
3 Perfection and Eutaxy

Introduction

The aim of this chapter is to give a characterization of extreme lattices, those
lattices on which the Hermite invariant attains a local maximum. To this end,
we introduce in Section 3.2 the two notions of perfection and eutaxy, and
prove in Section 3.4 that they characterize extreme lattices; in particular,
we obtain an algorithm which allows us to decide whether a given lattice
is extreme, whose justi�cation relies on the technical material in Sections
3.1 and 3.3. Then we give in Sections 3.5 and 3.6 a detailed analysis of the
properties of perfection and eutaxy.

In Section 3.7 we show that the \laminating" process of Conway and
Sloane produces perfect { but not necessarily extreme { lattices. Section 3.8
is devoted to another kind of extremal property involving both a lattice and
its dual.

As usual E denotes an n-dimensional Euclidean vector space.

3.1 Symmetric Endomorphisms

De�nition 3.1.1. Let u 2 End(E). The transpose of u is the endomorphism
tu such that u(x) � y = x � tu(y) for all x; y 2 E. We say that u is symmetric
(resp. skew-symmetric or alternating) if tu = u (resp. tu = �u). We denote
by Ends(E) (resp. Enda(E)) the real vector space of symmetric (resp. skew-
symmetric) endomorphisms of E, and by Symn the space of n�n symmetric
matrices.

One easily veri�es that the transpose of a given u 2 End(E) exists and is
unique, and that u 7! tu is an involution of End(E), i.e., that it satis�es the
rule t(v � u) = tu tv.

Proposition 3.1.2. Let B be a basis for E, let B� be its dual basis, let B0
be an orthogonal basis for E, and let u; v 2 End(E). The following three
conditions are equivalent:

1. Each of the matrices of u and of v with respect to the bases B and B� is
the transpose of the other.
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2. Each of the matrices of u and of v in the base B0 is the transpose of the
other.

3. v = tu.

Proof. The matrix (mi;j) of an element u 2 End(E) with respect to the
bases B and B0 is characterized by the relations u(ej) =

P
kmk;j e

0
k, which

can also be written in the form mi;j = e0i
� � u(ej). Taking B0 = B�, we

�nd for u and tu matrices (mi;j) and (m0
i;j) such that mi;j = ei � u(ej) and

m0
i;j = ei � tu(ej) = u(ei) � ej . This �rst shows the equivalence of (1) and (2),

and then that of (2) and (3) because B�0 = B0. ut

Let u 2 Ends(E). The de�nition of the transpose of u shows that the or-
thogonal of any subspace of E stable under u is also stable under tu. Moreover,
we know that u has real eigenvalues (extend for instance u to a Hermitian
endomorphism of the complex space C

N
E). Combining these two remarks,

we easily prove that the matrix of u is a diagonal matrix in some orthonormal
basis for E. [Matrix interpretation: for any real symmetric matrix A 2 Mn(R), there
exists an orthogonal matrix P 2 Mn(R) (i.e., we have P�1 = tP ) such that tPAP is

a diagonal matrix.]

De�nition 3.1.3. We say that u 2 Ends(E) is positive if its eigenvalues are
non-negative, de�nite if they are nonzero, and thus positive de�nite if they
are strictly positive. We denote by Ends+(E) (resp. Ends++(E)) the set of
positive (resp. positive de�nite) symmetric endomorphisms.

We recover the usual de�nitions of the theory of real quadratic forms by
applying the de�nitions above to the form x 7! x � u(x). The notion of a
positive, or de�nite, or positive de�nite matrix is de�ned in the same way.

Example 3.1.4. For any u 2 End(E), tuu is a (symmetric) positive
endomorphism.

Indeed, if x is any eigenvector for tuu with corresponding eigenvalue �,

we have � (x � x) = tuu(x) � x = u(x) � u(x), whence � = ku(x)k2
kxk2 � 0.

Lemma 3.1.5. Let u be a symmetric endomorphism and let m be a positive
integer.

1. The centralizer of u in End(E) is the set of the endomorphisms which
stabilize all the eigenspaces of u.

2. If u is positive or if m is odd, u and um have the same centralizer.

Proof. Let F be an eigenspace of E with corresponding eigenvalue �, and
let v 2 End(E). If u and v commute, we have u(v(x)) = v(u(x)) = v(�x) =
�v(x) for all x 2 F , whence the inclusion v(F ) � F .

Conversely, let v 2 End(E) which stabilizes the eigenspaces E1; : : : ; Ek
of u, and for all i, let vi be the restriction of v to Ei. Since E is the di-
rect sum of the Ei and since the restrictions ui of u to Ei are homothetic
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transformations, we have uv(x) = uivi(x) = viui(x) = vu(x) for all x 2 Ei,
whence (1).

Denote by �i the eigenvalue attached to the eigenspaceEi of u. For x 2 Ei,
we have um(x) = �mi x, which shows that �mi is for all i an eigenvalue of um

whose corresponding eigenspace E0i contains Ei. But the hypotheses we have
made on u andm show that the map i 7! �mi is injective. This implies that the
sum

P
iEi is a direct one, and shows the equality

P
dimE0i �

P
dimEi = n,

whence
P

dimE0i = n and dimE0i = dimEi for all i (because of the lower
bound dimE0i � dimEi). Finally, the subspaces E

0
i and Ei coincide for all i,

and (2) is now an immediate consequence of (1). ut

Theorem 3.1.6. A positive symmetric endomorphism possesses a unique
positive square root.

Proof. Let B be an orthonormal basis for E in which the matrix of u is a
diagonal matrix D. The endomorphism v de�ned in the basis B by the diag-
onal matrix whose diagonal terms are the square roots of the diagonal terms
of D is a positive square root of u. By Lemma 3.1.5 (2), v and u = v2 have
the same centralizer, and Lemma 3.1.5 (1) then shows that v is characterized
by the equations v(x) =

p
� x for every eigenvalue � of u and every vector x

in the corresponding eigenspace. This proves that v is unique. ut

In the sequel, the unique positive square root of a positive symmetric
endomorphism u will be called the square root of u, and the same convention
applies to real positive symmetric matrices. In both cases, we shall use the
usual notation for a square root. The equality

p
uv =

p
u
p
v holds whenever

u and v commute, and we also have
p
u�1 = (

p
u)�1 whenever u is invertible.

We now come to a theorem which will play a prominent role in the se-
quel: the decomposition of an endomorphism into symmetric and orthogonal
components.

Theorem 3.1.7. Any u 2 GL(E) possesses unique decompositions into
each of the forms u = v w and u = w0 v0 with positive symmetric v; v0 and
orthogonal w; w0.

Proof. From u = v w (resp. u = w0 v0), we deduce the relation u tu = v2

(resp. tuu = v02). The uniqueness of v and of v0 then follows from The-
orem 3.1.6, and that of w and of w0 from the equalities w = v�1u and
w0 = u v0�1.

To prove the existence of these decompositions, we apply Example 3.1.4
and Theorem 3.1.6: let v (resp. v0) be the square root of u tu (resp. of tuu),

and let w = v�1u (resp. w0 = u v0�1). We then easily verify that tww =
tw0 w0 = Id, and thus that w and w0 are orthogonal. ut

We now study how the endomorphisms constructed in Theorems 3.1.6
and 3.1.7 vary with u.
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Proposition 3.1.8. 1. The map u 7! p
u from Ends++(E) onto itself is a

di�eomorphism.
2. The maps from GL(E) to Ends(E) (resp. to O(E)) which associate with

an automorphism of E its left or right symmetric (resp. orthogonal) com-
ponents are di�erentiable.

Proof. The way the symmetric orthogonal components have been con-
structed in the proof of Theorem 3.1.7 shows that the assertions in (2) are
immediate consequences of assertion (1), which we now prove.

Let u 2 Ends++(E) and let h 2 Ends(E). The identity (u + h)2 = u2 +
hu + uh + h2 shows that the tangent map to u 7! u2 (the di�erential map)
is h 7! hu+ uh. If h lies in its kernel, we have uh = �hu, hence u2h = hu2,
and thus uh = hu by Lemma 3.1.5 (2). We therefore have uh = 0, hence
also h = 0. We now know that the map u 7! u2 is one-to-one and that its
di�erential map is invertible at every point of Ends++(E). The reciprocal
map then possesses the same properties. ut

The uniqueness assertion of Theorem 3.1.7 allows the extension of the
decomposition to some subspaces of E. Here is an example that we shall
need later to study families of lattices possessing a prescribed automorphism
group:

Proposition 3.1.9. Let G be a subgroup of O(E) and let u be an endomor-
phism of E which commutes with G. Then the symmetric and orthogonal
components (on each side) of u also commute with G.

Proof. With the notation of Theorem 3.7.1, let g 2 G. We have

u = gug�1 = (gvg�1) (gwg�1) :

Then gwg�1 is obviously orthogonal and gvg�1 is symmetric, for g�1 = tg.
We thus have gvg�1 = v and gwg�1 = w, and similar equalities hold for the
other decomposition. ut

To obtain suitable geometrical interpretations of some of the notions we
are going to introduce in the next section, we shall need to work sometimes
with the dual space of Ends(E). To this end, we introduce a Euclidean struc-
ture on this space of endomorphisms.

Proposition 3.1.10. The map u 7! Tr(u2) is a positive de�nite quadratic
form on Ends(E) with corresponding bilinear form (u; v) 7! Tr(uv), and the
resulting identi�cation of Ends(E) with Ends(E)� transforms Id 2 Ends(E)
into Tr 2 Ends(E)�.

We denote by hu; vi the scalar product Tr(uv), and call it the Voronoi
scalar product. We use the same notation on the space Symn of real sym-
metric matrices.
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Proof. The map u 7! Tr(u2) is clearly a quadratic form with corresponding
bilinear form (u; v) 7! Tr(uv). Let u 2 Ends(E). Since its eigenvalues are
real, those of u2 are non-negative. This shows that the form u 7! Tr(u2) is
positive. Moreover, if Tr(u2) = 0, the eigenvalues of u are all zero, since their
sum is zero, and u itself is then zero, since it possesses a diagonal form. Hence
u 7! Tr(u2) is a de�nite form. Finally, the last assertion is a reformulation of
the equalities h Id; ui = Tr(Id �u) = Tr(u). ut

Among the various symmetric endomorphisms of E, the orthogonal pro-
jections onto lines in E will play a crucial rôle. Recall (Proposition 1.3.4)
that pD denotes the orthogonal projection onto a line D; given x 6= 0 in E,
we set px = pRx. We have

px(y) =
x � y
N(x)

x :

Proposition 3.1.11. 1. For all u 2 Ends(E), we have

Tr(u � px) = Tr(px � u) = u(x) � x
N(x)

:

2. The (orthogonal) projections onto the various lines of E span Ends(E).

Proof. (1) Consider a basis B = (f1; : : : ; fn) for E with f1 = x and
f1 � fi = 0 for all i > 1. We have px(fi) = 0 for i > 1. The map u � px is
thus zero on Rx? , so that the trace of u � px is the coe�cient of u(f1) on f1.

If u(f1) =
Pn

i=1 xi fi, we have u(f1) � f1 = x1 (f1 � f1), whence x1 = u(x)�x
N(x) .

Taking into account the symmetry of the bilinear trace form, this completes
the proof of (1).

(2) It su�ces to show that an element u 2 Ends(E) which is orthogonal

to all the projections is the null map. By (1), we have hu; pxi = u(x)�x
N(x) . Hence

the quadratic form x 7! u(x) � x is identically zero on E, so that all scalar
products u(x) � y are zero. For every x 2 E, u(x) is thus orthogonal to all
vectors of E, whence u = 0. ut

We now explain a way to calculate with projections by means of matrices.
We still consider a pair of a basis B and its dual basis B�, but we express the
(orthogonal) projections with respect to the bases B� and B, for exchanging
B and B� simpli�es some formulae. We have px(e

�
j ) =

x�e�j
N(x)x whence (using

the components xi of x in B)

N(x) px(e
�
j ) =

�X
k

xk ek � e�j
��X

i

xi ei

�
=
X
i

xixj ei :

We are thus led to the following de�nition:
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De�nition 3.1.12. Let x be a nonzero vector in E, whose components
x1; : : : ; xn in some basis B are represented by the column-matrix X. We de-
note by Px or by PX the matrix X tX (a symmetric matrix of order n).

Explicitly, we have

PX =

0@ x1
x2
...
xn

1A ( x1 x2 ::: xn ) =

0B@
x2
1

x1x2 ::: x1xn
x2x1 x2

2
::: x2xn

...
...

. . .
...

xnx1 xnx2 ::: x2n

1CA :

The proof of the following proposition results immediately from the cal-
culation we have done before De�nition 3.1.12:

Proposition 3.1.13. Let B be a basis for E and let x 2 E be represented by
the column-matrix X. Then the matrix of N(x) px with respect to the bases
B� and B is PX = X tX. [Warning: note the inversion between B and B� with respect

to the usual ordering.] ut

Let x be a nonzero element in E. The matrices PX are of rank 1 and the
corresponding quadratic forms are

Y 7! tY (XtX)Y = t(tXY ) (tXY ) ;

or denoting by y1; y2; : : : ; yn the components of y,

(y1; y2; : : : ; yn) 7! (x1y1 + x2y2 + � � �+ xnyn)
2:

When x runs through Erf0g, we �nd in this way all rank-1 positive
quadratic forms, and two such forms are equal if and only if they correspond
to equal or opposite vectors.

To study the Hermite invariant we shall use either of the following two
convexity results with which we end Section 3.1.

Proposition 3.1.14. Let v be a nonzero symmetric endomorphism, let I be
an interval such that the function t 7! 1 + �t is positive for all t 2 I and
for all eigenvalues � of v, and for t 2 I, let ut = Id+t v. Then ut is a
positive de�nite symmetric endomorphism, the map t 7! det(ut) is strictly

logarithmically concave, and the map t 7! 1

det(ut)
is strictly convex.

Proof. Since both functions we consider are C1 on I , we just have to
show that the second derivative of the logarithm of the �rst function (resp.
of the second function) is strictly negative (resp. positive) on I . As a function
of the eigenvalues �1; : : : ; �n of v, we have det(ut) =

Q
i(1 + �it).

For the �rst function, we �nd

d2

dt2
log
Y
i

(1 + �it) = �
X �2i

(1 + �it)2
;
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and this expression is strictly negative, since at least one of the eigenvalues
is nonzero.

The result for the second function follows from the previous one by apply-
ing the following identity, valid for any strictly positive twice di�erentiable
function: �

1

f

�00
= � 1

f
(log f)00 +

f 02

f3
: ut

3.2 Linear Forms on Spaces of Endomorphisms

In this section, we denote by T a subspace of Ends(E); Tr(u) stands for the
trace of the endomorphism u.

De�nition 3.2.1. For all x 2 E, let 'x be the linear form u 7! u(x) � x
on Ends(E); for every line D � E, let 'D = 'x for any unit vector
x 2 D. When there is no risk of confusion, we use the same notation to
denote the restrictions to the subspace T of the linear forms above; this con-
vention applies in particular to De�nition 3.2.2 below.

The equality '�x = �2'x justi�es the notation 'D . In practice, we
consider 'x only up to a positive factor, so that the choice of any nonzero
x 2 D would have been suitable.
[ However, for the notion of strong eutaxy de�ned below, one must be care-
ful and avoid repeated lines or vectors, or non-constant numbers of vectors
de�ning the same line.]

De�nition 3.2.2. Let F be a �nite family of nonzero vectors in E and let
D be a �nite family of lines in E.

1. We say that F (resp. D) is T -perfect if the forms 'x; x 2 F (resp. the
forms 'D; D 2 D) span the dual space T � of T . More generally, the
rank r of the system 'x (or 'D) is called the T -perfection rank of the
family, and the codimension dim T � r its T -perfection corank.

2. We say that real numbers �x; x 2 F (resp. �D; D 2 D) are T -eutaxy
coe�cients for F (resp. for D) if there exists a relation Tr =

P
x2F �x'x

(resp. Tr =
P

D2D �D'D) between the restrictions to T of the forms
Tr; 'x; 'D.

3. We say that the family F (resp. D) is T -weakly eutactic if it possesses
T -eutaxy coe�cients, that it is T -semi-eutactic (resp. T -eutactic, resp.
strongly eutactic) if it is weakly eutactic with positive (resp. strictly pos-
itive, resp. equal) eutaxy coe�cients.
[Warning: For strong eutaxy, we must consider either distinct lines, or vectors of equal

norm such that no two of them are collinear.]

When T = Ends(E), one simply says perfect, weakly eutactic, semi-eutactic,
eutactic, and strongly eutactic.
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To say that F (or D) is T -perfect amounts to the same thing as saying
that the intersection of the kernels of the restriction to T of the forms 'x (or
'D) is reduced to f0g.

Note that perfect families are those which have corank 0, and that they are
always weakly eutactic; note also that strongly eutactic families are actually
eutactic: let s = jFj; applying a given eutaxy relation Tr =

P
x2F �x'x to

the identity, we obtain the new relationX
x2F

N(x) �x = n (3:2:20)

from which we deduce that equal eutaxy coe�cients have the common
positive value

� =
1

N(x)

n

s
: (3:2:200)

The notions of a perfect or of a eutactic family F of vectors solely depend
on the set of lines which contain them; it is possible to suppress a vector in F
whenever F contains another one which is proportional to it, and hence to
restrict oneself to families of vectors with a given norm. The natural notions
are thus those of a family (one also says con�guration) of perfect or eutactic
lines. However, we shall have to work with vectors rather than with lines,
and shall essentially apply De�nition 3.2.2 to families of vectors.

The following trivial proposition is nevertheless very useful:

Proposition 3.2.3. 1. If T 0 is a subspace of T , any T -perfect (resp. T -
eutactic) con�guration is T 0-perfect (resp. T 0-eutactic).

2. Any T -perfect con�guration has cardinality at least dim T . ut

We now consider more closely the case where T is the whole space
Ends(E).

Lemma 3.2.4. For any nonzero x 2 E, the duality de�ned by Tr(u2)
(see Proposition 3.1.10) transforms N(x) px into 'x.

Proof. This is just a reformulation of Proposition 3.1.11. ut

Theorem 3.2.5. Let F be a �nite family of nonzero vectors in E, let
B = (e1; : : : ; en) be a basis for E, with Gram matrix A = (ai;j) (i.e., we
have ai;j = ei � ej), and let (a�i;j) be the Gram matrix of B� (i.e., we have

(a�i;j) = A�1). For all x 2 E, denote by c1(x); : : : ; cn(x) the components of x
in B. The following conditions relative to a family �x; x 2 F of real numbers
are then equivalent:
1 . The �x are eutaxy coe�cients for F .
2 . We have the identity IdE =

P
x2F �xN(x) px.

3 . For all y 2 E, N(y) =
P

x2F �x (y � x)2.
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3 0. For all y; z 2 E, y � z =Px2F �x (y � x) (z � x).
4 . For all i and all j, a�i;j =

P
x2F �x ci(x) cj(x).

5 . We have the identity A�1 =
P

x2F �x Px.

Proof. The equivalence of (1) and (2) is an immediate consequence of
Lemma 3.2.4, that of (3) and (30) results from the correspondence between
quadratic and bilinear forms, and that of (4) and (5) is obvious, as (4) is just
an explicit formulation of (5). The remainder of the proof is organized along
the logical scheme (2)) (30)) (4)) (2).

If (2) is satis�ed, we have for all y 2 E the relation

y =
X
x2F

�xN(x) px(y) =
X
x2F

�x (x � y)x

and (30) follows, as one sees by performing the scalar product of both sides
with z.

One obtains (4) from (30) by putting y = ei and z = ej .
Finally, if (4) is satis�ed, we recover the preceding formula by setting

y =
P
�ie

�
i and z =

P
�je

�
j : we actually have

y � z =
X
i;j

�i�j
X
x

�x (x � e�i ) (x � e�j ) =
X
x

�x

�
x �
X
i

�i e
�
i

��
x �
X
j

�j e
�
j

�
=
X
x

�x (x � y) (x � z)

and the relation y =
P

x �x (x � y) follows, since both sides have the same
scalar product with any z 2 E. ut

Corollary 3.2.6. Any weakly eutactic family spans E; in particular any
perfect family spans E.

Proof. Let F be a weakly eutactic family, and let y 2 E be orthogonal to
all vectors in F . Then, by condition (2) above, we have

y =
X

�xN(x) (x � y) y = 0 : ut

Remark 3.2.7. When T is no longer the whole space Ends(E), Asser-
tion (2) above still holds, with the px replaced by their orthogonal projections
!x onto T (in Ends(E), for the scalar product h: ; :i).

We now return to the general case of an arbitrary subspace T of Ends(E)
and give the de�nitions we need for lattices.

De�nition 3.2.8. We say that a lattice is T -perfect (resp. weakly T -eutac-
tic, resp. T -semi-eutactic, resp. T -eutactic, resp. strongly T -eutactic) if the
set of its minimal vectors constitutes a T -perfect (resp. a weakly T -eutactic,
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resp. a T -semi-eutactic, resp. a T -eutactic, resp. a strongly T -eutactic)
family. When T is the whole space Ends(E), one simply says perfect, weakly
eutactic, semi-eutactic, eutactic and strongly eutactic. We de�ne as in
De�nition 3.2.2 the (T )-perfection rank and corank of a lattice.

Let � be a lattice. To a basis B for �, we can attach a symmetric matrix
A, namely the Gram matrix of B, whence also a quadratic form Q on Rn .
By Theorem 2.5, the properties of perfection or eutaxy of � are equivalent
to the corresponding properties for Q (or for A) as de�ned below. (For the
sake of simplicity, we ignore the case of a general subspace T of Ends(E).)

De�nition 3.2.9. Let Q be a positive de�nite quadratic form on Rn with
matrix A 2 Symn. We say that Q (or A) is perfect if the matrices PX ,
X 2 S(Q) span Symn, and that it is weakly eutactic if there exists a relation

A�1 =
X

X2S(Q)
�X PX :

We de�ne similarly semi-eutaxy, eutaxy and strong eutaxy for forms and
symmetric matrices. [Warning: the coe�cients �X coincide with those of Theorem 3.2.5

only up to the factor N(X) = tXX .]

More generally, when going from lattices to matrices (or to quadratic
forms), we attach to T a subspace Tmat (or Tquad) of Symn (or of the space
Qn of quadratic forms on Rn ), which we shall often simply denote by T . Def-
inition 3.2.9 applies to this situation, provided that Symn should be replaced
by T and the PX by their projections 
X onto T .

The following statement, which only involves the usual notion of per-
fection, is an easy consequence of the mere de�nition of perfection. Due to
its great importance, we state it as a theorem, which actually characterizes
perfect lattices or forms:

Theorem 3.2.10. (Korkine and Zolotare�.)

1. A perfect lattice with given norm m is well de�ned up to isometry by the
components in some basis of its minimal vectors.

2. A perfect quadratic form with given minimum m is uniquely de�ned by
the set of its minimal vectors in Zn.

Proof. The dictionary quadratic forms{lattices shows that the two state-
ments above are equivalent. Let us consider the case of quadratic forms.

Let Q1 and Q2 be two perfect quadratic forms with the same set S � Zn
of minimal vectors, and let Q be the form Q1 �Q2. For all X 2 S, we have
Q1(X) = Q2(X) = m, hence Q(X) = 0. The matrix A of Q is thus such that
8X 2 S, tXAX = 0, a condition equivalent to 8X 2 S; hA;PXi = 0. Since
the PX , X 2 S generate Symn, this implies A = 0. ut
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From the theorem above, we now deduce another result which also goes
back to Korkine and Zolotare�, and which accounts for the crucial rôle that
integral lattices play in the theory of the Hermite constant:

Proposition 3.2.11. A perfect lattice is proportional to an integral lattice.

Proof. Let � be a perfect lattice. We may rescale � so as to give it the
norm 1. Let A be the Gram matrix of some basis for �. The corresponding
quadratic form is determined by its minimal vectors, and these vectors have,
moreover, integral components. Thus the entries of A are the solution of a
linear system with integer coe�cients, from which we can extract a Cramer
system (because A is uniquely determined by this system). These entries are
thus rational numbers. Consequently,

p
m� is an integral lattice for any m

such that mA has entries in Z. ut

3.3 Linear Inequalities

We prove here a theorem which presently belongs to the so-called linear pro-
gramming theory. We shall make use of it in the next section to characterize
extreme lattices.

Theorem 3.3.1. (Stiemke, [Sti].) Let V be a real vector space and let
'1; : : : ; 'r be linear forms on V . The following conditions are equivalent:

1. Every x 2 V which is a solution of the system of linear inequalities
'i(x) � 0 for i = 1; 2; : : : ; r is a solution of the linear system 'i(x) = 0
for i = 1; 2; : : : ; r.

2. There exist strictly positive real numbers �1; �2; : : : ; �r such that
�1'1 + �2'2 + � � �+ �r'r = 0.

Proof. The implication (2)) (1) is obvious, and we now prove the other
one (the only one which will be useful). There is nothing to prove if V = f0g
or if r � 1. We thus suppose V 6= f0g and r � 2, and prove the theorem by
induction on r. Since Assertions (1) and (2) are invariant under replacement
of V by the intersection W = \i ker'i, we may and shall assume that the
linear forms 'i generate V

� = L(V;R).
Let m � r be the largest integer such that there are m forms among the

'i with the following property: there exists x 2 V on which these forms take
values which are positive but not all zero. After permutation of the indices,
we may assume that these forms are the �rst m forms.

Let us �rst show that '1; : : : ; 'm span V �. If it were not the case, we
could �nd a nonzero element y 2 \1�i�m ker'i and an index k > m with
'k(y) 6= 0. Since such a k would contradict the de�nition of m, we certainly
have m = r. But this contradicts the fact that V � is spanned by the r linear
forms 'i.
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We now distinguish two cases.
Case 1 : r > m+1. The fact that m is as large as possible allows us to apply
the induction hypothesis to the r � 1 > m forms '1; : : : ; 'r�1: there exists a
relation �01'1 + � � �+ �0r�1'r�1 = 0 with strictly positive coe�cients �0i. We
can write 'r as a linear combination �1'1 + � � �+ �r�1'r�1. Choose �r > 0
and su�ciently small in order that �i = �0i � �r�i be positive for all i < r.
We then have the equality

P
1�i�r �i 'i = 0, which completes the proof in

this case.
Case 2 : r = m + 1. We apply the induction hypothesis to H = Ker'r. Let
x 2 H . Since 'r(x) = 0, the inequalities 'i(x) � 0 for all i < r imply that
we have 'i(x) = 0 for all i < r.

On the one hand, there exist �1; : : : ; �r�1 > 0 such that the linear formP
i<r �i 'i is zero on H . On the other hand, the de�nition of m shows that

there exists v 2 V with 'r(v) < 0 and 'i(v) � 0 for all i < r, with at least
one of the vi 6= 0. The inequalities

P
i<r �i 'i(v) > 0 and 'r(v) < 0 show

that there exists �r > 0 such that the linear form
P

1�i�r �i 'i is zero at v.
Since this form is also zero on H , it is zero on the whole space V . ut

Here is an equivalent statement which shows up the convexity property
which lies behind Stiemke's theorem:

Theorem 3.3.2. Let K be the convex polytope de�ned by the inequalities
'i(x) � 0. Then K reduces to the intersection of the kernels of the 'i if and
only if there exist strictly positive real numbers �i such that

P
i �i'i = 0. ut

3.4 A Characterization of Extreme Lattices

We keep in this section the notation of Sections 3.1 and 3.2, but the results of
Section 3.2 will be used only for T = Ends(E). Given a lattice � � E, recall
(Chapter 1, De�nition 1.2.1 and Chapter 2, De�nition 2.2.5) that S = S(�)
is the set of minimal vectors in � and (�) = N(�) det(�)�1=n is its Hermite
invariant.

De�nition 3.4.1. We say that � is extreme if the Hermite invariant attains
a local maximum on � (for the topology on the set L of lattices in E de�ned
in Section 1.1 of Chapter 1), and that it is critical (or absolutely extreme)
if the Hermite invariant attains the absolute maximum on �.

Equivalently, the density of the sphere packing attached to � (see Def-
inition 1.8.1) is a local maximum. Clearly, the notion of extremality solely
depends on the similarity class of �.

To test whether � is extreme, we study the family u(�) when u runs
through some neighbourhood of the identity of GL(E). The topology on
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End(E) is de�ned by an arbitrary norm (all norms are equivalent). A classical

choice is kuk = supx2Erf0g
ku(x)k
kxk ; one can as well use the norm

p
Tr(tuu).

Thanks to Theorem 3.1.7, we could restrict ourselves to symmetric u, and
even assume that u preserves the norm of �, since extremality is invariant
under similarity. The way the determinant of � transforms is obvious: we
have det(u(�)) = det(�) det(u)2. To evaluate the norm of �, we shall need
the following lemma:

Lemma 3.4.2. There exists a neighbourhood V of the identity in GL(E) such
that, for u 2 V, the minimal vectors in u(�) are the images of some minimal
vectors in �; in other words, we have S(u(�)) � u(S(�)) for all u 2 V.

Proof. Set N1 = N(�) and N2 = minx2�;N(x)>N(�)N(x), and let

V =
�
u 2 GL(E) j ku�1k < pN2=N1

	
. We clearly have N(u(y)) > N(u(x))

for all u 2 V whenever x is minimal and N(y) is larger than N2. ut

To see how u(�) varies with u, we shall make use of a series expansion of
(u(�)) in an appropriate neighbourhood of the identity. However, the cal-
culations are greatly simpli�ed by making use of tuu rather than u. Writing
tuu = Id+ v, we transform by v 7! tuu a fundamental system of neighbour-
hoods of 0 in Ends(E) into a fundamental system of neighbourhoods of Id
in GL(E). Recall (De�nition 3.2.1) that 'x(v) = v(x) � x for x 2 E and
v 2 Ends(E).

Lemma 3.4.3. There exists a neighbourhood V of 0 in Ends(E) such that
N(u(�)) = N(�) if and only if minx2S 'x(v) = 0.

Proof. By Lemma 3.4.2, provided V is su�ciently small, we have

N(u(�)) = min
x2S

N(u(x)) ;

and the equalities

N(u(x)) = u(x) � u(x) = tuu(x) � x = 'x(Id) + 'x(v) = N(x) + 'x(v)

yield
N(u(�)) = N(�) + min

x2S
'x(v) : ut

We now look at the determinant of u.

Lemma 3.4.4. 1. There exists a neighbourhood V of 0 in Ends(E) such
that, for v 2 V with Tr(v) � 0 and u 2 GL(E) such that tuu = Id+v, we
have u 2 O(E) or det(u) < 1.

2. Let C be a closed cone in Ends(E) such that Tr(v) is strictly positive for
every nonzero v 2 C. There exists then � > 0 such that

v 2 C and 0 < kvk < � =) det(Id+v) > 1:
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Proof. (1) Let �1; �2; : : : ; �n be the (real) eigenvalues of v; those of Id+ v
are 1 + �1; 1 + �2; : : : ; 1 + �n; they are strictly positive on any su�ciently
small neighbourhood V of 0. We can thus consider on the interval [0; 1] the
two functions t 7! 'v(t) = det(Id+tv) and  v = log'v. The derivative of

the second one is
Pn

i=1

�i
1 + �it

, and we thus have

 0v(0) = �
nX
i=1

�i = �Tr(v) � 0 :

If v = 0, u is an isometry.
If v 6= 0,  v is strictly concave by Proposition 3.1.14, and this implies

the inequality  v(t) < 0 on [0; 1]. In particular, we have  v(1) < 0, hence
det(u) = ('v(1))

1=2 < 1.

(2) Let � = fw 2 Ends(E) j kwk = 1g be the unit sphere of Ends(E)
and let w 2 C \ �. The function  w is de�ned in any su�ciently small
neighbourhood of 0, and we have by our hypothesis Tr(w) > 0, hence  0w(0) >
0; there thus exists tw > 0 such that  w(tw) > 0. Since the function w0 7!
 w0(tw) is continuous on C \ �, there exists an open neighbourhood V(w)
of w in C \ � such that  w0 is positive at tw for all w0 2 V(w), and also by
convexity on the whole interval (0; tw].

From the covering
S
w2C\� V(w) of the compact set C\�, we can extract

a �nite covering
S

1�i�r V(wi). Let � = min(tw1
� � � twr

), let v 2 C such that
0 < kvk < �, and let w = v

kvk 2 �. There exists i; 1 � i � r, such that

w 2 V(wi). Hence fw(t) is strictly positive on the interval (0; �) � (0; twi
], and

in particular for t = kvk. This is equivalent to the inequality det(Id+v) > 1.
ut

The calculation of the Hermite invariant by means of Lemmas 3.4.3
and 3.4.4, with C = fv 2 Ends(E) j 8x 2 S(�); 'x(v) � 0g in 3.4.4 (2),
immediately yields:

Theorem 3.4.5. (Korkine and Zolotare�) A lattice � is extreme if and only
if the following implication holds:

v 2 Ends(E) ; min
x2S(�)

'x(v) = 0 and Tr(v) � 0 =) v = 0 :

Moreover if � is extreme, there exists a neighbourhood of � on which the
Hermite invariant of any lattice which is not similar to � is strictly smaller
than that of �. ut

We have previously de�ned (De�nition 3.2.8) the notions of a perfect and
of a eutactic lattice. They allow the following characterization of extreme
lattices, which is the central result of this section:
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Theorem 3.4.6. (Voronoi.) A lattice is extreme if and only if it is both
perfect and eutactic.

Proof. The proof relies on the characterization of extreme lattices we have
given in Theorem 3.4.5.

Let us �rst show that a eutactic and perfect lattice � is extreme. Let
v 2 Ends(E) such that minx2S 'x(v) = 0 and Tr(v) � 0. In particular, we
have 'x(v) � 0 and Tr(v) � 0, so that the de�nition of eutaxy implies that
'x(v) is zero for all x 2 S. Since � is perfect, v must be zero.

Conversely, let � be an extreme lattice. Let us �rst show that � is perfect.
Consider an element v 2 Ends(E) such that 'x(v) = 0 for all x 2 S. We
must verify that v = 0. Replacing if need be v by �v, we may assume that
Tr(v) � 0. Since minx2S 'x(v) = 0, Theorem 3.4.5 shows that v is zero.

To prove that � is also eutactic, we apply Stiemke's Theorem 3.3.1 to
the set of linear forms 'x; x 2 S and �Tr on V = Ends(E). We are re-
duced to prove that the inequalities 'x(v) � 0 and Tr(v) � 0 imply the
equalities 'x(v) = 0 and Tr(v) = 0. For k 2 R, let v0 = v � k Id. We have
Tr(v0) = Tr(v) � kn and 'x(v

0) = 'x(v) � kN(�), hence minx2S 'x(v0) =
minx2S 'x(v) � kN(�). Choose k in order that this minimum be zero. We
clearly have k � 0 and Tr(v0) � Tr(v) � 0. Theorem 3.4.5 shows that v0 is
zero, hence that v is multiplication by k. From 'x(v) = �kN(�) � 0 and
Tr(v) = kn � 0, we deduce that k = v = 0, and this proves in particular that
Tr(v) = 0 and that the equalities 'x(v) = 0 hold for all x 2 S. ut

Corollary 3.4.7. (Korkine and Zolotare�.) The n-th power of the Hermite
constant is a rational number.

Proof. A lattice whose Hermite invariant is maximum is extreme, hence
in particular perfect, and we may apply Proposition 3.2.11. ut

3.5 Perfect Con�gurations

We keep the notation of the previous sections, and denote by S a con�guration
of vectors in E (S is thus a �nite set of nonzero vectors in E). In practice, S
is the set of minimal vectors of some lattice �; this is the reason why we work
with vectors rather than with the family of lines that they de�ne, though this
point of view would have been more natural.

We study the perfection of S in the usual sense, disregarding the possi-
ble extensions of this notion to various subspaces T of Ends(E) other than
Ends(E) itself, even when this does not cause any di�culty, as is the case for
the following trivial (but useful) result:

Proposition 3.5.1. Any con�guration which contains a perfect con�gura-
tion is perfect. ut
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Theorem 3.5.2. 1. A necessary and su�cient condition for a con�gura-
tion to be perfect is that it should not be contained in any quadratic cone.

2. A perfect con�guration is not contained in the union of two hyperplanes;
in particular, a perfect con�guration cannot be the union of two ortho-
gonal strict subsets.

3. The vectors of a perfect con�guration span E.

Proof. (2) results from (1) applied to the degenerated cones which are
the union of two hyperplanes and (3) is the particular case of (2) in which
the two hyperplanes collapse to a single one. We now prove (1) in terms of
matrices.

To say that a con�guration S � Rn is not perfect amounts to saying that
the matrices XtX , X 2 S are contained in some hyperplane H inside Symn.
Since H is the subspace of Symn orthogonal to some nonzero symmetric ma-
trix A for the Voronoi scalar product hU; V i = Tr(UV ) of Proposition 3.1.10,
we have for every X 2 S the equivalences

XtX 2 H()hA;XtXi = 0()Tr(AtXX) = 0

()Tr(tXAX) = 0()tXAX = 0 ;

and the last equality means that the elements of S belong to the cone de�ned
by the equation tXAX = 0. ut

The forthcoming perfection criterion, though far from being a general one,
is nevertheless very often useful, see e.g. the case of root lattices (Chapter 4,
Section 4.7). This is a kind of converse to the second assertion of the pre-
ceding theorem, as it shows that when S is not contained in the union of
two hyperplanes and possesses a perfect hyperplane section, it is then itself
perfect.

Proposition 3.5.3. 1. Let H be a hyperplane of E such that S \ H is a
perfect con�guration in H. Then S is perfect if and only if the vectors
in S which lie outside H span E.

2. If there exist three distinct hyperplanes H1; H2; H3 of E such that S \Hi

is for every i a perfect con�guration in Hi, S is then perfect.
3. In order that a lattice � in E possessing a perfect hyperplane section with

the same norm as � be perfect, it is necessary and su�cient that S(�)
should contain n independent vectors outside this hyperplane section.

4. A lattice � possessing three distinct hyperplane perfect sections having
the same norm as � is perfect.

Proof. (1) The necessity of the condition follows immediately from Theo-
rem 3.5.2 (the fact that H \S be perfect is irrelevant here). To show the suf-
�ciency of the condition, we consider the space PH = fpH �u j u 2 Ends(E)g
(pH stands for the orthogonal projection onto H), which has codimension n
in Ends(E). Choose a vector e 6= 0 in H? and a basis B for E consisting of n
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vectors e1; : : : ; en which lie in S but not in H . It su�ces to show that there
cannot exist a relation

P
i �i pei 2 PH with real not all zero �i. We now have

the equivalencesX
i

�i pei 2 PH()
X
i

�i pe � pei = 0()8 y 2 E;
X
i

�i (ei � y)(ei � e) = 0 :

When one takes y = e�j , the last equality reduces to �j (ej � e) = 0, which
implies �j = 0 since ej does not lie in H .

(2). Since it is perfect, S \H2 contains n� 1 independent vectors outside
H1\H2. Since these vectors do not lie inH1, (1) shows that it su�ces to prove
that there exists in S \H3 a vector which does not lie in H1 [H2, a result
which follows from Theorem 3.5.2 (2) applied to the hyperplanes H1\H3 and
H2 \H3 of H3.

Finally, (3) and (4) are immediate consequences of (1) and (2). ut

We shall return to the question of relative perfection in Chapter 12, con-
tenting ourselves in this section with the case of codimension 1 just dealt with
above, for which the result can be expressed using only geometric properties
of vectors in E. We now prove an important �niteness theorem:

Theorem 3.5.4. (Voronoi.) For a given dimension n, the number of simi-
larity classes of perfect lattices and the number equivalence classes up to pro-
portionality of perfect quadratic forms are �nite.

Proof. The two statements are clearly equivalent. We shall prove the �rst
one by showing the �niteness assertion up to isometry for norm 1 lattices.

Let thus � be a perfect lattice of norm 1. Since the minimal vectors in �
span E, we have det(�) � 1 by the Hadamard inequality (Theorem 2.1.1).
The Hermite inequality (Theorem 2.2.1) then shows that there exists a basis
B = (e1; : : : ; en) for � for which the norms of the basis vectors are bounded
from above by some constant cn which solely depends on the dimension.

For x =
P

i ai ei 2 �, we have

jaij2 = det(he1; : : : ; ei�1; x; ei+1; : : : ; eni)
det(he1; : : : ; ei�1; ei; ei+1; : : : ; eni) :

Replacing the numerator by the upper bound given by the Hadamard inequa-
lity and the denominator by the lower bound given by the Hermite inequality,
we obtain the upper bound

jaij2 � nnc
n�1
n N(x) ;

which bounds jaij2 for 1 � i � n and all x 2 � by CnN(x), where the
constant Cn depends only on n.

The components in B of any x 2 S(�) are thus bounded from above byp
Cn. Hence the set of the components of the minimal vectors of a perfect
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norm 1 lattice in a basis which satis�es the Hermite inequality is a subset of
a �nite subset of Zn, and our claim now follows from Theorem 3.2.10. ut

We end this section with applications of the notion of perfection to the
study of the kissing number.

Theorem 3.5.5. An n-dimensional lattice for which the kissing number is
maximum among lattices of dimension n is perfect.

Proof. Let � be such a lattice. If it is not perfect, there exists a nonzero
v 2 Ends(E) such that 'x(v) = 0 for all x 2 S(�) (see De�nitions 3.2.1
and 3.2.2). For � � 0 and su�ciently small for the square root to exist, let
u� =

p
Id��v. Lemma 3.4.3 shows that the lattice u�(�) has the same norm

as � for su�ciently small � and satis�es the property S(u�(�)) = u�(S(�)).
Since det(u�(�)) = det(u�) det(�) strictly decreases and tends to 0 on the
interval of de�nition of u�, the norm of u�(�) becomes smaller than that
of � for all su�ciently large � . Let � be the supremum of the � for which
N(u�(�)) = N(�) and S(u�(�)) = u�(S(�)). The lattice u�(�) has clearly
the same norm as � but at least one pair of minimal vectors outside u�(S(�)).
We thus have s(u�(�) > s(�). ut

Finer results have been obtained for dimensions 8 and 24 for the proof
of which we refer the reader to [C-S], Chapter 14; the lattice E8 (resp. the
Leech lattice �24) is de�ned in Section 4.4 (resp. in Sections 5.7 and 8.7):

Theorem 3.5.6. (Bannai and Sloane.) In dimension 8 (resp. 24), the con-
�guration of the centres of 240 = 120� 2 (resp. 196560 = 98280� 2) spheres
of radius 1 in contact with the unit sphere of E is similar to that of the min-
imal vectors in E8 (resp. in �24). ut

From this theorem, we �rst deduce that the maximum of s for dimension 8
(resp. 24) is equal to 120 (resp. to 98280), a result �rst proved by Odlyzko
and Sloane; see [C-S], Chapter 13, then that it is attained only on E8 (resp.
on �24), and �nally that these two lattices are perfect. Actually, for a given
dimension n, if an inequality s(�) � s0 has only �nitely many solutions up
to similarity, then all lattices with s(�) � s0 are perfect.

Some other examples of lattices for which a characterization can be ob-
tained via their kissing numbers will be seen in Chapter 6.

3.6 Eutactic Con�gurations and Extreme Lattices

We keep the notation of the preceding sections. The aim of this section is
to obtain methods which will allow us to prove that some con�gurations are
eutactic without �nding explicitly the eutaxy coe�cients. We shall also give
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a theoretical characterization of eutaxy. For the sake of simplicity, we do not
consider T -eutaxy for T 6= Ends(E).

Proposition 3.6.1. A union of weakly eutactic (resp. semi-eutactic, resp.
eutactic) con�gurations is weakly eutactic (resp. semi-eutactic, resp. eutac-
tic); a union of disjoint strongly eutactic con�gurations is strongly eutactic.

Proof. We consider line con�gurations. An induction argument shows that
it su�ces to prove the proposition for a union S = S1 [ S2 of two con�gura-
tions. By weak eutaxy, there exist two eutaxy relations Id =

P
x2S1 �D 'D

and Id =
P

D2S2 �D 'D .
Let �; � > 0 with �+ � = 1. Then the eutaxy relation

Id =
X
D2S1

��D +
X
�2S2

���

holds for S. This proves the proposition for (weak, semi-) eutaxy. In the case
where strong eutaxy holds for S1 and S2, the eutaxy relations for S1 and S2
take the forms Id = �

P
D2S1 'D and Id = �

P
D2S2 'D and yield a eutaxy

relation for S with the two coe�cients �� and ��, which are equal when
choosing � = �

�+� and � = �
�+� . [Variant for strong eutaxy: since the partial sumsP

px are proportional to the identity, so is the global sum.] ut

Recall (Corollary 3.2.6) that the vectors of a weakly eutactic con�guration
span E.

Theorem 3.6.2. A con�guration which contains a perfect and eutactic con-
�guration is itself perfect and eutactic. [However, without the perfection hypothesis,

only weak eutaxy is invariant by extension; see Exercise 3.6.1.]

Proof. Let S be a perfect and eutactic con�guration, and let S0 be a con-
�guration which contains S. By induction on jS0j � jSj, we restrict ourselves
to the case where S0 is of the form S [ fD0g. By Proposition 3.5.1, S0 is
perfect; let us now prove that it is also eutactic. By hypothesis, there exists
a relation Id =

P
D2S �D pD with strictly positive coe�cients �D. Since S is

perfect, we can express pD0 as a linear combination of the px; x 2 S: there
exists a relation pD0 =

P
D2S �D pD with real coe�cients �D . This yields for

S0 the new eutaxy relations

Id = �pD0 +
X
D2S

(�D � ��D)pD

with arbitrary � 2 R. For su�ciently small strictly positive � > 0, this is a
eutaxy relation with strictly positive coe�cients. ut

We now easily deduce from Theorem 3.6.2 an extremality criterion for
lattices:
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Theorem 3.6.3. Let � be a lattice. The following conditions are equivalent:

1. � is extreme.
2. The lattice �S generated by the minimal vectors in � is extreme.
3. � contains an extreme lattice �0 with the same norm.

Proof. (1)) (2). Let �S be the subgroup of � generated by S(�). Theo-
rem 3.5.2 shows that �S is a sublattice of �. Since S(�S) = S(�), �S is both
perfect and eutactic, hence extreme.

(2)) (3). Take �0 = �S .
(3) ) (1). Since �0 and � have the same norm, we have the inclusion

S(�0) � S(�). Since �0 is extreme, the con�guration S(�0) is both perfect
and eutactic. By Theorem 3.6.2, the same properties hold for S(�), and � is
thus extreme, since it is both perfect and eutactic. ut

We now look at connections which exist between the eutaxy property and
automorphisms. We denote by S a con�guration of vectors in E. As usual,
the de�nitions and results which follow can easily be translated in terms of
line con�gurations.

De�nition 3.6.4. An automorphism of S is an orthogonal transformation
which preserves S.

When S generates E, Aut(S) is a �nite group. The orthogonal group
O(E) acts on Ends(E) by the rule s � u = s � u � s�1.

For all nonzero x 2 E and for all s 2 O(E), we have s � px � s�1 = psx,
because of the following equalities, valid for all y 2 E:

(s � px � s�1)(y) = x � s�1(y)
x � x sx =

sx � y
x � x sx = psx(y) :

The linear forms 'x behave in a similar way under the action of the
orthogonal group: we indeed have

'x(s � u) = (s�1 � u � s)(x) � x = u(sx) � sx = 'sx(u)

for all x 2 E , u 2 Ends(E), and s 2 O(E).
Given a �nite subgroup G of O(E) and an orbit ! of G on S, we de�ne

p! 2 Ends(E) by p! = 1
jGj
P

x2! px and '! 2 (Ends(E))� by '! =
P

x2! 'x.

Proposition 3.6.5. Let O be the set of orbits of G acting on S. The follow-
ing conditions are equivalent:

1. The con�guration S is weakly eutactic (resp. eutactic).
2. There exists a relation Tr =

P
!2O �! '! with real (resp. with strictly

positive) coe�cients �!.
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Proof. Suppose that S is weakly eutactic, and let

Tr =
X
x2S

�x 'x

be a eutaxy relation with real coe�cients �x. For all u 2 Ends(E) and all
s 2 G, we have

Tr(u) = Tr(s�1 � u � s) =
X
x2S

�x 'sx(u)() Tr =
X
x2S

�x 'sx ;

whence by summation on the elements of G:

jGj Tr =
X
x2S

�x
X
s2G

'sx :

Taking �! =
P

x2! �x, we obtain a relation of the form we want, and the
coe�cients �! are plainly strictly positive when the �x are.

The converse statements are obvious. ut

To test whether a given lattice � is eutactic, it is thus interesting to �nd a
subgroup of Aut(�) which is as large as possible. The following two theorems
list examples for which we can directly prove the eutaxy property, for a lattice
or for its dual. (The complete statement of the second theorem anticipates
Section 3.8.)

Theorem 3.6.6. Let G be a subgroup of Aut(S). Suppose that one of the
following conditions holds:

1. The trace form belongs to the span in Ends(E) of the 'x, x 2 S, and G
acts transitively on S.

2. G acts irreducibly on E.

Then S is a strongly eutactic con�guration.

[One says thatG acts irreducibly or is irreducible onE if the only invariant subspaces ofE
are E itself and f0g; this means that the representation of G a�orded by the embedding

O(E) � GL(E) is irreducible over R.]

Theorem 3.6.7. Let � be a perfect lattice. Suppose that one of the following
conditions holds:

1. G acts transitively on S(�).
2. G acts irreducibly on E.

Then � is extreme, and both � and �� are strongly eutactic (and dual-extreme
in the sense of De�nition 3.8.1 below).
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Proof of 3.6.6 under hypothesis (1). The existence of a eutaxy relation
with a single eutaxy coe�cient is an immediate consequence of Proposi-
tion 3.6.5 (2). (This unique coe�cient is equal to s

n , see Formula (2) in The-
orem 3.2.5.)

The proof under hypothesis (2) will rely on the following lemma:

Lemma 3.6.8. If G is irreducible, the set of symmetric endomorphisms of E
which commute with G is the 1-dimensional subspace of E generated by the
identity.

Proof of 3.6.6 under hypothesis (2). Let us take provisionally for granted
the lemma above, and consider the orbit ! of some element x 2 S. The
endomorphism p! =

P
s2G psx commutes with G, and is thus of the form

� Id for an appropriate � 2 R. This shows that the orbit ! is a strongly
eutactic con�guration, and so is S by Proposition 3.6.1, since it is a disjoint
union of orbits. ut

Proof of 3.6.8. Let u 2 Ends(E) which commutes with G. Let x be an
eigenvector for u, with corresponding eigenvalue � (which exists in R since u
is symmetric). For all s 2 G, we have

u(sx) = u � s(x) = s � u(x) = s(�x) = � (sx) :

Since G is irreducible, the sx, s 2 G span E. Hence u is the homothetic
transformation x 7! �x. ut

Proof of 3.6.7. By Theorem 3.4.6 (and Corollary 3.8.6 below), it su�ces
to prove that both � and �� are strongly eutactic. Under assumption (2),
this is a direct consequence of Theorem 3.6.6, which also applies to ��, since
Aut(�) = Aut(��). Moreover, since � is perfect, assumption (1) in Theo-
rem 3.6.6 is satis�ed, which shows that � is strongly eutactic.

To prove that �� is strongly eutactic under assumption (1), consider the
sum u 2 Ends(E) of all orthogonal projections onto the directions of minimal
vectors in ��. By the perfection of �, u is a linear combination of orthogonal
projections onto the directions of minimal vectors in �. Taking the average
under G of both sides of this equality, we obtain a relation of the formX

x2S(�)=f�1g
px = �

X
y2S(��)=f�1g

py ;

� 2 R. Since � is strongly eutactic, the left{hand side is proportional to the
identity. The same result thus holds for the right{hand side. ut

Remark 3.6.9. One can generalize Theorem 3.6.6 to T -eutactic con�gura-
tions such that T is invariant under G.
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Following Coxeter and Hadwiger, we shall now prove a geometrical char-
acterization of the eutaxy condition. We consider line con�gurations with s
elements, with which we associate one of the vector con�gurations, denoted
by S, obtained by choosing arbitrarily a unit vector on each line.

Theorem 3.6.10. 1. If S is weakly eutactic, then for all subspaces F of
E, the lines in S which do not lie inside F span a subspace of E which
contains the orthogonal of F .

2. Any weakly eutactic con�guration contains at least n lines which span E.
3. Weakly eutactic con�gurations which contain exactly n lines are the con-

�gurations of n orthogonal lines, and they are strongly eutactic.

Proof. (1) A eutaxy relation for S can be written in the form

Id =
X

x2S\F
�x px +

X
y2SrF

�y py :

Applying both sides to a vector e 2 F?, we obtain e =Py2SrF �ypy(e).
(2) This result, previously proved as Corollary 3.2.6, follows immediately

from (1).
(3) By induction on n, we see that among the con�gurations of n lines,

only those which constitute an orthogonal system may be weakly eutactic.
That these con�gurations are actually strongly eutactic results from the iden-
tity Id =

Pn
i=1 p"i which holds for any orthogonal basis ("1; "2; : : : ; "n) for E.

ut

Proposition 3.6.11. Any orthogonal projection of a (weakly, semi-) eutac-
tic con�guration is a (weakly, semi-) eutactic con�guration.
[For this statement to make sense, one must of course remove the lines or vectors which

project to f0g.]
Proof. Let S be a (weakly) eutactic con�guration of unit vectors in E and

let F be a subspace of E. Since for E � F � G, the orthogonal projection
onto G can be obtained by performing �rst the orthogonal projection onto F
and then the orthogonal projection in F onto G, we may assume by induction
that F is a hyperplane of E.

Let e be a unit vector in F? and let S0 be the projection of S onto F
(after having removed the vector 0 when e or �e belongs to S). Any vector
x 2 S can be written in a unique way as a sum x = x0+� e with x0 2 S0[f0g
and � 2 R. There exist coe�cients �x 2 R such that

8 y 2 E; y =
X
x2S

�x (x � y)x :

For y 2 F , this also reads

y =
X
x2S

�x (x
0 � y)x0 +

X
x2S

�x�x (x
0 � y) e :
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Since the left{hand side and the �rst sum in the equality above belong to F ,
the second sum is zero, and we obtain (after removing the vector 0 if need
be) a eutaxy relation for S0, whose coe�cients �0x = �x (x

0 � y) are (strictly)
positive whenever the �x are. ut

Theorem 3.6.12. (Hadwiger.) For a con�guration S of s lines in E to be
eutactic, it is necessary and su�cient that it should be the orthogonal pro-
jection on E of an orthogonal con�guration of s lines in an s-dimensional
Euclidean space F containing E.

Proof. We know by Theorem 3.6.10 and Proposition 3.6.11 that we have
s � n and that our claim is true if s = n. Suppose now s > n. By induction
on s � n, we are reduced to show that S is the projection onto E of some
eutactic con�guration lying in an (n+1)-dimensional space F containing E.

We thus embed E into Euclidean space F of dimension n + 1 which we
decompose as an orthogonal sum F = E ? R e for some unit vector e 2 F .
We then lift all vectors x 2 S to vectors x0 = x+ �x e 2 F , where the �x are
real numbers to be chosen later. We obtain in this way a set S0 of s vectors
in F .

Let �x; x 2 S be the eutaxy coe�cients for S. We shall now show that for
a suitable choice of the �x, we obtain a decomposition the identity of F of the
form Id =

P
x2S �xN(x0) px0 . The existence of such an equality is equivalent

to the condition

8 y 2 F ; y =
X
x2S

�x(x
0 � y)x+

X
x2S

�x�x(x
0 � y) e (�)

which we are going to check for y 2 E and for y = e.
If y 2 E, we have x0 � y = x � y and thusX

x2S
�x(x

0 � y)x =
X
x2S

�x(x � y)x = y ;

so that condition (�) is equivalent to the equality
P

x2S �x�x (x � y) = 0.
Since s > n, there exists between the vectors in S a non-trivial relationP

x2S �x x = 0. We then satisfy condition (�) in this case by taking �x = � �x
�x

where � 2 R can be arbitrarily chosen.
If y = e, we haveX

x2S
�x (x

0 � y)x =
X
x2S

�x�x x = �
X
x2S

�x x = 0 ;

and condition (�) reduces to

� =

 X
x2S

�2x
�x

!�1=2
;
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a condition which it is possible to ensure since the various terms in the sum
above are positive or zero, but not all zero. ut

The eutaxy condition for a con�guration S of vectors in E can be ex-
pressed in terms of eutactic stars : these are vector con�gurations T for which
the identity N(y) =

P
x02T (x

0 � y)2 holds on E. Starting from a eutactic
con�guration S and making use of condition (3) in Theorem 3.2.5, we trans-
form S into a eutactic star S0 by multiplying each vector in S by its eutaxy
coe�cient.

Among the various su�cient conditions for eutaxy to hold, we quote the
following one, which is particularly useful to handle dual-extreme lattices, a
notion to be de�ned in Section 3.8.

Theorem 3.6.13. Suppose that E is an orthogonal direct sum of subspaces
E1; : : : ; Er. For all i, let Si be a con�guration (say, of vectors) in Ei and let
�i be a lattice in Ei. Let S be the union S = [iSi and let � be the (orthogonal)
sum � = �1 + � � �+ �r. Then:

1. S is (weakly, semi-) eutactic if and only if all Si are (weakly, semi-)
eutactic.

2. S is strongly eutactic if and only if all Si are strongly eutactic and the

ratio
jSij

dimEi
is independent of i.

3. � is (weakly, semi-) eutactic if and only if �i is (weakly, semi-) eutactic
for all i and all �i have the same norm.

4. � is strongly eutactic if and only if �i is strongly eutactic for all i, all

�i have the same norm, and the ratio
s(�i)

dim�i
is independent of i.

Proof. (1) For any i and any nonzero x 2 Ei, we have pEi
� px = px.

Thus S is eutactic in E, Si is eutactic in Ei for all i. Conversely, a eutaxy
relation for Si can be written in the form pEi

=
P

x2Si �x px, and the equality
Id =

P
i pEi

transforms the set of eutaxy relations for the Si into a eutaxy
relation for S, with appropriate signs of the coe�cients.

(2) From a strong eutaxy relation Id = �
P

x2S px, we deduce the equali-
ties pEi

= �
P

x2Si px which are strong eutaxy relations for the Si in which

moreover
jSij

dimEi
= � is constant. Conversely, the eutaxy relation obtained

using the identity Id =
P

i pEi
is a relation of strong eutaxy whenever the

coe�cients of strong eutaxy for the Si do not depend on i.
(3) and (4) We have N(�) = miniN(�i). Hence S(�) does not span E

if the lattices �i do not have the same norm. Conversely, if all �i have the
same norm, then S(�) = [iS(�i), and (3) and (4) are direct consequences
of (1) and (2) respectively. ut
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3.7 The Lamination Process

Let n0 � 0 be an integer, let �0 be a lattice in a Euclidean space E0 of
dimension n0, and let N0 = N(�0). Embed E0 as a hyperplane in a Euclidean
space E1 of dimension n0 + 1. We are interested in lattices �1 � E1 with
norm N0 and such that �1 \ E0 = �0.

De�nition 3.7.1. We say that �1 � E1 is extreme relative to �0 (resp.
critical relative to �0) if its Hermite constant is a local (resp. an absolute)
maximum on the set of lattices in E1 with norm N0 whose intersection with
E0 is �0.

Proposition 3.7.2. Let �0 be a lattice in E0 and let �1 � E1 be extreme rel-
ative to �0. Then the set of minimal vectors in �1 lying outside E0 spans E1.

Proof. Otherwise, the minimal vectors in E1 lie in some hyperplane H 6=
E0 in E1. Let � 2 (0; �2 ) be the angle of E0 and H (non-oriented angle of two
unit vectors e0 and e orthogonal to E0 and to H respectively). For 0 < � < �

2 ,
let e� be the vector of the plane he0; ei whose angle with e0 (resp. e) is �� �
(resp. �), and let H� be the hyperplane of E1 which is orthogonal to e�.
Consider the rabatment u� which maps H onto H� (u� is the identity on E0

and transforms e into (sin �) e+ (cos �) e0).
For all x 2 H , we have N(u�(x)) = N(x). Since the vectors in S(�1) lie

in E0 [H , the image under u� of S(�1) is made of vectors of norm N0. Since
u� is continuous and u0 = Id, the images under u� of vectors in �1 which
do not lie in E0 [ H all have for su�ciently small � a norm N > N0. The
equalities

det(u�(�1)) = det(u�)
2 � det(�1) = (cos2 �) det(�1)

show that the determinant of u�(L1) is strictly smaller than that of �1 for
� > 0, and this contradicts the hypothesis that the Hermite invariant of �1

is a local maximum. ut

Applying Proposition 3.5.3, we obtain:

Corollary 3.7.3. A lattice which is extreme relative to a perfect lattice is
perfect. ut

Remark 3.7.4. We shall prove in Chapter 12 (in any codimension) a char-
acterization �a la Voronoi of relatively extreme lattices as relatively perfect
and relatively eutactic lattices, and also show that a lattice which is perfect
relative to a perfect lattice is perfect. In this section, we have restricted our-
selves to the case of codimension 1 (for which the statement above reduces to
Proposition 3.5.3).
However, there exist non-extreme lattices which are extreme relative to an
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extreme lattice: it may actually happen that a deformation of �1 does not
preserve the isometry class of �0, and examples in codimension 1 have been
given by Barnes ([Bar5], I, p. 64); an explicit example is provided by the
lattices Lr2r � Lr2r+1 of De�nition 8.4.4.

De�nition 3.7.5. Let �0 be a lattice of dimension n0, and let n � n0 be an
integer.

1. We say that an n-dimensional lattice � is a weakly laminated lattice
above �0 if there exists a sequence L0 = �0; L1; : : : ; Ln�n0 = � of lattices
of dimensions n0; n0 + 1; : : : ; n, each term of which is critical relative to
the preceding one.

2. We say that � is (strongly) laminated above L0 if its Hermite invariant
is maximal among all n-dimensional weakly laminated lattices.

Laminated lattices above a given lattice �0 have the same norm as �0,
and those which are strongly laminated moreover share the same value for
their determinant. By Corollary 3.7.3, laminated lattices (strongly or weakly)
above a perfect lattice are perfect. We say laminated lattices without any
other precision for the particular case considered by Conway and Sloane:

De�nition 3.7.6. An n-dimensional laminated lattice is an n-dimensional
strongly laminated lattice above the trivial lattice f0g to which is given the
norm 4. We denote by �n any n-dimensional laminated lattice, with possibly
a superscript when uniqueness does not hold in dimension n.

For n � 1, they are laminated above 2Z, but to consider dimension 0
has some importance to take advantage of various symmetries. Conway and
Sloane ([C-S], Chapter 6) have determined the determinants of the lami-
nated lattices up to dimension 48 and found all laminated lattices up to
dimension 25. These determinants can be calculated by simple symmetry
rules once they are known in dimensions 1 to 4. For the proofs, see [C-S],
Chapter 6.

Theorem 3.7.7. (Conway and Sloane.) The values �n of the determinants
of the laminated lattices �n in dimensions n � 48 satisfy the following rules,
which determine them:

1. �0 = 1; �1 = 4; �2 = 12; �3 = 32; �4 = 64.
2. �n = 22n�8�8�n for 0 � n � 8.
3. �n = 216�n�n�8 for 8 � n � 16.
4. �n = �24�n for 0 � n � 24.
5. �n = 224�n�n�24 = 224�n�48�n for 24 � n � 48. ut

Laminated lattices are integral up to dimension 24, and are unique except
in dimensions 11, 12 and 13 where there exist respectively 2, 3 and 3 isometry
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classes, which have di�erent kissing numbers and which we distinguish by
superscripts min, mid, max, according to the following table:

Table 3.7.7
0
. Laminated lattices in dimensions 11-13

n = 11 s(�min
11 ) = 216 s(�max

11 ) = 219

n = 12 s(�min
12 ) = 312 s(�mid

12 ) = 316 s(�max
12 ) = 324

n = 13 s(�min
13 ) = 444 s(�mid

13 ) = 445 s(�max
13 ) = 453

[We shall construct in Chapter 8, Sections 8.6 to 8.8, all laminated lattices up to di-

mension 24 as well as a \principal series" between dimensions 25 and 48, whose members

become integral when rescaled to norm 8 (the smallest possible norm for 25 � n � 48,
see Exercise 3.7.2).]

It should be noticed that among strongly laminated lattices above a given
lattice, there may exist dead-ends. This is the case for �mid

13 : laminated lattices
above �mid

13 have a determinant larger than that of �14. This is the only
example among the usual laminated lattices of dimension up to 24.

Modi�cations of the lamination process, involving algebraic structures
(given automorphism groups, module structures over various orders of num-
ber �elds or quaternion skew-�elds) have been considered. Note, however,
that lattices which can be constructed in this way are not a priori perfect, at
least for the notion of perfection de�ned in this chapter.

Besides the previous laminations that they name \geometrical lamina-
tions", Plesken and Pohst ([Pl-P1], [Pl-P2]), have de�ned \arithmetical lam-
inations", in both a weak and a strong sense. One starts with an integral
lattice �0 of dimension n0 and norm m0, and then consider integral lattices
of norm m0 which contain �0 as a codimension 1 section and which, more-
over, has a basis obtained by adjoining a new minimal vector to a basis for
�0. These are the weak arithmetical laminations over �0, and one obtains the
strong arithmetical laminations over �0 by keeping only those lattices with
the largest possible Hermite invariant. (As previously, a discrepancy may ap-
pear from dimension n0+2 onwards.) There is no reason for perfection to be
preserved. It seems likely that the weak laminated lattices in the geometrical
sense above �mid

13 lie among the arithmetical ones, which in particular allows
the embedding of �mid

13 into �17 (the embedding in �16 is not possible; see
Chapter 8).

3.8 Dual-Extreme Lattices

We still consider a Euclidean vector space of dimension n. Recall (Chapter 2,
Section 2.8) that the \dual Hermite invariant" of a lattice � � E is
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0(�) = k�k � k��k = (N(�)N(��))1=2 = ((�) (��))1=2 :

We have 0(�) = 0(��) = ((�) (��))1=2 � n, which proves the existence
of 0n = sup� 

0(�).

De�nition 3.8.1. We say that � is dual-extreme if the invariant 0 attains
a local maximum on �.

Notice that � and �� play symmetric rôles in this de�nition, so that a
lattice is dual-extreme if and only if its dual is.

We now prove a �rst necessary condition for a lattice to be dual-extreme,
which is of a great practical importance, and which constitutes a fundamental
lemma for the proof of the characterization of dual-extreme lattices given in
Theorem 3.8.4 below.

Proposition 3.8.2. Each of the sets of minimal vectors of a dual-extreme
lattice and of its dual spans E.

Proof. Let � be a lattice which does not satisfy the condition above, and
let V be a neighbourhood of � in the space L of lattices. We shall show
that V contains a lattice whose invariant 0 is strictly larger than that of �.
Exchanging if need be � and ��, we may assume that S(�) spans a subspace
F 6= E of E. We shall use the following obvious generalization of Lemma 3.4.2:
there exists in End(E) a neighbourhood the identity on which all minimal
vectors in u(�) and in u(�)� are images of minimal vectors in � and ��

respectively.
For nonzero � 2 R, let u� 2 GL(E) be the map which is the identity on F

and multiplication by � on F?, and let �0 = u�(�).
Since S(�) is contained in F , it is invariant under u�. For � su�ciently

close to 1, �0 belongs to V , and the norms of the vectors in �0 which
do not belong to F remain strictly larger than that of �. The equalities
�0� = tu�1� (��) = u��1(��) show that u� strictly increases the norms of
the elements of (��) which do not belong to F . If S(��) \ F = ;, we have
N(�0�) > N(��), and � is not dual-extreme.

Suppose now that S(��) \ F is not empty. The minimal vectors in �0

and in �0� then all belong to F . Let w be an endomorphism of E which is
zero on F and which maps F? into F . Its transpose tw is zero on F? and
maps F into F?. Let us choose w in such a way that the kernel of tw does
not contain any vector in S(�0�). For any � 2 R, let v� = Id+�w. We have
(tw)2 = w2 = 0, hence tv�1� = Id�� tw. For � su�ciently close to 0, v�(�

0)
belongs to V , and the norms of the elements in v�(�

0) (resp. in v�(�0
�
)) which

do not belong to F are strictly greater that N(�0) (resp. than N(�0�)). Since
the restriction of v� to F is the identity, we have S(v�(�

0)) = S(�0) = S(�),
whence N(v�(�

0)) = N(�). For x 2 F , tv� transforms x into x + x� where
x� = �tw(x) is orthogonal to x. We thus have N(v�(x)) = N(x) +N(x�) >
N(x) for x =2 Kerw, which shows that the norm of the dual of v�(�

0) is
strictly larger than that of �0�.
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To summarize, for the choices above of u� and of v�, the lattice v� �u�(�)
belongs to V and has the same norm as �, but the norm of its dual is strictly
larger than that of ��. Hence the lattice � is not dual-extreme. ut

To characterize dual-extreme lattices, we need analogues to the notions
of perfection and eutaxy. These are provided by the following de�nition:

De�nition 3.8.3. We say that a pair (S; S0) of con�gurations of lines (or
of vectors) in E is dual-perfect if S [ S0 is a perfect con�guration, i.e. if the
projections px; x 2 S [ S0 span Ends(E), and that it is dual-eutactic if there
are two families �x ; x 2 S and �0y ; y 2 S0 of strictly positive real numbers such
that

P
x2S �x px =

P
y2S0 �

0
y py. We say that a lattice � is dual-perfect (resp.

dual-eutactic) if the pair (S(�); S(��)) is dual-perfect (resp. dual-eutactic).

Given a basis B for � with Gram matrix A, expressing the projections
onto minimal vectors with respect to the pair (B;B�) of bases for E shows
that � is dual eutactic if and only if there exists a relation

X
�X

�X X
tX = A�1

 X
�Y

�0Y Y
tY

!
A�1 (3:8:30)

with strictly positive coe�cients �X ; �
0
Y , where X (resp. Y ) runs through the

column-matrices of the components in B (resp. in B�) of the vectors in S(�)
(resp. in S(��)).

De�nition 3.8.3 is clearly invariant under the exchange of S and S0, and
De�nitions 3.8.1 and 3.8.3 are invariant under the exchange of � and ��.

De�nition 3.8.3 possesses the following dual version, which makes use as
usual of linear forms 'x on Ends(E), that we give in the case of a lattice: � is
dual-perfect if and only if the forms 'x, x 2 S(�)[S(��) span Ends(E)�, and
dual-eutactic if and only if there exists a relation of the form

P
x2S(�) �x 'x =P

y2S(��) �
0
y 'y with strictly positive coe�cients �x; �

0
y.

The following theorem is an analogue to Korkine and Zolotare�'s charac-
terization of extreme lattices (Theorem 3.4.5):

Theorem 3.8.4. A necessary and su�cient condition for a lattice � to be
dual-extreme is that the system of inequalities

'x(v) � 0 ; x 2 S(�) and 'y(v) � 0 ; y 2 S(��)

only have the solution v = 0 in Ends(E). Moreover, when these conditions
are satis�ed, there exists a neighbourhood of � on which any lattice �0 such
that 0(�0) � 0(�) is similar to � (and we thus have 0(�0) = 0(�)).

Proof. Suppose �rst that there exists a nonzero v 2 Ends(E) which satis-
�es the system of inequalities above. Let u 2 End(E) such that tuu = Id+ " v
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where " > 0 has been chosen in such a way that the minimal vectors
in u(�) (resp. in u(�)� = tu�1(��)) come from S(�) (resp. from S(��));
see Lemma 3.4.2. Consider the formula N(u(�)) = N(�) + minx2S(�) 'x(v)
(see the proof of Lemma 3.4.3) and its analogue N(u(�)�) = N(��) +
miny2S(��) 'y(w) for �� in which w is de�ned by Id+w = (Id+ v)�1. Re-
placing if need be V by a smaller neighbourhood, we may suppose that the
series expansion of (Id+ v)�1 converges, and this yields for w the expansion

w = �v(Id� v + v2 + � � �+ (�1)m�1vm + : : : ) :

The fact that v is a solution to the inequalities of Theorem 3.8.4 shows that,
provided that v is su�ciently close to 0, both inequalities N(u(�)) � N(�)
and N(u(�)�) � N(��) hold, whence 0(u(�)) � 0(�). [One can make use of

a convexity lemma similar to Lemma 3.4.4; we shall not give the details here, as a more

general result will be proved in Chapter 10.]
If equality holds, we have in particular N(u(�)) = N(�) which implies

by Lemma 3.4.3 that S(u(�)) = fx 2 S(�) j v(x) = 0g is contained in some
hyperplane of E. Proposition 3.8.2 then shows that every neighbourhood
of u(�) contains a lattice �1 such that 0(�1) > 0(u(�)), and thus that � is
not dual-extreme.

Conversely, assuming that the system of inequalities 8x 2S(�),'x(v) � 0
and 8 y 2 S(��), 'y(v) � 0 only has the solution v = 0 in Ends(E), we show
that every lattice �0 su�ciently close to �, such that 0(�0) � 0(�), is similar
to �.

Let u 2 End(E) such that �0 = u(�) ; composing u with a suitable
similarity, we may assume that it is symmetric and that N(u(��)) = N(��),
and we now prove that u = Id. Otherwise, we could write u2 = Id+ v for some
v 6= 0. For u su�ciently close to the identity, we would haveN(u(�)) � N(�),
whence v(x) � x = 'x(v) � 0 for all x 2 S(�) and similarly 'y(v) � 0 for all
y 2 S(��), and this would contradict the hypothesis u 6= Id. ut

Following [B-M1], we are now able to give for dual-extreme lattices a
characterization �a la Voronoi:

Theorem 3.8.5. (Berg�e{Martinet.) A lattice is dual-extreme if and only if
it is both dual-perfect and dual-eutactic.

Proof. Let F = f'x; x 2 S(�)g [ f�'y; y 2 S(��)g. Let us �rst show
that a lattice � which is dual-perfect and dual-eutactic is dual-extreme. Let
v 2 Ends(E) such that f(v) � 0 for all f 2 F . Since � is dual-eutactic,
there are coe�cients �f > 0 such that

P
f2F �f f = 0, from which we deduceP

f2F �f f(v) = 0. We thus have f(v) = 0 for all f 2 F . Since � is dual-
perfect, F generates the dual space of Ends(E). Consequently, v is zero, and
� is dual-extreme by Theorem 3.8.4.

Conversely, let � be a dual-extreme lattice. Any element v of Ends(E)
such that f(v) = 0 for all f 2 F must be zero by Theorem 3.8.4. Hence
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� is dual-perfect. To prove the eutaxy condition, we make use of Stiemke's
theorem: if v 2 Ends(E) is such that f(v) is � 0 for all f 2 F , Theorem 3.8.4
shows that v is zero, thus in particular that f(v) = 0 on F , and we conclude
by Theorem 3.3.1. ut

Corollary 3.8.6. An extreme lattice whose dual is eutactic is dual-extreme.
In particular, an extreme lattice is dual-extreme any time its automorphism
group acts transitively on the set of its minimal vectors or irreducibly on E.
[The condition that the dual-lattice should be eutactic can be weakened: semi-eutaxy

su�ces; see Exercise 3.8.8.]

Proof. Let � be such a lattice. Since it is perfect, it is in particular dual-
perfect. Moreover, since both � and �� are eutactic, there are strictly positive
coe�cients �x, x 2 S(�) and �0y, y 2 S(��) such that

Id =
X

x2S(�)
�x px =

X
y2S(��)

�0y py ;

and eliminating Id in these relations yields a relation of dual-eutaxy for �.
The last assertions follow from Theorem 3.6.7. ut

Corollary 3.8.7. The inequality s(�) + s(��) � n(n+1)
2 + 1 holds for any

dual-extreme lattice �.

Proof. The existence of a non-trivial linear relation between the px,
x 2 S(�) [ S(��) shows the lower bound s+ s� > dimEnds(E). ut

Some of the results we proved in Sections 3.5 and 3.6 generalize to dual-
perfect or dual-eutactic con�gurations For instance, it is easily checked that
dual-perfect lattices are irreducible. Similarly, Proposition 3.6.5. possesses
the following counterpart, which is proved in the same way:

Proposition 3.8.8. A lattice � is dual-eutactic if and only if there exists
a relation

P
x2S(�) �x px =

P
x02S(��) �x0 px0 with coe�cients �x (resp. �x0)

which are strictly positive and constant on the orbits of S(�) (resp. of S(��))
under Aut(�). ut

The following proposition does not rely on perfection and eutaxy proper-
ties, and will be proved directly by means of suitable deformations:

Proposition 3.8.9. Let � be a dual-extreme lattice possessing a hyperplane
extreme section of the same norm as � which is orthogonal to a minimal
vector in ��. Then � is extreme.

Proof. Let x0 2 S(��) such that H = (Rx0 )? is the hyperplane de�ning
the section above of �. On a su�ciently small neighbourhood of the identity
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of GL(E), we can construct a continuous map u 7! � in O(E) such that �
maps u(x0) into the line Rx0 (consider for instance a 2-dimensional rotation).
Thus, replacing u by � � u, we may assume that u preserves H , whence
u(�) \H = u(� \H). By Corollary 1.3.5, the determinants of � and � \H
satisfy the relation

det(� \H) = det(�)N(��) :

Since (�)n = N(�)n det(�)�1, (�\H)n�1 = N(�)n�1 det(�\H)�1, and
0(�)2 = N(�)N(��), we have the further relation

(�)n = (� \H)n�1 0(�)2:

For any u 2 GL(E) su�ciently close to the identity, we have 0(u(�)) �
0(�) and (u(� \ H)) � (� \ H) since � is dual-extreme and � \ H is
extreme, hence also (u(�)) � (�). ut

Corollary 3.8.10. A dual-extreme lattice possessing a critical hyperplane
section with the same norm is extreme.

Proof. The determinant of a critical section is in particular minimal among
all hyperplane sections (of any norm) of �. Its orthogonal in �� has thus also
the smallest possible determinant, i.e. the smallest possible norm, since it is
a 1-dimensional lattice. ut

It is worth noticing that, in contrast to the case of usual perfection,
there are generally in�nitely many similarity classes of dual-perfect lattices.
Exercise 3.8.3 below shows the existence of a continuous one-parameter family
in dimension 2, and further examples exist in larger dimensions (see Chap-
ter 6, Section 6.3 and the corresponding exercises). A more restrictive notion
of dual-perfection to be de�ned later yields a reasonable analogue to Voronoi's
Theorem 3.5.4 (see Theorem 9.6.1). We can also prove that the set of sim-
ilarity classes of dual-eutactic lattices in a given dimension whose minimal
vectors span E is �nite (see Proposition 10.5.3). This will justify the �rst
assertion in following result, which we only state in this section:

Theorem 3.8.11. (A.-M. Berg�e, [Ber1].)

1. There are only �nitely many similarity classes of dual-extreme lattices in
a given dimension.

2. Dual-extreme lattices are proportional to algebraic lattices; in particular,
the values of the invariant 0n on dual-extreme lattices are algebraic. ut

These remarks suggest the following questions, reproduced from the
French edition:

Questions 3.8.12. 1. Do there exist dual-extreme lattices with irrational
invariant 02 ?
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2. For what dimensions do there exist dual-extreme lattices which do not
satisfy Corollary 3.8.6?

3. Can one improve for n > 1 on the inequality s(�) + s(��) � n(n+1)
2 + 1

of Corollary 3.8.7?

Since the publication of the French edition of this book, partial answers
were found.

A 5-dimensional example { the smallest possible dimension { of an irra-
tional dual-extreme lattice has been produced by A.-M. Berg�e ([Ber4]). Her
example shares with those of Martinet ([Mar2], which concern even dimen-
sions n � 8) the following properties: none of the lattices �; �� is perfect and
at most one is eutactic, so that they cannot be proved to be eutactic using

Corollary 3.8.6, and they satisfy the relation s+ s� = n(n+1)
2 + n, giving the

sum s+ s� a smaller value that the smallest one previously known for n � 2,

namely n(n+1)
2 + n+ 1, attained on (A n ; A

�
n )).

Examples of dual-extreme lattices for which s + s� = n(n+1)
2 + 1 have

recently been obtained in [B-M6] for all n � 8 even, as cross-sections of some
Coxeter's lattices A rn (de�ned in Section 5.2).

These partial results, however, are far from giving a complete answer to
Questions 3.8.12 from dimension 5 onwards.

3.9 Exercises for Chapter 3

3.1.1. Let u 2 Ends(E)++. Show that u possesses 2n square roots if its eigenvalues

are all di�erent, and in�nitely many otherwise.

3.1.2. Show that any endomorphism possesses left and right decompositions into positive

symmetric and orthogonal components, but that only the symmetric ones are unique if u
is not invertible.

3.1.3. 1. Show that u 7! Tr(tuu) is a positive de�nite quadratic form on End(E),
with polar form (u; v) 7! 1

2 Tr(
tuv + tvu).

2. Show that End(E) is the orthogonal sum of Ends(E) and Enda(E) for each of

the quadratic forms u 7! Tr(u2) and u 7! Tr(tuu).

3. Show that Tr(u2) has signature (n(n+1)
2 ; n(n�1)2 ) on End(E).

3.1.4. Let f =
P

p�0 apT
p an entire complex series, let R be its convergence radius,

let V be a complex vector space of �nite dimension n and let u 2 End(V ). Show that

the series
P
apu

p converges if the eigenvalues of u have a modulus < R, and diverges

if at least one modulus is strictly larger than 1. [Reduce �rst to the case of triangular

matrices, then use the decomposition of such a matrix as a sum of a diagonal matrix D
and an upper triangular matrix T such that DT = TD and Tn = 0.]

3.1.5. For any u 2 End(E), let exp(u) =
P+1

p=0
up

p! be exponential map.

1. Verify that the series above converges everywhere in C .

2. Show that the exponential map is a di�eomorphism ofEnds(E) onto Ends++(E).
3. De�ne um on Ends++(E) for every real m.
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3.1.6. Let e; f 6= 0 be two vectors in E. Prove the formula Tr pf � pe = (e�f)2
(e�e)(f �f) .

3.2.1. Let � be a weakly eutactic lattice. Show that there exists a eutaxy relation

Id =
P

x2S(�)=� �xpx with rational coe�cients �x if and only if � is rational, i.e.

proportional to an integral lattice.

[To prove the \if" part, rescale � to a rational norm and use Theorem 3.2.5 (5); to prove

the \only if" part, extract from S a basis for the span of the px, x 2 S.]
3.2.2. (Venkov's index formula.) Preliminary questions:

(a) Show that the ranks of a �nite system of vectors in E and of the corresponding

Gram matrix are equal.

(b) Show that for an s� s (real) matrix with eigenvalues �1; : : : ; �s, the eigenvalues

of
kV
M are the products �i1 : : : �ik with i1 < � � � < ik.
1. Let � be a well{rounded lattice with set of minimal vectors S = f�x1; : : : ;�xsg,

let M be the Gram matrix of S0 = (x1; : : : ; xs) and let �1 � � � � � �n > �n+1 =

� � � = �s = 0 be its eigenvalues. Show that Tr(
nV
M) = �1 : : : �n.

2. Show that Tr(
nV
M) = det(�)

P
X [� : �X ]

2 whereX runs through the subsets

of n independent vectors in S0 and �X stands for the sublattice of � with basis X .

From now on, we suppose that � is strongly eutactic.

3. Show that M2 = s
n N(�)M ; show that the nonzero eigenvalues of M are equal

to s
n N(�).
4. Prove that any strongly eutactic lattice satis�es the Venkov index formulaP

X [� : �X ]
2 =

sn

nn
(�)n.

3.3.1. Let 'i, 0 � i � k be linear forms on a real vector space V . Consider the

following three statements:

(1) 'i(x) � 0; 0 � i � k ) x = 0.
(2) 'i(x) � 0; 0 � i � k ) 'i(x) = 0; 0 � i � k.
(3) 'i(x) = 0; 1 � i � k ) x = 0.
Prove the equivalence (1)()(2) + (3).
[To prove (1)) (3), use the transformation x 7! �x.]
3.5.1. Prove directly that the set of minimal vectors of an extreme lattice is not contained

in the union of two hyperplanes.

[Use a rabatment of one of the hyperplanes onto the other one.]

3.5.2. Show that three distinct lines in a plane constitute a perfect con�guration.

3.5.3. For any subspace F of E, let pF be the orthogonal projection onto F and let

PF be the image in Ends(E) of u 7! pF � u.
1. Let F and F 0 be two subspaces of E and let F 00 = F \ F 0. Prove the equality

PF 00 = PF \ PF 0 .

2. Letm;m0;m00 be the respective dimensions of F; F 0; F 00. Show that the dimension

of PF + PF 0 isM = m(m+1)
2 + m0(m0+1)

2 � m00(m00+1)
2 .

3. Take for F and F 0 two hyperplanes of E. Show that if they are distinct (resp. if

F 0 = F ), PF + PF 0 has codimension 1 (resp. n) in Ends(E).
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4. Deduce from 3 a direct proof of statements (2) and (3) in Theorem 3.5.2.

5. Let � be a lattice possessing two perfect hyperplane sections with the same norm

as �. Show that � is perfect if and only if it possesses a minimal vector which belongs to

none of the two hyperplanes. [Other method: use Proposition 5.3.]

3.5.4. Let E1 and E2 be two Euclidean spaces of dimensions n1 and n2, and let

S1 � E1 and S2 � E2 be two (�nite) con�gurations.

1. Show that Ends(E1)
N

Ends(E2) has codimension
n1n2(n1�1)(n2�1)

4 in

Ends(E1

N
E2).

2. Prove the equality px
N
y = px

N
py for all nonzero x 2 E1 and y 2 E2. [Con-

sider bases (ei) for E1 and (fj) for E2 with e1 = x, f1 = y and ei � x = fi � y = 0
otherwise.]

3. Deduce from 2 that the perfection rank of S1
N
S2 = fx1 
 x2 j xi 2 Sig is the

product of the perfection ranks of S1 and of S2.
4. Show that the tensor product of two lattices of dimensions greater than 1 is not

perfect whenever its minimal vectors are split tensors.

3.6.1. Let S be the 2-dimensional eutactic con�guration consisting of two orthogonal

lines. Show that a con�guration S0 of at least four lines containing S is eutactic if and

only if the lines in S0rS do not all lie in the same angular domain de�ned by the lines

in S.

3.6.2. Let S be a 2-dimensional con�guration consisting of three distinct lines.

1. Show that it is possible to choose an orientation of the plane and three unit vectors

v0; v1; v2 on these lines in such a way that the angles �1 = [v1; v0 and �2 = [v0; v2 both

belong to the interval (0; �2 ).
2. Show that the eutaxy coe�cients �0; �1; �2 are given by the formulae

�1 =
cos �2

sin �1 sin (�1 + �2)
; �2 =

cos �1
sin �2 sin (�1 + �2)

and �0 = 2� �1 � �2:

3. Transform the condition �1 + �2 < 2 into

(1) sin 2�1 + sin 2�2 < 4 sin �1 sin �2 sin (�1 + �2);
(2) and then into cos(�1 + �2) < 0.

4. Use the last two questions to deduce that three lines in a Euclidean plane constitute a

eutactic con�guration if and only if , once chosen an indexingD1; D2; D3 of the lines such

that the (non-oriented) angles \D1; D2 and \D2; D3 are acute and that D2 lies between

D1 and D3, the angle \D1; D3 is then obtuse.

3.6.3. Write down a proof of Theorem 3.6.4 which does not rely on the Voronoi theo-

rem. [Use Exercise 5.1 and observe that for a given pair �0 � � of lattices, the index

[u(�) : u(�0)] does not depend on u 2 GL(E).]

3.6.4. Let S be a con�guration of lines containing a eutactic con�guration S0 such that

the orthogonal projections on the lines of S0 and on those of S generate the same subspace

of Ends(E). Show that S is eutactic. [Argue as in the proof of Theorem 3.6.2.]

3.6.5. Let S be a con�guration of lines in E such that the orthogonal projections on the

lines in S are independent in Ends(E), and let S0 be a con�guration strictly contained
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in S.
1. Show that if S0 is eutactic, then S is not.

2. Let � ' Zn � Rn where n = m2; m � 3, let ("1; "2; : : : ; "n) be its canonical
orthonormal basis, let e = 1

m ("1 + "2 + � � �+ "n), and let �0 be the lattice generated
by � and e. Show that S(�0) contains S(�), but that �0 is not eutactic.

3.6.6. Show that the tensor product of two (weakly, semi-, strongly) eutactic con�gura-

tions is a (weakly, semi-, strongly) eutactic con�guration.

3.7.1. Let � be a laminated lattice (in particular, � has norm 4), and let n = dim�.
1. Show that � is irreducible.

2. Use the question above to prove that � is not an integral lattice for any n > 24.
[Use Proposition 1.9.9.]

3. Prove that det(�) is nevertheless an integer for n � 32, by showing that for

24 � n � 32, they coincide with those of the lattices 1p
2
�n; 0 � n � 8, for which the

determinants are 1; 2; 3; 4; 4; 4; 3; 2; 1.
4. Show that unimodular lattices of dimension 32 and norm 4 are not similar to

laminated lattices, although they have the same Hermite invariant.

[Examples can be found in Section 6.7 and in [K-V].]

5. Let �0 be an odd unimodular lattice of norm 3 and dimension n equal to 27, 28
or 29. Show that its sublattice of even norm vectors (of index 2 in �0) has the same

Hermite invariant as �n, but is not a laminated lattice.

[These lattices have been classi�ed for n = 27; 28 by Bacher and Venkov, see [Bc-V2] and

also [Bc-V1]; one of them is �0 =
2V
E8 , see Section 1.10.]

3.7.2. Let � be an integral lattice of dimension n, determinant d and norm m, similar

to a laminated lattice �n.
1. Prove that mn = 4nd��1n ; deduce from this that m is divisible by 4 for

24 � n � 48.
2. Show that m is divisible by 8 for 33 � n � 48.
3. Prove the inequality m � 8 for 25 � n � 48.

3.8.1. Let E be a Euclidean plane and let B = (e1; e2) be a basis for E whose Gram

matrix has determinant 1. Let B� = (e�1; e
�
2) its dual basis.

1. Prove that there exists an orthonormal basis ("1; "2) for E in which e1 = a"1 and

e2 = c"1 + a�1"2 for some a; c 2 R with a > 0 and c � 0.
2. Prove that e�1 = a�1"1 � c"2 and e�2 = a"2.
3. Prove that a rotation of angle ��

2 maps B onto (e�2;�e�1) or onto (�e�2; e�1).
4. Deduce from this that any 2-dimensional lattice of determinant 1 is directly isometric

to its dual.

5. Show that any 2-dimensional lattice lattice is directly similar to its dual.

6. Show that s(�) = s(��) 2 f1; 2; 3g for any 2-dimensional lattice �,

3.8.2. Let � be a 2-dimensional lattice. Prove that if (e1; e2) is a basis for � which

represents its two minima (i.e, e1 is minimal and e2 is minimal among those vectors in �
which are not proportional to e1), then e

�
2; e

�
1 are the two minima of ��. [Use Question 5

in Exercise 8.1.]
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3.8.3. The aim of this exercise is to classify 2-dimensional dual-perfect, dual-eutactic

and dual-extreme lattices. Let � be a norm 1 lattice in R2 , endowed with its canonical

basis and the corresponding orientation.

1. Suppose that s(�) � 2. Show that � is the image under a rotation of a lattice

with basis (e1; e2) such that e1 = "1, N(e2) = 1 and �
3 � � � �

2 , where � = [e1; e2.
2. We consider in what follows a lattice � together with a basis (e1; e2) as above.

Show that its dual basis (e�1; e
�
2) is de�ned by the equations ke�1k = ke�2k = 1

sin � and

[e�1; e1 = [e2; e
�
2 =

�
2 � �.

3. Show that the only dual-extreme 2-dimensional lattices are the hexagonal lattices;

prove that 02 = 4
3 .

4. Show that � is dual-perfect except if � = �
2 . [Use Exercise 5.2.]

5. Show that � is dual-eutactic if and only if � = �
3 or � = �

2 . [Notice that for
�
3 < � < �

2 , the linear combinations � pe1 + � pe2 in End(E) with �; � > 0 map e1
inside the sector bounded by the half-lines generated by e1 and e2.]; use this to recover

the result of Question 3.

6. Show that a 2-dimensional lattice � with s(�) = 1 cannot be dual-eutactic.

[Use Exercise 8.2.]

3.8.4. Let S and S0 be two �nite families of nonzero vectors in E.

1. Show that for nonzero vectors x; y 2 E, we have Tr(py � px) = cos2(dx; y).
2. Show that a vector e 2 E such that there exists a relation with strictly positive

coe�cients
P

x2S �x px(e) = 0 is orthogonal to all vectors in S.
3. Show that if (S; S0) is dual-eutactic, every hyperplane which contains S0 also

contains S.
4. Use this to deduce that if (S; S0) is a dual-eutactic pair, then S and S0 generate

the same subspace of E.

3.8.5. Let t 2 ( 34 ; 1) and let �t be the lattice tA 1 ? A 2 , whose Gram matrix in an

appropriate basis (e1; e2; e3) is
�
2t 0 0
0 2 �1
0 �1 2

�
.

1. Show that S(�) = fe1g and S(��) = fe�1g.
2. Show that the lattices �t are dual-eutactic.
3. Show that the equality S(u(�)) = fu(e1)g and S(u(��)) = fu(e1)�g still

holds for every u 2 GL(E) su�ciently close to the identity, but that the lattices u(�t)
are no longer dual-eutactic unless u(e1) is orthogonal to the plane hu(e2); (e3)i.
3.8.6. Let B = (e1; e2; : : : ; en) be a basis forE. Denote by pi (resp. p

0
i) the orthogonal

projection onto ei (resp. e
�
i ). Let

P
j �j pj =

P
k �k p

0
k be a relation of dual-eutaxy

with nonzero coe�cients �j ; �k.

1. Prove the equalities 1
(ei�ei) �iei =

P
k �k

e�i �e�k
e�
k
�e�
k

e�k (i = 1; 2; : : : ; n).

[Use projections onto the e�i .]

2. Deduce from 1 that the relations
ei�ej
ei�ei �i =

e�i �e�j
e�
j
�e�
j

�j hold for all i and all j.

3. Prove the equalities �i = �i and
(ei�ej)2

(ei�ei)(ej �ej) =
(e�i �e�j )2

(e�
i
�e�
i
)(e�

j
�e�
j
) .

4. Show that if the vectors of B and of B� all have the same norm, then the Gram

matrices of B and of B� are proportional.
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5. Show that if � is a dual-eutactic lattice such that S(�) and S(��) are up to their

signs the vectors of a basis and of its dual basis, � is similar to Zn.

3.8.7. Show that the maximum of s + s� in a given dimension n is attained on dual-

perfect lattices. (Compare Theorem 3.5.5.)

3.8.8. Let � be a perfect lattice.

1. Show that if there exists a relation
P

x2S(�) ax px =
P

y2T by py for some

T � S(��) with strictly positive coe�cients ax; by, then � is dual-eutactic.

[Argue as in the proof of Theorem 3.6.2.]

2. Show that if � is extreme and if �� is semi-eutactic, then � is dual-extreme.

3.10 Notes on Chapter 3.

The notion of an extreme quadratic form appears for the �rst time in
Korkine and Zolotare�'s 1873 article [K-Z2], where they moreover give a
list of extreme forms, but proofs appear only in the 1877 paper [K-Z3]
(Mathematische Annalen, volume 11). The aim of this last article is to clas-
sify extreme forms up to dimension 5 and to derive from this classi�cation
the precise value of 5.

In [K-Z3], Korkine and Zolotare� give a characterization of extremality
by means of inequalities which are equivalent to those of Theorem 3.4.5, they
prove that extreme forms are perfect (without giving a name to perfection;
the word \perfect" was used for the �rst time by Voronoi some thirty years
later), and that perfect forms are well de�ned by the components in the
canonical basis for Zn of the set of their minimal vectors, a result stated in
the form

Toute forme extrême a au moins
n(n+1)

2 repr�esentations de son minimum qui

d�eterminent compl�etement cette forme, en supposant que son minimum soit donn�e.

([K-Z3], p. 252). From this result, they deduce the remarkable fact that nn
is a rational number. They however do not prove the �niteness theorem for
perfect forms, but the way they wrote up their results makes it likely that
they considered this theorem as true.

The lower bound s � n(n+1)
2 for the number of pairs of minimal vectors in

any perfect lattice was extended in 1953 by Swinnerton-Dyer to lattices which
are extreme for a bounded convex set (cf. [Cas2], Chapter V, Theorem VIII).

After [K-Z3], the theory of extreme forms falls asleep for thirty years
until the publication in 1908 by Voronoi of his paper [Vo1]. The chief aim
of Voronoi is the description of an algorithm which (at least theoretically)
allows the classi�cation of perfect forms in any given dimension (see the notes
on Chapter 7). But Voronoi's paper also contains two results which we have
proved in this chapter: the characterization of extreme forms as those which
are perfect and eutactic (the notion of a eutactic form is due to Voronoi, who



106 3 Perfection and Eutaxy

gives no name to it; the word \eutaxy" was used for the �rst time in this
setting by Coxeter in 1951 in [Cox2]), and the proof of the �niteness theorem
for perfect forms.

The theory of perfect forms again falls asleep until Coxeter's 1951 paper
quoted above, except for a paper [Hof] by Hofreiter dating back to 1933,
which states an erroneous classi�cation of 6-dimensional perfect forms.

Coxeter studies the notions of perfection and eutaxy for their own in-
terest, and replaces (partially) for the �rst time forms by lattices. He met
eutactic con�gurations in previous works by Schl�ai and by Hadwiger on
regular polytopes. His paper contains a description of new extreme lattices
related to root lattices, to which we shall return later in Chapter 5, the char-
acterization of eutactic con�gurations in terms of eutactic stars, and various
conjectures, sometimes not well inspired (see Conway and Sloane's comments
at the beginning of [C-S5]).

The study of regular polytopes is also the motivation of the joint paper
[B-C] of 1940 with Richard Brauer (slightly generalized in [Cox2], no. 4.3).
The proof involves a lot of calculations, and it is not clear that representations
to be irreducible only on R, not on C . The short proof of Section 3.6 has been
given to me by A.-M. Berg�e.

A great deal of work on perfect forms took place in England from 1955
onwards. This yielded the discovery of numerous new perfect forms as well
as classi�cation theorems. As for what concerns the subject of this chapter,
we must in particular quote Barnes's 1957 paper [Bar2] in which he brought
to light Stiemke's theorem. The proof of Theorem 3.4.6 we have given es-
sentially follows Barnes's. It should be noticed that Voronoi's proof is of the
same nature, except that he had to prove Stiemke's theorem in the particular
case of linear forms on spaces of symmetric matrices. At this stage, one must
point out a di�culty in the proof of Theorem 3.4.5, related to uniformity
problems in power series expansions in several variables. Thus many proofs
(including one in which I was involved) cannot be considered as completely
correct; a similar remark applies to Theorems 3.8.4 and 3.8.5. Kneser ([Kn1],
1955) was the �rst to publish a completely correct proof, in which he made
use of convexity. Such a convexity argument is used in Conway and Sloane's
[C-S5] (quite correct up to a forgotten logarithm). The proof I gave here is
modelled on their proof. I would like to thank A.-M. Berg�e and R. Coulan-
geon for having drawn my attention on the di�culty above, which we shall
again consider in Chapter 10, where convexity underlies in the use of the
exponential map which goes from the tangent space at the origin of a Lie
group to the group itself.

The method of Proposition 3.5.3, which yields a characterization of perfect
lattices possessing a perfect hyperplane section, was used by Barnes in [Bar5],
I, pp. 64{67, where he proves the perfection of a certain family Qn of forms
(see Section 5.3) by making use of the perfection of its family Pn�1, previously
proved in [Bar3].
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Theorem 3.5.5 was pointed out to me by Oesterl�e; Watson considers in
[Wat5] that it was known to Voronoi.

Proposition 3.6.5 is Scott's Theorem 2.1 in [Sco1].

Conway and Sloane published the important paper Laminated Lattices

in Annals of Mathematics (vol. 116, 1982, pp. 593{620); it is reproduced as
the basis for Chapter 6 of [C-S]. For the arithmetical laminations of Plesken
and Pohst, see [Pl-P1], [Pl-P2] and the appendix to Chapter 6 of [C-S].

I know of no published proof of the extremality of laminated lattice at
least up to dimension 24, for which it actually holds. (There is no reason for
extremality to hold in any dimension.) These lattices are expected to be the
(only) densest lattices up to dimension 25 except in dimensions 11; 12; 13.
Extremality is proved explicitly for dimensions n � 8 in Chapter 4, and
for n � 24 and n � 0 or 1 mod 4 in Chapter 8 (where it is shown that the set
of minimal vectors contains a con�guration similar to S(D n )); Theorem 3.6.6
applies to some other dimensions, e.g. 23; 24.

Curiously, for n � 24, laminated lattices are the densest known lattices,
except for the three dimensions for which they are not unique, were the
densest lattices known are K11, K12 and K13. Lattices in the Kn series no
longer represent the densest known lattices in dimensions n � 10 and n � 14,
and it is precisely for dimensions 10 and 14 that a bifurcation to the lattices
called K 0

n in Chapter 8 appears!
The notion of a dual-extreme lattice was introduced in [B-M1], published

in 1989. Most of the results of Section 3.8 come from this paper or from
Berg�e's [Ber1]. The motivation for [B-M1] was a paper by Zimmert on \twin
classes" in number �elds ([Zi], 1981; see also Oesterl�e, [Oe1], where Zim-
mert's theory in explained in the setting of \Weil's explicit formulae"). The
geometrical interpretation of Zimmert's inequalities (obtained via partial zeta
functions) involves the product of the minima on a lattice and on its dual
of a quadratic form Q depending on the signature of the �eld. This product
reduces to N(�)N(��) when one replaces Q by the Euclidean norm in Rn .

Besides the various extremality problems which have been dealt with in
this chapter or which we are going to handle later, the Humbert problem, that
we shall not consider anywhere else in this book, deserves a special mention.
It consists in estimating a Hermite like invariant (K) relative to a number
�eld K (and a dimension n) and taking into account the r1 + r2 embeddings
�i : K ! C , with the usual notation, namely that the �i are real for i � r1,
and non-real, pairwise non-conjugates for i > r1. Set di = 1 if i � r1 and
di = 2 if i > r1.

Explicitly, a Humbert form is a system A = (A1; : : : ; Ar1+r2) of positive
de�nite matrices, symmetric real for i � r1, Hermitian complex for i > r1.
Given a column-vector X 2 ZnK, set A[X ] =

Q
i (
t�i(X)Ai�i(X))di , and

de�ne the minimum and the determinant of the Humbert form by

�(A) = minfA[X ] j X 2 ZnKrf0gg and det(A)
Y
i

det(Ai)
di :
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The Hermite{Humbert invariant is then

(K)(A) = �(A)
det(A)1=n

:

(Hence (Q) is the usual Hermite invariant.)
The theory was founded by Humbert in his papers [Hmb1] and [Hmb2].

Convenient notions of perfection and eutaxy have been given by Coulangeon
after work by Baeza and Icaza ([B-I], [I]), with which he was able to prove
an analogue of Voronoi's Theorem 4.6 ([Cou6]). Some explicit computation
have been done in [B-C-I-O] for quadratic �elds. The Humbert problem has
also been considered in the setting of linear algebraic groups by Watanabe;
see [O-W], [Wata1], [Wata2].


