community.
His collection of technical papers, memoranda, and notes is housed in the Charles
Babbage Institute in Minnesota, for historical research. Included is the large body
of his writings appearing in books, IT journals, magazines, and newspapers
around the world.

0481ch00cmp3.fm Page xxvii Thursday, March 13, 2003 4:19 PM

xv

Foreword
AS RODNEY DANGERFIELD says, “I don’t get no respect,” so too COBOL doesn’t “get
no respect.” The COBOL language has been underappreciated, disrespected, criti-
cized, and bashed for much of its existence. It is generally perceived as an
inefficient, verbose application development tool, irrelevant to modern software
development methodologies. Nothing could be further from the truth. The very
existence of Christopher Richardson’s book, COBOL and Visual Basic on .NET: A
Guide for the Reformed Mainframe Programmer, is a testament to COBOL’s con-
tinued relevance.

COBOL Bashing

The timing of Mr. Richardson’s book couldn’t be better. The fourth official publi-
cation of the COBOL standard (COBOL o20021) is pending as of this writing. It
follows COBOL 68, COBOL 74, and COBOL 85. If you consider the Intrinsic Func-
tions Addendum published in o1989, the new COBOL o2002 actually marks the
fifth official release of standard COBOL.

The disrespect for the COBOL programming language, which is encouraged in
many universities, is not new. The earliest gesture of “COBOL bashing” lies in the
Computer Museum in Boston. It is a COBOL tombstone. Soon after the Con-
ference on Data Systems Languages (CODASYL) committee was formed in o1959,
a COBOL tombstone was given as a (gag) gift from some of the CODASYL COBOL
committee members to the chairperson of CODASYL. It was meant to express
their lack of confidence that this new “common business language” (CBL,
later COBOL) would be used in the IT industry for very long. As it turned out, the
COBOL language, defined by the CODASYL “short-range” committee and first
published in o1960, has been an important part of the IT industry for 43 years—
and still counting. Perhaps it is natural to presume that anything in the IT industry
dating back to the o1950s/o1960s must be obsolete and irrelevant in the
twenty-first century. The mistake in this logic is that the COBOL language (features
and syntax) has evolved dramatically over its lifetime. I like to paraphrase an old

1. The use of five digits years (e.g., o2002) throughout this foreword is done so as not to be
shortsighted in the year 9999 prior to the turn of the eleventh millennium. Sure, you might
say, “Isn’t it a bit early to be worrying about the Y10K problem?” But as we now know in
retrospect, this is the same kind of thinking over the past three to four decades that led us to
the Y2K crisis. Well, maybe I’m being a bit too cautious. If most enterprise applications are
developed in COBOL for the next 8,000 years, I suppose the Y10K crisis, as the Y2K crisis, will
turn out to be a “noncrisis.” (Wink!)

0481ch00cmp3.fm Page xv Thursday, March 13, 2003 4:19 PM

Foreword

xvi

General Motors commercial: “COBOL o2002 is not your father’s/mother’s
COBOL.”

Although the COBOL tombstone may have been the earliest example of
COBOL bashing, it certainly wasn’t the last. The annals of the IT industry are filled
with other instances of public disrespect for COBOL. Dutch computer professor
Edsgar Djikstra wrote in 1982, “The teaching of COBOL should be made a criminal
offense!” For years, I have been speaking at universities around the world. Gen-
erally, COBOL has been on the defensive in these academic environments. Few
people in my audiences (teachers included) were/are aware of what the modern
COBOL language can do. COBOL has no real technical problems—it has “public
relations” problems.

In the early o1980s, COBOL bashing took a turn for the worse. Serious efforts
were underway to “kill” COBOL. In preparation for the publication of ISO/ANSI
COBOL 85, there were serious legal and lobbying attempts (led by Travelers
Insurance and joined by other respectable corporations) to block any new COBOL
standardization effort. Some wanted to freeze the COBOL language as described
in the ANSI COBOL 74 standard. Others wanted to roll back the COBOL standard
to its “official” COBOL 68 version. The argument offered by these groups was that
it involved a great corporate cost to update their enterprise applications in order
for older COBOL programs to compile cleanly in newer COBOL compilers. No one
told them that they didn’t need to recompile any programs unless the business
application required updating.

This frustration is still felt by many IT departments today. It’s similar to the
frustration experienced by many home computer users who object to frequent
hardware changes, operating system upgrades, application updates, and the
incompatibility issues surrounding all of this “progress.” This is a legitimate
dilemma. The ISO/ANSI COBOL committees became very sensitive to any change
(addition, modification, deletion) to the COBOL standard that might affect pro-
grams written earlier. Still to this day, the (INCITS/ANSI) X3J4 COBOL committee,
which is responsible for the technical evolution of COBOL, maintains a special list
of new and changed features incorporated in COBOL o2002 that could possibly
produce incompatible results with older COBOL programs. Special voting rules
were put into effect before “potentially incompatible” features can be added to the
COBOL language. COBOL features designated as “obsolete” are required to remain
in the new COBOL standard for at least one more iteration before they’re perma-
nently removed from the official COBOL standard. This is done to give the COBOL
community ample time (a decade or more) to update the affected programs and
remove the obsolete features. COBOL is nonproprietary. The “official” COBOL
standard is not owned by any one software manufacturer. It’s developed by a cross-
section of IT professionals, both COBOL compiler/tools manufacturers and
COBOL users. This requirement of balancing the COBOL committee represen-
tation was built into the membership rules of the COBOL development

0481ch00cmp3.fm Page xvi Thursday, March 13, 2003 4:19 PM

xvii

Foreword

committees so there would be a broad range of views regarding how COBOL could
best serve the business application development community. It isn’t accidental,
therefore, that COBOL earned its reputation over the years as a solid, dependable
application development language that protects its constituency—application
developers—from whimsical changes. It is one of COBOL’s many strengths.

Few things that were around in the IT industry in o1960 are still around today,
except perhaps in museums and in basements. Yet the COBOL language, albeit
highly evolved from its origins, remains relevant. The corporate assets represented
by the billions (trillions?) of lines of COBOL code still running on commercial com-
puters aren’t about to be abandoned. Nor should they be. New tools that help
integrate legacy (read: COBOL) systems with PC applications, Web services, new
data formats, and protocols have been available since distributive systems
emerged years ago. As today’s application environment has evolved, .NET for
instance, so has COBOL’s capability to link to it, merge with it, and interact with it.
Stretching the lifespan of an enterprise’s legacy systems increases the value and
productivity of its IT development staff and of the assets they produce.

Why Has COBOL Endured?

Given the rarity of anything in the IT industry surviving for over 40 years, it is
appropriate to ask why has COBOL endured for so long. An underlying mission of
COBOL language development during its entire lifespan has been to keep COBOL’s
syntax and new features relevant to modern application development methodol-
ogies and to do so with utmost respect for the large number of COBOL
applications still running on computers around the world. The ISO COBOL o2002
language is an evolutionary product. Today’s COBOL is the result of much deter-
mined work by the various COBOL committees that have contributed to its
evolution, among them ISO, INCITS, ANSI, CODASYL, ECMA, and the national
COBOL committees represented by individual countries (Netherlands, Canada,
France, Japan, United Kingdom, Germany, United States, et al).

Change Is Natural

One thing is certain in the commercial IT world (and in life in general): Change is
natural. Business computer systems are digital models of an enterprise and all of
its operations. As an enterprise evolves so must its computer business systems
(models) evolve. When designing any business application, we must anticipate
changes, both corrective and perfective, in those applications. We must identify
those parts of the system that will most likely need maintenance in the course of
the system’s lifetime.

0481ch00cmp3.fm Page xvii Thursday, March 13, 2003 4:19 PM

Foreword

xviii

When speaking to new systems designers, I often use an analogy of design
techniques employed by the design engineers who build automobiles. It is absurd
to think of a new line of cars being built without anticipating one of the basic
maintenance chores required of all fuel-driven automobiles: refueling. Imagine
for a moment that the car designers (system designers) placed the fuel cap under-
neath the car, hidden by the transmission. Would we tolerate dismantling our cars’
transmissions each time we needed to refuel our cars? Of course not. This refu-
eling (maintenance) chore was made easier by isolating those parts of the car that
we need to reach to do this maintenance.

This is very similar to the design criteria that computer system designers must
use. Thankfully, the original COBOL language designers knew this. When the
COBOL language was first created, the CODASYL committee envisioned that the
IT industry was fast changing and that most business systems would likely need to
be modified during their lifetime. New hardware and new software development
techniques were likely to follow. COBOL applications needed a way to adapt to
ever-changing environments without causing chaos inside the enterprise systems
development community. The solution was to make COBOL as adaptable as pos-
sible and to incorporate, inside the source program itself, whatever environmental
documentation was required. This of course resulted in the Environment Division,
one of four original Divisions still in the COBOL language. By isolating “all” the
environmental dependencies of a COBOL application in one place, it was much
easier to transport a COBOL application from one computer brand to another,
from one operating system to another, from one database to another.

Today we take this concept for granted. Why should Microsoft Word behave
differently on a Macintosh than on a Windows machine? In the late o1950s,
however, this was a new concept just gaining popularity. Admiral Grace Hopper’s
contribution to the “birth” of COBOL is well documented. She was a member of
the original CODASYL executive committee. A far greater contribution perhaps
was her pioneering effort to develop and promote the concept of third-generation
programming languages such as COBOL, Fortran, Algol, and so on. This allowed
programmers to use a common, high-level set of instructions (higher than
assembler languages). This high-level code was then translated (compiled) into
the machine language of the particular hardware on which it would eventually
execute. Further, to the point of adaptability, COBOL incorporated the CALL
statement early in its development, as well as a COPY library source code facility.
Later, the INVOKE statement was added as part of the object-oriented COBOL
module.

0481ch00cmp3.fm Page xviii Thursday, March 13, 2003 4:19 PM

xix

Foreword

These and other features in COBOL acknowledged the changing nature of
computer business systems and anticipated the need for adaptability in COBOL
language syntax. Rather than incorporate new COBOL syntax and data formats
(borrowed from other programming languages) to map into every known pro-
gramming language and database, COBOL simply chose to create flexible
methods to interact with applications written in other languages and to pass data
between modules effectively. You might say that the COBOL integrated devel-
opment environment (IDE) is one of the earliest “open source” environments.

Another reason for COBOL’s endurance lies in the large number of auxiliary
tools available in a COBOL IDE: full-featured application development suites,
code generators, software libraries, debuggers, conversion tools, compiler “add-
ins,” and so on. The sheer momentum over 43 years from so many programmers
producing so many COBOL applications resulted in cottage industries of supple-
mental software to aid in the task of COBOL application development. No other
programming language has such a robust IDE.

The Y2K “Noncrisis”

I have saved for last the most important reason perhaps for COBOL’s continuing
excellence: the superior maintainability of COBOL applications.

Much of the criticism of the COBOL language within the application devel-
opment community is aimed at its “wordiness.” It is true that COBOL is verbose.
COBOL applications often require more lines of source code to be written than are
necessary in applications written in other languages. This was by design. When the
original members of the CODASYL COBOL committee set out to define the syntax
for this Common Business Oriented Language (COBOL), they intentionally
included many clauses, phrases, “noise words,” and so on not to make the job of
the development programmer harder, but rather to make the job of the mainte-
nance programmer easier and the results more accurate. COBOL instructions
such as “ADD this-weeks-salary TO previous-year-to-date-salary GIVING new-
year-to-date-salary” are indeed more verbose than, say, “LET z = x + y.” But no one
can argue that the meaning/intent of the business logic coded in the former
example is much clearer than in the latter example. This is by design. In appli-
cation development, clarity, not cleverness, is a virtue.

COBOL contains syntax for coding its own shortcuts and clever
programming techniques if a programmer is so inclined. The COBOL statement
COMPUTE z = x + y is perfectly valid, but it is antithetical to good COBOL
programming practices and is discouraged for all the reasons mentioned previ-
ously. Is this really important? You need only reflect on the Y2K “noncrisis” at the
turn of the new millennium to determine how important this is. Many people
blamed COBOL for the Y2K crisis, pointing to the huge number of legacy (read

0481ch00cmp3.fm Page xix Thursday, March 13, 2003 4:19 PM

Foreword

xx

again: COBOL) programs still running on computers in o1999 as we prepared for
potential disasters when switching over to o2000. This argument is fallacious. As
any good application developer knows, the problems created by storing dates
using the last two digits of the year (e.g., 85) instead of four digits (e.g., 1985)
resulted from shortsighted system design, not from a poor choice of the pro-
gramming language used. All applications (business applications and others),
whether written in COBOL, Fortran, C/C++, or Visual Basic, had to be checked and
modified to deal with the change from o1999 to o2000.

It’s my firm belief that the Y2K crisis, anticipated by so many, turned out to be
a Y2K “noncrisis” specifically because most of those legacy systems were in fact
developed with COBOL. Because the COBOL source code is written with so much
more clarity than source code written in other languages, the huge task of
reviewing all of that legacy source code and making changes when/where nec-
essary was made much easier because of COBOL than nearly everyone had
expected. True, the Y2K crisis was a tremendous problem for the IT industry. But
the efforts involved to fix the problem were made much easier, not harder, because
of COBOL, not in spite of COBOL. In a way, COBOL turned out to be “too good.”
The clarity associated with COBOL source code made those earlier COBOL appli-
cations much more maintainable than anyone had predicted. After all, why
discard an application that’s performing most of its business functions properly
simply because that application needs updating, when modifying the original
source code is easier, less expensive, and adds years of productive life to business
systems? As a result, the lifespan of legacy systems was stretched much further
than people (systems designers) had expected. Is this bad? No, I think not; it’s
shortsighted perhaps, but it’s not bad.

What we learned from the Y2K crisis was that COBOL provides “health
insurance” to corporate assets. That is, it’s the best way for an enterprise to protect
its investment in its IT assets. The same can’t be said for applications written in
other languages. In many cases, applications written in lower level languages
(assembler) or other third-generation languages (C, Pascal, and so on) were simply
not worth deciphering to fix Y2K (and other) problems. Instead, many were dis-
carded and replaced by newly written programs (hopefully in COBOL, but
probably not).

COBOL and Visual Basic on .NET: A Guide for the
Reformed Mainframe Programmer

Mr. Richardson tells the reader in this book, “The world has changed. The .NET
Framework and VS .NET is part of that change . . . and so are you.” We in the appli-
cation development community must deal with ever-changing technologies. We’re
constantly faced with new challenges to keep our programming skills current.

0481ch00cmp3.fm Page xx Thursday, March 13, 2003 4:19 PM

xxi

Foreword

These challenges confront us whether we’re integrating legacy systems with
modern (integrated Web) technologies or whether we’re developing brand-new
applications on PCs and/or mainframes incorporating Web services. Can we con-
tinue to keep our legacy systems running our enterprises in the midst of these
emerging technologies? Or must we abandon those systems and start from scratch
to take advantage of these new technologies? Can we “have our cake and eat
it too”?

Yes, we can develop modern applications using COBOL, taking advantage of
its superior maintainability while incorporating Web-based services into these
systems as described in this book. COBOL is alive and well in the twenty-first
century and its future is bright. A professor friend of mine from Purdue University,
when discussing COBOL’s future, likes to tell his students, “You better wear your
sunglasses.” There’s much life still left in our legacy systems due to the myriad of
integration tools available to us. And thanks to COBOL and Visual Basic on .NET: A
Guide for the Reformed Mainframe Programmer, we can understand this new tech-
nology from the mainframe programmer’s perspective and learn to apply it in our
real lives.

Jerome Garfunkel
Woodstock, New York
February, o2003

0481ch00cmp3.fm Page xxi Thursday, March 13, 2003 4:19 PM

xxxi

Introduction
THERE I WAS, AT MICROSOFT’S Professional Developers Conference (PDC) 2001, sur-
rounded by thousands of fellow developers. We were all looking forward to the
various events that would take place during that week. Microsoft, with Bill Gates
himself in attendance, was soon to launch Windows XP, their newest Windows
version. Although this was going to be great, it was really just icing on the cake.
What we really came to the PDC for was to hear about .NET (and, of course, to go
home with the latest versions of various software titles). I was captivated during
the general sessions as several Microsoft knowledge holders spoke rather elo-
quently about how the development world was changing and how we as
developers were in the driver’s seat. This all sounded extremely comforting. One
Microsoft speaker after another presented and demonstrated some of the newest
features of the .NET Framework. Each feature mentioned received loud applause
and unanimous cheers. This was a pep rally to end all pep rallies. It really felt good.
Until. . .

One particular Microsoft speaker (who will remain nameless) proudly
announced the .NET Framework feature the .NET common language runtime
(CLR), which allows developers to potentially develop Windows and Web pro-
grams in practically any language.2 He mentioned Visual Basic .NET and the crowd
cheered. He mentioned the new language C# and again the crowd cheered. Then it
happened. The speaker mentioned (with emphasis) that you would even be able to
code in COBOL! Yes, the standing-room-only crowd reacted. However, there were
no cheers, no applause, and no ovations. Rather, the crowd booed, heckled, and
laughed—loudly and continuously. Ouch! I slouched in my seat and pretended to
join in.

NOTE Giving Microsoft the benefit of the doubt, I believe the
assumptions may have been that any developer attending the PDC
event naturally was devoted to developing in the .NET environment.
They may have deduced that such developers could not possibly mind
such ridicule and humiliation. Perhaps they only erred on the latter. For
the record: No ill feelings harbored. All is forgiven.

2. There is the requirement that a .NET version compiler be created to enable additional
languages to be used in the .NET platform. Microsoft provides compilers for Visual Basic
.NET and C#.

0481ch00cmp3.fm Page xxxi Thursday, March 13, 2003 4:19 PM

Introduction

xxxii

Having coded in this great language called COBOL for many years (both batch
and CICS online applications), I concluded that most of the people joining the
laugh-in had never actually carried the honorable title of COBOL/CICS/DB2
mainframe programmer. Simply put, they were either jealous or in denial.

Finally, Something for Us

There at the PDC 2001 event, I swore that I would do something for the group of
developers interested in .NET that had a foundation similar to mine: mainframe
COBOL programming. I wanted to create something that would speak positively
to this group of developers. This group of mainframe programmers (those who are
seeking reformation3) is now facing retraining challenges exacerbated by a void of
mainframe-oriented guidance. This is a problem unique to mainframe pro-
grammers regardless of which new Common Business Oriented Language
(COBOL) they choose to use on the .NET platform: Visual Basic .NET (VB .NET) or
NetCOBOL for .NET (courtesy of Fujitsu Software).

This book is my attempt to address this need for mainframe-oriented
guidance to tackling .NET. To the 90,000 COBOL programmers4 that exist in North
America and the uncounted many abroad, hold on to this book. As you strive to
join the ranks of .NET developers, you will be hard-pressed to find other books (or
Web sites, for that matter) that attempt to provide this type of mainframe-oriented
.NET guidance.

My Reasons for Going to the PDC Event

Why was I there at the conference? Was it worth it? Additionally, what is the con-
nection between that event and the topic of this book? Naturally, I had my reasons
for going to this mainframe-hostile event:5

• Learning about the .NET Framework

• Leveraging previous versions and PC technologies

• Confronting the possibility of starting over

3. Please pardon my attempt at humor—my own chance to poke a little fun at those like myself
who either have gone or will go through a career “technology transition.” Yes, I too am a
reformed mainframe programmer and proud of that fact.

4. According to published estimates of the analyst firm Gartner, there are approximately 90,000
COBOL programmers in North America.

5. OK, maybe using the phrase “mainframe-hostile” to describe the Microsoft PDC event may
be an unfair exaggeration. I suggest that you take this lightly and view it as my weak attempt
at humor (perhaps returning the favor at most).

0481ch00cmp3.fm Page xxxii Thursday, March 13, 2003 4:19 PM

xxxiii

Introduction

Learning About the .NET Framework

I went to the PDC 2001 event to learn about the .NET Framework and all
.NET-related technologies. Microsoft’s technical team has included many features
in the new .NET technology offering. As a result, many of my colleagues are
referring to the new .NET Framework as a “revolution” (as opposed to an “evo-
lution”). With the technological revolutions that I have subjected myself to in the
past, this was right up my alley. Some people tend to object to the varying
amount of marketing that you get at some of the Microsoft-sponsored events.
Me, I welcome it. I want to be convinced and persuaded by the professionals.

As it turns out, the PDC 2001 event had a minimal amount of marketing
material and a satisfying number of technical demonstrations and explanations.
I recommend attending these types of events. Some of them are even free or nom-
inally priced. Especially keep your eyes open for an annual Microsoft-sponsored
event called Developer Days. Besides picking up information and free software,
you can view this event as a good opportunity to network with fellow developers.
Frankly, I had never attended an equivalent type of event while I was on the other
side of the fence (in the mainframe world).

TIP There’s an annual conference event that focuses on COBOL pro-
gramming. If you haven’t already heard about it, it’s called the COBOL
Expo. Be sure to check it out at http://cobolexpo.com/homepage.html.

Leveraging Previous Versions and PC Technologies

I wanted to hear from the horse’s mouth (Microsoft, in this case) why the effort
that I had invested into learning previous versions of Visual Basic and other PC
technologies had to now be leveraged (or just forgotten, in some cases) in order to
learn to develop on the new .NET Framework. I wanted to hear about the many
other features (e.g., ASP.NET, ADO.NET, and XML Web services) and find out how
I was to use these new technologies when developing tomorrow’s applications. At
the same time, I wanted to understand and have a healthy perspective on the fact
that most of my bleeding-edge PC knowledge (gained over the last 4 years) is now
slated to become legacy technology.

Allow me to remind you of the momentous transition that I had recently com-
pleted from the legacy mainframe technologies to the newer PC technologies. The
explanations that were given, the cleanup that Microsoft has done to the “old”
Visual Basic version 6.0 language, and the improvements made available by
moving away from COM all combine to better enable developers to program

0481ch00cmp3.fm Page xxxiii Thursday, March 13, 2003 4:19 PM

Introduction

xxxiv

complex business-solutions. Everything that I heard left me feeling very com-
fortable to join the .NET crowd and retrain. In other words, it was time for me to
make a new investment, intellectually speaking.

Confronting the Possibility of Starting Over

I wanted to see the look on the faces of thousands of former experts and gurus
while they struggled with the concept of “starting over.” This last point deserves
emphasis. The changes in the new .NET Framework and related .NET technologies
are so encompassing that many have viewed them as a leveling of the playing field.
Because practically everything is new, it is unreasonable for many to claim
“expert” status—at least for now. That is right! If there were ever a great time for a
mainframe programmer to consider crossing over, now is that time. This is a
chance to get in on the ground floor:6 .NET version 1.0.

NOTE The absence of .NET experts and gurus is being addressed
quickly. I am witnessing the rapid consumption of various Microsoft-
sponsored events, countless .NET-related Web sites and, of course,
some very well-written books (perhaps such as the one you are cur-
rently reading). Many developers have started to code already!

Yes, there were times that I felt inferior mentioning that I started with Visual
Basic version 5.0 (many “old-timers” started with Visual Basic version 1.0). Now,
I (and many others) will stand shoulder-to-shoulder and start with .NET
version 1.0, VB .NET version 1.0, and C# version 1.0. This is a great opportunity! To
all of my former mainframe peers, please give this one some serious thought.

What This Book Covers

Simply put, this book is about .NET. It is a guide to approaching the .NET world
written from the perspective of a former mainframe programmer and written
for other mainframe programmers (soon to become reformed7). Beyond that,
this book is about the new .NET Framework and related .NET technologies

6. I apologize for the multilevel direct-marketing sales-pitch tone.

7. Again, my attempt at a little humor. Please note that the reformation in question is a light
reference to the career “technology transition” that this book focuses on. Having gone
through this “transition” myself, it is much easier to treat the topic lightly. Bear with me. By
the end of this book, you (too) will be proud of your reformation (err . . . transition).

0481ch00cmp3.fm Page xxxiv Thursday, March 13, 2003 4:19 PM

xxxv

Introduction

(e.g., VS .NET, VB .NET, NetCOBOL for .NET, and ADO.NET). Concepts and consid-
erations for future .NET developers are included as well.

What is unique about this book? I wrote it to serve as a bridge from the main-
frame world to the new .NET universe. This book is filled cover-to-cover with
mainframe-to-.NET comparisons, analogies, and translations (from the old way to
the new way). When applicable, in-depth conceptual discussions are offered.
These discussions serve to smooth the edges during the inevitable paradigm shifts
that await mainframe programmers headed down the .NET path. I intentionally
included a healthy amount of mainframe terminology to create a comfortable
learning environment for former mainframe developers. The book assumes the
role of a .NET “introductory” text. In other words, this is an entry-level .NET text
for advanced mainframe programmers. It will adequately prepare you for further,
more detailed learning.

What This Book Does Not Cover

This book is not about bashing any technology or company (even when it is
deserved). For relational database discussions, I have only included IBM’s DB2
database. Most of the SQL-related discussions are easily transferable to other
mainframe DBMSs. The mainframe database system referred to as IMS is not dis-
cussed (I was never a big fan of this hierarchical type of data structure). The
relational approach won me over long ago. In mainframe circles, I would be con-
sidered a DB2 bigot.

When I cover mainframe programming languages, I do not discuss the
assembler programming language or any language other than COBOL, for that
matter. You will also notice that I have omitted any discussion about available
products/compilers that enable visual mainframe-type COBOL development to
be done on the PC. With these types of PC-based products, a developer compiles
the source code and uploads the binary load module from the PC to the main-
frame. Although there are some great products out there, I do not discuss them in
this book.

Supplemental References

I wrote this book to serve as your one-stop guide through the maze from the main-
frame world to the Windows and Web world of .NET. To prevent this book from
being over 1,000 pages in length, I chose to include more topics and at the same
time cover less depth per topic. As a supplement, I include Web and text references
for your continued learning and retraining effort. You will find these supplemental
references located at the end of each chapter in the “To Learn More” section. This

0481ch00cmp3.fm Page xxxv Thursday, March 13, 2003 4:19 PM

Introduction

xxxvi

section is divided into the subsections “Books,” “Magazines,” and “Web Sites.”
Depending on your particular needs, some topics will deserve a more in-depth,
step-by-step drill down. Additionally, for some topics, a list-oriented reference
source will be helpful. These book, magazine, and Web references will go a long
way toward the goal of filling those gaps. Please take advantage of them.

Technical Requirements

The following list presents the technical requirements for working through the
examples and code listings in this book:

• Windows XP Professional operating system. I used Windows XP Professional
during the sample application development and when capturing the screen
shots. Although you can use Windows 2000 (Professional or Server) for .NET
development, I recommend using Windows XP Professional (or newer) for
your .NET development.

• Microsoft .NET Framework v.1.0 or v.1.1.

• Microsoft Visual Studio .NET v.1.0 or v.1.1.

• Fujitsu NetCOBOL for .NET v.1.1.

• Enterprise Services/COM+ v.1.5. This version of COM+ is bundled with
Windows XP and is expected to be bundled with Windows .NET Server. If
you use Windows 2000, and therefore COM+ v.1.0, you will notice some
feature differences. This is one of several good reasons for doing your .NET
development on Windows XP or newer operating systems.

• Internet Information Services (IIS) v.5 or greater. This is bundled with
Windows 2000 and Windows XP Professional and greater. You will need to
install IIS manually from your Windows installation source. It is not typically
installed by default.

• Microsoft Message Queuing (MSMQ). This is bundled with Windows 2000
and Windows XP Professional and greater. You will need to install MSMQ
manually from your Windows installation source. It is not typically installed
by default.

• SQL Server 2000 (with a current Service Pack). The sample applications in
this book that involve database access use Microsoft’s database product,
SQL Server 2000. With minimal changes, you can use other relational data-
bases (e.g., Oracle).

0481ch00cmp3.fm Page xxxvi Thursday, March 13, 2003 4:19 PM

xxxvii

Introduction

• Internet Explorer v.6 or greater. This browser is installed and upgraded as
part of your full .NET installation. You may choose to use other browsers.
I used Internet Explorer exclusively throughout this book.

• Crystal Decisions’s Crystal Reports v.8.5 or greater. A fully functional version
of this software product is bundled with your full .NET installation. You will
be required to complete a free online registration the first time you use it.

About the Source Code

You can download the code samples that I use throughout the chapters
and appendixes from the Downloads section of the Apress Web site
(http://www.apress.com). The source code is contained in two folders: Folder
VS2002 and Folder VS2003.

Folder VS2002 has Visual Basic .NET and COBOL .NET code samples grouped
by chapters that were developed using Microsoft’s Visual Studio .NET version 1.0
and Fujitsu’s NetCOBOL for .NET version 1.1, respectively.

Folder VS2003 has the same Visual Basic .NET samples as in folder VS2002,
except that the samples were converted to run under Microsoft’s Visual Studio
.NET version 1.1 (also known as Microsoft’s Visual Studio 2003).

You will notice that Folder VS2003 does not contain any COBOL .NET code
samples. At the time of this writing, Fujitsu’s current version (1.1) of NetCOBOL for
.NET is fully compatible and integrates with Microsoft’s Visual Studio .NET version
1.0, but not Microsoft’s Visual Studio .NET version 1.1. Be sure to check the
NetCOBOL Web site (http://www.netcobol.com) for the latest news of a compatible
NetCOBOL for .NET release from Fujitsu.

Who This Book Is For

This book was written primarily for intermediate to advanced mainframe pro-
grammers who are seeking guidance toward converting/reforming8 to the “other
side.” Additionally, those seeking to remain on the mainframe and extend their
technological reach across platforms will also find this book very valuable.

Although most (if not all) of the discussion in this book speaks as though your
decision to leave the mainframe is imminent, I do realize that there are still pro-
duction applications to be maintained. After all, you do want to leverage your
assets, and you will not complete a successful transition overnight.

My quandary is that I have seen what it is like on the other side and the grass is
greener. Once you are bitten by .NET, it will be difficult to approach your legacy

8. Converting, reforming, transitioning—it’s all the same. You get the point.

0481ch00cmp3.fm Page xxxvii Thursday, March 13, 2003 4:19 PM

Introduction

xxxviii

mainframe development with the same zeal and enthusiasm as before. My guess is
that once you immerse yourself into .NET, you will find it more and more difficult
to mentally switch back and forth from one platform to the other. Eventually, you
will choose one platform over the other, and this book that you are holding in your
hands will serve as your guide to make this choice a lot less confusing.

The ideal reader is someone who is already proficient in any of the following:

• Batch COBOL programming language

• Interactive online CICS screen development

• Batch or online COBOL database programming using DB2

The only other requirement is that you are genuinely interested in learning
about the .NET Framework and .NET development tools. You should be prepared
to commit and prioritize to allow for dedicated study and practice time.

NOTE Reforming from the mainframe COBOL-oriented world is a sig-
nificant accomplishment. A successful transition over to the .NET
world requires that you embrace this new technology wholeheartedly.
You will need to work hard, and the reward will reflect the amount of
effort that you invest into this endeavor. Buying this book is one big
step in the right direction.9

I’ve been there. I even straddled the fence (between the mainframe and the
“PC”) for a while. Eventually, I crossed over and proceeded to pursue the PC tech-
nologies with a relentless hunger and passion. When I first crossed over, I
compared the new PC wilderness I entered to the “wild, wild West.” I ended up
wasting a lot of time and money trying to figure out what to learn first. I just
needed some direction and a productive perspective. This book will be your time-
saving guide. With guidance, your programming background will provide the
foundation that will really make the big difference. I will go as far as saying that my
mainframe foundation has better prepared me for this latest transition
opportunity: the .NET transition. As a former mainframe programmer, that is your
advantage as well.

Allow me to remind you (as I reminisce) that we mainframe programmers
were groomed in an environment that has matured and continues to advance to
this day—an environment that recognized the value of time-tested methodol-
ogies, standards, and disciplines. We took for granted that the old-timers were

9. I know, I know, a shameless plug.

0481ch00cmp3.fm Page xxxviii Thursday, March 13, 2003 4:19 PM

xxxix

Introduction

always there to serve as our mentors and that we could always pick up an IBM
tome/manual for the “last word” on resolving a best practice debate. We looked at
security mostly as something that kept us from accidentally editing production
files, not something that protected us from faceless viruses.

The world has changed. The .NET Framework and VS .NET is part of that
change . . . and so are you.

Chris Richardson
Richardson@eClecticSoftwareSolutions.com

0481ch00cmp3.fm Page xxxix Thursday, March 13, 2003 4:19 PM

29

CHAPTER 2

What Is .NET?

Defining and Connecting the Dots

In this chapter

• Covering the essentials of .NET programming

• Exploring the various ways to access data using .NET

• Reviewing the use of .NET to interface with the user

• Introducing advanced .NET technologies

• Understanding the roles of marketing and planning for .NET

T

HIS

CHAPTER

MARKS

 a significant milestone. You are now one quarter of the way
into Part One of this book. Why is that a

significant

 milestone? It just happens that
Part One (“The Mainframe Paradigm Shift”) focuses on preparing you for your
.NET retraining effort. Therefore, you have progressed a quarter of the way toward
your retraining preparation. So, congratulations! Now, what will you need to do to
complete your

preparation? Well, that is where this chapter comes in.
This chapter will provide you with a full definition of .NET. While revolving

around the question of “What is .NET?”, I will discuss several answers to that
question. The .NET definitions will include everything from the basic pro-
gramming aspects of .NET and the new .NET development tools to new .NET
concerns centered on XML and Web services. To finish the chapter off, you will
stretch your view of .NET to even include portions of the .NET platform that deal
with enterprise servers, your career, and marketing concerns.

As you have deduced, this chapter will fulfill yet another quarter of your
retraining preparation. The two chapters that follow this one (Chapters 3 and 4)
will complete the remaining half of your retraining preparation. The four
chapters in Part One of this book will have fully presented to you the mainframe
paradigm shift.

0481ch02cmp2.fm Page 29 Tuesday, February 25, 2003 9:38 AM

Chapter 2

30

NOTE

This chapter is designed to introduce you to the scope of. NET,
and it does not contain any code samples. Part Two of this book pro-
vides you with hands-on programming examples. There, you will find

an ample supply of programming code samples.

Putting the .NET Question into Perspective

Instead of asking “What is .NET?” suppose for a moment that circumstances were
reversed. Someone (aware of your impressive mainframe background) asked
you, “What is mainframe programming?” In an attempt to give a full answer,
would you start by telling the person about the collection of programming lan-
guages available from which to choose? Perhaps you would go into detail
discussing the choices of user interface technologies. As you know, your answer
would be terribly incomplete if you did not explain the various data access tech-
nologies, the Job Entry Subsystem (JES), and the development environment.
Obviously, there is more—a lot more. Therein lies my point with this analogy: The
world of .NET is also huge.

So, how do you get your arms around something this huge, this encom-
passing? Well, have you ever heard the saying “You eat an elephant one bite at a
time”? To answer the question

“What is .NET?” let’s take that same approach. While
staying at a rather high level, I’ve divided the topic of .NET (the “elephant”) into the
following “bites”:

• Programming Essentials with a .NET Language

• Accessing Data the .NET Way

• Interfacing with the User Using .NET

• Understanding Advanced .NET Technologies

• Marketing and Planning for .NET

In the following sections, where appropriate, I’ve included Cross-Reference
notes to later chapters in the book. In these cases, you’ll find that specific chapters
cover the .NET topics in much more depth. For now, in this chapter, I present a big-
picture view while defining .NET. So, let’s get started.

0481ch02cmp2.fm Page 30 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

31

Programming Essentials with a .NET Language

In this section, I discuss .NET programming languages, the .NET development
environment, and the core underlying .NET technologies. Of course, this dis-
cussion will begin our efforts to answer the question of “What is .NET?” Some
people might expect that coverage of programming essentials alone would be suf-
ficient to help define .NET. As you will see, it is easy to understand why some have
that expectation.

CROSS-REFERENCE

The topics in this section are further discussed in

Part Two of this book.

This section explains how .NET qualifies as all of the following entities:

• Programming language choice

• Programming language support

• Development environment

• Collection of class libraries

• Virtual machine and runtime

• Object-oriented technology

.NET Is a Programming Language Choice

That’s right, you have a chance to choose your .NET programming language. You
make this language choice by selecting your specific .NET compiler. You can
actually refer to a given language compiler as a .NET type of language compiler.
However, to be technically correct, you would use other phrases such as “the lan-
guage compiler supports the .NET Framework” and “the language is

managed.

”
Later, in this same “Programming Essentials with a .NET Language” section,
I discuss the .NET Framework and what it means to be managed.

According to Microsoft, there are about 20 .NET language compilers. This
count includes those compilers provided by Microsoft and other compilers

0481ch02cmp2.fm Page 31 Tuesday, February 25, 2003 9:38 AM

Chapter 2

32

developed by other software vendors (partners). A few of the .NET programming
language compilers provided by Microsoft are as follows:

• Visual Basic .NET

• Visual C# (pronounced “C sharp”) .NET

• Visual J# (pronounced “J sharp”) .NET

• Visual C++ .NET

Among the list of partners, one in particular stands out (in my eyes

1

). Let the
history books record that Fujitsu Software is the first vendor (and the only
vendor for now) to come forth with a .NET compiler for COBOL. As mentioned
in Chapter 1, this particular compiler version product is called NetCOBOL for
.NET. For all reformed COBOL developers, this decision by Fujitsu Software to
jump onboard (teaming up with Microsoft) will stand to be a critically valuable
one. Therefore, when you do .NET development, you actually have choices related
to the language syntax and language compiler with which you develop.

...

An Opportunity to Choose

Recall that the mainframe offered several popular programming language
choices for business programming: COBOL, assembler, Easytrieve, and Dyl280,
to name a few.

2

Each of these mainframe languages had specific advantages over the others.
Some of those advantages related to design and compile-level characteristics. In
the case of Easytrieve and Dyl280, compilation (or rather, the lack thereof) was
even an issue.

Fortunately, in the world of .NET, a language that is said to be a .NET language is
able to stand shoulder to shoulder with any other .NET language. In other words,
as far as functionality and performance is concerned, one .NET language does

...

not have a clear advantage over another.

1. No offense intended to those who share a passion for other languages such as Fortran, Pascal,
and so forth. If it is any consolation, even those languages (Fortran, Pascal, and others) have
.NET compilers built (or being built) to .NET-enable them.

2. Using the words “Easytrieve” and “Dyl280” in the same sentence with the words
“programming” and “language” may be a questionable approach. Later, in Chapter 4, you
will see that the Web/Windows world has continued the tradition (as the mainframe world
did) of loosely using the word “language” to describe various technologies.

0481ch02cmp2.fm Page 32 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

33

Because the .NET development environment is designed such that languages
are “neutralized,” performance is not a criterion; in theory, all the languages will
perform well. That being said, you may tend to make your .NET language choice
based on personal preference. However, you should take many other things into
consideration. Suffice it to say that whether your preference is Visual Basic,
COBOL, C++, or even Java, there is a comparable .NET language compiler waiting
for you.

CROSS-REFERENCE

Chapter 5 covers .NET language choices in

further detail.

.NET Is Complete Programming Language Support

The previous section emphasized the availability of .NET as a language choice.
Now, once you

do

 select a .NET language (or languages), you will notice that your
chosen .NET language has all of the normal language elements (i.e., conditional
logic, loops, case statements, comparative operators, and so on) that you would
expect of

any

 programming language.

3

 In that way, programming on the .NET
platform becomes comparable with the legacy mainframe COBOL programming
that you have (presumably) done for some time.

During your legacy mainframe development experience, you have likely used
COBOL (and other languages) to implement your business rules using these
normal language elements. Well, in .NET you will look to these familiar elements
and concepts (or language features) to implement your business logic and presen-
tation routines. Granted, the syntax will vary from one .NET language to the next.
Nevertheless, you will find that these basic programming elements are there still.

CROSS-REFERENCE

Chapter 6 is devoted to the “nuts and bolts” of

.NET programming.

3. This is at least true for each of the .NET languages that I discuss. Chapter 6 covers this topic in
more depth.

0481ch02cmp2.fm Page 33 Tuesday, February 25, 2003 9:38 AM

Chapter 2

34

.NET Is a Development Environment

In the mainframe world, you were accustomed to having an actual environment in
which to develop your software. One mainframe tool comes to mind: Interactive
System Programming Facility (ISPF). Some of you may have had the misfortune
of working in mainframe environments where other products were in use—
competing products that looked like and worked like ISPF (sort of). At any rate,
you had a development environment. In this mainframe environment, you had an
editor. Additionally, you had the ability to construct and compile in ISPF.

Whether you were doing batch programming or online programming, you
typically did (almost) everything within this same environment. There were some
exceptions—times when you left ISPF for certain tasks. Nevertheless, for the most
part you leveraged the submenus on ISPF for your development needs. In that
sense, you can say that ISPF (and products like it) represented an “integrated
development environment.”

Well, you guessed it, there is an

integrated development environment

 (IDE) in
the world of .NET. Microsoft has a product called Visual Studio .NET (VS .NET). In
short, it is an awesome tool. In this IDE, you design, edit, compile, and test your
programs. As in the case of the mainframe, there are times when you will work
outside of VS .NET. Over time, vendors will attempt to create competing devel-
opment environments. Only time will tell which one will rise to become the
preferred IDE. For now, Microsoft’s VS .NET is easily your .NET IDE of choice.

CROSS-REFERENCE

You will explore the VS .NET tool in great depth in

Chapter 5.

.NET Is a Collection of Class Libraries

Imagine that you’re developing a COBOL program on the mainframe. Perhaps you
have a group of mainframe partitioned datasets (PDS) that make up an extensive
library of copybooks, utilities, subprograms, and software routines. Let’s say that
this reusable software library has been proven bulletproof, so much so that you’ve
come to rely on this library and you often reuse selected PDS members.

Now, add on top of all of this that you chose to leverage the inherent COBOL
Report Writer module and internal COBOL SORT features. Obviously, your
intention would be to maximize any plumbing that the COBOL compiler provided

0481ch02cmp2.fm Page 34 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

35

(that you may have a need for) and maximize any reuse opportunity that the
reusable software library offered.

Well, with this mainframe analogy I have just about described the function-
ality of Microsoft’s .NET Framework. However, to really be fair, I would have to take
this imaginary reusable library and multiply it by a factor of 4,000. The .NET
Framework contains several thousand reusable software

pieces.

 Regardless of the
.NET language that you happen to use, the full .NET Framework is available to you.
The more that you leverage (reuse) the .NET Framework, the better off your .NET
development experience and resulting .NET application will be.

CROSS-REFERENCE

Although selected portions of the .NET Framework
will appear in almost every chapter in this book, you will focus directly

on the .NET Framework in Chapter 7.

.NET Is a Virtual Machine and Runtime

Suppose for a moment that I asked you to define the mainframe’s Job Entry Sub-
system (also known as JES, JES2, or JES3). You might explain JES in this way: You
submit your batch programs in the form of Jobs to the operating system. The oper-
ating system in turn hands your Jobs to JES for execution. JES then manages the
priority execution of your Jobs. Following execution, JES handles the purging of
your Jobs from the operating system. So, what does this have to do with defining
.NET and answering the question “What is .NET?”

Well, sitting on the bottom of the entire .NET world is a foundation, an engine
referred to as the

common language runtime

 (CLR). The CLR manages the fine
details of what your program is doing, in much the same way that JES manages
your Jobs. As JES purges your Jobs from the operating system, the CLR might purge
your software objects from memory. You could say that the CLR is a micromanager
of sorts. As JES is a major piece of system-level software, the CLR is an equally
major piece of system-level software.

CROSS-REFERENCE

Chapter 8 discusses the CLR in detail.

0481ch02cmp2.fm Page 35 Tuesday, February 25, 2003 9:38 AM

Chapter 2

36

.NET Is an Object-Oriented Technology

The emphasis on the .NET Framework earlier in this chapter should also be
applied to this topic of object orientation. Putting the two together will lead you to
the creation of more maintainable and reusable components.

...

Good Design Practices Are Still Needed

For the reformed mainframe programmer, moving

toward

 the object-oriented
software development model means moving

away

 from the following software
development models:

4

• Structured

• Procedural

• Top-down

• Spaghetti

Of course, well-seasoned developers (like us) have only developed applications
using the structured development models. So, spaghetti code is a thing of the
past, right?

Wrong. Although .NET is many things, it is not a panacea. As it turns out, even
object orientation will not prevent developers from writing spaghetti code.
However, fully leveraging all that .NET has to offer

will

 encourage good
program design. So, as you start writing great .NET applications using the new
object-oriented development methodology, remember that design/code reviews

...

and quality assurance processes continue to offer value.

In the world of .NET, you will be working with objects: Everything is an object.
In your object-oriented program, you will create, reference, modify, and pass
objects. After you understand the world of object orientation, you will prepare
yourself to create maintainable, robust, and scalable applications. You will strive to
create efficient code, and you will even learn not to create memory management
problems in your application.

That’s right, the concerns of memory management still exist. The concerns of
managing memory will feel painfully familiar to the advanced mainframe Cus-
tomer Information Control System (CICS) programmer who has worked with the
GETMAIN and FREEMAIN storage commands. In addition, the phenomenon

4. This, of course, may not apply to those (few, relatively speaking) of you who have already
begun object-oriented COBOL development on the mainframe.

0481ch02cmp2.fm Page 36 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

37

referred to as “memory leak” is familiar to some advanced CICS mainframe pro-
grammers (like yourself). The good news is that .NET has implemented a solution
to help developers in the area of memory management.

You will be introduced to this .NET-implemented feature, the garbage col-
lector (GC), in Chapter 8. The GC will do some of what the mainframe FREEMAIN
command did and more. As I mentioned earlier, in .NET everything is an object.
The GC is just one aspect of what .NET offers to assist you in managing objects.
Learn object orientation, and then prepare to work with .NET objects extensively.

CROSS-REFERENCE

I discuss the topic of object orientation in
Chapter 4 in detail. In Chapter 9, I discuss object orientation in even

more detail as it applies directly to the coding samples.

Sure, there are objects and the .NET Framework, but what about data? You
were just about to ask that question, right? Eventually, you

are

 going come across
the need to read and/or write data. As I discuss in the next section, the .NET
platform has great support for accessing data.

Accessing Data the .NET Way

I must admit that this is probably one of my least favorite topics because it clearly
flags the departure from using Job Control Language (JCL). That’s right, after all of
these years of using JCL on the mainframe for most of your data needs, along
comes .NET. So, for the reformed mainframe programmer, .NET is a fond farewell
to JCL.

CROSS-REFERENCE

Part Three of this book further explores the topics

presented in this section.

This section discusses using .NET to get data in the following ways:

• Without the help of JCL

• From a relational data source

• Described with XML

0481ch02cmp2.fm Page 37 Tuesday, February 25, 2003 9:38 AM

Chapter 2

38

Getting Data Without the Help of JCL

As you know, on the mainframe JCL is used for many things, not just data access.
JCL has been there for us through the years, providing a way to allocate the
resources needed by our programs. Nevertheless, in the average mainframe JCL
structure (Job), the data definition (DD) statements account for well over half of
the JCL statements used. So, I repeat, it is time to say good-bye to JCL. Yes, as part
of the package of your

reformation

 away from the mainframe and into the .NET
world, JCL is no longer a tool available in your arsenal. Period.

Now, here is the good news: .NET provides several ways to access data (and
allocate other resources). Each of the available ways has a specific strength. As you
learn about these approaches, you will discover that you will have a preference for
one approach or another, depending on your needs. On the mainframe, you used
one approach for regular sequential (Queued Sequential Access Method, or
QSAM) files and a different approach for Virtual Storage Access Method (VSAM)
files. By the way, for you, QSAM and VSAM files have joined JCL on the fond
farewell list.

OK, before I upset a few people: Yes, I should have said QSAM and VSAM,

as we
have known them.

 First, the text files that you will work with on the Windows
platform will remind you of mainframe QSAM files. Second, some vendors have
created very useful tools that run on the Win32 platform to create indexed files.
These indexed files behave similarly to mainframe VSAM files. For example,
Fujitsu Software has a Win32 product called COBOL File Utility that will create an
index for your Win32 text file. Granted, with this Win32 index file, you do not have
all the power of a traditional mainframe VSAM file, but the Win32 file

is

 indexed.

CROSS-REFERENCE

Chapter 10 introduces a new perspective on data

and covers several .NET tools for basic data access.

Obtaining Data from a Relational Data Source

Although a relational data source isn’t your

only

 choice for data access, it certainly
is one of your choices. As it turns out, using relational databases in Windows and
Web applications (and on .NET) is extremely popular. In Chapter 11, I discuss not
only the actual coding concerns, but also the use of the SQL Server basic adminis-
trative tools.

On a similar note, Microsoft’s SQL Server isn’t your

only

 choice of relational
data source system. There are other good products on the market (e.g., Oracle,

0481ch02cmp2.fm Page 38 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

39

Microsoft Access, and so forth). Nevertheless, in this book, you will use Microsoft’s
SQL Server (currently SQL Server 2000) for your database-related samples.

For those of you who have worked with IBM’s DB2 RDBMS on the mainframe,
you will feel right at home with Microsoft’s SQL Server 2000. Well, sort of. The
Structured Query Language, or SQL (now Transact-SQL, or T-SQL), is virtually the
same as the SQL used to access DB2. You will realize the learning curve when you
start looking around for some of the mainframe tools such as DB2 Interactive
(DB2I), SQL Processor Using File Input (SPUFI), and Query Management
Facility (QMF).

Working with SQL Server 2000, you will have a new set of tools to learn, namely
Query Analyzer and Enterprise Manager. You can be certain that eventually you
will need to write a database application. Therefore, time spent mastering these
tools is time spent wisely.

CROSS-REFERENCE

I further explore the topic of T-SQL in Chapter 3.
Then, to smooth out the learning curve for relational data sources,
I discuss SQL Server 2000, along with a new set of related tools, in

Chapter 11.

Getting Data Described with XML

As mentioned in Chapter 1 during the discussion of the J4 committee members’
activities, practically every software vendor is using XML in one way or another.
Well, so is Microsoft. But to what extent? Let’s just say that XML is to .NET as blood
is to the human body. Therefore, it is appropriate to use this topic to help answer
the question “What is .NET?”

With XML, you will be accessing data. Specifically, you will find yourself
describing, reading, and writing data with XML. You will be amazed at the various
ways in which XML is used and can be used throughout the .NET platform. Gen-
erally, you can look at XML (especially XML Schemas) as a way to describe your
data, much as you would use a mainframe COBOL copybook. Additionally, when
you are writing (and reading) data in your .NET application, .NET makes it very
convenient to write your data in the format of XML. You will even find that all of
your .NET configuration concerns will be addressed using XML. XML truly runs
through .NET inside and out. As you dig deeper into .NET (and XML), you will
become more comfortable working with XML. You will quickly grow to view it as
just another tool/standard to help you with your data concerns.

0481ch02cmp2.fm Page 39 Tuesday, February 25, 2003 9:38 AM

Chapter 2

40

CROSS-REFERENCE

I expand on the topic of XML in Chapter 4. In
Chapter 12, I further discuss XML in the context of describing and han-

dling data.

Whether data is structured with the help of XML or a relational database, or
accessed with ADO.NET (or any of .NET’s innovative approaches), someone will
want to see that data. In fact, a user will typically want to interact with your appli-
cation and any data that is exposed. I discuss this aspect of .NET in the next
section. As you continue through the chapter, perhaps you can appreciate (even
more) that defining .NET

is

 a significant undertaking.

Interfacing with the User Using .NET

In your previous career life, prior to your move toward

reformation,

 you created
user interfaces. Perhaps you used the Customer Information Control System
(CICS) or the Interactive System Programming Facility (ISPF) to design and build
useful screens. These screens provided the “face” in the word “interface.” Welcome
to the .NET world. You now have a new set of .NET tools for creating your graphical
user interfaces (GUIs). Also, with .NET you will be creating nongraphical

“program interfaces.”

...

The User Is Still Always Right!

Regardless of the platform (mainframe or Windows/Web), all of the same “inter-
face” design considerations apply. You will still want to clearly identify your target
user group (those users who will interface with your application). Your interface
should provide targeted users with the most pleasurable (hassle-free) experi-
ence. Although the term “user-friendly” may sound old-fashioned, to the user
community this word is as fresh as ever. In some cases, you may find that the
Windows/Web users are more demanding (remember, they do have a PC on their
desk). In other cases, you may find just the opposite (with users being willing to
do more on their own). The point being, you should learn the new .NET tools for
developing application interfaces and remember to allow some time to under-

...

stand the needs and expectations of your application’s target audience.

0481ch02cmp2.fm Page 40 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

41

Going forward with the “What is .NET?” question, this section discusses .NET
in the following contexts:

• Windows, Web, and XML Web services development

• Use of a Toolbox during development

• State and event management

• Report creation and information delivery

• Deployment improvement

CROSS-REFERENCE

Part Four of this book further discusses the topics

in this section.

.NET Is Windows, Web, and XML Web Services Development

This section explores a few additional .NET definitions that I have come across.
These are my favorite so-called .NET definitions. Why? Because early on I recall
using each of them myself.

.NET Is Windows Development

Windows programming on the .NET platform is an exciting sandbox to play in.
Though the Windows Form may not get as much attention as its cousin the Web
Form, Windows programming is more alive than ever.

Although you were able to develop Windows applications with previous ver-
sions of Visual Basic and Visual Studio, your development experience just got
(much) better. For example, your .NET desktop applications can now leverage the
full power of the .NET Framework. On top of that, you can now easily deploy
Windows and desktop applications over the Internet directly to the remotely
located user. Make sure to spend some time in the area of creating great appli-
cations for the desktop.

0481ch02cmp2.fm Page 41 Tuesday, February 25, 2003 9:38 AM

Chapter 2

42

...

Portable Devices Have Windows

You may find yourself developing applications for portable devices—not just
portable computers, but also personal digital assistants (PDAs), mobile phones,
and wristwatches. In other words, .NET, when combined with the .NET Compact
Framework and Smart Device Extensions for Visual Studio .NET, is a develop-

...

ment platform for portable devices.

Windows development with .NET is a broad and exciting area to be in. Some
developers will even include Microsoft Office objects (Word, Excel, and so forth) in
their application solutions. In addition, collaborative workflow–type applications
are gaining popularity. Although these solutions were possible prior to the
existence of .NET, the enhancements that .NET brings to the table will make these
types of implementations that much more attractive. Use .NET to build Windows
applications—it is all possible.

.NET Is Web Development

In the previous section, I mentioned that Web Forms tend to get a lot of attention.
As the Internet is very popular, the technologies used to create Web sites should
follow that popularity. Becoming proficient in this area will have you learning
about ASP.NET and HTML, along with many other technologies. If you have built
mainframe CICS applications, ASP.NET and HTML will reintroduce you to many
familiar concepts. You will find that the learning curve is not that steep, especially
with the help of the great book in your hands.5 Considering the popularity of Web
sites and Web site development, it is easy to see why this particular answer for the
question “What is .NET?” is a common one.

CROSS-REFERENCE Chapter 4 delves deeper into the topic of HTML.

5. Pardon me. Thanks.

0481ch02cmp2.fm Page 42 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

43

.NET Is XML Web Services Development

What is .NET? Here is one very popular answer: XML Web services. Notice the three
words: “XML,” “Web,” and “services.” When combined (as in “XML Web services”),
they equate to what is becoming the answer. Certainly, XML Web services are
something to get excited about. However, for our purposes here, if .NET is XML
Web services, then what are XML Web services?

Again, let’s refer back to mainframe CICS application development. In the
past, you may have created a special CICS transaction that didn’t have an actual
screen associated with it. This special CICS transaction was usually referred to as a
started task. You would use a CICS START command to execute the started task,
possibly passing data to the started task using the FROM option.

If you are familiar with this type of advanced mainframe CICS programming,
you are already acquainted with the general idea of XML Web services. Obviously,
there is more to the CICS started task technology. Likewise, XML Web services are
very powerful and require further explanation.

CROSS-REFERENCE Chapter 13 drills down further into Windows, Web,
and XML Web services development.

.NET Is Using a Rich Toolbox During Development

As you dive deeply into VS .NET, you will explore the Toolbox. You will find that
depending on the type of application that you are creating, the contents of the
Toolbox will vary. For example, a Windows application may have certain types of
controls (Toolbox contents) that are not applicable to a Web application and vice
versa. The Toolbox can contain visual controls as well as other types of controls
and components, such as data controls.

The Toolbox is designed to be exactly what its name implies: a container to
hold tools that help you build applications. In Chapter 1, I mentioned rapid appli-
cation development (RAD). Certainly, the Toolbox plays a large role in the RAD
approach, especially when a developer fully leverages the contents offered in the
Toolbox. The concept of having a Toolbox may be a bit strange at first for the
reformed mainframe programmer. The good news is, you will quickly get used to
using the Toolbox. To help get you started, I will present an analogy.

0481ch02cmp2.fm Page 43 Tuesday, February 25, 2003 9:38 AM

Chapter 2

44

Imagine that you are developing a mainframe CICS application. At some
point, you typically will create a screen for the user to interact with. This step
requires that you create a BMS mapset and all of the corresponding map infor-
mation. Now, suppose you have a PDS library available to you with several “pieces”
of BMS mapsets that you could drag and drop to help you create your CICS screen.
You can see how this type of reuse could lead to increased productivity and consis-
tency (which also promotes maintainability).

Confused? Don’t worry, you’ll understand and master this feature later.

CROSS-REFERENCE Chapter 14 explores the Toolbox and its contents in
more detail.

.NET Is Enhanced State and Event Management

Let’s go back to your mainframe CICS development to understand state and event
management. Recall the CICS DFHCOMMAREA and the CICS RETURN
command. Together, these two CICS technologies provided a way to pass data
from one execution of a transaction/program to the subsequent re-execution of
the same transaction/program. In mainframe terms, these CICS technologies sup-
ported the idea of a transaction/program being pseudo-conversational. Well, the
idea of saving this data while conducting a “conversation” with the user is a very
general hint at what state management involves.

On .NET, you could define state management as a methodical approach by
which you first identify an established conversation (being held between your
application and your users). Once you identify the conversation, you will need to
keep track of (manage) selected data specific to the established conversation
(interaction) for any given user. Fortunately, .NET has some really cool features to
make state management rather simple. You will learn more about them in
Chapter 15.

Let’s return to the mainframe CICS application analogy for a moment. To help
explain what events are, I’ll use one term: events. That’s right. Well, in all fairness,
when you do mainframe CICS development, you sometimes would use the phrase
“event and response.” You would use the Attention Identifier (AID) keys to
determine what events had taken place.

On the mainframe, do you recall that there was an event/response chart you
used when designing CICS programs to help manage the expected events and

0481ch02cmp2.fm Page 44 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

45

responses? Good—most programmers would have used this event/response chart
right after the traditional flowchart was completed. This chart and the accompa-
nying focus given to events and responses when designing a CICS program have
prepared you for the type of event management awaiting you on the .NET
platform. Even though the phrase “event management” is rarely used on the .NET
platform, events are events, whether on the mainframe or off the mainframe.
What’s more, you’ll need to manage your use of .NET’s events. It’s the same idea
and concept, yet a very different implementation, as you’ll see.

CROSS-REFERENCE Chapter 15 further discusses state and
event management.

.NET Is Report Creation and Information Delivery

I mentioned the mainframe COBOL Report Writer module earlier in this chapter.
Recall how useful the COBOL Report Writer module was (when properly used). As
mentioned before, the .NET Framework also has reusable classes to give you a big
head start in creating reports.

For those of you who equate the phrase “report generation” with something
that you get to do only when you are being punished, fear not. .NET has come to
your rescue. Report generation has returned to reclaim its rightful distinction of
being a glamorous endeavor.

With the .NET Framework objects and the built-in Crystal Reports objects,
your interest in creating reports will be recharged as you create charts, spread-
sheets, PDF documents, and other types of reports. You will see why the topic of
report generation is now starting to blend in with the phrase “information
delivery.” Once again, you can hold your head high and proudly say that you are
implementing a report generation (er, rather, an information delivery) application.
If it sounds like I am getting excited about .NET, I am—and so will you.

CROSS-REFERENCE Chapter 16 covers report generation and informa-
tion delivery.

0481ch02cmp2.fm Page 45 Tuesday, February 25, 2003 9:38 AM

Chapter 2

46

.NET Is Improved Deployment for .NET

You may have read about .NET’s new XCOPY deployment feature. Next to .NET’s
improved packaging feature, the XCOPY feature is certainly highly regarded by
many Web/Windows developers. Coming from the mainframe world, your
reaction to this feature will certainly be different from the average pre-.NET
Windows/Web developer’s reaction. You see, the deployment that takes place on
the mainframe already looks like XCOPY deployment. That is, as long as you are
talking about offline batch program deployment. If you switch over to the main-
frame CICS online type of program deployment, then, as you know, things get
rather complicated.

So, when you see your new Windows/Web developer peers getting excited
about .NET’s improved deployment approach, try to get excited with them. You
can feel fortunate that you are getting involved with the Windows/Web devel-
opment world at a time when something like .NET exists. Hopefully, you will not
have to maintain any legacy Web/Windows application. Then maybe you will
never have to find out just why .NET deployment advances really are a big deal. If
you had to live through what was called “DLL Hell,” you too would gladly include
this topic when answering the question “What is .NET?”

CROSS-REFERENCE Chapter 17 further explores .NET deployment.

Considering each subsection covered in this larger section, you may be sur-
prised to find out that the next section deals with advanced .NET technologies. Yes,
many of the previously discussed .NET explanations may have appeared
advanced. Nevertheless, these previous sections were excluded from the advanced
section. This is not to say that the topics covered up to this point are not important
or even technologically superior—they are. This simply points out how enormous
the .NET platform really is (and why it takes an entire chapter just to answer the
question “What is .NET?”). In other words, .NET is not a toy. It is a real enterprise-
caliber tool. So, please continue on to the next section to discover which topics are
actually considered advanced.

Understanding Advanced .NET Technologies

The entire world of .NET is understandable. You may have to work hard, study
hard, and practice hard. Nevertheless, it is doable. This section takes a quick look
at the following advanced topics:

0481ch02cmp2.fm Page 46 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

47

• Secure and configurable applications

• COM+ application creation

• Distributed and concurrent processing

• Interoperability

CROSS-REFERENCE Part Five of this book further discusses the topics
presented in this section.

.NET Is Secure and Configurable Applications

Security is probably one of the most discussed topics in some circles. And yes,
Microsoft has addressed this concern. So, when some people answer the question
“What is .NET?” the security features will come to mind first. Portions of the .NET
Framework you will learn about explore this topic completely. Additionally, the
Global XML Web Services Architecture (GXA) WS-Security standard also increases
the level of security available to .NET applications. You will want to learn
about both.

...

Include Security As Part of Your Web Application Design

The area of security for a reformed mainframe programmer will seem strange.
Not because the mainframe programmer does not appreciate the need and
importance of the topic, but rather because the average mainframe programmer
typically did not need to worry about security.

Even when you developed large mainframe CICS online applications, there was
an entire team of security experts that secured the environment—mainly
from internal employees. In the Web development world, your application is
potentially exposed to the outside world. So now security is more of an
application-level and enterprise-level problem, and thus your problem to share.

...

You will need to take this paradigm shift very seriously.

0481ch02cmp2.fm Page 47 Tuesday, February 25, 2003 9:38 AM

Chapter 2

48

Others will quickly refer to the enhanced, configurable features. .NET provides
a host of configuration files. These configuration files are available at the user
level, application level (both Windows application and Web application), machine
level, and system level. .NET has certainly taken the idea of being configurable to a
new level (pun intended).

For those programmers who have historically avoided hard-coding anything
in their program code, these configuration files will be welcome. During your
mainframe development, perhaps you created QSAM files and PDS members that
contained configuration information and parameter values. Now you have this set
of configuration files to take advantage of. Again, this is a similar idea and a similar
concept—it’s just the implementation that’s different.

CROSS-REFERENCE Chapter 18 discusses configuration and security
in depth.

.NET Is COM+ Application Creation

In the next chapter, I define COM+. For now, I will just mention that COM+ on the
Windows platform is similar to CICS itself. In other words, in the same way that
individual transactions and application programs are installed on top of the
system-level program CICS, you can have application-level programs installed on
top of the system-level program COM+.

There are many services that COM+ offers to an application. If you want to
leverage those services, you create a COM+ application and install your program
into the COM+ application. I will provide step-by-step instructions on how to
accomplish this.

CROSS-REFERENCE I have extended this introduction to COM+ in
Chapter 3. Later, in Chapter 19, I discuss COM+ further.

0481ch02cmp2.fm Page 48 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

49

.NET Is Distributed and Concurrent Processing

If there were such a thing as a really advanced section in this book, this particular
section would be it. That is the reason I chose to discuss these two topics in more
detail near the end of the book. Allow me to point out that both distributed pro-
cessing and concurrent processing are rather important topics. There is a
possibility that one of your future applications will need to take advantage of
either of these advanced features. That is certainly reason enough to not ignore
these advanced topics. After all, this book is designed to be your one-stop guide
to .NET.

CROSS-REFERENCE Chapter 20 explores distributed and
concurrent processing.

Distributed Processing

On the mainframe, have you ever used CICS’s Distributed Program Link (DPL)
feature? Don’t feel bad if you haven’t. Even on the mainframe, this is considered to
be an advanced topic. Nevertheless, .NET has a feature called .NET Remoting that
is similar to the DPL feature.

On the mainframe, if you had a CICS program on one CICS region that you
wanted to be able to “connect” to from a different CICS region, you would use the
DPL feature. On .NET, if you have a program on one machine that you want be able
to communicate with a program on a different machine, you would use
.NET Remoting.

You might wonder, “If this .NET Remoting feature is similar to the mainframe
CICS DPL feature, will this feature be equally obscure?” To that, I would have to
respond, “It depends.” It depends on the particular needs of your users and
the types of applications you plan on developing. Even more, it will depend on the
physical configuration of your production (hardware) environment and your
organization’s security/firewall policies. You will explore these variables and
others in Chapter 20. At that point, you will gain an understanding of when it is
appropriate to include .NET Remoting as part of your application design.

0481ch02cmp2.fm Page 49 Tuesday, February 25, 2003 9:38 AM

Chapter 2

50

Concurrent Processing

The topic of concurrent processing leads to the area of (.NET) threading. When
I discuss concurrent processing further in Chapter 20, I compare it with the CICS
features multitasking and multithreading.

.NET threading (or multithreading) is certainly a sensitive topic. There are
those who will quickly swear to its usefulness. At the same time, there are those
who have been “burned” so badly from previous attempts to use it that they will
not even enter into an open discussion of the topic. And then there are those who
are simply excited that the current version of Visual Basic (VB .NET) finally sup-
ports true multithreading.

Regardless of which camp you belong to, you will still want to know how to use
threading—properly, that is—in the event that you can justify using it. Generally
speaking, an application that has significant processing overhead may (I repeat,
may) be a candidate. If the timely completion of key portions of this same appli-
cation becomes critical (e.g., an online application that interacts with a user), this
would further support the notion of the application being a candidate for explicit
threading management. Furthermore, if you have designed your application such
that multiple threads can safely be dealt with explicitly, you just might (I repeat,
might) have yourself a candidate for .NET’s threading.

Obviously, discussing when and when not to include explicit threading in your
program design is important. Simply learning how to programmatically manage
threads is equally important. In Chapter 20, when I further discuss this topic,
I trust that you will be adequately informed, debriefed, and enlightened.

Yes, distributed processing and concurrent processing are rather advanced
topics and should be treated as such. As you learn more about them, you will be
armed with enough knowledge to use caution when traveling down the path of
“alternative” processing models. Nevertheless, you will want to know that these
features exist, just in case you ever need them.

.NET Is Interoperability

You can use multiple languages on .NET. However, what about the topic of
interoperability? What about .NET’s capability to allow modules of multiple lan-
guages to interact and coexist in the same application? With .NET, software
modules written in one language (e.g., VB .NET) can easily interoperate with
software modules written in a different language (e.g., C#). .NET is ready for these
types of situations.

In fact, interoperability is a key characteristic of .NET that seems to get a fair
amount of attention. I believe this can be attributed to the fact that when you need
interoperability, you really need interoperability. Inclusion of interoperability

0481ch02cmp2.fm Page 50 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

51

as part of your application design usually means that there was not a more
viable choice.

...

.NET Supports Component Object Model (COM) Interoperability

If you need to leverage existing Windows/Web legacy modules (i.e., COM mod-
ules), .NET’s COM Interoperability (Interop) feature supports this need. For
example, say that you have older COM objects that were written before .NET
existed. If you need it to, your new .NET application can use COM Interop to
directly integrate with the older, non-.NET module. Conversely, you can take new
.NET (managed) objects and use them in your older COM (unmanaged) environ-
ment. Remember COM Interop just in case you inherit any legacy applications

...

while you are becoming a .NET expert.

In your previous mainframe experience, you may have worked with appli-
cations written in COBOL that used subprograms written in assembler. You may
have had Dyl280 programs that depended on subprograms written in COBOL or
assembler. In other words, you are already familiar with the concept of language
interoperability. What will be new for you here is how easy interoperability is with
.NET. For example, with virtually no extra effort, you can interactively debug an
application, stepping line by line, with execution transferring from a module
written in one language to a module written in a different language. Now, that is a
great feature.

Having multiple languages to choose among is great. It’s also great that .NET
fully supports multiple language integration and coexistence. While I’m on that
topic, isn’t it great that .NET fully supports each and every technological feature
discussed so far? You’ve got to admit, there is a lot to .NET. So “What is .NET?”

Discussion from each of the previous sections has contributed to answering
that question. Continuing on to the following section, you will take a slight turn
away from this development/programming–centric focus. Although you will still
ask the same question (“What is .NET?”), you will cast your view slightly outward
toward the industry and the enterprise. You will find that these additional sides of
.NET are in fact relevant and of importance to you.

CROSS-REFERENCE You can find a good example of language interoper-
ability in Chapter 19.

0481ch02cmp2.fm Page 51 Tuesday, February 25, 2003 9:38 AM

Chapter 2

52

Marketing and Planning for .NET

How are you doing so far? By now, I believe you are getting the point that .NET is
quite huge. Remember, you are eating this elephant one bite at a time and you have
just a few more bites.

In this section, I cover .NET in the following contexts:

• Multiple editions of VS .NET

• Group of Enterprise Servers

• Career choice

.NET Is Multiple Editions of VS .NET

That’s right. Multiple editions of VS .NET are available. The good news is that
regardless of the edition you happen to get, you will still have the core portions of
.NET (VS .NET, the .NET Framework, and the CLR). What will differ are the tools,
plug-ins, and features to which you avail yourself. The following list shows the
available VS .NET editions (in the order of smallest feature set to largest):

• Professional

• Academic

• Enterprise Developer

• Enterprise Architect

For your initial training purposes, any edition should suffice—even the one
with the fewest features. Obviously, as a developer, I could care less how
Microsoft’s marketing department decided to package the product. My concern is
just to know what products are available and to clearly communicate that to you.
Then, you can approach the subject with a bit of clarity.

If you happen to come across the following .NET software versions:

• VS .NET Beta 1

• VS .NET Beta 2

• VS .NET Release Candidate

• .NET Framework SDK

0481ch02cmp2.fm Page 52 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

53

I recommend that you avoid installing them—at least they should not be your first
choice. At best, use them for training purposes only. When it comes to deploying
production code, you will want to have the retail version 1.0—any of the editions
mentioned previously. Each of the prerelease versions in the preceding list had its
time (the key word being “had”). Now that version 1.0 is out, make every effort to
get it. In the worst-case scenario, visit Microsoft’s Web site and download the free
60-day trial version.

CROSS-REFERENCE Currently, a 60-day trial version (Visual Studio
.NET Professional Edition) is available at http://msdn.microsoft.com/
vstudio/productinfo/trial.asp.

Additionally, as version 1.0 of the .NET product moves through its
maturity phases (as with any product), service packs are certain to be made
available. Periodically visit Microsoft’s Windows Update Web site
(http://windowsupdatemicrosoft.com/) for any available product updates (at a
minimum, make it a habit to apply the updates that are marked as critical).

...

The .NET Compact Framework

As I discussed earlier in this chapter in the section “.NET Is Windows Develop-
ment,” you may choose to develop applications that target devices other than
personal computers (i.e., mobile phones, PDAs, and so forth). For these devices,
Microsoft has provided an edition of the .NET Framework called the .NET Com-
pact Framework. The Compact Framework is a subset of the larger, fuller
framework that you will use for Web and Windows development.

If you are interested in developing for portable devices, install the .NET Compact
Framework (alongside the full .NET Framework) together with the edition of the
VS .NET product you happen to have. Then, using the same VS .NET product, you
have the option of developing applications for the Web, desktop, and/or
portable devices.

Microsoft uses the term “smart devices” to generically refer to all types of devices
other than traditional computers. Hence, the .NET Compact Framework soft-
ware product is accompanied by the Smart Device Extensions for Visual Studio

...

.NET software product.

0481ch02cmp2.fm Page 53 Tuesday, February 25, 2003 9:38 AM

Chapter 2

54

.NET Is a Group of Enterprise Servers

As I mentioned earlier in this chapter in the section “.NET is Multiple Editions
of VS .NET,” I generally care less (as a developer) about the apparent decisions of
Microsoft’s marketing department. I am not here to cast judgment on them and
the decisions probably influenced by them. In other words, if they want to slap the
.NET label onto all of their software products, more power to them. So, rather than
spending too much time on Microsoft’s reasoning, just accept it as fact: Microsoft
decided to name a collection of their software packages “.NET software.”

What does all of this have to do with defining .NET? Well, to return to the
original purpose here of defining .NET, consider the following list of Microsoft
.NET Enterprise Servers:

• Microsoft Application Center 2000

• Microsoft BizTalk Server 2002

• Microsoft Commerce Server 2002

• Microsoft Content Management Server 2001

• Microsoft Exchange Server 2000

• Microsoft Host Integration Server 2000

• Microsoft Internet Security and Acceleration Server 2000

• Microsoft Operations Manager 2000

• Microsoft Mobile Information Server 2002

• Microsoft SharePoint Portal Server 2001

• Microsoft SQL Server 2000

• Windows 2000 Server

What is .NET? Well, to some, the answer would include some or all of these
so-called .NET Enterprise Servers. For that reason, it is important for developers
to know what the .NET distinction means (or will mean) when used in reference to
one of Microsoft’s software products.

In my opinion, the general marketing direction seems to support the fol-
lowing: In the short term, some of the server software packages will carry the .NET

0481ch02cmp2.fm Page 54 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

55

distinction for marketing purposes only. In the long term, each of the server
software packages (eventually) will have native XML support, will run on top of the
.NET CLR, will have its object model exposed via the .NET Framework, will be
Web-enabled and Web service–enabled, and will then truly be a .NET server.

CROSS-REFERENCE The Flash animation file at the following URL dem-
onstrates the interoperation that is possible among the .NET Enterprise
Servers: http://www.microsoft.com/servers/evaluation/interop.asp.

...

Extended Learning Objective

You will want to familiarize yourself with (at least a few to start, and eventually
the majority of) the .NET Enterprise Servers. In order for you to reach (or retain)
the level of a senior developer, consider it an expectation. Start by learning each
server by name. Later, build a working knowledge of each server (particularly the
ones in use at your place of employment).

Do you think this is going overboard? Let me remind you that on the mainframe,
a senior developer was familiar with most (if not all) of the system-level software
packages that were installed, especially the ones that affected production appli-
cation development and processing. These software packages commonly came
from software vendors such as IBM, Candle, and Computer Associates (among
others). Software products such as CICS, DB2, OMEGAMON, and CA-7/11 all fall

...

into this system-level software category.

.NET Is a Career Choice

Perhaps you are wondering, “If .NET is so many things, how will I be able to
become a .NET developer? How will I be able to learn so many things and be so
many things—all at once?” Well, my reader friend, with very few exceptions, most
of the sections that you have read can represent areas broad enough for a
specialization.

The idea of specialization is not foreign to the mainframe development com-
munity. I recall working with a gentleman (years ago) who was respected for his
in-depth programming ability. Yet, he always programmed using Dyl280. That I
knew of, he did not touch COBOL or assembler—only Dyl280. I repeat, he was

0481ch02cmp2.fm Page 55 Tuesday, February 25, 2003 9:38 AM

Chapter 2

56

respected and carried quite a bit of responsibility with his Dyl280 specialty.
Granted, he probably knew of other technologies, but he was a master of the
Dyl280 product.

So, in the mainframe environment, you had some who were known as great
offline batch programmers or great CICS programmers. I am sure that you have
worked with developers that spent their entire day creating powerful REXX and
ISPF applications. You may have specialized in something yourself. Yes, occa-
sionally you came across that exceptional person, the one who was a “Master of All
Technology.” Or, more often, you came across someone who just thought he or she
was a “Master of All Technology.”

Is there anything wrong with trying to eat the entire elephant? No, be my
guest. Just do it one bite at a time. Perhaps you can start by specializing, and then
either move on to other parts of the .NET landscape as time allows or find a good
fit and stay put. What makes a good fit? Well, everyone is motivated by different
things. Some will look at what skill sets demand the highest salary. Others will look
at other factors for motivation. To each his own.

For our immediate concern, .NET is a career choice (after all, that is the
bottom line). Microsoft has a great career roadmap on their MSDN site that
I strongly recommend you examine. Whether you take the “learn everything”
approach or the “specialization” approach, this roadmap will help you on your
chosen path: http://www.microsoft.com/traincert/training/roadmap/
chart_tabloid.pdf.

.NET Is a New Microsoft Certification

Twenty years ago, I worked with a team of mainframe CICS experts that happened
to consist of independent contractors. On one occasion, I received a business card
from one of the contractors and noticed his professional certification noted as
“CDP” and “CCP.” I remember asking the expert about his certification (CDP
stands for Certified Data Processor and CCP stands for Certified Computer
Programmer).

His reply was as follows:

“Chris, this certification means nothing if you cannot do the job.
First, learn to do your job. Later, if you want a good challenge to
keep you skills sharp, go for the certification. Otherwise, the certi-
fication would help you if you needed to market yourself for a
promotion or in the case of being a contractor—for your next work
assignment.”

Therefore, I spent the next 20 years learning how to do my job.

0481ch02cmp2.fm Page 56 Tuesday, February 25, 2003 9:38 AM

What Is .NET?

57

In keeping with the “What is .NET?” theme, .NET is a new distinction for
Microsoft certification along with a new set of qualifying examinations. For appli-
cation developers, there is the new Microsoft Certified Application Developer
(MCAD) credential. For solution developers, there is the updated Microsoft Cer-
tified Solution Developer (MCSD) credential. Microsoft offers other types of
certifications as well, including the one that I have obtained (so far): the Microsoft
Certified Professional (MCP) credential.

Summary

This chapter’s goals were as follows:

• To cover the essentials of .NET programming

• To explore the various ways of accessing data using .NET

• To review the use of .NET to interface with the user

• To introduce advanced .NET technologies

• To understand the roles of marketing and planning for .NET

So, what is .NET? Throughout this chapter, I have provided several answers to
this question. I am certain that now you can appreciate the various ways that this
question can be answered. Try it. Ask several people the question. Depending on
whom you ask, you will get different answers. The great thing is that each answer is
likely to be correct. .NET really is a lot of things, including this one thing: Practi-
cally the future of Microsoft Windows and Web (also portable/mobile) targeted
development depends on it.

The Microsoft executives have gone on record as stating that Microsoft’s .NET
commitment amounts to a “betting of the farm” for Microsoft. In other words,
.NET is not just the next big thing, it is the next big thing (especially for Microsoft,
and thus for a developer community several hundred thousand strong).

In the next chapter, you will look at your retraining effort from a slightly dif-
ferent angle. You will explore (and remove) some of the common training obstacles
that recently reformed mainframe programmers are likely to come across. My
intention is to make sure that you have the proper foundation before you remove
the brakes and dive even deeper into .NET.

0481ch02cmp2.fm Page 57 Tuesday, February 25, 2003 9:38 AM

Chapter 2

58

To Learn More

The following are some suggested supplemental references to further your
retraining effort.

Magazines

.NET Magazine:
http://www.fawcette.com/dotnetmag/

Visual Studio Magazine:
http://www.fawcette.com/vsm/

XML & Web Services Magazine:
http://www.fawcette.com/xmlmag/

Web Sites

The .NET Compact Framework—Overview:
http://msdn.microsoft.com/vstudio/device/compactfx.asp

.NET Enterprise Servers Overview:
http://www.microsoft.com/servers/evaluation/overview/

.NET Training Roadmap:
http://www.microsoft.com/traincert/training/roadmap/chart_tabloid.pdf

Microsoft .NET Basics: What Is .NET?:
http://www.microsoft.com/net/defined/

Microsoft .NET Language Partners:
http://msdn.microsoft.com/vstudio/partners/language/default.asp

Microsoft Certifications:
http://www.microsoft.com/traincert/mcp/default.asp

Microsoft Developer Network (MSDN):
http://msdn.microsoft.com/

Microsoft Windows Updates:
http://windowsupdate.microsoft.com/

Visual Studio .NET Professional 60-Day Trial Edition:
http://msdn.microsoft.com/vstudio/productinfo/trial.asp

0481ch02cmp2.fm Page 58 Tuesday, February 25, 2003 9:38 AM

