
.NET System Management
Services

ALEXANDER GOLOMSHTOK

0598FM 3/4/03 5:39 PM Page i

.NET System Management Services

Copyright © 2003 by Alexander Golomshtok

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-058-9

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Yefim Nodelman
Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Martin Streicher,
Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Nicole LeClerc
Copy Editor: Rebecca Rider
Compositor: Impressions Book and Journal Services, Inc.
Indexer: Valerie Perry
Cover Designer and Illustrator: Kurt Krames
Production Manager: Kari Brooks
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

0598FM 3/4/03 5:39 PM Page ii

CHAPTER 1

.NET Framework and
Windows Management
Instrumentation

OVER THE LAST TWO DECADES, the remarkable evolution of the computer and net-
working technologies has changed our perception of computing forever. The
days of monolithic mainframe installations and running operating systems,
utilities, and applications from a single vendor are long gone, and simple,
straightforward system architectures were forgotten long ago. The rapidly grow-
ing popularity of the distributed computing model has turned the vast majority
of computing infrastructures into an extremely complex mix of dissimilar hard-
ware devices that are interconnected by spiderwebs of local and wide area
networks and are running software from thousands of different vendors. Besides
elevating the complexity of the computer installations to a brand new level, this
overwhelming technological progress has materialized the most horrible night-
mares for many system administrators by making computer and network
management painfully challenging.

The issue of system management is quite complex, even for a centralized
homogenous computing environment where all software elements share com-
mon operational data and expose uniform management interfaces. A distributed,
multivendor installation, however, is simply impossible to manage unless a
uniform standard for presenting the operational and statistical data exists and
a common protocol for managing the resources is available. That is why, over the
years, numerous system engineers have attempted to standardize system man-
agement techniques.

In the late 1980s, the Simple Network Management Protocol (SNMP) was
designed to address the issue of multi-vendor network management. However,
the initial SNMP specification failed to address all the critical network manage-
ment needs; as a result, SNMP needed a few enhancements. In 1991 the Remote
Network Monitoring specification (RMON) was released to overcome SNMP’s
local area network management limitations. In 1993 an enhanced version of
SNMP, widely known as SNMPv2, was released and was subsequently revised in
1995. SNMPv2 augmented the original SNMP specification to provide extended

1

0598ch01 3/4/03 4:54 PM Page 1

functionality and enhanced its performance. Finally, in 1998 SNMPv3 was issued,
primarily to deal with the security capabilities of SNMP and to define the overall
architecture for future enhancements. Today, SNMP remains the most popular
standard for managing TCP/IP-based internets.

In 1994, another standard, the Desktop Management Interface (DMI), was
developed in an attempt to deal with the consequences of the PC revolution. The
first DMI specification (DMI v1.0) outlined the ground rules for hardware and
software manufacturers; these rules allowed manageable networked desktop sys-
tems to be built. In April 1996, this specification was extended to offer remote
manageability in networked environments. This extended DMI specification,
known as DMI v2.0, was adopted as the industry-standard, and it included a set
of operating system-independent and protocol-independent application pro-
gramming interfaces (APIs) that provided a uniform desktop management
framework.

Although SNMP, DMI, and other standards for management instrumentation
are a major step forward in the field of system management, they still fail at com-
pletely solving the problem. Perhaps the main limitation of these standards is
their fairly narrow specialization—each offers just a partial solution and does not
provide the unified end-to-end view of the entire management domain. Individ-
ual elements or groups of elements are still managed in isolation, and there is
little or no integration between management standards and techniques; hence
we still need data duplication and specialized management front-ends.

The Birth of WBEM

In 1996 a few industry leaders—BMC Software, Cisco Systems, Compaq, Intel,
and Microsoft—set out to address the limitations of the existing management
standards and protocols by sponsoring a brand new initiative: Web-Based Enter-
prise Management (WBEM). The companies’ main goal was to develop a uniform
way to share management information and control management resources
within an entire management domain, irrespective of the underlying platforms,
networking technologies, and programming languages. In order to turn this
vision into reality, three major design principles were employed:

The Common Information Model (CIM): This uniform, platform, and lan-
guage independent model represents the managed elements in the
enterprise. In addition to covering all major aspects and areas of system
management, this model was designed to be open and extensible so that it
could describe environment and platform-specific managed elements.

2

Chapter 1

0598ch01 3/4/03 4:54 PM Page 2

The easy and seamless integration of existing management standards
such as SNMP and DMI: WBEM implementations were to allow manage-
ment information to be translated between the formats utilized by the
existing management tools and the CIM.

A standard method for accessing the management information from
a variety of distributed managed nodes over different transports: Since
the WBEM initiative came in the midst of the Internet revolution, the Web
seemed like a natural transport vehicle for sharing and controlling the
management information, hence the name Web-Based Enterprise Man-
agement.

In June of 1998, in order to achieve industry-wide acceptance and provide
an open public forum for ongoing development of WBEM technologies, the
founders of WBEM transferred the ownership of this initiative to an organization
called the Distributed Management Task Force (DMTF). DMTF, which was
founded in 1992 by a group of leading PC manufacturers, is still the industry con-
sortium that leads the development and promotes the adoption of desktop,
network, and Internet management standards.

DMTF leadership further accelerated the progress of the WBEM initiative
and ensured the wide acceptance of its first standard—the CIM specification. In
the next few years, DMTF, along with many participating companies, not only
revised and enhanced the CIM specification, but also produced numerous other
standards to describe and define uniform protocols for publishing and exchang-
ing the management information. One of the standards that deserves special
attention is the XML Encoding Specification, which allows CIM schemas to be
encoded in XML. The first draft of this specification was proposed in October
1998, and it replaced the original WBEM data publishing standard, which was
called the HyperMedia Management Protocol (HMMP).

Today, DMTF remains fully committed to promoting the WBEM technology
as a premier vehicle for accessing the management information in the enterprise
environment and lowering the total cost of ownership (TCO) associated with
computer hardware and software configuration, deployment, and maintenance.
Some software vendors, such as Microsoft and Sun Microsystems, already ship
WBEM-compliant management frameworks, and extensive interest in this tech-
nology throughout the industry indicates that many more vendors are preparing
to incorporate WBEM-based management solutions into their product offerings
in the near future.

3

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 3

Introducing the Common Information Model

The Common Information Model (CIM) is the centerpiece of the WBEM technol-
ogy. CIM is a well-defined, conceptual, object-oriented model, designed to serve
as a framework that describes all aspects of a managed environment. The man-
agement information within CIM is organized into a hierarchy of classes that
represent logical and physical elements in the enterprise. The object-oriented
modeling approach provides several benefits such as data abstraction, inheri-
tance, and polymorphism. Grouping related objects into classes based on
common properties and behavior, for instance, allows the complexity of the
model to decrease, while modularity and extensibility are promoted. Inheritance
is the ability to construct classes from one or more other parent classes so that
derived, or child, classes inherit the characteristics and behavior of the parent.
Inheritance upholds the principles of generalization, specialization, and modular
design. Finally, polymorphism is the ability of different classes within the same
hierarchy to provide specialized responses to the same external message. This
promotes extensibility and simplifies the development and maintenance of the
management schema.

Management schemas are the primary building blocks of CIM. CIM Schema
is a named collection of elements that describes a particular functional area
within a managed environment, such as device configuration or performance
management. CIM is organized as a system of interrelated schemas that cover
every aspect of the managed enterprise.

To describe the individual entities within a managed environment, CIM uti-
lizes the generalization technique—it factors common properties and behaviors
of the managed elements into sets of classes so that each class reflects a single
unit of management. A CIM class is essentially a template that describes a par-
ticular type of a managed element. These classes can contain properties, also
known as data elements, that describe the state of the class instance, and meth-
ods that express the behavior of the class. Listing 1-1 presents a partial
definition for one of the CIM core classes—CIM_LogicalDevice. This class is
designed to serve as a high-level abstraction for a hardware element in a man-
aged environment.

Listing 1-1. Managed Object Format Definition for CIM_LogicalDevice

[Abstract, Description (

“An abstraction or emulation of a hardware entity, that may “

“or may not be realized in physical hardware...”)]

class CIM_LogicalDevice : CIM_LogicalElement {

...

[Key, MaxLen (64),

Description (

4

Chapter 1

0598ch01 3/4/03 4:54 PM Page 4

“An address or other identifying information to uniquely “

“name the LogicalDevice.”)]

string DeviceID;

[Description (

“LastErrorCode captures the last error code reported by “

“the LogicalDevice.”)]

uint32 LastErrorCode;

[Description(

“SetPowerState defines the desired power state for a “

“LogicalDevice and when a device should be put into that “

“state”)]

uint32 SetPowerState([IN] uint16 PowerState, [IN] datetime Time);

[Description (“Requests a reset of the LogicalDevice”)]

uint32 Reset();

...

};

The notation used here is called Managed Object Format (MOF), which is
a DMTF-defined language for specifying management schemas in WBEM. MOF
may look a bit intimidating at first, but it is only presented here to provide a con-
text for the discussion—the detailed overview of this language syntax is
postponed until Chapter 6.

In this listing, DeviceID and LastErrorCode are properties that represent the
identity and state of a class instance, while SetPowerState and Reset are methods
that express the behavior of the class. Not all classes, however, have methods,
especially those defined at the root of the CIM hierarchy. Typically, the root
classes represent the highest level of abstraction where it may not always be pos-
sible to define any specialized behavioral characteristics.

Another interesting thing you should notice is that MOF definitions do not
contain any implementation details for the methods of the class; rather, they
specify the method signature. Because MOF is a declarative format for the man-
agement data rather than an implementation vehicle, the actual implementation
is delegated to so-called data providers (this will be discussed in more detail in
Chapter 7). Thus, CIM class specifications are somewhat similar to interface defi-
nitions, which are widely used in such frameworks as Component Object Model
(COM) and Common Object Request Broker Architecture (CORBA) as well as in
some programming languages like Java and C#. Obviously, you can draw a clear
parallel between MOF and the Interface Definition Language (IDL).

Even though a class may have one or more methods defined, the implemen-
tation for these methods may not necessarily be available. This is because CIM
defines a number of classes each of which represent a very high level of
abstraction and exist just to serve as parents for more specialized classes. As
a result, the actual method implementation is deferred to these respective

5

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 5

subclasses. CIM specification requires that all implemented methods be marked
with the Implemented qualifier in the MOF definition; this allows a class to indi-
cate that a method is actually implemented by a data provider.

All class names must be unique within a particular schema, and the schema
name acts as a distinguishing factor that helps differentiate classes with poten-
tially conflicting names. By convention, the fully qualified name of a class always
takes the form <schemaname>_<classname>, where the underscore serves as
a delimiter between the name of the schema and the name of the class. Note that
the underscore delimiter may not be a part of the schema name, although it is
allowed as part of the class name. This convention limits the scope of the class
name to the schema, significantly reducing the chances of name collisions
between the classes from different schemas. The CIM classes defined by DMTF
have the schema name of “CIM,” thus the fully qualified name of the class, which
represents an operating system process, is CIM_Process. Specific WBEM imple-
mentations may provide their own schemas; for instance, the Solaris WBEM SDK
defines its own process class, called Solaris_Process, while Microsoft Windows
Management Instrumentation (WMI) exposes the Win32_Process class.

As mentioned earlier, inheritance is another powerful concept of object-
oriented design. It is used extensively within the CIM. Simply put, inheritance is
a technique that allows class designers to construct a class from one or more
other classes, while sharing properties, behavior and, sometimes, constraints.

The process of creating a new class using an existing class as a base is often
referred to as subclassing. There are a few reasons for subclassing. The first, and
perhaps the most obvious one is the ability to inherit some properties and stan-
dard methods, thus reducing the effort of building a new class. If you refer back to
Listing 1-1, you will see that the CIM_LogicalDevice employs CIM_LogicalElement
as its base class. Although this is not apparent in Listing 1-1, CIM_LogicalDevice
inherits a few properties, such as Name, InstallDate, Description, and Caption.

Another reason why you would use subclassing is if you wanted to specialize
some of the class semantics, moving from an abstract base class to a more spe-
cific subclass. In addition to adding new properties and methods, a specialized
subclass may also redefine some of the existing characteristics of the base class.
For instance, a subclass may restate the definition of a particular feature, such
as a method description or an informational qualifier. In this case, the subclass
overrides the respective characteristic of its base class. Alternatively, a subclass
may provide a method or property implementation, different from that of a base
class, while inheriting the method signature or property declaration. This process
of altering the behavior of an arbitrary method or property is closely related to
polymorphism, another fundamental concept of object-oriented design.
Polymorphism implies that classes within a certain hierarchy are capable of
responding to the same message in a manner specific to a particular class, using
a potentially different implementation. This very powerful concept is widely used
throughout all areas of the CIM.

6

Chapter 1

0598ch01 3/4/03 4:54 PM Page 6

Listing 1-2 demonstrates some of these concepts:

Listing 1-2. Inheritance and Method/Property Overriding

class CIM_Service : CIM_LogicalElement

{

...

[ValueMap{“Automatic”, “Manual”}] string StartMode;

...

uint32 StartService();

uint32 StopService();

};

class Win32_BaseService : CIM_Service

{

[ValueMap{“Boot”, “System”, “Auto”, “Manual”, “Disabled”},

Override(“StartMode”)]

string StartMode = NULL;

...

[Override(“StartService”), Implemented] uint32 StartService();

[Override(“StopService”), Implemented] uint32 StopService();

[Implemented] uint32 PauseService();

...

};

Here the base class CIM_Service declares a property, called StartMode, and
states that the set of allowed values for this property is limited to Automatic
and Manual. The subclass—Win32_BaseService—overrides two aspects of
the StartMode property: first it adds a default value of NULL then it redefines the
allowed set of values to Boot, System, Auto, Manual, and Disabled.

PauseService, which also appears in Listing 1-2, is a method specific to the
Win32_BaseService and it does not exist within the scope of CIM_Service base
class. You must realize that not every service can be paused; that is why the
CIM_Service class, in an attempt to remain completely implementation-neutral,
does not define any such function. The subclass, however, represents a Win32
service, which can be paused; therefore it declares the PauseService method and
provides an implementation for it (notice the Implemented qualifier here). The
subclass essentially extends the functionality of its base class.

The Win32_BaseService subclass also inherits two method definitions from
its parent—StartService and StopService—and it provides its own implement-
ation (again, notice the Implemented qualifier). Although the CIM_Service base
class does not implement these methods (no Implemented qualifier within the
CIM_Service definition), the Win32_BaseService implementation can still be

7

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 7

considered polymorphic since it is specific to the subclass. It is conceivable that
some other subclass of CIM_Service may provide its own implementation for
these methods, different from that of Win32_BaseService.

Many object-oriented models and languages provide a facility called method
overloading where several methods with the same name and different parameter
types may coexist. Typically a language processor such as a compiler or an inter-
preter will select the correct method by inspecting the types of its parameters at
the call site. Then a subclass may be able to alter the signature of a method inher-
ited from a base class, thus providing an overloaded method definition. In CIM,
however, method overloading is not supported, and a subclass, when overriding
a method, must preserve its signature.

Another restriction that CIM imposes is single inheritance. Some object-
oriented languages, such as C++, allow a subclass to inherit from more than one
parent thus sharing more than one set of characteristics, properties, and methods;
this is known as multiple inheritance. Although multiple inheritance is a very
powerful feature, it typically creates too many problems because there is a great
potential for conflicts. For instance, two base classes, A and B, may both imple-
ment a method Foo, although the A::Foo and B::Foo implementations may be
completely different and not related in any way. Any attempt to create a subclass,
C, that inherits from both A and B, will result in a naming conflict between the
A::Foo and B::Foo methods. Although different languages and environments offer
various solutions for disambiguating multiple inheritance name conflicts, there is
no “silver bullet.” The designers of CIM felt that the power of multiple inheritance
did not justify the complexity associated with resolving these kinds of naming
conflicts; thus CIM inheritance trees are single-rooted.

As we have already established, the CIM is a collection of related classes.
Relationships between classes are usually expressed via special properties, called
references. Essentially a reference is a pointer to an instance of a class; thus, in
order to establish a relationship between arbitrary classes A and B, instances of
either class may have references that point to a respective instance of another
class. CIM relationships are modeled through associations—bidirectional seman-
tic connections between related classes. In accordance with their bidirectional
nature, all CIM associations are classes that contain references to other classes
that are related through the association.

This design approach has several benefits. First, associations may have other
properties in addition to references to the classes being associated. CIM design-
ers, for instance, often use an example of a Marriage association between a Male
and a Female property. A Marriage not only has links to both Male and Female, but
it also includes other properties such as Date. Second, if you model associations
as classes, you gain greater design flexibility because you can add an association
without changing the interface of the related classes. Thus, adding a Marriage
association between a Male and Female does not affect the definition of these two
classes in any way (this is, perhaps, where there is a disconnect between the

8

Chapter 1

0598ch01 3/4/03 4:54 PM Page 8

design of CIM and real life); the Marriage association simply ties them together
via a pair of references. To enforce this design approach, CIM disallows nonasso-
ciation classes that have properties of reference data type.

As I mentioned earlier, classes are just templates for objects or instances;
thus an arbitrary class may have one or more instances. For example, the
CIM_DataFile class may have hundreds or thousands of instances within a given
environment, each representing a single physical data file. To be able to deal with
multiple instances of a class in a meaningful fashion, these instances have to be
uniquely identifiable within a given system. Numerous instance identification
schemes exist, but perhaps the most common scenarios are the following:

Globally Unique Identifiers (GUIDs): GUID-based object identity
schemes are used extensively throughout the industry; the most widely
known example is the Microsoft Component Object Model (COM). In
a GUID-based model, each and every class instance is assigned an artificial
identifier, unique across time and space. The benefits of this approach are
twofold: GUIDs are guaranteed to be unique, which greatly reduces any
chances of collisions; and GUIDs are also relatively cheap to generate. The
problem is that GUIDs are intended for machine consumption and are not
particularly human-friendly—in fact, they seem quite meaningless and are
difficult to memorize.

Natural Keys: In a keyed object model, one or more properties of a class
form a unique key that unambiguously identifies an object instance
within a given environment. Our example in Listing 1-1, for instance, des-
ignates the DeviceID property of CIM_LogicalDevice class as a key (notice
the Key qualifier) so that consumers of CIM_LogicalDevice instances (or
rather instances of its subclasses) may refer to a particular device instance
using the ID string. Obviously, using a keyed approach offers certain ben-
efits for the users of the object model because the natural keys are more
easily understood and memorized. Unlike GUIDs, however, the natural
keys are only unique within a given scope—for instance, if a file is identi-
fied by its name or path, the object instance representing C:\BOOT.INI will
only be unique within a single Windows system.

As I already implied, CIM is a keyed object model. Since CIM must be capa-
ble of handling the management data across multiple environments and possibly
across multiple physical implementations, object keys alone may not be suffi-
cient to uniquely identify an instance. There has to be a way to identify an
environment or implementation or, in other words, provide a scope, within
which the objects keys are unique. Thus, every object within CIM is uniquely
identified by an object path, as outlined in Listing 1-3.

9

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 9

Listing 1-3. Object Naming

object_path ::= <namespace_path><model_path>

where:

namespace_path ::= <namespace_type><namespace_handle>

model_path ::= <object_name>.<key>=<value>,[<key>=<value>]

example:

HTTP://CIMHOST/root/CIMV2:CIM_DataFile.Name=”C:\BOOT.INI”

where:

namespace_type = HTTP

namespace_handle = CIMHOST/root/CIMV2

object_name = CIM_DataFile

key = Name

value = C:\BOOT.INI

A namespace path is essentially a unique identifier for a namespace that
hosts CIM objects, thus acting as a scope for these objects. Although a name-
space path is implementation-specific, it typically provides at least two pieces of
information: the type of implementation, or namespace, being referenced, and
a handle for this namespace. The namespace type defines an access protocol used
by the implementation to import, export, and update the management data. In
a sense, the namespace type is similar to a protocol specification used in URLs,
such as http or ftp. It is conceivable that a particular implementation may define
several protocols or APIs for accessing the data, and in this case, each of these
protocols must have an associated unique namespace type defined. A namespace
handle defines an instance of a namespace within a given implementation.
Although the details of the namespace handles are implementation-specific,
these handles often include an identifier of a computer system (“CIMHOST” in
our example) that hosts the namespace instance. If an implementation supports
multiple namespace instances, a handle may also include an identifier for a par-
ticular instance within a given system (“root/CIMV2” in our example).

The purpose of the model path is to uniquely identify an object within its
respective namespace. A model path consists of the name of the class to which
the object belongs and one or more key-value pairs, such that each property des-
ignated as a key in the class definition is supplied with a value. Thus in our
example, the object of type “CIM_DataFile” is uniquely identified within its
respective namespace (CIMHOST/root/CIMV2) by the value of its Name property.

The entire CIM Schema is divided into three areas: the core model, the com-
mon model, and the extension schemas. The core model is a relatively small set
of classes and associations that provides a foundation for describing any kind of

10

Chapter 1

0598ch01 3/4/03 4:54 PM Page 10

managed environment and is applicable to all areas of system management. The
core model serves as a basis from which to define more specialized extension
schemas that are applicable to concrete management domains. In particular,
the core model provides abstract base classes; these allow you to classify all
managed objects within a system as either physical or logical. Thus, the
CIM_PhysicalElement class is used as a base for modeling those managed objects
that have some kind of physical representation, while the CIM_LogicalElement
class is used to build abstractions, typically representing the state of a managed
system or its capabilities. The core model also provides a set of abstract asso-
ciation classes that are used to model containment and dependency relation-
ships between classes.

The common model is a set of classes that define various areas of system
management while remaining completely implementation-neutral. This model
is detailed enough to serve as a solid foundation for building the technology-
specific extension models that are suitable for developing all kinds of system
management applications. The common model describes the following aspects
of a managed environment:

The systems schema: The systems schema addresses various top-level
objects that make up the managed environment, such as computer sys-
tems and application systems.

The devices classes: This part of the common model is designed to
represent the discrete logical elements of a system that possess basic
capabilities, such as processing, input/output, and so on. Interestingly,
CIM device classes are descendants of the CIM_LogicalElement class as
opposite to CIM_PhysicalElement class. Although the system devices may
appear as physical rather than logical elements, the reason for deriving
the device classes from CIM_LogicalElement is the fact that management
systems deal with the operating system view of the device rather than its
physical incarnation.

The networks model: The networks model defines the classes that are nec-
essary to model various aspects of a networked environment, including
various network services, protocols, and network topologies.

The applications model: The intent of this model is to provide a basis for
managing various software packages and applications. The applications
model is fairly flexible and can easily be used to represent not only stand-
alone desktop software components, but also complicated distributed
application systems that may run on multiple platforms or be deployed via
the Internet.

11

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 11

The physical model: The physical model is designed to reflect all aspects
of the actual physical environment. As I already mentioned, the vast
majority of managed elements may and should be modeled as logical ele-
ments because any changes within the physical environment are likely to
be just the consequences of some events happening within the logical
“world.” For example, rotations of a physical disk platter come as a result of
an I/O request that originates within a logical environment—the operating
system. Also, the physical elements are unable to directly feed the manage-
ment data into CIM and their state can only be determined through some
controlling logical elements, such as device drivers. Yet another problem is
that physical elements differ dramatically from environment to environ-
ment due to the difference in the underlying hardware technologies; thus
they do not lend themselves easily to any generalized modeling tech-
niques. For all these reasons, the aspects of a physical environment are not
a direct concern of CIM designers.

Finally, the extension schemas are sets of classes that are specific to a particu-
lar CIM implementation and are dependent on the characteristics of a given
managed environment. As part of their WBEM product offerings, various vendors
typically provide extension schemas. Thus, the Microsoft WMI framework ships
with a set of extension classes that represent the managed elements specific to
Win32 platforms, and Solaris WBEM SDK exposes classes that are only relevant
to the specific management aspects of Solaris systems.

Windows Management Instrumentation

In addition to being one of the founders and key contributors to the WBEM
initiative, Microsoft was also one of the first software vendors to ship a fully
WBEM-compliant instrumentation framework for its Windows platforms. The
Microsoft WBEM implementation, called Windows Management Instrumenta-
tion (WMI), is the core of Windows management infrastructure. It was designed
to facilitate maintenance and greatly reduce the total cost of ownership (TCO) of
Windows-based enterprise systems.

WMI provides the following benefits to system managers, administrators,
and developers:

12

Chapter 1

0598ch01 3/4/03 4:54 PM Page 12

A complete and consistent object-oriented model of the entire
management domain: The Microsoft WMI implementation is fully
CIMv2.0-compliant and as such, it fully supports all management data
abstractions defined by the CIMv2.0 specifications of the core and com-
mon models. Additionally, WMI exposes a number of extension schemas
that cover aspects of system management specific to Windows platforms.

A single point of access to all management information for the enter-
prise: WMI exposes a powerful COM-based API, which allows the
developers of management applications to retrieve and modify virtually
any kind of Windows configuration and status data.

An extensible architecture that allows for the seamless integration of
existing management solutions and facilitates the instrumentation
of third-party software products: WMI is equipped with a number of
adapters that make the management data maintained by legacy systems,
such as SNMP, accessible through standard WMI interfaces. Additionally,
through WMI, the software vendors are afforded the flexibility of extending
the management schema and exposing the specific management data for
their software applications and hardware devices.

A robust event mechanism: WMI supports an event-driven programming
model where management events, such as changes to system configur-
ation or system state, can be intercepted, analyzed, and acted upon. Once
registered as an event consumer, a management application can receive
various management events, originating from a local or remote system.

A simple yet powerful query language: One of the most remarkable
features of WMI is the WMI Query Language (WQL), which allows the
developers of custom management applications to navigate through
the WMI information model and retrieve the information in which they are
interested. WQL is a subset of standard American National Standards Insti-
tute (ANSI) SQL (Structured Query Language) with some minor semantic
changes that were necessary to accommodate the specifics of WMI.

13

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 13

WMI Overview and Architecture

Figure 1-1 presents a high-level view of the WMI Architecture.

Conceptually, the key component of the WMI is the CIM Object Manager
(CIMOM). In compliance with the main goal of WBEM—providing a uniform,
centralized way of manipulating the management data—CIMOM acts as a single
point of access to the entire universe of managed objects that are of interest to
management applications. Although all client requests for management data go
through CIMOM, it is not responsible for actually collecting this data. Instead,
depending on the nature of the information requested, CIMOM may either
retrieve the data from its repository (the CIM Repository) or if the data is not
available in the repository, route the request to an appropriate data provider. In
the latter case, the data provider may retrieve or generate the requested infor-
mation on demand and return it back to CIMOM, which in turn will return the
data to the client application that initiated the request.

The CIM Repository, managed by CIMOM, is a central storage area, intended
primarily for storing the WMI schema information. In some cases, however, the

14

Chapter 1

Figure 1-1. TheWMI Architecture

0598ch01 3/4/03 4:54 PM Page 14

repository may also hold the static instance data—mainly the instances of WMI
classes that represent the system configuration information, which is not likely to
change often. For example, an instance of the Win32_Bios class, which represents
the system BIOS, is static and is not likely to change during the normal oper-
ations of a system; thus its data is stored in the CIM Repository and retrieved
directly by CIMOM. The Win32_Process class, on the other hand, may have many
transient instances—one for every process that the operating system creates.
Generally, the large volumes and transient nature of the instance data make it
unsuitable for storage in the CIM Repository, and in cases such as this one, the
task of providing the data is delegated to the respective data provider. Providers
that generate and return the management data on demand are often referred to
as dynamic providers.

CIMOM Implementation

WMI packages the bulk of the CIMOM functionality as well as the repository
management functions in a single executable file, WinMgmt.exe. This executable
is installed into the %SystemRoot%\System32\Wbem directory and, on Windows
NT/2000 platforms, it runs as a separate service process, which by default has an
“Automatic” startup option. Since WinMgmt.exe depends on WinComn.dll (also
installed in %SystemRoot%\System32\Wbem), which actually implements most of the
WMI functionality, under Windows XP, WMI runs as a service host process. For
such processes where the functionality is provided by a DLL, Windows XP sup-
plies a generic svchost.exe service executable, which loads the DLL on startup
and exposes its functionality via standard service interfaces. Finally, under Win-
dows 98, WMI runs as a standard executable. It is possible, however, to configure
WMI to start automatically, even on Windows 98, by doing the following:

1. Set the HKLM\SOFTWARE\MICROSOFT\OLE\EnableDCOM registry value to “Y.”

2. Set the HKLM\SOFTWARE\MICROSOFT\OLE\EnableRemoteConnect registry
value to “Y.”

3. Add the HKLM\SOFTWARE\MICROSOFT\WBEM\CIMOM\AutostartWin9X registry
key with value of “1” (which means that there will be an automatic start).

4. Add WinMgmt.exe to the system startup directory.

The WinMgmt.exe can also be run manually from the command prompt, in
which case it may be used to perform certain maintenance tasks. Table 1-1 lists
the command line switches available in WinMgmt.exe and explains their purpose.

15

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 15

Table 1-1. WinMgmt.exe Command-Line Options

COMMAND-LINE SWITCH DESCRIPTION

/exe This switch makes WinMgmt.exe run as a standard

executable rather than as a service. The primary purpose of

this switch is to facilitate the debugging of custom WMI

data providers.

/kill This switch shuts down all the WinMgmt.exe processes

that are running on a local computer system, including

the service processes started by the Service Control

Manager as well as the processes started manually with

the /exe switch.

/regserver This switch registers WinMgmt.exe with the Service Control

Manager as a Windows service. This is a standard switch

that is normally implemented by all services.

/unregserver This switch unregisters WinMgmt.exe as a Windows

service. This is a standard switch that is normally

implemented by all services.

/backup <filename> This is a repository maintenance function that causes

WinMgmt.exe to back up its CIM Repository to a file,

named by the <filename> argument. Using this flag will lock

the repository in exclusive mode and suspend all pending

write requests until the backup operation is completed.

/restore <filename> This is a repository maintenance function that allows for

manual restoration of the CIM Repository from the file,

named by the <filename> argument. When run with this

flag, WinMgmt.exe will delete the existing repository file,

lock the repository in exclusive mode (which may

necessitate disconnecting all existing client connections

to WMI), and load the contents of the backup file into the

repository.

/resyncperf <winmgmt This flag is only available on Windows 2000 and

service process id> Windows XP and is used to invoke the

AutoDiscovery/AutoPurge (ADAP) mechanism. ADAP is

used to transfer the performance counters from registered

performance libraries into WMI classes in the CIM

Repository so that these counters may be accessed as WMI

object properties.

/clearadap This is another ADAP-related flag that effectively clears all

ADAP status and configuration information.

16

Chapter 1

0598ch01 3/4/03 4:54 PM Page 16

As Figure 1-1 implies, WinMgmt.exe (CIMOM) communicates with the rest of
the world through a set of well-defined COM interfaces. In fact, all of the WMI
functionality is exposed through COM interfaces; this allows the developers to
reap the advantages of component-based programming, such as language and
location independence. This means that each of many different WMI objects
inherits the interfaces, ultimately derived from IUnknown, and complies with
COM-imposed rules for memory management, method call parameter manipu-
lation, and thread handling.

WMI defines many different interfaces that are designed to deal with differ-
ent aspects of its functionality; most of these are declared in the wbemcli.h
header file. In addition to COM API, which is mainly used by C++ developers,
WMI supplies a set of automation interfaces; these interfaces enable the scripting
clients (for example, programs written in scripting languages such as VBScript,
JavaScript, or Perl) to consume most of the WMI functionality. Most of these
automation interfaces simply duplicate the functionality available through the
primary COM API. For instance, automation interface ISWbemLocator, which is
used to obtain a reference to SWSbemServices object (an entry point to WMI),
reflects the functionality afforded by the IWbemLocator interface of the primary
COM API. Both of these interfaces expose a single method, ConnectServer, which
connects to WMI on a given computer system.

Much of the WMI configuration information is stored in the Windows Reg-
istry under the key HKLM\SOFTWARE\MICROSOFT\WBEM\CIMOM. Coincidentally, WMI
provides the Win32_WMISetting class as part of its schema so that each property
of this class maps to a respective configuration value in the system registry.
Listing 1-4 shows the MOF definition of the Win32_WMISetting class.

Listing 1-4. Win32_WMISetting Class Definition

class Win32_WMISetting : CIM_Setting

{

string ASPScriptDefaultNamespace ;

boolean ASPScriptEnabled ;

string AutorecoverMofs[] ;

uint32 AutoStartWin9X

uint32 BackupInterval ;

datetime BackupLastTime ;

string BuildVersion ;

string DatabaseDirectory ;

uint32 DatabaseMaxSize ;

boolean EnableAnonWin9xConnections ;

boolean EnableEvents ;

boolean EnableStartupHeapPreallocation ;

uint32 HighThresholdOnClientObjects ;

uint32 HighThresholdOnEvents ;

17

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 17

string InstallationDirectory ;

uint32 LastStartupHeapPreallocation ;

string LoggingDirectory ;

uint32 LoggingLevel ;

uint32 LowThresholdOnClientObjects ;

uint32 LowThresholdOnEvents ;

uint32 MaxLogFileSize ;

uint32 MaxWaitOnClientObjects ;

uint32 MaxWaitOnEvents ;

string MofSelfInstallDirectory ;

};

Table 1-2 provides an explanation of every property of Win32_WMISetting and
indicates the respective registry subkey (relative to HKLM\SOFTWARE\MICROSOFT\WBEM)
to which a property maps.

18

Chapter 1

Table 1-2. Win32_WMISetting Properties

WIN32_WMISETTING PROPERTY REGISTRY MAPPING DESCRIPTION

ASPScriptDefaultNamespace Scripting\Default Namespace Contains the default namespace,

used by the scripting API calls in

case the caller does not explicitly

provide the namespace. Usually

set to “root\CIMV2”.

ASPScriptEnabled Scripting\Enable for ASP Determines whether WMI

scripting API can be used by

Active Server Pages (ASP) scripts.

This property is only applicable

to Windows NT systems, since

under Windows 2000 and later,

WMI scripting for ASP is always

enabled.

AutorecoverMofs CIMOM\Autorecover MOFs Ordered list of MOF file names,

used to initialize or recover the

WMI Repository.

AutostartWin9X CIMOM\AutostartWin9X Determines how Windows 98

systems should start

WinMgmt.exe:

0—Do not start

1—Autostart

2—Start on reboot

(continued)

0598ch01 3/4/03 4:54 PM Page 18

Table 1-2. Win32_WMISetting Properties (continued)

WIN32_WMISETTING PROPERTY REGISTRY MAPPING DESCRIPTION

BackupInterval CIMOM\Backup Interval Threshold Time interval (in

minutes) between

the backups of the

WMI Repository.

BackupLastTime No registry mapping Date and time of

the last backup of

the WMI

Repository.

BuildVersion Build Version number of

the WMI service

installed on the

system.

DatabaseDirectory CIMOM\Repository Directory Directory path of

the WMI

Repository.

DatabaseMaxSize CIMOM\Max DB Size Maximum allowed

size (in KB) of the

WMI Repository.

EnableAnonWin9xConnections CIMOM\EnableAnonConnections Determines

whether remote

access may bypass

security checking.

This property is

only applicable on

Windows 98

systems.

EnableEvents CIMOM\EnableEvents Determines

whether the WMI

event subsystem

should be enabled.

EnableStartupHeapPreallocation CIMOM\EnableStartupHeapPreallocation If set to TRUE, forces

WMI to preallocate

a memory heap on

startup with the

size of

LastStartupHeap-

Preallocation.

19

.NET Framework and Windows Management Instrumentation

(continued)

0598ch01 3/4/03 4:54 PM Page 19

Table 1-2. Win32_WMISetting Properties (continued)

WIN32_WMISETTING PROPERTY REGISTRY MAPPING DESCRIPTION

HighThresholdOnClientObjects CIMOM\High Threshold To reconcile the

differences in On Client Objects processing speed between

the providers and the

clients, WMI queues objects

before handing them out to

consumers. If the size of the

queue reaches this

threshold, WMI stops

accepting the objects from

providers and returns an

“out of memory” error to

the clients.

HighThresholdOnEvents CIMOM\High Threshold To reconcile the

differences in On Events processing speed between

the providers and the

clients, WMI queues events

before delivering them to

consumers. If the size of the

queue reaches this

threshold, WMI stops

accepting the events from

providers and returns an

“out of memory” error to

the clients.

InstallationDirectory Installation Directory Directory path of the WMI

software installation. By

default, set to

%SystemRoot%\System32\Wbem.

LastStartupHeapPreallocation CIMOM\LastStartupHeapPreallocation Size of the memory heap

(in bytes) that was

preallocated at startup.

LoggingDirectory CIMOM\Logging Directory Directory path to the

location of WMI system logs.

LoggingLevel CIMOM\Logging Level of WMI event

logging:

0—Off

1—Error logging on

2—Verbose error logging on

20

Chapter 1

(continued)

0598ch01 3/4/03 4:54 PM Page 20

Table 1-2. Win32_WMISetting Properties (continued)

WIN32_WMISETTING PROPERTY REGISTRY MAPPING DESCRIPTION

LowThresholdOnClientObjects CIMOM\Low Threshold To reconcile the differences

On Client Objects in processing speed between

the providers and the clients,

WMI queues objects before

handing them out to

consumers. If the size of the

queue reaches this threshold,

WMI slows down the creation of

the objects to accommodate the

client’s speed.

LowThresholdOnEvents CIMOM\Low Threshold On Events To reconcile the differences in

processing speed between the

providers and the clients,

WMI queues events before

delivering them out to

consumers. If the size of the

queue reaches this threshold,

WMI slows down the delivery

of the events to accommodate

the client’s speed.

MaxLogFileSize CIMOM\Log File Max Size Maximum size of the log file

produced by the WMI service.

MaxWaitOnClientObjects CIMOM\Max Wait On Client Objects Length of time a new object

waits to be used by the client

before it is discarded by WMI.

MaxWaitOnEvents CIMOM\Max Wait On Events Length of time an event, sent

to the client, is queued before

it is discarded by WMI.

MofSelfInstallDirectory MOF Self-Install Directory Directory path to extension

MOF files. WMI automatically

compiles all the MOF files

that are placed into

a directory that is designated

by this property, and

depending on the outcome of

the compilation, moves the

files into a “good” or “bad”

subdirectory.

21

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 21

The Win32_WMISetting class offers a convenient way to access and modify
WMI configuration settings and, for reasons that are obvious, using this class is
superior to accessing the WMI-related portion of the registry directly. First, there
is no guarantee that future releases of WMI will still keep the configuration data
in the system registry, so any management application that relies on the presence
of certain registry entries may easily break. Using the interface of the
Win32_WMISetting class, on the other hand, ensures the data location trans-
parency. Since the interface is immutable, only the underlying implementation of
the Win32_Setting class would have to change in order to accommodate
changes to the storage location of WMI configuration parameters. For example,
you may have noticed that one of the properties of Win32_WMISetting class,
BackupLastTime, does not have the corresponding registry entry; instead WMI
dynamically determines its value by examining the timestamp of the repository
backup file. The advantage of using the Win32_WMISetting class is clear—an
application interested in retrieving the value of BackupLastTime property does not
have to be concerned with the implementation details and may simply read the
object property. Finally, accessing the registry directly and especially modifying
the keys and values is notoriously error-prone and may result in data corruption.

Using WMI-provided interfaces is not only a more elegant approach, but
it is also much safer and leaves fewer chances for fatal mistakes. As you will see
shortly, reading and manipulating the management data through WMI is not too
difficult—in fact, it may even be simpler than programmatically accessing the
registry, so writing a small management utility to query and set the WMI configu-
ration data is fairly trivial.

If you are less adventurous and do not find building WMI management utili-
ties too exciting, you can use Microsoft’s Management Console (MMC) WMI
Control Properties snap-in (see Figure 1-2)—this nice little graphical interface
allows you to view and modify most of the WMI-related registry settings.

This snap-in features five tabs, each designed to administer different aspects
of WMI behavior.

22

Chapter 1

0598ch01 3/4/03 4:54 PM Page 22

The General tab: This tab just houses a login prompt that allows you to
connect to WMI using the identity of an arbitrary user.

The Logging tab: This tab is a bit more interesting because it controls
the logging features of WMI, such as the logging level, the location,
and the maximum allowed size of the log file. These controls map to the
LoggingLevel, LoggingDirectory, and MaxLogFileSize properties of
the Win32_WMISetting class.

The Backup/Restore tab: This tab, shown in Figure 1-2, controls the repos-
itory backups. By default, the CIM repository is automatically backed up
every 30 minutes. Using this tab, you can perform a manual backup or
restore the repository.

23

.NET Framework and Windows Management Instrumentation

Figure 1-2. The WMI Control Properties MMC snap-in

0598ch01 3/4/03 4:54 PM Page 23

The Security tab: This tab lets you set access-level permissions for each
WMI namespace. The interface for setting up the permission is similar to
the one you use to administer file and directory structure permissions in
Windows.

The Advanced tab: This last tab, for some mysterious reason labeled
“Advanced,” allows you to change the value of the
ASPScriptDefaultNamespace property of the Win32_WMISetting.

The WMI Control MMC snap-in is usually all you need to control most of the
WMI configuration parameters; however, there are some important aspects of
the WMI behavior that it does not address. For instance, you cannot view or
change some properties, such as the size of the heap and various thresholds, with
the MMC snap-in; if you are interested in these properties, you will have to use
either your registry editor or a custom management utility to alter them.

WMI Repository

As Table 1-2 shows, the location of the CIM Repository is either identified by the
DatabaseDirectory property of Win32_WMISetting class or pointed to by a key
HKLM\SOFTWARE\MICROSOFT\WBEM\CIMOM\Repository Directory in the system
registry. The repository location is usually set to
%SystemRoot%\System32\WBEM\Repository. The repository itself is implemented
as a single file named CIM.REP. As I already mentioned, it contains just the WMI
schema information as well as some static instance data, so that the size of the
repository file is not very large (usually just a few megabytes).

If you wish to extend the WMI schema you will need to provide the MOF defi-
nitions for your classes in a form of text files with the .mof extension. You can
then load these files into the CIM Repository using either the command line util-
ity mofcomp.exe (MOF compiler) or the WMI COM API. You also have the option
of placing the MOF files for your schema extensions into a specially designated
self-install directory, pointed to by the MofSelfInstallDirectory property of the
Win32_WMISetting or the registry key HKLM\SOFTWARE\MICROSOFT\WBEM\MOF
Self-Install Directory. By default, the location of this self-install directory is
set to %SystemRoot%\System32\Wbem\Mof. Each MOF file placed into this directory
is automatically compiled by WMI. If the compilation yields no errors, the file is
acknowledged as “good” and moved to the good subdirectory of the self-install
directory. If the compilation fails, the file is moved to the bad subdirectory.

24

Chapter 1

0598ch01 3/4/03 4:54 PM Page 24

If the repository becomes corrupted, you may have to restore it from the latest
backup. However, this backup may not include the definition for those schema
extensions that were loaded into the repository after it was last backed up. If this
is the case, you may have to manually recompile and load the extension MOFs
into the repository. To facilitate the restoration of the extension schemas, the WMI
MOF compiler allows you to specify a special preprocessor command—#pragma
autorecover in the source MOF file. When it encounters this pragma, the MOF
compiler will add the fully qualified name of the MOF file to the autorecover list
that was pointed to by the AutorecoverMofs property of the Win32_WMISetting or
the registry key HKLM\SOFTWARE\MICROSOFT\WBEM\CIMOM\Autorecover MOFs. Then
every time the repository is recovered, WMI will compile all of the MOF files on
the autorecover list and load them into the repository, thus ensuring that the
repository contains all the latest extension definitions.

When talking about WMI class and object naming conventions, I mentioned
that a particular WBEM implementation might have multiple namespace
instances, uniquely identified by their respective namespace handles. If you
closely examine the WMI repository, you will see that WMI utilizes multiple
namespace instances that are organized into a hierarchical structure. WMI docu-
mentation simply refers to these namespace instances as namespaces, so in
order to avoid confusion, I will use the same terminology from now on. Multiple
namespaces within WMI serve the purpose of logically grouping related classes
and they do nothing more than just provide the scope for name resolution. A typ-
ical WMI installation has the following namespaces:

root: This namespace is at the very top of the WMI namespace hierarchy
and its primary purpose is to contain other namespaces.

root\DEFAULT: The DEFAULT namespace holds most of the system classes,
most of which are of little interest to a typical application developer.

root\CIMV2: The CIMV2 namespace contains the classes and instances of
classes that represent the elements in the managed environment. The
name CIMV2 stands for Common Information Model Version 2.0, which
implies that this namespace contains all of the classes specified by
CIMv2.0 as well as any additional Win32 specific classes and instances.
A typical management application will primarily be concerned with the
contents of the root\CIMV2 namespace.

A particular WMI installation may also supply some additional namespaces;
the extensions schemas, for instance, are often placed in a separate namespace
to avoid potential naming conflicts. Thus Microsoft Internet Explorer may

25

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 25

provide some WMI classes, such as MicrosoftIE_InternetExplorer, which are
usually placed into the Applications\MicrosoftIE namespace within the
root\CIMV2 namespace. You may also see ms_409 or other similarly named name-
spaces within the root\CIMV2 namespace or within any of the extension
namespaces. These namespaces are used to segregate the localized versions of
WMI classes; in fact, the name “ms_409” is just a locale identifier. Microsoft
locale identifiers take the form of “MS_XXXX” where “XXXX” is a hexadecimal
locale string or Locale Identifier (LCID), so that “ms_409” stands for “American
English”.

Each WMI namespace contains a __NAMESPACE system class (notice the double
underscore, which is the class naming convention for system classes); this is so
that each instance of this class describes a single subordinate namespace. For
example, the root namespace will contain at least two instances of the
__NAMESPACE class: one for root\DEFAULT and one for root\CIMV2. The __NAMESPACE
class is very simple and contains just a few useful properties, such as the name of
the respective namespace, its full and relative paths, and the name of the com-
puter system on which it resides. Nevertheless, this class is very convenient
because it allows the developer to quickly determine the count and the names
of all subordinate namespaces by simply enumerating the instances of the
__NAMESPACE class.

If you closely inspect the objects in the WMI repository, you will see that
every object, regardless of its class, has a number of system properties, which, by
convention, are prefixed with double underscores. None of the MOF examples
presented so far included these properties; in fact, none of the MOF files distrib-
uted with WMI include these properties either. Instead, the system properties are
automatically added by WMI as part of the object creation process. The main
purpose of these system properties is to identify a particular object and deter-
mine its place within the WMI class hierarchy. Table 1-3 shows all available
system properties.

26

Chapter 1

0598ch01 3/4/03 4:54 PM Page 26

Table 1-3. WMI System Properties

PROPERTY DESCRIPTION

__CLASS The name of the class the object belongs to. This is a read-only

property. Example: for an instance of Win32_NTEventlogFile,

__CLASS is set to Win32_NTEventlogFile.

__DERIVATION A list of class names, showing the inheritance hierarchy of a given

class. The first element is the immediate superclass; the next one

is its parent, and so on. This is a read-only property. Example: for

an instance of Win32_NTEventlogFile, __DERIVATION is set to

(CIM_DataFile, CIM_LogicalFile, CIM_LogicalElement,

CIM_ManagedSystemElement).

__DYNASTY The name of the top-level class from which the class is ultimately

derived. This is a read-only property. Example: for an instance of

Win32_NTEventlogFile, __DYNASTY is set to

CIM_ManagedSystemElement.

__GENUS A numeric value that is used to distinguish between classes and

instances of a class. The value of ‘1’ represents class and ‘2’

represents instance. This is a read-only property. Example: for an

instance of Win32_NTEventlogFIle, __GENUS is set to ‘2’.

__NAMESPACE The name of the namespace to which the class belongs. This is

a read-only property. Example: for an instance of

Win32_NTEventlogFile, __NAMESPACE is set to root\CIMV2.

__PATH The full path to the class or instance. This is a read-only property.

Example: for an instance of the Win32_NTEventlogFile class,

__PATH is set to \\machine1\root\CIMV2:Win32_NTEventlogFile.

__PROPERTY_COUNT A number reflecting the total count of non-system properties, defined

for the class. This is a read only property. Example: for an instance of

the Win32_NTEventlogFile class, __PROPERTY_COUNT is set to 39.

__RELPATH A path to the class or instance, relative to the namespace. This is

a read-only property. Example: for an instance of the

Win32_NTEventlogFile class, __RELPATH is set to

Win32_NTEventlogFile.

__SERVER The name of the server that supplies the class or instance. This is

a read-only property. Example: for an instance of the

Win32_NTEventlogFile, __SERVER is set to machine1.

__SUPERCLASS The name of the immediate superclass for a class or instance.

This is a read only property. Example: for an instance of

Win32_NTEventlogFile, __SUPERCLASS is set to CIM_DataFile.

27

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 27

WMI Data Providers

As powerful and sophisticated as the CIM Object Manager looks, it is just a middle-
man whose primary responsibility is to communicate with data providers on behalf
of client applications. Thus the task of manipulating the actual managed elements
represented via WMI classes, objects, properties, and events, such as retrieving or
updating the management information, is left to the data providers. For instance, if
a client application asks CIMOM to retrieve a value of the DatabaseDirectory prop-
erty of the Win32_WMISetting object, CIMOM delegates the handling of this request
to a standard WMI registry provider, which, when the request is acknowledged,
reads and returns the value of the HKLM\SOFTWARE\MICROSOFT\WBEM\CIMOM\Repository
Directory registry entry.

Not all providers are created equal, and depending on the type of functional-
ity exposed and the types of requests serviced, the providers can be categorized
as follows:

Instance providers: The instance providers are, perhaps, the most com-
mon type of WMI providers; their primary purpose is to supply instances of
a given class and support such operations as instance retrieval, enumer-
ation, modification, and deletion, as well as query processing. For
instance, the Event Log Provider (which provides access to the Windows
Event Log data and event notifications) acts as an instance provider since it
supplies the instances of the Win32_NTEventlogFile class, which represent
the system event log.

Class providers: The only purpose of class providers is to provide appli-
cations with class definitions. You only need this if you are going to
dynamically generate class definitions and they are affected by factors out-
side of WMI. In most of the cases, these class definitions are static, and
once they are placed into the CIM repository, they never or rarely change;
that is why class providers are rare. Yet another reason to avoid class
providers is that they have an adverse effect on the performance of WMI;
this is because in order to retrieve a definition for a class, CIMOM has to
contact the provider rather than just read the repository. Sometimes, how-
ever, using class providers is unavoidable; they have to be used despite the
performance penalty that they incur. One example of this is when you have
to use the Active Directory Services provider dsprov.dll, which enables
WMI applications to interoperate with Microsoft Active Directory Service
Interfaces (ADSI). Due to the dynamic nature of the information housed by
Active Directory, storing the data in the CIM Repository is not practical.

28

Chapter 1

0598ch01 3/4/03 4:54 PM Page 28

Property providers: As the name implies, the property providers retrieve
and modify the values of instance properties. As opposite to instance
providers, property providers allow the client to manipulate the values of
individual properties rather than modifying the entire instance. The NT
Event Log provider is also a property provider because it supports the
operations on individual properties of Win32_NTEventlogFile instances.

Method providers: The method providers implement the methods of
a given class or a collection of classes. For example, the NT Event Log
provider is a method provider because it implements the methods of the
Win32_NTEventlogFile class (and other related classes) such as Compress or
Uncompress.

Event providers: The event providers are responsible for delivering the
event notifications that originate from their respective data sources to
WMI CIMOM, which forwards these events to the interested applications.
The Event Log provider, which is also an event provider, supports the
Win32_NTLogEvent class that is used to represent the Windows events.

Event consumer providers: The event consumer providers are used to
support the permanent event consumer architecture within WMI. Perma-
nent consumer architecture enables the developers to implement
permanent event consumers—also known as custom event sinks that are
automatically invoked by WMI every time an event of interest is triggered.
Thus, the primary responsibility of an event consumer provider is dis-
patching an event to be handled by the proper consumer sink. One
example of an event consumer provider that comes with WMI distribution
is the WMI Event Viewer.

In addition to being classified in one of the categories just mentioned,
providers may be categorized as push or pull providers, based on the nature of
their interactions with the rest of the WMI infrastructure. Push providers typically
manage the data that is fairly static and does not change frequently. At initiali-
zation time, a push provider simply stores its data in the CIM Repository so that
each client request can be serviced directly by CIMOM without incurring the
overhead that is the result of communicating with the provider. Not only does
this push approach significantly simplify the provider development (because
providers are not required to implement their own data retrieval or event notifi-
cation services), but it is also very efficient since CIMOM is optimized for
retrieving the data from the repository.

29

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 29

Unfortunately, storing large amounts of frequently changing data in the
repository is not practical; therefore, the vast majority of data providers are
implemented as pull providers. Pull providers respond to requests from CIMOM
by either dynamically generating the data or by retrieving the data from some
kind of local cache that is maintained by the provider itself. Although this model
supports handling large amounts of dynamic data, it lacks the efficiency and sig-
nificantly complicates the programming of WMI providers.

There are two parts to provider implementation: a section of the WMI
schema that describes the managed elements that are supported by the provider;
and the provider DLLs that contain the implementation code. The Windows
Event Log provider, for example, is implemented as a single DLL, ntevt.dll, and is
usually installed in %SystemRoot%\System32\Wbem. The WMI classes supported by
this provider, such as Win32_NTEventlogFile, Win32_NTLogEvent, and many
more, are defined in ntevt.mof file, which can also be found in the
%SystemRoot%\System32\Wbem directory.

As has already been mentioned, CIMOM communicates with providers
through a set of well-defined COM interfaces. WMI requires providers to imple-
ment different interfaces based on the provider type. Push providers, for
instance, are only required to implement the IWbemProviderInit provider initial-
ization interface that is used by CIMOM whenever a provider is loaded. It is the
responsibility of a push provider to ensure that the CIM Repository is updated
with proper data when its initialization interface is invoked. When the initiali-
zation is complete and the repository contains the updated copy of the provider’s
data, WMI takes over and services all client requests itself, without invoking the
provider.

The situation is different, however, for pull providers, which are required to
implement a slew of other interfaces, depending on whether they act as instance,
property, method, or event providers. A property provider, for instance, is obliged
to implement the IWbemPropertyProvider interface, which exposes methods for
getting and setting the values of object properties. The methods of this interface
are invoked by CIMOM whenever a client issues a property retrieval or modifi-
cation request. Just like the CIMOM COM interfaces described earlier, most of
the provider interfaces are declared in the wbemcli.h header file.

Since COM is the sole communication vehicle between CIMOM and the data
providers, the providers are registered with COM just like any other COM objects.
However, in order for WMI to dispatch a client request to a proper provider, it has
to maintain its own provider registration database. Thus, each WMI provider is
described by a static instance of the __Win32Provider system class, which resides
in the CIM Repository. Instances of this system class contain just the basic
provider identification information, such as the Class Identifier (CLSID) of the
COM object and the provider name.

To identify the provider as instance, property, method, or event pro-
vider, WMI maintains a collection of class instances that are derived from

30

Chapter 1

0598ch01 3/4/03 4:54 PM Page 30

__ProviderRegistration. An instance provider, for example, is represented by
a static instance of the __InstanceProviderRegistration class; a method provider
is represented by __MethodProviderRegistration, and so on. Each of the sub-
classes of the __ProviderRegistration class has at least one property—a
reference to a respective instance of the __Win32Provider class—although some
subclasses may have other type-specific properties that indicate whether
a provider supports certain functionality. Thus, if WMI knows the name and the
type of the required provider, it may quickly look up an appropriate instance of
the __ProviderRegistration subclass, determine its capabilities, and follow its
provider reference to retrieve the corresponding instance of the __Win32Provider
class that contains all the information it needs to invoke the methods of this
provider.

Provider-based architecture is, perhaps, the key to the extensibility of WMI.
The well-defined interfaces that WMI uses to communicate with providers allow
third-party vendors to instrument their applications by providing extension
schemas and custom provider DLLs. WMI distribution comes with a number of
built-in providers that usually cover the management needs of a rather sophisti-
cated computing environment sufficiently. The following are examples of some
of these providers:

NT Event Log Provider: This supplies Windows Event Log data and notifi-
cations of Windows events.

Performance Counters Provider: This enables management applications
to access the performance counters’ raw data.

Registry provider: This provides access to the data stored in the system
registry.

Win32 Driver Model (WDM) provider: This provides access to data and
events that are maintained by Windows device drivers and conforms to
WMI interface specifications.

Win32 provider: This acts as an interface to a Win32 subsystem.

SNMP provider: This enables WMI applications to interoperate with
SNMP.

Of these providers, the SNMP provider is especially interesting because it is
actually an adapter that allows data and events, maintained by a legacy manage-
ment system, to be incorporated into WMI.

The main challenge of making WMI interoperate with SNMP is figuring out
how to represent the SNMP data in a CIM-compliant fashion. SNMP maintains its

31

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 31

own database of managed objects, called Management Information Base (MIB).
MIB is a collection of files that describe the management data using the Abstract
Syntax Notation (ASN) language, which is quite different from MOF. To address this
difference, the developers of an SNMP provider offer two possible approaches. The
first is to use the SNMP information module compiler, which transforms the MIBs
into a format understood by WMI so that the output of the compilation can be
loaded into the CIM Repository. Once the SNMP-managed objects are defined in
WMI, SNMP instance and event providers map the WMI requests into SNMP oper-
ations and present the SNMP traps as WMI events. The second approach (which is
a bit less efficient) is to make use of the SNMP class provider. This provider gener-
ates dynamic SNMP class definitions on request from WMI. With this approach,
efficiency is sacrificed to increase flexibility because none of the SNMP MIBs need
to be manually compiled and loaded into CIM.

Regardless of the integration approach chosen, the SNMP provider makes
SNMP-managed objects appear as an integral part of the WMI universe, thus ful-
filling the promise of WBEM founders—seamless integration with legacy
management standards and protocols.

Introducing System.Management Namespace

From the day WMI was introduced, the developers that wished to access Win-
dows management resources and services had a choice. They could either use
the native WMI COM interfaces or they could use its scripting API. Unfortunately,
neither of these two options was completely problem-free. Though the COM API
offered virtually unlimited power, high performance, and access to even the most
obscure features of WMI, it was, after all, just another COM API. As such, it
remained completely inaccessible to millions of those poor developers and sys-
tem administrators who never managed to overcome the COM’s steep learning
curve.

The scripting API partly solved this problem bringing the joy of WMI to an
audience that was much wider than just a bunch of skilled C++ programmers.
However, even the scripting, despite its simplicity and adequate power, did not
appear to be a complete solution to the problem. First, it was not fast enough.
This was because the dispatch interfaces that were necessary for scripting clients
did not offer the same speed as the native COM API. Second, the scripting API
lacked power and covered only a limited subset of WMI functionality. In fact, cer-
tain things, such as provider programming, remained outside the realm of script
developers and still required the use of native COM interfaces.

The rollout of the Microsoft .NET Platform took the world of software devel-
opment by storm. It is rapidly (and hopefully forever) changing the Windows
programming paradigm. Programmatic access to WMI was one of the million

32

Chapter 1

0598ch01 3/4/03 4:54 PM Page 32

things that has been radically affected by .NET. Using .NET you can completely
replace both the native COM and the scripting APIs. In the true spirit of .NET,
the new WMI interface combines the best features of the older APIs; it merges the
performance and unlimited power of the native COM API with accessibility and
simplicity of the scripting interface.

There are two parts to the .NET Platform: the .NET Framework and the
Framework Class Library (FCL). While the Framework, which supports such
modern programming concepts as automatic garbage collection, seamless lan-
guage interoperability, and much more, is definitely the enabling technology
behind .NET, it remains fairly transparent to a casual developer.

The FCL, on the other hand, is something that a programmer will immedi-
ately appreciate; it exposes thousands of classes or types that address nearly
every aspect of Windows programming. There are types that deal with GUI and
Web Interface development, types that are designed to make working with struc-
tured and unstructured data easier, and, most importantly, there are types that
are dedicated solely to interfacing with WMI. The entire FCL is structured so that
functionally related types are organized into a hierarchy of namespaces. For
instance, types that are used to build Windows GUI applications are grouped into
the System.Windows.Forms namespace. The namespace that holds all the types
that you need to interact with WMI is called System.Management. The most impor-
tant types, contained in the System.Management namespace, are the following:

ManagementObject: This is a fundamental abstraction that is used to repre-
sent a single instance of a managed element in the enterprise.

ManagementClass: This is a type that corresponds to a class of a managed
object as defined by WMI.

ManagementObjectSearcher: This type is used to retrieve collections
of ManagementObject or ManagementClass objects that satisfy particular
criteria specified by a WQL query or enumeration.

ManagementQuery: This type is used as a basis for building queries, used to
retrieve collections of ManagementObject or ManagementClass objects.

ManagementEventWatcher: This is a type that allows you to subscribe for
WMI event notifications.

Nested inside the System.Management namespace, there is a
System.Management.Instrumentation namespace that contains types that are
used primarily when you instrument .NET applications. These types allow appli-
cation developers to use WMI to expose the management data relevant to their
applications as well as their application-originated events; this process makes
these events and data accessible to a wide variety of management clients.

33

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 33

Because the .NET model used to expose the management applications
is mainly declarative, you will not need to use much coding. The
System.Management.Instrumentation namespace includes a number of attribute
types; developers can use these to describe their managed objects and classes to
WMI using simple declarations. In addition to these attributes, this namespace
defines a number of schema types that are designed to serve as base types for
custom managed classes. These schema types already include all necessary attri-
bution so that WMI immediately recognizes any custom type that uses a schema
type as its parent.

As the next few chapters will show, the .NET System.Management types offer
enough building blocks to solve nearly any system management problem, and
backed by the power and flexibility of the .NET Framework, these types are likely
to become the ultimate platform that will be used to develop future management
applications. While the Framework addresses such general programming issues
as automatic memory management, language interoperability, security, and dis-
tribution and maintenance ease, the System.Management namespace of the FCL
brings the following benefits to the developers of management applications:

Consistent object-oriented programming model: As is most of the FCL,
the System.Management namespace is organized in a very consistent fashion
and exposes a well designed object model, which is both natural and easy
to understand. The types are well thought-out logical abstractions that are
not affected by the peculiarities of the WMI inner workings; as a result they
are fairly self-describing and comprehensible. The overall programming
paradigm is consistent with the rest of the .NET programming model. This
consistency makes it so that .NET developers do not need to learn new
skills in order to start programming management applications.

Relative simplicity: Unlike COM programming, in .NET, developers no
longer have to take care of the low-level plumbing, such as memory man-
agement via reference counting. Instead, they can concentrate on the
problem domain. The .NET programming model not only greatly mini-
mizes the amount of boilerplate code for which the developers are
responsible, but it also reduces the level of complexity to match that of
the legacy WMI scripting API.

34

Chapter 1

0598ch01 3/4/03 4:54 PM Page 34

Uncompromised performance: When compared to the WMI scripting
interface, the .NET System.Management types offer a significant perfor-
mance enhancement. This is because you no longer a need to use the
inefficient dispatch interfaces in order to access the WMI functionality.
However, this does not mean that the System.Management types
completely solve the performance problems associated with WMI. Unfor-
tunately, some of these performance problems have little to do with the
API used by the client applications. The dynamic class providers, for exam-
ple, are inherently slow and no matter how fast a client application may be
able to process the data, the overall efficiency is still hampered by the
necessity to generate the class definitions on the fly. Nevertheless, .NET
System.Management types offer a significant performance improvement
over the less efficient scripting clients.

Tight integration with .NET: The types of System.Management namespace
are an integral part of FCL and as a result, they comply with all the .NET
programming principles and interoperate seamlessly with the types in
other namespaces. Typically, even the simplest management application
still has to possess some basic user interface capabilities and may request
the operating system or I/O subsystem services. Thus, the FCL offers
a complete end-to-end solution to the entire universe of programming
problems by making thousands of uniformly designed types available.
These types adhere to consistent naming conventions, all use the same
error handling protocol, feature the same event dispatching and notifi-
cation mechanism, and most importantly, are designed to work together.

So with a complete arsenal of powerful tools at their disposal, programmers
can build and deploy large-scale enterprise management systems.

As you can see, the .NET System.Management types represent an important
step toward turning Microsoft Windows into the number one enterprise-
computing platform. However, so far I have still yet to answer a couple of
questions: How exactly do these types interact with WMI? Also, did Microsoft
intend to replace some or all of the WMI infrastructure with .NET-compliant
implementation, or was the System.Management namespace designed to work in
concert with the existing WMI components? The best way to answer these
questions is by taking a closer look at how the System.Management types are
implemented.

As I already mentioned, the main COM interface that the client and provider
applications use to access WMI is IWbemServices. This interface exposes a slew of
methods that let you issue queries so that you can retrieve collections of classes
and instances, create and delete instances, update instance properties, and

35

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 35

execute methods. Thus, perhaps the first thing you would want to do with any
WMI application is make sure that it gets hold of an object that implements the
IWbemServices interface. Listing 1-5 shows a common coding pattern that you
can use to retrieve an IWbemServices interface pointer. Note that for the sake of
simplicity, this example does not implement the proper error checking and does
not include the code necessary to initialize the variables used in the method
calls.

Listing 1-5. Retrieving an IWbemServices Interface Pointer

IWbemLocator *pIWbemLocator = NULL;

IWbemServices *pIWbemServices = NULL;

CoCreateInstance(CLSID_WbemLocator,

NULL,

CLSCTX_INPROC_SERVER,

IID_IWbemLocator,

(LPVOID *) &pIWbemLocator);

...

pIWbemLocator->ConnectServer(pNamespace,

NULL,

NULL,

0L,

0L,

NULL,

NULL,

&pIWbemServices);

Here the client application first creates an instance of WbemLocator class,
which you then use to retrieve the IWbemServices interface pointer. The
WbemLocator class implements the IWbemLocator interface, which has a single
method, ConnectServer. The purpose of this method is to establish a connection
to WMI services on a particular host. This method takes several parameters,
namely the full path of the namespace to which the client application wishes to
connect (pNamespace), the address of the memory location that will hold the
IWbemServices interface pointer (pIWbemServices), and a few security-related
arguments, which our example ignores completely. When the ConnectServer
method finishes successfully, the pIWbemServices variable will contain a valid
IWbemServices interface pointer that you can use as a main point of access to
WMI services and resources.

Now let’s see how a typical .NET application accomplishes the same task
of connecting to WMI.The type in the System.Management namespace that is
responsible for connecting to WMI is ManagementScope, and Listing 1-6 shows the

36

Chapter 1

0598ch01 3/4/03 4:54 PM Page 36

disassembly of the class definition and one of its methods, called InitializeGuts.
The disassembly listing, which contains Microsoft Intermediate Language (MSIL)
instructions, was produced using ILDASM.EXE utility, distributed as part of the
.NET Framework SDK.. The MSIL instruction sequences may look quite intimi-
dating at first; however, given the limited amount of documentation that comes
with .NET, disassembling various parts of FCL is an excellent source of in-depth
information, pertinent to the implementation of certain .NET features.
Throughout the course of this book, I will occasionally resort to using such
disassembly listings to help you better understand the underpinnings of the
System.Management types. The disassembly listing, presented here, is not a com-
plete implementation of the ManagementScope type or its InitializeGuts
method—for the sake of simplicity, only the code fragments relevant to the WMI
connection establishment process are shown.

Listing 1-6. Disassembly of the InitializeGuts Method of the ManagementScope Type

.class public auto ansi beforefieldinit ManagementScope

extends [mscorlib]System.Object

implements [mscorlib]System.ICloneable

{

...

.field private class System.Management.IWbemServices wbemServices

...

.method private hidebysig instance void

InitializeGuts() cil managed

{

// Code size 268 (0x10c)

.maxstack 9

.locals init (

class System.Management.IWbemLocator V_0,

string V_1,

bool V_2,

class System.Management.SecurityHandler V_3,

int32 V_4,

class [mscorlib]System.Exception V_5)

newobj instance void System.Management.WbemLocator::.ctor()

stloc.0

...

ldflda class System.Management.IWbemServices

System.Management.ManagementScope::wbemServices

callvirt instance int32

System.Management.IWbemLocator::ConnectServer_(

37

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 37

string,

string,

string,

string,

int32,

string,

class System.Management.IWbemContext,

class System.Management.IWbemServices&)

...

}

...

}

The first important thing you should notice about Listing 1-6 is that there is
a private member variable wbemServices of type System.Management.IWbem
Services declared using the .field directive at the beginning of the class definition.
This variable has been designed to hold what appears to be a reference to an
instance of IWbemServices type. Also, at the very beginning of the InitializeGuts
method, notice that a local variable of type System.Management.IwbemLocator is
declared. This declaration marks a storage location that will hold a reference to the
IWbemLocator instance. The first executable instruction of the InitializeGuts
method, newobj, creates an instance of the System.Management.IWbemLocator type
and invokes its constructor. When this operation finishes, the operands stack will
hold a reference to a newly created instance of the IWbemLocator type. The method
will now execute its next instruction, stloc.0. This pops the reference off the stack
and stores it at the location that is designated by the first local variable decla-
ration—V_0 of type System.Management.IWbemLocator. Then the code loads the
wbemServices member variable’s address on the stack using the ldflda instruction
and calls the ConnectServer method of the IWbemServices type, which passes this
address as one of the parameters. When the ConnectServer method returns, the
wbemServices variable contains a valid reference to IWbemServices type.

The code described here is very similar to the native COM API code, shown
previously in Listing 1-5; in fact, the interface usage pattern is the same! Now, the
only thing that remains unclear is how the IWbemLocator and IWbemServices types
are implemented in the System.Management namespace. Listing 1-7 should clear
this up by showing the complete class declarations for
System.Management.IWbemLocator and System.Management.IWbemServices types.

Listing 1-7. IWbemLocator and IWbemServices Class Declarations

.class interface private abstract auto ansi import IWbemLocator

{

.custom instance void [mscorlib]

System.Runtime.InteropServices.TypeLibTypeAttribute::.ctor(int16) =

38

Chapter 1

0598ch01 3/4/03 4:54 PM Page 38

(01 00 00 02 00 00)

.custom instance void [mscorlib]

System.Runtime.InteropServices.GuidAttribute::.ctor(string) =

(01 00 24 44 43 31 32 41 36 38 37 2D 37 33 37 46 // ..$DC12A687-737F

2D 31 31 43 46 2D 38 38 34 44 2D 30 30 41 41 30 // -11CF-884D-00AA0

30 34 42 32 45 32 34 00 00) // 04B2E24..

.custom instance void [mscorlib]

System.Runtime.InteropServices.InterfaceTypeAttribute::.ctor(int16) =

(01 00 01 00 00 00)

}

.class interface private abstract auto ansi import IWbemServices

{

.custom instance void [mscorlib]

System.Runtime.InteropServices.InterfaceTypeAttribute::.ctor(int16) =

(01 00 01 00 00 00)

.custom instance void [mscorlib]

System.Runtime.InteropServices.TypeLibTypeAttribute::.ctor(int16) =

(01 00 00 02 00 00)

.custom instance void [mscorlib]

System.Runtime.InteropServices.GuidAttribute::.ctor(string) =

(01 00 24 39 35 35 36 44 43 39 39 2D 38 32 38 43 // ..$9556DC99-828C

2D 31 31 43 46 2D 41 33 37 45 2D 30 30 41 41 30 // -11CF-A37E-00AA0

30 33 32 34 30 43 37 00 00) // 03240C7..

}

Interestingly, the declarations of both types happen to carry the import flag,
which indicates that these types are not implemented in managed code. When
the .NET runtime encounters a type marked with the import flag, it identifies
a type as COM server and invokes its COM interoperability mechanism. Obvi-
ously, COM objects are quite different from the types implemented in managed
code—they are allocated from the unmanaged heap and require explicit memory
management. Thus, to accommodate a COM server, .NET runtime creates Run-
time Callable Wrappers (RCW) for each instance of a COM object to be consumed
by the managed code. An RCW is a managed object, allocated from the garbage-
collected heap, that caches the actual reference-counted COM interface pointer
so that .NET code treats it just like any other managed type. To the COM server,
however, RCW looks like a conventional well-behaved COM client that adheres to
all COM rules and restrictions.

In short, each time an instance of IWbemLocator or IWbemServices types is
requested, the runtime silently creates an underlying COM object, allocates the
corresponding RCW, and returns the reference to this RCW back to the requestor.

39

.NET Framework and Windows Management Instrumentation

0598ch01 3/4/03 4:54 PM Page 39

The last question to answer is how the runtime knows which COM object to
allocate when the managed code requests an instance of IWbemLocator or IWbem-
Services type. As you may have noticed, the declarations of both of these classes
are decorated with several attributes—System.Runtime.InteropServices.GuidAt-
tribute is one of these. You can then see that the constructor for this attribute
takes a string parameter, which specifies the GUID of the COM server to be cre-
ated. To no surprise, the inspection of the Windows registry shows that the COM
objects, used here, are the same COM objects that are utilized when program-
ming native COM API WMI applications.

As it turns out, the types of the System.Management namespace are by no
means a complete reimplementation of the WMI access API. Instead, the entire
.NET system management class library is just a clean, managed, object-oriented
wrapper that is implemented on top of the existing COM WMI-access API.

Summary

This chapter has provided a comprehensive overview of the latest trends in
enterprise system management, defined the main objectives of an ideal manage-
ment system, and introduced a leading-edge management technology—
Microsoft WMI. Although I did not intend to supply an exhaustive technical
overview of all components that constitute WMI, I hope that the material pre-
sented in this chapter was enough to help you understand its most fundamental
concepts. These are essential for grasping the material that I will present in the
rest of this book. Armed with this knowledge, you should now be ready to delve
into the intricacies of .NET WMI programming.

40

Chapter 1

0598ch01 3/4/03 4:54 PM Page 40

