
Building Client/Server
Applications with VB .NET:
An Example-Driven Approach

JEFF LEVINSON

0708_Levinson front.fm Page i Tuesday, February 18, 2003 2:48 PM

Building Client/Server Applications with VB .NET: An Example-Driven Approach
Copyright © 2003 by Jeff Levinson

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-070-8

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Mary Romero Sweeney, Eric Mashlan

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Karen Watterson,
John Zukowski

Managing Editor: Grace Wong

Project Manager: Tracy Brown Collins

Project Editor: Janet Vail

Copy Editor: Kim Wimpsett

Compositor: Susan Glinert

Artist and Cover Designer: Kurt Krames

Indexer: Kevin Broccoli

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

0708_Levinson front.fm Page ii Tuesday, February 18, 2003 2:48 PM

403

CHAPTER 10

Using Reflection

REFLECTION IS THE ABILITY of code to examine itself. The fact that code has the
ability to examine itself should come as no surprise because this ability is needed
for even such mundane tasks as figuring out the particular address of a method
that needs to be called. But Microsoft has taken the mundane and made it spec-
tacular. Microsoft has given you the ability to examine code. The fact that code has
knowledge of itself is nothing new, but just because the code knew about itself did
not mean you could get that information. And then Microsoft introduced one
more awesome ability: You can create custom attributes with which to tag your
code, and you can read these attributes using reflection. This is something unique
to the .NET Framework.

NOTE To be fair, Java has had reflection since its inception, but Java
does not give the developer the ability to create custom attributes. So
you can examine the code all you want to determine things about it, but
you cannot say anything about it.

In this chapter you will examine reflection in the context of two practical
examples. The first example demonstrates reading from attributes to determine
how to load a listview without knowing anything about the object that you are
taking data from and without knowing anything about the data itself. This project
is a small, independent demonstration. For the second example you will incor-
porate attribute classes into your application in the RegionDescription class. This
example shows you how to turn the business rules that you have created into
custom attributes and make the class truly self-aware.

TIP After developing this method of implementing business rules, my
team and I were able to save approximately 30,000 lines of code in a
recent project. We were able to quantify this by extrapolating out the
amount of code we saved after converting just a few classes to this
method. This also made maintenance of the application much simpler!

0708_Levinson.book Page 403 Sunday, February 16, 2003 8:20 AM

Chapter 10

404

...

Generating Code Dynamically

One other ability of reflection that I wanted to mention (but that I will not cover
in this book) is the ability to dynamically create code. The namespace that con-
tains the classes necessary to do this is the Reflection.Emit namespace. Dynamic
generation of code can get very complicated, so you should be careful about
using this ability, but you can do some incredible things with it. Imagine if you
have an application that performs complex calculations, but you do not neces-
sarily know what all of those calculations are beforehand. Say you have given the
users the ability to create calculations later and specify how the application pro-
cesses the calculation. To do this you might take a calculation and dynamically
generate the code needed to process the calculation, and then you gain the ability
for an application to be expanded without any additional coding by a developer!

I do not expect this ability to catch on overnight because it is a highly complex
area of development. To develop code using Reflection.Emit, you need to know a
great deal about the Microsoft Intermediate Language (MSIL). An excellent book
on the subject is Compiling for the .NET Common Language Runtime by John

...

Gough (Prentice Hall, 2001).

Understanding Attribute Classes

The root of all reflection is the System.Attribute class. An attribute class provides
information about a coding construct. So what is an attribute class? An attribute
class is a class you can create and, for lack of a better description, “attach” to any-
thing. You could attach them to a class, property, method, structure, enum, and so
on. You can designate properties that only allow an attribute class to be attached
to certain types of code structures or to everything—it is completely up to you.
And how does this help you? It allows you to describe, or give additional properties
to, a specific piece of code. Using reflection, you can examine these classes to learn
information about your code elements.

NOTE Attribute classes are passive. That is, they are compiled into the
code, and they cannot react to changes in data—they can only examine the
data after the fact. So, if you need to stop a property from being changed
unless it follows certain rules (as opposed to changing the value and mark-
ing it as a broken rule), you need to use a combination of attribute classes
and business rule checking as shown in earlier chapters.

0708_Levinson.book Page 404 Sunday, February 16, 2003 8:20 AM

Using Reflection

405

Used properly, reflection can make classes more flexible and more reusable.
It can also give you the ability to dynamically generate information based on your
classes. The example you will see first demonstrates that ability. After you have
worked through this example, you will probably find some creative ways to use
this unique and awesome ability of the .NET Framework.

Setting Up the Scenario

Let’s say, for the sake of argument, that you have a bunch of classes you want to
display in forms that contain listviews. And let’s say that you only want to write the
load routine once so that it can be used on all of the list forms in such a way that
each developer does not have to come up with their own code to create and fill that
list form. Does this sound familiar? If you have worked through the first nine
chapters of this book, you will understand this scenario. You had to code each of
the load listview routines. Now, expand that out by 20 or 30 forms…. Extrapolating

out what you have created so far, each load list routine minus comments and
empty lines, is approximately 30 lines of code. If you have 20 forms in an appli-
cation that do the same thing, that is 600 lines of code that can be removed from
the application if you implement this using reflection! And let me say that this is
only the tip of the iceberg.

CAUTION After seeing what you can do with this ability, you might be
encouraged to start doing everything with reflection—do not. Reflection
is great for certain tasks, but for other tasks it is a great deal more work
than it is worth. Also, planning these types of classes correctly takes
time. So, before you decide to start implementing attribute classes all
over the place, think about the complexity and maintainability of the
application. In general, reflection allows you to consume classes by
using generic routines that do not have to be customized for each
implementation.

The way this attribute class works is the following: You will attach an attribute
class to each property you want to display in the listview. The listview load method
looks in your class and determines which properties to add to the listview as
columns. It creates those columns and then adds the values of the object to the
listview. Once you have created this method the first time, it is a cinch to reuse it.

0708_Levinson.book Page 405 Sunday, February 16, 2003 8:20 AM

Chapter 10

406

Setting Up the Project

Create a new Windows application and call it ClassAttributeDemo. Add a new class
to the project and call it ListAttributes. On the default form that is created, add the
controls and set the properties as shown in Table 10-1.

When you are done, the form should look like Figure 10-1.

Figure 10-1. The ClassAttributeDemo application

Table 10-1. Form Controls for the ClassAttributeDemo Application

Control Name Property Value

Form1 frmList Text Class Attribute Demo

Listview lvwList View Details

Button btnComputers Text Computer List

Button btnBooks Text Book List

0708_Levinson.book Page 406 Sunday, February 16, 2003 8:20 AM

Using Reflection

407

Creating the Attribute Class

Open up the ListAttribute code module and alter the class signature so that it reads
as follows:

<AttributeUsage(AttributeTargets.Property)> _

Public Class ListAttribute

 Inherits System.Attribute

End Class

The AttributeUsage tag turns a class into an attribute class. The enumerated
value, AttributeTargets, allows you to specify what type of code block can be the
target of this class. The valid values are as follows:

All Interface

Assembly Method

Class Module

Constructor Parameter

Delegate Property

Enum ReturnValue

Event Struct

Field

In this case, you are saying that this class can only be applied to a property.
Notice also that your class inherits from the System.Attribute class. This marks
your class as an attribute in .NET.

NOTE By convention, all attribute classes should have a suffix of Attribute,
but when you associate them with a method, you do not have to specify
the word Attribute. You will see an example of this in Listing 10-2.

So, what properties would you need to do what you want to do? Well, you
really only need two properties: one to hold the header text and the other to hold
the order in which the properties get added to the listview. So, to do this, let’s add the
following properties and constructor to the ListAttribute class:

0708_Levinson.book Page 407 Sunday, February 16, 2003 8:20 AM

Chapter 10

408

Public Heading As String

Public Column As Integer

Public Sub New(ByVal Header As String, ByVal Col As Integer)

 Heading = Header

 Column = Col

End Sub

That was pretty easy—you are done with your ListAttribute class. You can see
that these classes can be easy to create. Or, as with an attribute class that you have
already seen—the SerializableAttribute class used for your BusinessErrors class—
they can be very complex.

Creating the ComputerList Class

Add a new class to the project and call it ComputerList. To keep this simple, use the
code in Listing 10-1 for the class.

Listing 10-1. The ComputerList Class

Public Class ComputerList

 Private mstrName As String

 Private mstrProc As String

 Private mdblSpeed As Double

 Private mdblPrice As Double

 Private mstrManuf As String

 Public ReadOnly Property Proc() As String

 Get

 Return mstrProc

 End Get

 End Property

 Public ReadOnly Property Speed() As Double

 Get

 Return mdblSpeed

 End Get

 End Property

 Public ReadOnly Property Cname() As String

 Get

 Return mstrName

 End Get

 End Property

0708_Levinson.book Page 408 Sunday, February 16, 2003 8:20 AM

Using Reflection

409

 Public ReadOnly Property Price() As Double

 Get

 Return mdblPrice

 End Get

 End Property

 Public ReadOnly Property Manufacturer() As String

 Get

 Return mstrManuf

 End Get

 End Property

 Public Sub New(ByVal Name As String, ByVal Process As String, _

 ByVal Sp As Double, ByVal Pr As Double, ByVal Man As String)

 mstrName = Name

 mstrProc = Process

 mdblSpeed = Sp

 mdblPrice = Pr

 mstrManuf = Man

 End Sub

End Class

This simple class has five private variables and five public read-only variables.
The variables all get set in the constructor. Next, you are going to tag three of the
properties with your ListAttribute class so that only those three properties show up
in the list. Add a List tag in front of the properties Cname, Process, and Speed so
that each property looks like that in Listing 10-2.

Listing 10-2. Three Properties with the ListAttribute Applied

<List("Processor", 1)> Public ReadOnly Property Proc() As String

 Get

 Return mstrProc

 End Get

End Property

<List("Speed", 2)> Public ReadOnly Property Speed() As Double

 Get

 Return mdblSpeed

 End Get

End Property

0708_Levinson.book Page 409 Sunday, February 16, 2003 8:20 AM

Chapter 10

410

<List("Computer Name", 0)> Public ReadOnly Property Cname() As String

 Get

 Return mstrName

 End Get

End Property

You will note that when you open the attribute tag (<) only the word List
appears in the list of available attributes not the whole class name, ListAttribute.
As mentioned previously, the word Attribute is dropped from the end of the
attribute class. That is all you need to do to set up the ComputerList class. Now
you need to create a collection class to hold a couple of values.

Create a class (in the same code module as the ComputerList class) called
ComputerListMgr that inherits from the CollectionBase class. Use the code in
Listing 10-3.

Listing 10-3. The ComputerListMgr Class

Public Class ComputerListMgr

 Inherits System.Collections.CollectionBase

 Public Sub Add(ByVal obj As ComputerList)

 list.Add(obj)

 End Sub

 Public Sub Remove(ByVal Index As Integer)

 list.RemoveAt(Index)

 End Sub

 Public Function Item(ByVal Index As Integer) As ComputerList

 Return CType(list.Item(Index), ComputerList)

 End Function

End Class

Examining Property Attributes in Code

Before getting into examining property attributes in code, you need to be aware
that you cannot set Option Strict to On.

0708_Levinson.book Page 410 Sunday, February 16, 2003 8:20 AM

Using Reflection

411

CAUTION To elaborate, you cannot set Option Strict to On in the code
module where you process the property attributes. This is because the
type of reflection you are performing requires late binding. In general,
this is not a good practice, but it is acceptable in this situation.

Now, having said that, let’s start coding. Go into the form code module and
import the System.Reflection namespace. Next, add a module-level variable for
the ComputerListMgr as follows:

Private mobjCLMgr As ComputerListMgr

Add the code in Listing 10-4 to the frmList class.

Listing 10-4. The btnComputers_Click Method

Private Sub btnComputers_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnComputers.Click

 Dim t As Type = GetType(ComputerList)

 mobjCLMgr = New ComputerListMgr()

 mobjCLMgr.Add(New ComputerList("Lightning", "P4", 1.4, 699.0, "Dell"))

 mobjCLMgr.Add(New ComputerList("Thunder", "P4", 1.7, 799.0, "Dell"))

 LoadList(t, CType(mobjCLMgr, CollectionBase))

End Sub

The first line of this code gets the type of the ComputerList class and stores it
in a type variable. Next you instantiate the computer list manager and add two
items to the collection. Finally you call the LoadList method (which you will code
next) and pass in your object type and your collection. Notice, however, that you
are passing your manager in as a CollectionBase object. In a real application, you
would probably want to overload this method to accept virtually any type of col-
lection. The reason why you are passing in generic values is so that the LoadList
method remains as flexible as possible. Listing 10-5 contains the code for the
LoadList method. Do not panic! You will get an explanation of everything line by
line after the listing.

0708_Levinson.book Page 411 Sunday, February 16, 2003 8:20 AM

Chapter 10

412

Listing 10-5. The LoadList Method

Private Sub LoadList(ByVal t As Type, ByRef col As CollectionBase)

 Dim p As PropertyInfo()

 Dim i, j As Integer

 Dim SortedL As New Collections.SortedList()

 lvwList.Clear

 p = t.GetProperties(BindingFlags.Public Or BindingFlags.Instance)

 For i = 0 To p.Length - 1

 Dim a As Object()

 a = p(i).GetCustomAttributes(False)

 If a.Length > 0 Then

 For j = 0 To a.Length - 1

 If a(j).GetType Is GetType(ListAttribute) Then

 Dim la As ListAttribute = CType(a(j), ListAttribute)

 SortedL.Add(la.Column, p(i))

 End If

 Next

 End If

 Next

 For i = 0 To SortedL.Count - 1

 Dim pi As PropertyInfo = CType(SortedL.Item(i), PropertyInfo)

 Dim a As Object = pi.GetCustomAttributes(False)

 For j = 0 To a.Length - 1

 If a(j).GetType Is GetType(ListAttribute) Then

 Dim la As ListAttribute = CType(a(j), ListAttribute)

 lvwList.Columns.Add(la.Heading, _

 lvwList.Width / SortedL.Count - 2, _

 HorizontalAlignment.Left)

 Exit For

 End If

 Next

 Next

 Dim obj As Object

 Dim myObject() As Object

0708_Levinson.book Page 412 Sunday, February 16, 2003 8:20 AM

Using Reflection

413

 For Each obj In col

 Dim cl As Object = Convert.ChangeType(obj, t)

 Dim k As Integer

 Dim lst As New ListViewItem()

 For i = 0 To SortedL.Count - 1

 Dim pr As PropertyInfo = CType(SortedL.Item(i), PropertyInfo)

 Dim strValue As String = ""

 strValue = Convert.ToString(t.InvokeMember(pr.Name, _

 BindingFlags.GetProperty, Nothing, cl, myObject))

 If i = 0 Then

 lst.SubItems(i).Text = strValue

 Else

 lst.SubItems.Add(strValue)

 End If

 Next

 lvwList.Items.Add(lst)

 Next

End Sub

So now that you think you may be lost, let’s try to straighten everything out and
explain what is going on here. The first line declares an array of PropertyInfo variables.
The PropertyInfo type holds information about—you guessed it—properties. The i
and j variables are just counter variables. The SortedL variable stores the properties
in the order you have specified they be displayed in (by way of your attribute
settings in the ComputerList class). You will see this in action in a minute. Then
you clear the listview of all of its current contents—headers and all:

Dim p As PropertyInfo()

Dim i, j As Integer

Dim SortedL As New Collections.SortedList()

lvwList.Clear

This next line calls the GetProperties method on your type variable. So this
line reads, “Get all of the properties of the type (in this case, the ComputerList
class) that are public or instance properties.” This method returns an array of
PropertyInfo types:

p = t.GetProperties(BindingFlags.Public Or BindingFlags.Instance)

0708_Levinson.book Page 413 Sunday, February 16, 2003 8:20 AM

Chapter 10

414

The next block of code continues your process of discovering information
about the properties. First, you start by looping through the array of PropertyInfo
values:

For i = 0 To p.Length – 1

The variable a is an object array to hold all of the custom attributes on the spe-
cific property:

Dim a As Object()

The GetCustomAttributes returns an object array because there may be
several types of attributes associated with the property you are examining. The
False parameter indicates that you do not want to look at any other property
values in the inheritance chain for this class:

a = p(i).GetCustomAttributes(False)

Now you check the length of the array to see if there were any custom
attributes associated with the property. Remember, for your class there are
only three: the Cname, Proc, and Speed properties:

If a.Length > 0 Then

If it does find at least one custom attribute, you loop through the array of
custom attributes:

For j = 0 To a.Length – 1

Here you check the type of custom attribute. This is the only known type in the
entire method:

If a(j).GetType Is GetType(ListAttribute) Then

If the custom attribute is of type ListAttribute, then you convert that custom
attribute into a value that you can manipulate easily by performing a ctype on it:

Dim la As ListAttribute = CType(a(j), ListAttribute)

Finally, you add the column number as the key in the sorted list, and you add
the PropertyInfo variable as the object in the sorted list so you can reference it later:

SortedL.Add(la.Column, p(i))

0708_Levinson.book Page 414 Sunday, February 16, 2003 8:20 AM

Using Reflection

415

The next block of code adds the column headers to the listview. You start by
looping through the sorted list collection and retrieving the PropertyInfo objects.
Then you get the custom attributes of the property. Next, you again loop through
the custom attributes looking for the ListAttribute. When you find it, you convert it
into a ListAttribute variable and extract the heading name. When this block of
code finishes executing, the column headers will have been added to the listview:

For i = 0 To SortedL.Count - 1

 Dim pi As PropertyInfo = CType(SortedL.Item(i), PropertyInfo)

 Dim a As Object = pi.GetCustomAttributes(False)

 For j = 0 To a.Length - 1

 If a(j).GetType Is GetType(ListAttribute) Then

 Dim la As ListAttribute = CType(a(j), ListAttribute)

 lvwList.Columns.Add(la.Heading, _

 lvwList.Width / SortedL.Count - 2, _

 HorizontalAlignment.Left)

 Exit For

 End If

 Next

Next

The obj variable helps you iterate through the ComputerListMgr collection.
Because you only know that this is a collection, you cannot use a For Next loop to
iterate through the collection. You can only use the For Each enumeration. And
because you do not know what type of object is returned to you by the collection
(remember, this is a wholly generic routine, so you cannot declare a variable of
type ComputerList anywhere), you need to use an object variable. The myObject
object array is used as a parameter to the InvokeMethod call. It is a throwaway
variable:

Dim obj As Object

Dim myObject() As Object

Finally, you get to the block of code that adds the values from the collection
into the listview. Before you start examining this block of code, think about what it
is doing. You are taking a collection that you know nothing about, that stores
objects you know nothing about, and that has properties you know nothing about
and extracting that data and placing it in a listview! This block of code, in a nut-
shell, shows exactly how powerful the .NET Framework can be when used to its
fullest potential.

0708_Levinson.book Page 415 Sunday, February 16, 2003 8:20 AM

Chapter 10

416

Let’s now look at what is happening here. The For Each statement, as mentioned
earlier, is the only way to iterate through your collection object:

For Each obj In col

The cl variable is an object that you are converting to the type you have passed
in to the method—in this case, the ComputerList type. You do this using the
ChangeType method of the Convert class. This is an example of late binding and
the chief reason you cannot use Option Strict On in this code module:

Dim cl As Object = Convert.ChangeType(obj, t)

The k variable is just a counter variable, and lst is the listviewitem you will be
adding to the listview:

Dim k As Integer

Dim lst As New ListViewItem()

Next you loop through the sorted list collection (yet again) to get the properties
for which you need to retrieve the values:

For i = 0 To SortedL.Count – 1

This line retrieves the PropertyInfo from the sorted list collection:

Dim pr As PropertyInfo = CType(SortedL.Item(i), PropertyInfo)

StrValue holds the value you retrieve from whatever property you are calling.
It is initialized to an empty string because you may have a property that was not
set and this would leave strValue with a value of nothing, which you absolutely do
not want:

Dim strValue As String = ""

This next line is the workhorse of this method. This line says the following:
“Call the method whose name is returned by PropertyInfo variable (pr). Look for
this method in the class’s collection of properties using the default binder (do not
worry about what this is right now, for more information check the MSDN docu-
mentation). Call this method on the given object (cl) with the parameters given in
myObject and store the return value in the string variable strValue.” That was a
handful to say the least. The myObject array would, if you were calling a method
that required parameters to be passed to it, contain a list of values to pass in to
the method:

0708_Levinson.book Page 416 Sunday, February 16, 2003 8:20 AM

Using Reflection

417

strValue = Convert.ToString(t.InvokeMember(pr.Name, _

BindingFlags.GetProperty, Nothing, cl, myObject))

If this is the first time through the loop, assign the value to item 0 of the sub-
items collection (because you already instantiated the lst variable previously);
otherwise, add a new subitem to the listviewitem. Finally, add the listviewitem to
the listview:

 If i = 0 Then

 lst.SubItems(i).Text = strValue

 Else

 lst.SubItems.Add(strValue)

 End If

Next

lvwList.Items.Add(lst)

Now, if you have not done so yet, run the application and click the Computer
List button. The result should look something like Figure 10-2.

Figure 10-2. List of computers displayed by the LoadList method

Now, as a test, edit the ComputerList class and change the order you would
like things to display on the screen (by changing the numeric value in the List
Attribute tag) and run the application again. Pretty neat, huh?

0708_Levinson.book Page 417 Sunday, February 16, 2003 8:20 AM

Chapter 10

418

Listing 10-6 contains the code for the BookList class and the BookListMgr
class. They are the same as what you have just done, but they have different
properties.

Listing 10-6. The BookList and BookListMgr Classes

Public Class BookList

 Private mstrTitle As String

 Private mstrAuthor As String

 Private mdblPrice As Double

 Private mstrPublisher As String

 Public ReadOnly Property Price() As Double

 Get

 Return mdblPrice

 End Get

 End Property

 Public ReadOnly Property Publisher() As String

 Get

 Return mstrPublisher

 End Get

 End Property

 <List("Author", 1)> Public ReadOnly Property Author() As String

 Get

 Return mstrAuthor

 End Get

 End Property

 <List("Book Title", 0)> Public ReadOnly Property Title() As String

 Get

 Return mstrTitle

 End Get

 End Property

 Public Sub New(ByVal sTitle As String, ByVal sAuthor As String, _

 ByVal dPrice As Double, ByVal sPub As String)

 mstrTitle = sTitle

 mstrAuthor = sAuthor

 mdblPrice = dPrice

 mstrPublisher = sPub

 End Sub

End Class

0708_Levinson.book Page 418 Sunday, February 16, 2003 8:20 AM

Using Reflection

419

Public Class BookListMgr

 Inherits System.Collections.CollectionBase

 Public Sub Add(ByVal obj As BookList)

 list.Add(obj)

 End Sub

 Public Sub Remove(ByVal Index As Integer)

 list.RemoveAt(Index)

 End Sub

 Public Function Item(ByVal Index As Integer) As BookList

 Return CType(list.Item(Index), BookList)

 End Function

End Class

Next, add the following module-level declaration in frmList:

Private mobjBKMgr As BookListMgr

Finally, Listing 10-7 shows the code for the btnBooks_Click method.

Listing 10-7. The btnBooks_Click Method

Private Sub btnBooks_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles btnBooks.Click

 Dim t As Type = GetType(BookList)

 mobjBKMgr = New BookListMgr()

 mobjBKMgr.Add(New BookList("Life With .NET", "Anonymous", 49.95, _

 "Apress"))

 mobjBKMgr.Add(New BookList("Life With Java", "Unknown", 19.95, _

 "ABC Publishing"))

 LoadList(t, CType(mobjBKMgr, CollectionBase))

End Sub

Now try running the application and clicking either button. Try changing the
methods with which the custom attributes are associated. No matter what you do,
this code will work.

0708_Levinson.book Page 419 Sunday, February 16, 2003 8:20 AM

Chapter 10

420

Implementing Business Rules Using Custom Attributes

To work through this example, you will need to complete the coding up through
the first part of Chapter 8, “Reusing Code.” When you are done with this example
you will have created a set of classes that you can reuse in your own projects to
implement business rules.

NOTE I found the basis for this code online at the Newtelligence AG
company (http://www.newtelligence.com), which built this code in C#
as the basis for a Web security interface application. I converted this
code to Visual Basic and enhanced it to fit within the framework of the
application you have been creating in this book. The code from AG New
Intelligencer was developed under a BSD-style license and is used here
with the author’s permission (Clemens F. Vasters, who can be reached
at clemensv@newtelligence.com). Although the code presented here is
different from the original code, the implementation of this idea came
from the original code.

You can extend this small amount of code, which needs to be written only
once, to fit virtually any type of business rule that you may need to create.

NOTE When I originally came across this code, I was thinking of having
a class of business rules usable by an entire organization. In this manner,
no one in an organization would ever need to build the basic set of
business rules ever again, and everyone would have access to these rules.

Creating the BusinessRules Project

You are going to create a separate project to hold all of the business rule attributes
and the validation routines. In this way you can distribute the rules to other appli-
cations. This project will be another shared project that must exist on both the
client and the server. The reason for this is that the class attributes you create will
be used in both the data-centric and user-centric objects.

To begin, open the current Northwind solution, add a new Class Library
project to the solution, and call it BusinessRules. Rename the Class1.vb file that
is created by default to Attributes.vb. Then delete the default class definition that
was created in this code module. You will create the business rule attributes and

0708_Levinson.book Page 420 Sunday, February 16, 2003 8:20 AM

Using Reflection

421

the necessary interface in this code module. You will eventually create another set
of classes to check the business rules specified by the attributes.

Add the following code to the Attributes code module:

Option Explicit On

Option Strict On

Imports System.Reflection

Namespace Attributes

End Namespace

The interface and all of the classes you create will be created in the Attributes
namespace. Before you begin adding classes, let’s review the business rules in
place in the RegionDC class:

• RegionDescription cannot be null.

• RegionDescription cannot be a zero-length string.

• RegionDescription cannot be more than 50 characters in length.

This gives you the basis for creating your first set of class attributes.

NOTE These are the only attributes you will be creating for this project;
however, in the code available for download, there are a considerable
number of additional business rule attribute classes.

Going by this list of rules, you need to create three attribute classes that check
for the following: a null value, an empty length string, and a maximum number of
characters.

Creating the ITest Interface

Before creating the classes, you need to create an interface that all of your classes
will support.

0708_Levinson.book Page 421 Sunday, February 16, 2003 8:20 AM

Chapter 10

422

NOTE You need the interface because these are all generic classes.
When you code the routines that check the rules, you will see that you
do not care what the attribute class is, only that it is a rule and that you
need to check the rule. In this way, you can continue to add additional
business rules without once having to change the way in which you
check the rules.

Add the code for the ITest interface as shown in Listing 10-8 to the Attributes
namespace in the Attributes code module.

Listing 10-8. The ITest Interface

Public Interface ITest

 Function TestCondition(ByVal Value As Object, ByRef cls As Object) As Boolean

 Function GetRule() As String

End Interface

The TestCondition method actually determines if the value has broken the
specific business rule. It accepts the value stored in the field or property and the
object in which the property resides. This is enough information for a method to
determine everything about a given class. It returns a value of True if the rule has
been broken and a value of False if the rule has not been broken. The GetRule
method simply returns a string that describes the rule in plain English. This will be
used (in conjunction with another method) to eliminate the need for all of the
code in the GetBusinessRules method.

Creating the NotNullAttribute Class

Now you can create the first business rule attribute class: NotNullAttribute. Add
the code for the NotNullAttribute class as shown in Listing 10-9.

Listing 10-9. The NotNullAttribute Class

<AttributeUsage(AttributeTargets.Field Or AttributeTargets.Property)> _

Public Class NotNullAttribute

 Inherits System.Attribute

 Implements ITest

0708_Levinson.book Page 422 Sunday, February 16, 2003 8:20 AM

Using Reflection

423

 Public Function TestCondition(ByVal Value As Object, ByRef cls As Object) _

 As Boolean Implements ITest.TestCondition

 If Value Is Nothing Then

 Return True

 Else

 If IsNumeric(Value) Then

 If Convert.ToDecimal(Value) = 0 Then

 Return True

 End If

 End If

 Return False

 End If

 End Function

 Public Function GetRule() As String Implements ITest.GetRule

 Return "Value cannot be null."

 End Function

End Class

Let’s examine this code to determine exactly what is happening. The signature
tells you that this class can only be applied to a field or property within a class.

<AttributeUsage(AttributeTargets.Field Or AttributeTargets.Property)> _

Public Class NotNullAttribute

As before, all classes that are attribute classes must inherit from the
System.Attribute class. Next, your class implements the ITest interface as will all of
your attribute classes. Now you come to the TestCondition method, which does
the real work of the class. This first check just tests to see if the value is null; if it is,
it returns True and the method ends:

If Value Is Nothing Then

 Return True

Else

The second part of this routine may or may not be controversial. Because
numbers are not nullable, when they are instantiated they are initialized with a
value of zero. If a numeric value can be a zero, you should not apply this attribute
to it because this attribute is supposed to deal with nulls and is named accord-
ingly, but for simplicity it is useful to keep it in this class. You can always create a
separate class called ValueNotZeroAttribute and add this code into it—the choice
is yours. This code checks to see if the value is numeric, and if it is, it checks to see
if the value is equal to zero:

0708_Levinson.book Page 423 Sunday, February 16, 2003 8:20 AM

Chapter 10

424

If IsNumeric(Value) Then

 If Convert.ToDecimal(Value) = 0 Then

 Return True

 End If

End If

Return False

The last method in the class, the GetRule method, simply returns what the
rule for the property is.

Creating the DisplayNameAttribute Class

Now, you have one small problem here—how do you show the property to the user
in a way that looks nice to the user? If you go by just the name of the property, it is
going to look ugly because there are no spaces and sometimes property names do
not reflect what the user sees on the screen. To overcome this you are going to add
another class called DisplayNameAttribute that will store the name for the property
you want to show the user.

Add the DisplayNameAttribute class as shown in Listing 10-10.

Listing 10-10. The DisplayNameAttribute Class

<AttributeUsage(AttributeTargets.Field Or AttributeTargets.Property)> _

Public Class DisplayNameAttribute

 Inherits System.Attribute

 Private _strValue As String

 Public Sub New(ByVal Value As String)

 _strValue = Value

 End Sub

 Public ReadOnly Property Name() As String

 Get

 Return _strValue

 End Get

 End Property

End Class

0708_Levinson.book Page 424 Sunday, February 16, 2003 8:20 AM

Using Reflection

425

Creating the NotEmptyAttribute Class

Now you will create the rule that will check to make sure that a string value is not
empty. Listing 10-11 shows the code for this class.

Listing 10-11. The NotEmptyAttribute Class

<AttributeUsage(AttributeTargets.Field Or AttributeTargets.Property)> _

Public Class NotEmptyAttribute

 Inherits System.Attribute

 Implements ITest

 Public Function TestCondition(ByVal Value As Object, ByRef cls As Object) _

 As Boolean Implements ITest.TestCondition

 If Value Is Nothing Then

 Return True

 Else

 Dim str As String = CType(Value, String)

 If str.Trim.Length = 0 Then

 Return True

 Else

 Return False

 End If

 End If

 End Function

 Public Function GetRule() As String Implements ITest.GetRule

 Return "Value cannot be a zero length string."

 End Function

End Class

Everything that is occurring in this class should be straightforward except for
the check to see if the value is nothing. This check must be made in some form or
another in every class that checks a property. After all, how can you check the value
of something if the value is nothing? Notice also how similar this is to the first
attribute class you created. The beauty of creating rules this way is that the code is
compact, easy to understand, and even easier to debug. And once you get it right
here, you never need to check it again or write code to perform the same type of
validation.

0708_Levinson.book Page 425 Sunday, February 16, 2003 8:20 AM

Chapter 10

426

Creating the MaxLengthAttribute Class

This last attribute class is substantially identical to the previous two business rule
attributes that you created. Listing 10-12 presents the code for this class.

Listing 10-12. The MaxLengthAttribute Class

<AttributeUsage(AttributeTargets.Field Or AttributeTargets.Property)> _

Public Class MaxLengthAttribute

 Inherits System.Attribute

 Implements ITest

 Private _intValue As Integer

 Public Sub New(ByVal Value As Integer)

 _intValue = Value

 End Sub

 Public Function TestCondition(ByVal Value As Object, ByRef cls As Object) _

 As Boolean Implements ITest.TestCondition

 Dim strValue As String = Convert.ToString(Value)

 If strValue.Length > _intValue Then

 Return True

 Else

 Return False

 End If

 End Function

 Public Function GetRule() As String Implements ITest.GetRule

 Return "Value cannot be longer than " & _intValue & " characters."

 End Function

End Class

This class simply checks the length of a string value to determine if it has more
characters than allowed. Notice that your GetRule method now incorporates the
value that you set into the string that is returned. In this case, the RegionDescription
property would return a rule that said, “Region Description cannot be longer than
50 characters.”

Now that you have all of the business rules in place, you can apply them to
your object.

0708_Levinson.book Page 426 Sunday, February 16, 2003 8:20 AM

Using Reflection

427

Assigning Data-Centric Business Rule Attributes

To begin, right-click the NorthwindDC references node and select Add Reference.
From the Projects tab, select the BusinessRules project by double-clicking it and
then click OK. Next, switch to the RegionDC class, expand the Public Attributes
region, and delete the public RegionDescription property. In a single move you
have eliminated 19 lines of code from your project (yes, it is at the expense of adding
all of the code for the business rule attributes, but think about it, you never need to
add them again and this is not all of the code you will delete). Expand the Private
Attributes region and change the mstrRegionDescription variable to the following:

Public RegionDescription As String

Next, go to the Save method and change the mstrRegionDescription variable
to RegionDescription. Before you apply the attributes, you have to import the
BusinessRules.Attributes namespace; once that is done you can start applying

attributes. So, add the line to perform this to the top of the RegionDC module.
Now you need to apply the attributes. Change the RegionDescription decla-

ration line so that it reads as follows:

<DisplayName("Region Description"), NotNull(), NotEmpty(), MaxLength(50)> _

Public RegionDescription As String

It may be anticlimactic, but in reality an easy-to-maintain system does not
throw many complicated surprises at you! These three tags tell your class what the
value cannot be. The DisplayName attribute tells you the human readable name
you will display to the user.

Retrieving the List of Business Rules

Before you get into retrieving the business rules, you need to make one change to
your application. You need to move your BusinessErrors class and your structErrors
structure to the BusinessRules project. The reason you need to do this is so that
your new attribute class is modular and can be used by other applications. Follow
these steps to accomplish this:

1. Add a new class module to the BusinessRules project called Errors.vb.

2. Delete the default class that is created in this code module.

3. Add a namespace in the Errors code module called Errors (this will now be
referenced by using BusinessRules.Errors).

0708_Levinson.book Page 427 Sunday, February 16, 2003 8:20 AM

Chapter 10

428

4. Cut the BusinessErrors class from the NorthwindShared Errors code module
and paste it into the Errors namespace in the BusinessRules project.

5. Cut the structErrors structure from the NorthwindShared Structures code
module and paste it into the Errors namespace in the BusinessRules project.

6. Add a reference to the BusinessRules project in the NorthwindUC,
NorthwindShared, and NorthwindTraders projects.

7. In each edit form code module, all the data-centric and all the user-centric
code modules, as well as the NorthwindShared Interfaces code module
and the frmBusinessRules module, replace northwindshared.errors and
northwindtraders.northwindshared.errors with businessrules.errors.

As you perform steps 4 and 5 of this list, you will see several errors in the Task
List. Not to worry, though—once you are through with the last step, you will not
have any errors. That was the hardest part. The next step is to add a new class code
module to the BusinessRules project called Validate. Once you have done that,
delete the default class and add the following code to the Validate class module:

Option Explicit On

Option Strict On

Imports BusinessRules.Attributes

Imports BusinessRules.Errors

Imports System.Reflection

Namespace Validate

 Public Class Validation

 End Class

End Namespace

The Validation class is the only class you are going to create in this namespace.
Now, add the GetDisplayName method to the Validation class as shown in
Listing 10-13.

0708_Levinson.book Page 428 Sunday, February 16, 2003 8:20 AM

Using Reflection

429

Listing 10-13. The GetDisplayName Method

Private Shared Function GetDisplayName(ByVal member As MemberInfo) As String

 Dim obj() As Object = member.GetCustomAttributes(True)

 Dim i As Integer

 If obj.Length > 0 Then

 For i = 0 To obj.Length - 1

 If TypeOf (obj(i)) Is DisplayNameAttribute Then

 Dim objDisplayNameAttribute As DisplayNameAttribute = _

 CType(obj(i), DisplayNameAttribute)

 Return objDisplayNameAttribute.Name

 End If

 Next i

 End If

 Return member.Name

End Function

Let’s examine what this code does, line by line. One important thing to note is
the method signature. This is a shared method because it will be called by a shared
method. In fact, all of the methods in this class will be shared methods so this class
never has to be instantiated. This provides you with immense speed benefits
(especially when you move to the user-centric classes), and because this class
maintains no state at all, it is OK to do.

The first line retrieves a list of all of the custom attributes associated with
the class member. The True parameter tells the code to retrieve all of the custom
attributes along the entire inheritance chain:

Dim obj() As Object = member.GetCustomAttributes(True)

Next, you check to see if there are any custom attributes:

If obj.Length > 0 Then

If there are, you loop through them looking for an attribute that is a
DisplayNameAttribute:

If TypeOf (obj(i)) Is DisplayNameAttribute Then

0708_Levinson.book Page 429 Sunday, February 16, 2003 8:20 AM

Chapter 10

430

If we find one, you convert it to a true DisplayNameAttribute object and you
return the value of the Name property:

Dim objDisplayNameAttribute As DisplayNameAttribute = CType(obj(i), _

DisplayNameAttribute)

Return objDisplayNameAttribute.Name

Finally, if there was no Display Name attribute found, you simply return the
name of the property. Now that you can return the display name, it is time to be
able to return the rules.

Add the code for the GetBusinessRules method to the Validate class as shown
in Listing 10-14.

Listing 10-14. The GetBusinessRules Method

Public Shared Function GetBusinessRules(ByVal cls As Object) As BusinessErrors

 Dim t As Type = cls.GetType

 Dim m As MemberInfo() = t.GetMembers

 Dim i As Integer

 Dim objBusErr As New BusinessErrors

 For i = 0 To m.Length - 1

 Dim obj() As Object = m(i).GetCustomAttributes(True)

 If obj.Length > 0 Then

 Dim j As Integer

 For j = 0 To obj.Length - 1

 If TypeOf obj(j) Is ITest Then

 Dim objI As ITest = CType(obj(j), ITest)

 objBusErr.Add(GetDisplayName(m(i)), objI.GetRule)

 End If

 Next

 End If

 Next

 Return objBusErr

End Function

This is the first routine where you access the ITest interface, so you will see the
workings of this method line by line. The method accepts an object, which is the
class you want to get the business rules from, and it returns a BusinessErrors
object. The first line retrieves all of the type information about the class. The

0708_Levinson.book Page 430 Sunday, February 16, 2003 8:20 AM

Using Reflection

431

second line retrieves all of the members of the class and stores them in an array
of MemberInfo objects:

Public Shared Function GetBusinessRules(ByVal cls As Object) As BusinessErrors

 Dim t As Type = cls.GetType

 Dim m As MemberInfo() = t.GetMembers

Next you loop through all of the members of the class and you retrieve the
custom attributes of each member (you retrieve all of the custom attributes along
the inheritance chain). This allows your inherited classes to use the business rules
of any base classes. There may be a point at which this is not desirable, though, so
you may need to modify this code to suit your particular needs. Then you check to
see if there were in fact any custom attributes retrieved from the member:

For i = 0 To m.Length - 1

 Dim obj() As Object = m(i).GetCustomAttributes(True)

 If obj.Length > 0 Then

Finally, you loop through all of the custom attributes associated with the
member. You check to see if the custom attribute implements the ITest interface,
and, if it does, you call the GetRule method on it to retrieve the rule. You also extract
the Display Name from the member and add them both to the BusinessErrors
object:

For j = 0 To obj.Length - 1

 If TypeOf obj(j) Is ITest Then

 Dim objI As ITest = CType(obj(j), ITest)

 objBusErr.Add(GetDisplayName(m(i)), objI.GetRule)

 End If

Next

Now that you have added this method, let’s implement it. In the RegionDC
class, add the following declaration:

Private mobjVal As BusinessRules.Validate.Validation

Alter the GetBusinessRules method so that it now reads as follows:

Public Function GetBusinessRules() As BusinessErrors _

Implements IRegion.GetBusinessRules

 Return mobjVal.GetBusinessRules(Me)

End Function

0708_Levinson.book Page 431 Sunday, February 16, 2003 8:20 AM

Chapter 10

432

Now, build the application, but when you go to deploy the remote assemblies,
be sure to deploy all three assemblies: NorthwindDC, NorthwindShared, and
BusinessRules. Then run the application, go to Maintenance ➤ Regions, and select
one of the existing regions to edit (or select the Add button). Then click the Rules
button, and you should see the rules screen with your three business rules. Any
changes you make to the business rules will be automatically reflected the next
time the application is compiled and run, and you never need to change the
GetBusinessRules method again.

Checking Business Rules with Custom Attributes

Now that you can retrieve the business rules, it is time to put them to their real
use—constraining data. You will eventually end up writing two different methods
to perform this task: one for the data-centric classes and one for the user-centric
classes. They are different methods because they do the task in slightly different

ways. However, you are only going to worry about the data-centric classes right now.
You are going to add a new method to the Validation class (shown in Listing 10-15).
This method is a little more involved than the GetBusinessRules method because
you have to take into account the differences between fields and properties; but
for the most part there are not a lot of differences between this method and the
GetBusinessRules method.

Listing 10-15. The Validate Method

Public Shared Function Validate(ByVal cls As Object) As BusinessErrors

 Dim t As Type = cls.GetType

 Dim i, j As Integer

 Dim bln As Boolean

 Dim objBusErr As New BusinessErrors

 Dim m As MemberInfo() = t.GetMembers

 For i = 0 To m.Length - 1

 Dim objAttrib() As Object = m(i).GetCustomAttributes(True)

 For j = 0 To objAttrib.Length - 1

 If TypeOf objAttrib(j) Is ITest Then

 Dim objI As ITest = CType(objAttrib(j), ITest)

 If TypeOf m(i) Is FieldInfo Then

 Dim fld As FieldInfo = CType(m(i), FieldInfo)

 bln = objI.TestCondition(fld.GetValue(cls), cls)

 End If

0708_Levinson.book Page 432 Sunday, February 16, 2003 8:20 AM

Using Reflection

433

 If TypeOf m(i) Is PropertyInfo Then

 Dim pro As PropertyInfo = CType(m(i), PropertyInfo)

 bln = objI.TestCondition(pro.GetValue(cls, Nothing), _

 cls)

 End If

 If bln Then

 objBusErr.Add(m(i).Name, objI.GetRule())

 End If

 End If

 Next

 Next

 Return objBusErr

End Function

The real difference in this listing is the test to determine if the member is a
field or a property. The reason for this test is that the methods for retrieving the
instance values are different for each type. This is because a property is a method,
so it does not just retrieve a value; it actually invokes the method to return a value.
You then call the TestCondition method, and if the value breaks the rule you add it
to the BusinessError method.

One thing to note about this method of validating business rules is that all of
the rules for each property will be checked as opposed to what you had before.
Before only one rule at a time was being checked and thrown as an error. So this
method provides you with a little more robust business rule handling and reporting.

...

Code Reduction Metrics

Many companies today are trying to take a cost-conscious approach to coding—
so the first question asked when faced with a new technology is, “How much
effort (read: money) will this save and how much easier is it to maintain?” If any-
one was looking for a justification to use the .NET Framework, this is it.

On average, you can assume that you will save six lines of code for every business
rule that is checked via a custom attribute as opposed to the previous method
you were using. This should be able to help you extrapolate out the cost in savings
by using custom attributes. In your RegionDC class, for example, you originally
had 20 lines of code for the public RegionDescription property, one line for the
private RegionDescription field, and nine lines of code for the GetBusinessRules.
Now we have one line of code for the public RegionDescription field and three
lines of code for the GetBusinessRules method. Thirty lines down to four is a big
improvement.

0708_Levinson.book Page 433 Sunday, February 16, 2003 8:20 AM

Chapter 10

434

A larger example is your EmployeeDC class. It has 18 properties, which have
approximately 518 lines of code devoted to the public attributes plus another 26
lines of code devoted to the GetBusinessRules method. Using reflection, you can
knock the number of lines of code down to 21—18 for the properties and three for
the GetBusinessRules method. That is 544 lines of code knocked down to just 21
lines of code.

Furthermore, your objects are now truly self-describing. Any changes you make
to your business rules are now instantly reflected when you retrieve the business
rules from the class. The code reduction plus the self-describing class means that
your maintenance costs will go through the floor. No longer do developers have
to hunt through the code looking for the rule—they just have to check the
attribute tag. Also, this reduces the number of code defects caused by bad busi-
ness rule checks. Because your business rules are encapsulated, if they are wrong
in one place, they are wrong in every place, and it will be much easier to capture
these defects and correct them.

With all of the wonderful things that reflection provides, you may be asking your-
self at this point why you saw the original method for handling business rules at
all. After all, what is the point because this is so much easier and provides so
many more advantages? The reason is that this is not a one-size-fits-all solution.
On several occasions I have had to create systems that use a rules database
because the business rules changed so quickly. In cases such as this, the objects
generally need to open up a connection to a database to read the rule information.
This is a lot of overhead and in the few tests that I have run is not well served by
the reflection model. The reason for this is that the attributes cannot be dynami-
cally changed at runtime by reading from a database. So, it is best to know both

...

methods and apply them as necessary.

There is one last change you need to make to the RegionDC class—it is a
change to the Save method. Currently, the first part of your Save method looks
like the following:

mobjBusErr = New BusinessErrors

With sRegion

 Me.mintRegionID = .RegionID

 Me.RegionDescription = .RegionDescription

End With

The change you need to make is simple. Delete the first line from the previous
code, and add the following line of code below the With block:

mobjBusErr = mobjVal.validate(Me)

0708_Levinson.book Page 434 Sunday, February 16, 2003 8:20 AM

Using Reflection

435

Now, after all of your properties are assigned, you call the Validate method,
retrieve the business errors, and continue as before.

Implement User-Centric Business Rule Attribute Classes

Checking business rules with custom attributes is a little different on the user-
centric side. The reason for this is that you check the rules one property at a time.
Not only do you still need to throw an exception when an error occurs, but you also
need to add an entry to the BrokenRules object. That is a lot more work than you
had to do in the data-centric class. Specifically, you cannot get rid of the public
properties in the user-centric class like you did in the data-centric class. However,
your job is made much easier by the presence of the BusinessBase class.

Before you modify your user-centric classes, let’s add a new method to the
Validation class. This method throws an exception on the first broken rule it
encounters. Add the method shown in Listing 10-16 to the Validation class.

Listing 10-16. The ValidateAndThrow Method

Public Shared Sub ValidateAndThrow(ByVal cls As Object, ByVal field As String)

 Dim t As Type = cls.GetType

 Dim m As MemberInfo() = t.GetMember(field)

 Dim i As Integer

 Dim bln As Boolean

 Dim obj() As Object = m(0).GetCustomAttributes(True)

 If obj.Length > 0 Then

 For i = 0 To obj.Length - 1

 If TypeOf obj(i) Is ITest Then

 Dim objI As ITest = CType(obj(i), ITest)

 If TypeOf m(0) Is FieldInfo Then

 Dim fld As FieldInfo = CType(m(0), FieldInfo)

 bln = objI.TestCondition(fld.GetValue(cls), cls)

 End If

 If TypeOf m(0) Is PropertyInfo Then

 Dim pro As PropertyInfo = CType(m(0), PropertyInfo)

 bln = objI.TestCondition(pro.GetValue(cls, Nothing), cls)

 End If

0708_Levinson.book Page 435 Sunday, February 16, 2003 8:20 AM

Chapter 10

436

 If bln Then

 Throw New Exception(objI.GetRule())

 End If

 End If

 Next

 End If

End Sub

This code is similar to what you have seen before, with the exception that
when a broken rule is encountered, an exception is thrown. Notice that it does not
specify the property that the exception is thrown on—you know what it is because
you had to pass the property into the method. Notice also at the top of the method
that you are only retrieving the information for the one property or field that you
specified, not for the whole class. That is the extent of this method; now you can
implement it in the BusinessBase class.

To begin with, modify the BusinessBase class by adding the following
declaration:

Protected mobjVal As BusinessRules.Validate.Validation

Next you need to add a method that will call the ValidateAndThrow method
and will process the results appropriately. Listing 10-17 shows the method, which
should be added to the BusinessBase class.

Listing 10-17. The Validate Method of the BusinessBase Class

Protected Sub Validate(ByVal strProperty As String)

 Try

 mblnDirty = True

 mobjVal.ValidateAndThrow(Me, strProperty)

 mobjRules.BrokenRule(strProperty, False)

 Catch exc As Exception

 mobjRules.BrokenRule(strProperty, True)

 Throw exc

 End Try

End Sub

This method is simple—it takes a property name and calls the ValidateAndThrow
method. If no exceptions are thrown, the property is set to not broken; if there is an
exception, the property is marked as broken and the exception is rethrown.

Next you need to modify the Region class; specifically, you need to modify the
public RegionDescription property. Before you do anything else, you need to add
the following Imports line to the Region.vb code module:

0708_Levinson.book Page 436 Sunday, February 16, 2003 8:20 AM

Using Reflection

437

Imports BusinessRules.Attributes

Then you need to tag the RegionDescription property with your business rule
attributes. Change the property signature to read as follows:

<DisplayName("Region Description"), NotNull(), NotEmpty(), MaxLength(50)> _

Public Property RegionDescription() As String

Note that technically you do not need the DisplayName tag here, but it cannot
hurt to have it—the choice is yours. Now that you have modified the tag, you need
to alter the Set part of the method to read as follows:

Set(ByVal Value As String)

 If mstrRegionDescription.Trim <> Value Then

 mstrRegionDescription = Value

 If Not Loading Then

 Me.Validate("RegionDescription")

 End If

 End If

End Set

All of the functionality that had been in this method is now encapsulated in
either the ValidateAndThrow method or the Validate method of the BusinessBase
class. In either case, this property was originally 28 lines of code and it is now 13
lines of code—and that is just for one property!

Summary

This chapter showed you one of the most powerful abilities of the .NET framework:
reflection. This is the ability of the Framework to examine itself and invoke things
it knows nothing about. There are virtually an unlimited number of things you can
do with this ability. You created a sample application to dynamically load a listview
from an unknown object with unknown column headers and unknown information.
Most importantly, you created a reusable business rule project that will save you
countless hours in development time, lines of code, and maintenance costs. You
implemented these rules on both the data-centric and user-centric classes and
you made a truly self-describing class.

In the next chapter you will move on to one of the hottest topics in Information
Technology today: Web services. You will learn a little bit about what they are and
you will turn part of your NorthwindTraders application into a Web service. Then
you will see how to consume the Web service and publish it using Microsoft’s .NET
Server 2003 Universal Description, Discovery, and Integration (UDDI).

0708_Levinson.book Page 437 Sunday, February 16, 2003 8:20 AM

