
Introduction

These notes deal with complex analysis, harmonic analysis and geometric measure
theory. My main motivation is to explain recent progress on the Painlevé Problem
and to describe their connections with the study of the L2-boundedness of the Cauchy
singular integral operator on Ahlfors-regular sets and the quantitative theory of rec-
tifiability.

Let E ⊂ C be a compact set. We say that E is removable for bounded analytic
functions if, for any open set U ⊃ E, any bounded analytic function f : U \ E → C

has an analytic extension to the whole U . The Painlevé problem can be stated as
follows:

Find a geometric/metric characterization of such removable sets.

In 1947, L. Ahlfors [1] introduced the notion of analytic capacity of a compact
set E:

γ(E) = sup{|f ′(∞)|, f : C \ E → C is analytic bounded with ||f ||∞ ≤ 1}

and proved that E is removable if and only if γ(E) = 0. But, as wrote Ahlfors himself
(in this quotation, M(G) is the analytic capacity of the boundary of G where G is a
complex domain of finite connectivity),

“Of course our theorem is only a rather trivial restatement of Painlevé’s Problem
in what one might call finite terms. But it shows that a ”solution” of Painlevé’s
Problem will be found if we can construct an explicitly defined quantity, depending on
G, which tends to zero simultaneously with M(G). Just what is meant by an explicit
definition is of course open to discussion, but most mathematicians would probably
agree that the ultimate goal is a definition in purely geometric terms. The solution
would then be the same general character as one which refers to measure or capacity.”

By Riemann’s principle for removable singularities, a singleton is removable. On
the other hand, by arguments of complex analysis, (non degenerate) continua or
compact sets with non zero area are not removable. This suggests that the metric
size of the set should play an important role. This observation can be stated more
precisely in terms of Hausdorff dimension (denoted by dimH) and 1-dimensional
Hausdorff measure (denoted by H1):

(i) If H1(E) = 0, then E is removable.
(ii) If dimHE > 1, then E is not removable.

Unfortunately, examples of A. Vitushkin, J. Garnett and L. Ivanov [42] [43] show
that the condition H1(E) = 0 is not necessary for the removability of the compact
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set E. Sets they considered are purely unrectifiable in the sense of geometric measure
theory. This leads to the Vitushkin Conjecture:

The compact set E ⊂ C is removable for bounded analytic functions if and only if
Fav(E) = 0.

Here, Fav(E) is the Favard length of E and is defined by Fav(E) =
∫ π

0
|Pθ(E)|dθ

where Pθ is the projection on the line of C that makes an angle θ with the real axis and
|Pθ(E)| is the Lebesgue measure of the projection of E on this line. If H1(E) < ∞,
the condition Fav(E) = 0 is equivalent to H1(E ∩ Γ) = 0 for any rectifiable curve Γ
of C (that is E is purely unrectifiable in H. Federer’s terminology).
The work of P. Mattila [63], P. Jones and T. Murai [51] showed that the Vitushkin
conjecture is not true for general sets, but left open the case of sets with finite length
(that is such that H1(E) < ∞). In 1977, A. P. Calderón [11] proved the L2 bounded-
ness of the Cauchy operator on Lipschitz graphs with small constant. This famous
result implies a solution to the Denjoy Conjecture (and therefore one sense of the
Vitushkin conjecture for sets of finite length):

Let E ⊂ C be a subset of a rectifiable curve Γ. Then, E is removable if and only if
H1(E) = 0.

At that time, it was clear that the removability of a compact set E is closely
related to the behavior of the Cauchy operator on E. This motivates the following
question:

For which Ahlfors 1-regular sets E is the Cauchy operator bounded on L2(E) (with
respect to the restriction of H1 to E) ?

A set E in C is Ahlfors 1-regular if there exists C > 0 such that

C−1R ≤ H1(E ∩ B(x, R)) ≤ CR

whenever x ∈ E and R ∈ (0, diamE). The example of Lipschitz graphs show that
rectifiability properties of the set should play a role. Recall that a set E ⊂ C is
1-rectifiable if there exist Lipschitz curves Γj such that H1(E \ ∪jΓj) = 0. For this,
P. Jones [50] (for 1-dimensional sets), G. David and S. Semmes [28] [29] (in higher
dimensions) have developed a quantitative theory of rectifiability.

In 1995, M. Melnikov [71] rediscovered the Menger curvature and used it to
study the semi-additivity of the analytic capacity. The Menger curvature c(x, y, z)
of three non collinear points x, y and z of C is the inverse of the radius of the
circumference passing through x, y and z. If the points x, y and z are collinear, we
set c(x, y, z) = 0. If µ is a positive Radon measure on C, the Menger curvature c2(µ)
of µ is

c2(µ) =
∫ ∫ ∫

c(x, y, z)2dµ(x)dµ(y)dµ(z).

If we assume that c2(µ) < +∞, our intuition says that most (with respect to µ) triples
are nearly collinear, in other words µ is “flat”. In fact, G. David (unpublished) and
J.C. Léger [56] proved that, if E is a compact set of C which satisfies H1(E) < +∞
and c2(H1

�E) < +∞, then E is 1-rectifiable.
Using the Menger curvature, M. Melnikov and J. Verdera [72] gave a simple and

geometric proof of the L2 boundedness of the Cauchy operator on Lipschitz graphs,
and with P. Mattila [69], they proved that the Cauchy operator is bounded on a
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Ahlfors-regular set E if and only if E is contained in a regular curve (that is E is uni-
formly rectifiable in the sense of G. David and S. Semmes). From this and a previous
work of M. Christ [18], they proved the Vitushkin conjecture for Ahlfors regular sets.
The general case was solved by G. David [26].

Very recently, X. Tolsa gave a characterization of removable sets in terms of Menger
curvature :

A compact set E of C is not removable for bounded analytic functions if and only
if E supports a positive Radon measure with linear growth and finite Menger curvature.

Recall that a measure µ in C has linear growth if there exists C > 0 such that
µ(B) ≤ CdiamB whenever B is a ball in C.

In this book, I would like to tell you this very beautiful story, and I will follow
the following plan. In Chapter 1, basic notions of geometric measure theory (like
Hausdorff measures, Hausdorff dimension, rectifiable and purely unrectifiable sets)
are defined. In particular, we will give several characterizations of rectifiable sets. We
will conclude with the proof of a covering lemma by Ahlfors-regular sets. Chapter
2 is devoted to the geometric traveling salesman theorem of P. Jones and the the-
ory of uniformly rectifiable sets of G. David and S. Semmes. In Chapter 3, we will
define the Menger curvature and describe some of its properties. In particular, we
will show that the Menger curvature is a useful tool to study the geometry of sets
and measures in the complex plane. In this part, the reader will find the proofs of
some unpublished results of P. Jones. In Chapter 4 is given an overview of the theory
of Calderón-Zygmund operators. We also include Melnikov-Verdera’s proof of the
L2 boundedness of the Cauchy operator on Lipschitz graphs. The last part of this
Chapter will be devoted to the proof of Mattila-Melnikov-Verdera’s characterization
of Ahlfors-regular sets on which the Cauchy operator is bounded. In Chapter 5, we
will define the analytic capacity and we will prove some of its basic properties. The
Denjoy and Vitushkin conjectures are proved in Chapter 6. In the last Chapter, we
will describe X. Tolsa’s characterization of removable sets and we will discuss some
open problems.

This book is almost self contained. Only a basic knowledge of real analysis, com-
plex analysis and measure theory is required. Most of the proofs are given. When
a proof is omitted or sketched, a reference is indicated where the reader can find a
complete proof.

There are good surveys about the subject of this book [25] [67] [106]. I hope
that these notes are a complement to these papers and a modest continuation of J.
Garnett’s Lecture Notes [42].

These notes are based on lectures given at the Ecole Normale Supérieure de Lyon
and on a graduate course given at Yale University. I would like to thank J. P. Otal
and P. Jones for their kind invitation.
I am very grateful to G. David, J. Garnett, N. Kang, P. Mattila and J. Verdera for
their suggestions and encouragements. Part of this work was done while the author
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has the benefit of a “delegation” at the CNRS. The author is partially supported by
the European Commission (European TMR Network “Harmonic Analysis”).



Notations and conventions

If x, y ∈ R
n, the Euclidean distance between x and y is denoted by |x − y|. If

x ∈ R
n and A ⊂ R

n, d(x, A) = inf{|x − a|; a ∈ A}, and if B ⊂ R
n, d(A, B) =

inf{|a − b|; a ∈ A, b ∈ B}.
The open ball with center x ∈ R

n and radius r > 0 is denoted by B(x, r). In the
special case n = 2, that is in C, we will also use the notation D(x, r). For instance,
the unit disc in C is D(0, 1) = {z ∈ C, |z| < 1}.
If B is a ball in R

n, we often denote by RB the radius of B. If k ∈ R
+∗, kB is the

ball with the same center as B, but whose radius RkB is k.RB.

If E et F are two sets in R
n, then E + F = {x + y, x ∈ E, y ∈ F} and, for any

x ∈ R
n, x + F = {x + y, y ∈ F}.

A measure µ on R
n for us will be a non-negative, monotonic, subadditive set func-

tion which vanishes for empty sets. We always assume that µ(Rn) 	= 0. A set A ⊂ R
n

is µ measurable if µ(E) = µ(E ∩ A) + µ(E \ A) for all E ⊂ R
n. The measure µ is a

Borel measure if all Borel sets are µ measurable. The measure µ is a Radon measure
if µ is a Borel measure and satisfies
(i) µ(K) < +∞ whenever K is a compact set in R

n;
(ii) µ(O) = sup{µ(K), K ⊂ O compact} whenever O is an open set in R

n;
(iii) µ(A) = inf{µ(O); A ⊂ O, O is open }.
If µ is a measure on R

n and if E ⊂ R
n, then µ�E will denote the restriction of µ to E.

The support of a measure µ in R
n (denoted by Suppµ) is the smallest closed set K

such that µ(Rn \ K) = 0.

The Lebesgue measure in R
n will be denoted by Ln.

A dyadic cube Q in R
n is a subset of R

n of the form Q = Πn
j=1[kj2−k, (kj + 1)2−k]

where k ∈ Z and kj ∈ Z. We denote by ∆ the set of all dyadic cubes in R
n and by ∆k

the subset of ∆ of k-th generation, that is of side length 2−k. In the special case n = 1
(respectively n = 2), an element Q of ∆ will be called “dyadic interval” (respectively
“dyadic square”).
Let Q be a dyadic cube in R

n whose side length is l(Q). Then, if k ∈ N, kQ denotes
the cube with sides parallel to the axis, whose center is the center of Q, but whose
side length is kl(Q).

If E ⊂ R
n, the characteristic function of E is denoted by χE.

A constant without a subscript (like C) may vary throughout all the book.



x NOTATIONS AND CONVENTIONS

If A(X) and B(X) are two quantities depending on the same variable(s) X, we
will say that A and B are comparable if there exists C ≥ 1 not depending on X such
that C−1A(X) ≤ B(X) ≤ CA(X) for every X.
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