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2
General Methodology

2.1 The General Model and Overview

Let X be the full data structure for one subject, and it is assumed that the
full data distribution FX is an element of a model MF . Let Y = Φ(X, C)
be the observed data for one subject, where Φ is a known many to one
mapping and C is a censoring variable. Typically, in most of our applica-
tions we parametrize the data structure such that C is always observed, but
this is not required; obviously, this is always possible, since one can define
C = Y , in particular. Let G(· | X) be the conditional distribution of C,
given X, which is assumed to satisfy coarsening at random. The set of all
conditional distributions satisfying coarsening at random will be denoted
with G(CAR). Because of the curse of dimensionality, it typically will not
suffice to assume only that FX ∈ MF and G ∈ G(CAR). In this chapter, we
develop estimating functions and corresponding locally efficient estimators
for two models. Firstly, given working models MF,w ⊂ MF for FX and
G ⊂ G(CAR) for G, we consider the following model for the distribution of
Y :

M = {PFX,G : FX ∈ MF , G ∈ G} ∪ {PFX,G : FX ∈ MF,w, G ∈ G(CAR)}.

In other words, either FX needs to be an element of MF,w or G needs to
be an element of G. We will also consider the less nonparametric model

M(G) = {PFX,G : FX ∈ MF , G ∈ G},
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which assumes a correctly specified model for the censoring mechanism.
The data consist of n i.i.d. copies Y1, . . . , Yn of Y . Let µ = Φ(FX) ∈ IRk be
a k-dimensional Euclidean parameter of interest.

In this chapter, we propose general mappings from full data estimating
functions into observed data estimating functions. In the next section, we
study full data estimating functions for two general classes of full data
models: multivariate generalized linear regression models and multiplica-
tive intensity models. In Section 2.3 we propose methods for constructing
mappings from full data estimating functions into observed data estimat-
ing functions for model M(G) and a doubly robust mapping for model M.
These doubly robust mappings are G-orthogonalized initial mappings in
the sense that they are defined as an initial mapping minus its projection
onto a nuisance tangent space of G corresponding to a convex model G.
In Section 2.4 we define the optimal mapping (based on (1.52) in Theo-
rem 1.3) from full data estimating functions into observed data estimating
functions, which can be used for both models M and M(G). The optimal
mapping is optimal in the sense that it is an G(CAR)-orthogonalized initial
mapping, and by Theorem 1.3 it covers all estimating functions, including
the optimal one.

Since this optimal mapping does not always exist in closed form, the
methods of Section 2.3 can be preferable and are therefore still very im-
portant as well. Section 2.5 defines the corresponding estimating equations
and, in model M(G), we show how to adjust the estimating equation to
obtain an estimator that is guaranteed more efficient than an initial esti-
mator. Section 2.6 proposes confidence intervals, and Section 2.7 presents
two asymptotic theorems for the one-step estimator based on the estimat-
ing equation of Section 2.5 in model M(G) and in model M, respectively,
which provide templates for proving local efficiency of the one-step estima-
tor. Section 2.8 presents representations of the optimal index hopt(FX , G)
of the full data estimating functions. In particular, we prove a theorem
for general censored data that provides a closed-form expression of the
optimal index if the full data model is a multivariate generalized linear
regression model with uncensored covariates. In Section 2.9 we derive a
general reparametrization of hopt and propose a corresponding substitution
estimator hn. Finally, in Section 2.10 we present a general locally efficient
estimator based on the representation of the efficient influence curve in
terms of score and information operators as presented in Bickel, Klaassen,
Ritov and Wellner (1993).

2.2 Full Data Estimating Functions.

Given a full data model MF and parameter µ = Φ(FX) ∈ IRk of interest,
finding the class of estimating functions requires finding the orthogonal
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complement of the nuisance tangent space at FX for each FX ∈ MF . We
refer the reader to Chapter 1 for an overview of the relevant efficiency and
estimating functions theory. Here we will provide a short summary. Subse-
quently, we will derive the orthogonal complement of the nuisance tangent
space in multivariate generalized linear regression models and multiplica-
tive intensity models. These two general models form two of the most
important full data models in the literature and will act as possible full
data models in this book. Finally, we show how one links the orthogonal
complement of the nuisance tangent space to a class of estimating functions.

It is assumed that the parameter µ = Φ(FX) ∈ IRk of interest is path-
wise differentiable in the full data model MF with canonical gradient
S∗F

eff (· | FX) ∈ L2
0(FX) relative to a class of parametric submodels with

tangent space TF (FX). The canonical gradient is also called the efficient
influence curve. The canonical gradient S∗F

eff (X | FX) is of great importance
since the asymptotic variance of a regular asymptotically linear estimator
of β at PFX,G is bounded below by the variance of the canonical gradient
and a regular estimator is efficient at PFX,G if and only if it is asymp-
totically linear with influence curve equal to the canonical gradient (i.e.,
efficient influence curve) at PFX,G. Let TF

nuis(FX) ⊂ L2
0(FX) be the nui-

sance tangent space in the full data model MF (i.e., the closure of the linear
span of all scores of 1-dimensional submodels Fε through F at ε = 0 for
which d/dεµ(Fε)|ε=0 = 0). Let TF,⊥

nuis(FX) be the orthogonal complement
of TF

nuis(FX) ⊂ L2
0(FX).

We will index each element of T⊥
nuis(FX) with an index h running over

an index set HF (FX). Specifically, assume we can represent

TF,⊥
nuis(FX) = {Dh(X | µ(FX), ρ(FX)) : h ∈ HF (FX)}, (2.1)

where ρ(FX) is a parameter defined on MF . Note that these index sets
HF (FX) will typically depend on FX . For example, in the multivariate
generalized linear regression model E(Z | X∗) = g(X∗ | β) of Lemma 2.1
below, we have TF,⊥

nuis(FX) = {Dh(X | β) = h(X∗)ε(β) : h ∈ HF (FX)} with
HF (FX) = {h(X∗) : EFX{h(X∗)ε(β)}2 < ∞}. In words, in this case the
index h is allowed to be any function of X∗ so that h(X∗)ε(β) has finite
variance w.r.t. FX . Let hind,FX : L2

0(FX) → HF (FX) be the index mapping
defined by

Π(V | TF,⊥
nuis(FX)) = Dhind,FX

(V )(· | µ(FX), ρ(FX)). (2.2)

Let heff (FX) = hind,FX (S∗F
eff (· | FX)) be the index of the full data canoni-

cal gradient. In general, the mapping hind,FX is determined by the mapping
Π(· | T⊥

nuis(FX)) and the representation (2.1) in the same manner as above.
As an illustration we consider the generalized linear regression example.

Lemma 2.1 teaches us that for D ∈ L2
0(FX)

Π(D | TF,⊥
nuis) = E(D(X)ε� | X∗)E(εε� | X∗)−1ε.
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Thus, we have that the index mapping is given by

hind,FX (D) = E(D(X)ε� | X∗)E(εε� | X∗)−1.

In particular, heff(FX) = hind,FX (SF
eff ), which can be simplified as in

Lemma 2.1 below.

2.2.1 Orthogonal complement of the nuisance tangent space
in the multivariate generalized linear regression model
(MGLM)

The following lemma provides the orthogonal complement of the nui-
sance tangent space in multivariate generalized linear regression models
Z = g(X∗ | α) + ε, the projection onto this space, and the efficient score.
We allow these models to model a user-supplied location parameter of the
conditional error distribution by requiring that E(K(ε) | X∗) = 0 for a
user-supplied monotone function K(ε). For example, if K(ε) = ε, then the
regression curve g(X∗ | α) models the mean, if K(ε) = I(ε > 0)−1/2, then
it models the median, and, in general, if K(ε) = I(ε > 0)− (1− p), then it
models the pth quantile of the conditional error distribution of ε, given X∗.
Allowing this flexibility is particularly crucial for the censored data models
since estimation of a mean based on censored data might not be possible
due to lack of data in the tails of the distribution, while the median might
not be a smooth enough functional of the observed data (e.g., see Chapter
4). By truncating K(ε) = ε for | ε |> M (i.e., set it equal to M), one obtains
a truncated mean, and by setting K(ε) equal to a smooth approximation
of I(ε > 0) − 1/2, one obtains a smooth median.

Lemma 2.1 Let Z be a p-dimensional vector of outcomes. Suppose that we
observe n i.i.d. observations of X = (Z, X∗) for some vector of covariates
X∗. Consider the multivariate regression model of Z on X∗,

Z = g(X∗ | α) + ε, E(K(ε) | X∗) = 0, (2.3)

where g = (g1, . . . , gp)� is a p-dimensional vector of functions gj(X∗ | α),
ε is a p-dimensional vector of residuals, K is a given real-valued monotone
increasing function with K(−∞) < 0 and K(∞) > 0, and α = (α1, . . . , αq)
is a q-dimensional regression parameter. Here K(ε) = (K(ε1), . . . , K(εp))�

is a p-dimensional vector.
The orthogonal complement of the nuisance tangent space at FX is given

by

TF,⊥
nuis(FX) = {h(X∗)K(ε) : h 1 × p vector}.

The projection Π(V | T F,⊥
nuis) onto this subspace of the Hilbert space L2

0(FX),
endowed with inner product 〈f, g〉FX = EFX f(X)g(X), is given by

E({V (X) − E(V | X∗)}K(ε)� | X∗)E(K(ε)K(ε)� | X∗)−1K(ε). (2.4)
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Assume that the conditional distribution of ε, given X∗, has a Lebesgue
p-variate density f(ε | X∗). The score for αj is given by

Sj(X) = − d

dαj
g(X∗ | α)�

f ′(ε | X∗)
f(ε | X∗)

,

where f ′(ε | X∗) is a p-dimensional vector containing the p partial deriva-
tives w.r.t. ε1, . . . , εp. We can represent the q-dimensional score vector
S(X) = (S1(X), . . . , Sq(X))� as

S(X) = − d

dα
g(X∗ | α)�q×p

f ′(ε | X∗)
f(ε | X∗)

.

The efficient score is given by

S∗ ≡ Π(Sj | TF,⊥
nuis(FX))q

j=1

= − d

dα
g(X∗ | α)�q×pA(X∗)p×pE(K(ε)K(ε)� | X∗)−1

p×pK(ε),

where A(X∗) ≡ E
(

f ′(ε|X∗)
f(ε|X∗)

K(ε)� | X∗
)

p×p
. If we assume that f(ε | X∗)

equals zero at the end of its support and K is absolutely continuous w.r.t.
the Lebesgue measure, then by integration by parts it follows that

A(X∗) = −diag (E(K′(ε) | X∗))p×p ,

where diagE(K′(ε) | X∗) denotes the p×p diagonal matrix with jth diagonal
element E(K′(εj) | X∗). As a consequence, under this assumption, we have
that the efficient score vector is given by

S∗ =
d

dα
g(X∗ | α)�q×pdiag (E(K′(ε) | X∗))p×p E(K(ε)K(ε)� | X∗)−1

p×pK(ε).

For example, if p = 1 and K(ε) = (I(ε > 0)−1/2), which corresponds with
median regression, then

S∗
j (X) = fε|X∗(0 | X∗)

d

dαj
g(X∗ | α)�E(K2(ε) | X∗)−1K(ε).

Proof. The density of X can be written as

fX(X) = f(Z | X∗)fX∗(X∗) = fε|X∗(ε(α) | X∗)fX∗(X∗).

This density is indexed by the parameter of interest α, fX∗ and the condi-
tional distribution of ε = ε(α), given X∗, where the latter ranges over all
conditional distributions with conditional expectation of K(ε), given X∗,
equal to zero. Here fX∗ and fε|X∗ are the nuisance parameters.

Let α be fixed. For any uniformly bounded function s(X∗) with
E(s(X∗)) = 0 and uniformly bounded function s(ε | X∗) with E(s(ε |
X∗) | X∗) = E(s(ε | X∗)K(ε) | X∗) = 0, we have that

fδ(X) = (1 + δs(X∗))fX∗ (X∗)(1 + δs(ε | X∗))fε|X∗ (ε | X∗)
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is a one-dimensional submodel of the full data model with parameter δ
going through the truth fX at δ = 0. Notice that these one-dimensional
models provide a rich class of fluctuations for our nuisance parameter.
The nuisance tangent space is defined by the closure of the linear span of
the scores of this class of one-dimensional submodels in the Hilbert space
L2

0(FX) = {s(X) : Es(X) = 0, Es2(X) < ∞} endowed with the inner
product 〈f, g〉FX = EFX f(X)g(X). It is given by the orthogonal sum of
the two spaces generated by the s(X∗)’s and s(ε | X∗)’s,

Tnuis(FX) = L2
0(FX∗) ⊕ H,

where H ⊂ L2
0(FX) is the Hilbert space of functions s satisfying E(s(ε |

X∗) | X∗) = E(s(ε | X∗)K(ε) | X∗) = 0.
We have that Π(V | L2

0(FX∗)) = E(V | X∗). Let H+ ⊃ H be the
Hilbert space of functions s only satisfying E(s(ε | X∗) | X∗) = 0. We
have Π(V | H+) = V − E(V | X∗). Now note that H consists of the
orthogonal complement of the p-dimensional space 〈K(ε1), . . . , K(εp)〉 in
the world where X∗ is fixed. Thus, the projection operator onto this space
is the identity operator minus the projection onto 〈K(ε1), . . . , K(εp)〉. The
projection onto a p-dimensional space of functions (K(εj) : j = 1, . . . , p) is
given by the formula

E(V (X)K(ε)�)E(K(ε)K(ε)�)−1K(ε).

Now, we simply need to apply this formula in the world with X∗ fixed, so
we have for any function η ∈ H+

Π(η | H) = η(X) − E(η(X)K(ε) | X∗)�
{
E(K(ε)K(ε)� | X∗)

}−1
K(ε).

The rest of the proof is straightforward. �

2.2.2 Orthogonal complement of the nuisance tangent space
in the multiplicative intensity model

Suppose that the full data X = X̄(T ) = (X(t) : 0 ≤ t ≤ T ) is a stochas-
tic time-dependent process up to a possibly random time T . In addition,
suppose that X(t) = (N(t), V1(t), V2(t)), where N(t) is a counting process
of interest and V (t) = (V1(t), V2(t)) is a time-dependent covariate process.
Let R(t) = I(T ≤ t) be a component of N(t) so that observing the process
X(t) up to T includes observing T itself. Let Z(t) = (N(t), V1(t)). In these
settings, there is often interest in modeling the intensity of N(t) w.r.t. his-
tory Z̄(t−) = (Z(s) : s < t). The following lemmas provide us with the
orthogonal complement of the nuisance tangent space for this multiplicative
intensity model, the projection operator onto this space, and the efficient
score.

Lemma 2.2 Consider the setting above. Consider the model for the dis-
tribution of X = X̄(T ) defined by the multiplicative intensity model (for a
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continuous counting process N(t)) assumption:

λ(t)dt ≡ E(dN(t) | Z̄(t−)) = Y (t)λ0(t) exp(βW (t))dt,

where Y (t) and the k-dimensional vector W (t) are uniformly bounded func-
tions of Z̄(t−). Here Y (t) is the indicator that N(t) is still at risk of
jumping right before time t. Here β ∈ IRk and λ0 are unspecified. Let β
be the parameter of interest and let (λ0, η) represent the nuisance parame-
ter (so β, λ0, η identify fX). Let dM(t) = dN(t) − E(dN(t) | Z̄(t−)). The
orthogonal complement of the nuisance tangent space in the model in which
λ0 is known is given by

T⊥
η ≡

{∫
H(t, Z̄(t−))dM(t) : H

}
∩ L2

0(FX).

The nuisance tangent space of Λ0 =
∫ ·
0
λ0 is given by

TΛ0 ≡
{∫

g(t)dM(t) : g

}
∩ L2

0(FX).

We have

Π
(∫

H(t, Z̄(t−))dM(t) | TΛ0

)
=
∫

g(H)(t)dM(t),

where

g(H)(t) =
E
{
H(t, Z̄(t−))Y (t) exp(βW (t))

}
E{Y (t) exp(βW (t))} . (2.5)

Thus, the orthogonal complement of the nuisance tangent space of β TF,⊥
nuis =

T⊥
η ∩ T⊥

Λ0
is given by

TF,⊥
nuis =

{∫
{H(t, Z̄(t−)) − g(H)(t)}dM(t) : H

}
∩ L2

0(FX).

We have

Π
(∫

H(t, Z̄(t−))dM(t) | T F,⊥
nuis

)
=
∫
{H(t, Z̄(t−)) − g(H)}dM(t).

The score for β is given by Sβ =
∫

W (t)dM(t). Thus the efficient score
for β is given by

SF
eff =

∫ {
W (t) − E {W (t)Y (t) exp(βW (t))}

E{Y (t) exp(βW (t))}
}

dM(t).

This efficient score formula is due to Ritov, and Wellner (1988). We want to
have an expression for the projection onto TF,⊥

nuis of any function D(X). The
previous lemma provides the projection of full data functions of the form∫

H(t, Z̄(t−))dM(t). In the next lemma, we establish the projection in the
case where N(t) can only jump at a given set of points, thereby avoiding
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technical measurability conditions. Since continuous processes can be arbi-
trarily well-approximated by discrete processes, it will also provide us with
a formula for the general projection operator onto TF,⊥

nuis for the continuous
multiplicative intensity model. Note that the multiplicative intensity model
makes only sense for discrete data on a relatively fine grid of points so that
the modeled probabilities are bounded by 1.

Lemma 2.3 Assume that the counting process N(t) can only jump at given
points tj , j = 1, . . . , p, and consider the multiplicative discrete intensity
model λ(tj) = P (dN(tj) = 1 | Z̄(tj−)) = Y (tj)λ0(tj) exp(βW (tj)), where
W (tj) are uniformly bounded functions of Z̄(tj), j = 1, . . . , p. Let dM(t) =
dN(t) − λ(t) for t ∈ {t1, . . . , tp}. Then, the statements in Lemma 2.2 hold
and, in addition, we have that for any D ∈ L2(FX)

Π(D | T⊥
η ) =

∫
HD(t, Z̄(t−))dM(t), (2.6)

where

HD(t, Z̄(t−)) = E(D(X) | dN(t) = 1, Z̄(t−))−E(D(X) | dN(t) = 0, Z̄(t−)).

Thus

Π(D | T F,⊥
nuis) =

∫
{HD(t, Z̄(t−)) − g(HD)}dM(t), (2.7)

where the mapping g(h) is defined in (2.5).

We conjecture that, given appropriate measurability conditions so that the
conditional expectations are properly defined, this projection formula (2.6)
and thereby (2.7) holds in the continuous setting of Lemma 2.2 as well.

A direct proof of the representation TF,⊥
nuis given in Lemma 2.2 is

obtained by directly computing the nuisance tangent space from the
likelihood f(X) = f(X | Z)

t
f(Z(t) | Z̄(t−)) which can be further

factorized by f(Z(t) | Z̄(t−)) = f(dN(t) | Z̄(t−))f(Z(t) | N(t), Z̄(t−)).
Here

t
f(dN(t) | Z̄(t−)) =

t
λ(t)dN(t)(1 − λ(t))1−dN(t) is the partial

likelihood, where this product integral representation of the likelihood is
formally defined in Andersen, Borgan, Gill and Keiding (1993). The proof
Lemma 2.3 below provides an intuitive non-formal way of understanding
Lemma 2.2 and provides a formal proof of Lemma 2.3 in which N(t) is a
discrete counting process.

Proof of Lemma 2.3. Let M = {FX : E(dN(t) | Z̄(t−)) =
Y (t)λ0(t) exp(βW (t)) all t} be this model. Let (η, λ0) represent
the nuisance parameter of β. We have that the nuisance tangent
space Tη,λ0 equals the sum of the nuisance tangent space Tη in the
model with λ0 known and the nuisance tangent space Tλ0 in the
model with η known: Tη,λ0 = Tη + Tλ0 . Thus T⊥

η,λ0
= T⊥

η ∩ T⊥
λ0

.
It follows directly from differentiating the log-partial-likelihood
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log
∏

t λ(t)dN(t)(1 − λ(t))1−dN(t) along one-dimensional fluctuations
λ0(·) + εh(·) of λ0 that Tλ0 = {∫ g(t)dM(t) : g}.

We will now prove that T⊥
η = {∫ H(t, Z̄(t−))dM(t) : H}. Notice that

M = ∩p
t=1Mt, where Mt = {FX : λ(t) = Y (t)λ0(t) exp(βW (t))}. In

other words, M can be viewed as an intersection of t-specific models only
restricting the intensity λ(t) = E(dN(t) | Z̄(t−)) at a fixed point t. The or-
thogonal complement of the nuisance tangent space of β in model Mt equals
{H(Z̄(t−))dM(t) : H}. This is proved directly from the likelihood repre-
sentation in the same manner as we proved that in the regression model
E(Z | X∗) = m(X∗ | β) the orthogonal complement of the nuisance tan-
gent space equals {H(X∗)(Z − m(X∗ | β)) : H}. In fact, since N can only
jump at predetermined grid points Mt can be viewed as a regression model
of Z = dN(t) on X∗ = Z̄(t−) with m(X∗ | β) = Y (t)λ0(t) exp(βW (t)).
The orthogonal complement of the nuisance tangent space of the intersec-
tion of models Mt equals the sum (integral) of the orthogonal complements
of the nuisance tangent spaces for the models Mt, where the nuisance tan-
gent space for M equals the intersection of the nuisance tangent spaces
for model Mt. Thus, the orthogonal complement of the nuisance tangent
space in the model with λ0 known equals

T⊥
η =

{∫
H(t, Z̄(t−))dM(t) : H

}
∩ L2

0(FX).

Therefore, we can conclude that

T⊥
η ∩ T⊥

λ0
=
{∫

(H(t, Z̄(t−)) − g(H)(t))dM(t) : H

}
,

where
∫

g(H)(t)dM(t) = Π(
∫

HdM | Tλ0 ). It can be directly verified that
g(H)(t) = E{H(t, Z̄(t−))Y (t) exp(βW (t))}/E{Y (t) exp(βW (t))}.

We will now prove the projection formula (2.6). Firstly, we note that
T⊥

η = {∫ H(t, Z̄(t−))dM(t) : H} = H1 ⊕ . . .⊕ Hk is an orthogonal sum of
subspaces Hj ≡ {H(Z̄(tj−))dM(tj) : H}. Therefore, we have that Π(D |
T⊥

η ) =
∑k

j=1 Π(D | Hj). As explained above, we can apply Lemma 2.4
with ε = dM(tj), X∗ = Z̄(tj−), and K(ε) = ε to obtain that Π(D | Hj) is
given by

E({D(X) − E(D(X) | Z̄(tj−))}dM(tj) | Z̄(tj−))×
1

E(dM(tj)2|Z̄(tj−))
dM(tj).

We have

E(D(X) | dN(tj), Z̄(tj−)) − E(D(X) | Z̄(tj−)) ={
E(D(X) | dN(tj) = 1, Z̄(tj−)) − E(D(X) | dN(tj) = 0, Z̄(tj−))

}
dM(tj)

This proves that Π(D | Hj) is given by{
E(D(X) | dN(tj) = 1, Z̄(tj−)) − E(D(X) | dN(tj) = 0, Z̄(tj−))

}
dM(tj),
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which proves Lemma 2.3. �
Suppose now that the counting process is discrete on a sparse set of

points so that one might want to assume the logistic regression intensity
model. The proof of the previous lemma proves, in particular, a simple rep-
resentation of TF,⊥

nuis and the projection operator onto TF,⊥
nuis for parametric

discrete intensity models such as the logistic regression intensity model.
The results are stated in the following lemma.

Lemma 2.4 Assume that the counting process N(t) can only jump at given
points tj, j = 1, . . . , p, and consider a discrete intensity model λ(tj) =
P (dN(tj) = 1 | Z̄(tj−)) = Y (tj)m(W (tj ), tj | β), where m(W (tj ), tj | β) is
parametrized by a k-dimensional regression parameter β and is uniformly
bounded: For example, m(W (t), t | β) = 1/(1+exp(−(β0 +β1 ∗ t+β2W (t).
Let dM(t) = dN(t) − λ(t) for t ∈ {t1, . . . , tp}. Then, the orthogonal
complement of the nuisance tangent space at FX is given by

TF,⊥
nuis(FX) =

{∫
H(t, Z̄(t−))dM(t) : H

}
∩L2

0(FX).

In addition, we have that for any D ∈ L2(FX)

Π(D | TF,⊥
nuis) =

∫
HD(t, Z̄(t−))dM(t), (2.8)

where

HD(t, Z̄(t−)) = E(D(X) | dN(t) = 1, Z̄(t−))−E(D(X) | dN(t) = 0, Z̄(t−)).

2.2.3 Linking the orthogonal complement of the nuisance
tangent space to estimating functions

Consider the full data structure model MF with parameter of interest
µ = µ(FX). Given representations of TF,⊥

nuis(FX) = {Dh(· | µ(FX), ρ(FX)) :
h ∈ HF (FX)} at all FX ∈ MF , the goal is to define a class of full data
estimating functions {(X, µ, ρ) → Dh(X | µ, ρ) : h ∈ HF } for µ with a
(possibly different) nuisance parameter ρ = ρ(FX) and an index set HF

independent of FX so that

{Dh(· | µ(FX), ρ(FX)) : h ∈ HF } ⊂ TF,⊥
nuis(FX) for all FX ∈ MF . (2.9)

Recall that it yields estimating functions indexed by HFk for µ ∈ IRk by
defining Dh = (Dh1 , . . . , Dhk) for any h = (h1, . . . , hk) ∈ HFk.

In this subsection, we provide a template for deriving such a class of
estimating functions from these representations of TF,⊥

nuis(FX). Firstly, let
HF be an index set containing each HF (FX), FX ∈ MF , and (D1

h : h ∈
HF ) be a class of estimating functions D1

h : X × {(µ(FX), ρ(FX)) : FX ∈
MF} → IR so that

{D1
h(· | µ(FX), ρ(FX)) : h ∈ HF (FX)} = TF,⊥

nuis(FX) for all FX ∈ MF .
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For example, HF = ∪FX∈MF HF (FX). Since TF,⊥
nuis(FX) is defined in

L2
0(FX), we mean that for each element in TF,⊥

nuis(FX) there exists a func-
tion D1

h(X | µ(FX), ρ(FX)) that is equal to this element in L2
0(FX). Now,

D1
h(· | µ, ρ), h ∈ HF , is a class of (biased and unbiased) full data estimating

functions.
Since HF (FX) possibly depends on unknown parameters of FX , the

membership indicator I(h ∈ HF (FX)), which guarantees the unbiasedness,
represents a nuisance parameter of the estimating function D1

h(· | µ, ρ). In
order to acknowledge this fact, we reparametrize D1

h(· | µ, ρ) as follows. Let
Π(· | HF (FX)) be a user-supplied mapping from HF into HF (FX) satisfy-
ing Π(h | HF (FX)) = h if h ∈ HF (FX). We now redefine the class of full
data estimating functions {D1

h(· | µ, ρ) : h ∈ HF }
{D2

h(· | µ, ρ′) ≡ DΠ(h|HF (FX ))(· | µ, ρ) : h ∈ H}, (2.10)

where ρ′ denotes ρ augmented with the parameters indexing Π(h |
HF (FX)). For the sake of notational simplicity, we redefine D2

h(· | µ, ρ′)
as Dh(· | µ, ρ) again. Note that we can now state

{Dh(· | µ(FX), ρ(FX)) : h ∈ HF } = TF,⊥
nuis(FX).

If Π(· | HF (FX)) were not required to be the identity on HF (FX), it might
have a range that is a strict subset of HF (FX). Even so, we still would have

{Dh(· | µ(FX), ρ(FX)) : h ∈ HF } ⊂ TF,⊥
nuis(FX).

One might choose such a mapping Π(· | HF (FX)) to simplify the
parametrization of the estimating function, where one now takes the risk
of excluding (e.g.) the optimal estimating function.

As a side remark here, we mention that ρ plays the role of a nuisance
parameter that will be estimated with external (relative to the estimating
function) procedures. For example, in the full data world, we would be
solving 0 =

∑n
i=1 Dh(Xi | µ, ρn) for a given estimator ρn of ρ. Thus,

one wants to choose ρ as variation-independent of µ as possible in order
to maximize efficiency of the estimator of µ that solves the estimating
equation. If ρ = ρ(µ, η) for two variation independent parameters µ, η,
then one redefines the full data estimating functions as Dh(· | µ, η) =
Dh(· | µ, ρ(µ, η)). We conjecture that it essentially will always be possible
to parametrize the estimating function so that µ and ρ are locally variation
independent.

Such a collection {Dh : h ∈ HF } represents a set of full data structure
estimating functions. We want to choose the index set as large as possible
in the sense that if ρ = (ρ1, ρ2) with

EFX Dh(X | µ(FX), ρ1, ρ2(FX)) ∈ TF,⊥
nuis(FX) for all possible ρ1

and FX ∈ MF , then one should make ρ1 a component of the index h.
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In most full data models, the estimating functions Dh and index set HF

are naturally implied by the representation of FX → TF,⊥
nuis(FX) = {Dh(· |

µ(FX), ρ(FX)) : h ∈ HF (FX)} and does not require much thinking.
Because it is of interest to be able to map a full data estimating function

into its corresponding index, we also want to extend the index mapping
hind,FX (2.2) to be well-defined on pointwise well-defined functions of X.
Let D = {Dh(· | µ, ρ) : µ, ρ, h ∈ HF } be the set of full data functions. Let
L(X ) be the space of functions of X with finite supremum norm over a set
K for which we know that P (X ∈ K) = 1 w.r.t. the true FX . It will be
assumed that D ⊂ L(X ). Let hind,FX : L(X ) → H be an index mapping
satisfying for any D ∈ L(X )

Dhind,FX
(D)(· | µ(FX), ρ(FX)) = Π(D | TF,⊥

nuis(FX)),

where we formally mean that the equality holds in L2
0(FX) (since the right-

hand side is defined in L2
0(FX)).

Example 2.1 (Multivariate generalized linear regression; contin-
uation of Example 2.1 ) In our multivariate generalized linear regression
example, a natural candidate for the index set HF is simply all functions
of X∗:

HF ≡ {h(X∗) : any h}.
A possible mapping into HF (FX) = {h ∈ HF : EFX{h(X∗)K(ε(α))}2 <
∞} (here α is the true parameter value corresponding with FX) is given
by

Π(h | HF (FX))(X∗) = min(h(X∗), M),

where the truncation constant M is user-supplied. Notice that indeed the
finite supremum norm of this index (say) h∗ guarantees that h∗(X∗)ε(α)
has finite variance for any FX ∈ MF . Note also that the range of this map-
ping does not necessarily cover HF (FX). This mapping has no unknown
nuisance parameters. Thus, the corresponding set of full data estimating
functions (2.10) is given by

{(X, α) → min(h(X∗), M)K(ε(α)) : h ∈ HF }.
If the full data structure model MF assumes that, for a specified k,

X∗kε(β) has finite variance, then one can define

Π(h | HF (FX)) = min(h(X∗), X∗k).

For any D ∈ D = {min(h(X∗), M)K(ε(α)) : h ∈ HF , α}, we define

hind,FX (D)(X∗) = EFX (D(X)K(ε)� | X∗)EFX (K(ε)K(ε)� | X∗)−1,

where ε = ε(α(FX)). �
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2.3 Mapping into Observed Data Estimating
Functions

In this section, we provide a variety of methods to construct mappings from
full data estimating functions to observed data estimating functions. The
first five sections are focused on mappings that one can use to construct
estimators in model M(G), and they can form the basis of an orthogonalized
mapping such as the optimal mapping in the next section. In Subsection
2.3.6, we will show that making a given mapping orthogonal to the tangent
space of G for a convex model containing G yields the double robustness
property so that it can be used to obtain RAL estimators in model M as
well.

2.3.1 Initial mappings and reparametrizing the full data
estimating functions

Let Dh → IC0(Y | Q0, G, Dh) be a mapping from full data estimating
functions {Dh : h ∈ HF } into observed data estimating functions indexed
by nuisance parameters Q0(FX , G) and G. Let Q0 ≡ {Q0(FX , G) : FX ∈
MF,w, G ∈ G} be the parameter space of this nuisance parameter Q0, where
FX ranges over a submodel MF,w of MF . For each possible parameter value
(µ, ρ) ∈ {(µ(FX), ρ(FX)) : FX ∈ MF} and G ∈ G, let HF (µ, ρ, ρ1, G) ⊂
HF be a collection of h for which

EG(IC0(Y | Q, G, Dh(· | µ, ρ)) | X) = Dh(X | µ, ρ) FX-a.e. for all Q ∈ Q0

(2.11)
and

VARPFX,GIC0(Y | Q, G, Dh(· | µ(FX), ρ(FX))) < ∞ for all Q ∈ Q0.
(2.12)

Note that the statement FX-a.e. in (2.11) also creates dependence on
FX . Since the latter restriction only affects the variance of the estimat-
ing function (it is unbiased by (2.11)) it can often be arranged by a simple
truncation of h (see e.g., Example 2.1). Therefore, we suppressed the pos-
sible dependence of HF (µ, ρ, ρ1, G) on another nuisance parameter needed
to guarantee (2.12). This dependence is expressed by the parameter ρ1 of
FX .

It is also natural to make (2.12) a model assumption or, equivalently, a
regularity condition in an asymptotics theorem. Note that, if we ignore the
(2.12) constraint, then the maximal set HF (µ, ρ, ρ1, G) is given by{

h ∈ HF : sup
Q0∈Q0

| EG(IC0(Y | Q0, G, Dh(· | µ, ρ) | X) − Dh(X | µ, ρ) |= 0
}

,

where the equality needs to hold FX-a.e.
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It will be convenient to also define the set of allowed full data estimating
functions directly (instead of in terms of the index sets).

Definition 2.1 Let D =
{
Dh(· | µ, ρ) : h ∈ HF , (µ, ρ)

}
with (µ, ρ) rang-

ing over the parameter space {µ(FX), ρ(FX) : FX ∈ MF}. Let Q0 =
{Q0(FX , G) : FX ∈ MF , G ∈ G}. For each G ∈ G and FX ∈ MF , we
define the set D(ρ1(FX), G) as

{D ∈ D : EG(IC0(Y | Q, G, D) | X) = D(X) FX-a.e. for all Q ∈ Q0.
(2.13)

Given an initial mapping IC0, the dependence of D(ρ1 , G) on FX , G typi-
cally has to do with the support of D(X); that is the possible values of X
at which D(X) is non zero relative to the support of G. As a consequence,
under strong conditions on G, one will typically have D(ρ1, G) = D.

Example 2.2 (Right censored data structure with time-
dependent covariates) Consider the right-censored data structure
Y = (T̃ = min(T, C), ∆ = I(T̃ = T ), L̄(T̃ )). For D(X) we define
∆(D) = I(D(X) observed). There exists a real-valued random variable
V (D) ≤ T so that I(D(X)is observed) = I(C ≥ V (D)). We define

IC0(Y | G, D) =
D(X)∆(D)

PG(∆(D) = 1 | X)
=

D(X)∆(D)
Ḡ(V (D) | X)

,

where Ḡ(t | X) ≡ P (C ≥ t | X). Note that if Ḡ(T | X) > δ > 0 FX-a.e. for
some δ > 0, then one has D(ρ1 , G) = D, but this condition might not be
necessary for identification of a particular parameter µ. �

Having identified an appropriate mapping IC0, in many models it is in-
deed the case that EG(IC0(Y | Q, G, Dh(· | µ(FX), ρ(FX))) | X) = Dh(X |
µ(FX), ρ(FX)) only holds for Dh(· | µ(FX), ρ(FX)) ranging over a true
(not even dense) subset of TF,⊥

nuis(FX) (i.e., HF (µ(FX), ρ(FX), ρ1(FX), G) ⊂
HF ). In this case, there exist many full data structure estimating func-
tions (i.e., full data structure model gradients) that cannot be mapped
into an observed data estimating function (i.e., observed data model M(G)
gradients).

Typical candidates of the mapping Dh → IC0(Y | Q0, G, Dh) are so-
called inverse probability of censoring weighted mappings, as we provided
in Chapter 1 and will provide below for various censored data structures.
These mappings involve a censoring probability or density in the denom-
inator. By assuming that this censoring probability is uniformly bounded
away from zero, one will typically have HF (µ, ρ, ρ1, G) = HF (i.e., all full
data structure estimating functions satisfy (2.11)). On the other hand, a
given censoring distribution not satisfying this property can still allow esti-
mation of the particular parameter of interest or, equivalently, there is still
a real subset HF (µ, ρ, ρ1, G) of HF for which (2.11) holds. For example, in
the current status data location (mean, smooth median, truncated mean)
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regression model covered in Chapter 4, the class of allowed full data struc-
ture estimating functions is a function of the support of the monitoring
mechanism and the support of the location parameter. The next example
illustrates this for linear regression with a right-censored outcome.

Example 2.3 (Linear regression with right-censored outcome)
Suppose that one is interested in estimating a linear regression parame-
ter µ = β of log-survival on a treatment dose Z. We denote the log survival
and log censoring time by T and C. Our model is T = β0 + β1Z + ε,
E(ε | Z) = 0. Let X = (T, Z) be the full data structure. We assume that
the right-censoring time C is conditionally independent of survival, given
treatment dose Z. We observe n i.i.d. copies of Y = (T̃ = min(T, C), ∆ =
I(T ≤ C), Z). A rich class of full data structure estimating functions
is {Dh(T, Z | β) = min(h(Z), M)ε(β) : h} for a bound M < ∞ to
guarantee that all of these estimating functions have finite variance. Let
IC0(Y | G, Dh) = min(h(Z), M)ε(β)∆/Ḡ(T | Z) which equals zero if
∆ = 0, regardless of the denominator, where Ḡ(t | Z) = P (C ≥ t | Z).

Suppose that T , given Z, has compact support [αZ, αZ]. For example, if
ε has known support [−τ, τ ], then we have αZ = β0 + β1Z + τ . Note that

E
(
h(Z)ε(β)I(T ≤ C)/Ḡ(T | Z) | T, Z

)
= h(Z)ε(β)I(Ḡ(T | Z) > 0).

Define for some fixed small δ > 0

Z(β, G) = {z : Ḡ(αZ | Z) > δ > 0}
as the set of treatment values z for which the conditional probability (given
treatment) Ḡ(T | Z = z) that a subject’s survival time is observed is
bounded away from zero. It follows that for all functions h(Z) that are
zero for Z �∈ Z(β, G)

EG(IC0(Y | G, Dh(· | β) | X) = Dh(X | β) for all G and β.

Thus, we can set

HF (µ, ρ, ρ1, G) = H(β, G) = {h(Z) : h(Z) = h(Z)I(Z ∈ Z(β, G))},
D(β, G) = {h(Z)ε(β) : h(Z) = 0 if Ḡ(αZ | Z) = 0}.

In other words, one can estimate β by simply throwing away all sub-
jects with a treatment dose outside Z(β, G). This example can be directly
generalized to the general location regression model: T = β0 + β1Z + ε,
E(K(ε) | Z) = 0 for a monotone function K that has derivative zero
outside an interval, say (−τ, τ ). �

Reparametrizing the full data structure estimating functions

Since HF (µ, ρ, ρ1, G) possibly depends on the unknown parameters
(µ, ρ, ρ1, G), this makes the index h essentially a nuisance parameter of
the estimating function IC0(Y | Q, G, Dh(· | µ, ρ)). In other words, to esti-
mate µ, we need to estimate the set HF (µ, ρ, ρ1, G) and try to make sure
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that our choice hn converges to an element in H(µ, ρ, ρ1, G). In order to ac-
knowledge this fact, we reparametrize Dh(· | µ, ρ) in the following manner,
which is completely analogous to (2.10).

Let Π(· | HF (µ, ρ, ρ1, G)) be a user-supplied mapping from HF into
HF (µ, ρ, ρ1, G) that only depends on the unknown (µ, ρ, ρ1, G), which
equals the identity on a rich subset (preferably all) of HF (µ, ρ, ρ1, G). We
now redefine the class of full data estimating functions {Dh(· | µ, ρ) : h ∈
HF } so that it is guaranteed to satisfy (2.11) for all h ∈ HF :

{Dr
h(· | µ, ρ′ = (ρ, ρ1, G)) ≡ DΠ(h|HF (µ,ρ,ρ1,G))(· | µ, ρ) : h ∈ HF }. (2.14)

For the sake of notational simplicity, we will denote the parameter ρ′ with
ρ, again, and we denote Dr

h(· | µ, ρ′) with Dh(· | µ, ρ) again, but we now
need to remind ourselves that ρ possibly also includes G as a component
and that h → Dh can be a many-to-one mapping in the sense that many
h ∈ HF are mapped into the same full data structure estimating func-
tion. The reparametrized class of estimating functions are now elements of
TF,⊥

nuis(FX) and D(ρ1(FX), G) when evaluated at the true parameter values.
Consequently, we now have for all h ∈ HF

EG(IC0(Y | Q, G, Dh(· | µ, ρ)) | X) = Dh(X | µ, ρ) for all Q ∈ Q0.
(2.15)

This and (2.12) imply that

{IC0(Y | Q, G, Dh(· | µ(FX), ρ(FX , G))) : h ∈ HF , Q ∈ Q0} ⊂ T⊥
nuis(M(G));

that is, IC0 maps full data structure estimating functions into observed
data estimating functions that are orthogonal to the nuisance tangent space
in the model with G known. Consequently, the estimating function still
has the property that the first-order asymptotics of the locally (variation-
independent of µ) FX components of ρn will not affect the influence curve
of the estimator µn solving 0 =

∑
i IC0(Yi | Qn, Gn, Dh(· | µ, ρn)).

Example 2.4 (Linear regression with right-censored outcome;
continuation of Example 2.3) The class of full data structure esti-
mating functions is {Dh(X | β) = min(h(Z), M)ε(β) : h ∈ HF }, where
HF denotes all functions of Z. We derived in the previous example a sub-
class HF (µ, ρ, ρ1, G) = HF (β, G) = {min(h(Z), M) : h(Z) = h(Z)I(Z ∈
Z(β, G))} so that for all h ∈ HF (β, G) EG(IC0(Y | G, Dh(· | β)) | X) =
Dh(X | β). To reparametrize the estimating functions {IC0(Y | G, Dh(· |
β)) : h ∈ HF (β, G)} in terms of a class of unbiased estimating functions
with an index h running over an index set independent of any unknown pa-
rameters, we define the mapping Π(h | HF (β, G)) = h(Z)I(Z ∈ Z(β, G)).
This yields the reparametrized full data structure estimating functions

Dr
h(X | µ = β, G) = min(h(Z), M)I(Z ∈ Z(β, G))ε(β).

For notational convenience, we denote this latter full data structure
estimating function with Dh(X | β, G). �
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This mapping can be viewed as a mapping from full data estimating func-
tions Dh for µ into observed data estimating functions IC0(· | Q0, G, Dh(· |
µ, ρ)) for µ indexed by an unknown nuisance parameter G and unknown
(but) protected nuisance parameter Q0. Therefore, it can be used to con-
struct an initial estimator in the model M(G) in which we assume that
G ∈ G. For a given h ∈ HF k, an estimator ρn of ρ, Gn of G and Q0n of Q0,
let µ0

n be the solution of the estimating equation

0 =
n∑

i=1

IC0(Yi | Q0
n, Gn, Dh(· | µ, ρn)). (2.16)

Here, the G component of ρ is estimated with the same Gn. One can solve
the estimating equation with the Newton-Raphson algorithm. Let µ0

n be an
initial guess or estimator. Set l = 0. The first step of the Newton–Raphson
procedure involves estimation of a derivative (matrix) w.r.t. µ at µl

n of the
estimating equation. This derivative at µ = µ1 is defined by

c(µ1) = c(h, µ1, ρ, Q0, G, P ) =
d

dµ
PIC0(Y | Q0, G, Dh(· | µ, ρ))

∣∣∣∣
µ=µ1

,

where we used the notation Pf ≡ ∫
f(y)dP (y). Note that c(µ) is a k × k

matrix with cij(µ) = d
dµj

PIC0,i(Y | Q0, G, Dhn(µ, ρ)). Its estimate at µ =
µ1 is given by

cn(µ1) ≡ c(hn, µ1, ρn, Q0n, Gn, Pn)

=
1
n

n∑
i=1

d

dµ
IC0(Yi | Q0n, Gn, Dhn(µ, ρn))

∣∣∣∣
µ=µ1

.

If IC0(Y | Q0n, Gn, Dhn(· | µ, ρn)) is not differentiable in µ, but the
integral of IC0(Y ) w.r.t. PFX,G is differentiable w.r.t. µ, then we replace
the analytical derivative d/dµ by a numerical derivative: for a given function
f : IR → IR, the numerical derivative w.r.t. x at x = x1 is defined as

f(x1 + ∆n) − f(x1)
∆n

for a sequence ∆n = O(n−1/2).

The (l + 1)th step of the Newton–Raphson procedure is given by

µl+1
n = µl

n − cn(µl
n)−1 1

n

n∑
i=1

IC(Yi | Q0n, Gn, Dhn(· | µl
n, ρn)). (2.17)

If µ0
n is a decent consistent estimator of µ (if a second-order Taylor ex-

pansion in µ exists, one needs ‖ µ0
n − µ ‖= oP (n−1/4) and otherwise

‖ µ0
n−µ ‖= OP (n−1/2) suffices), then further iteration beyond the one-step

estimator µ1
n will not result in first-order improvements (i.e., µ0

n does now
only affects the second-order asymptotics of µ1

n). Therefore, in this case one
can just use µ1

n. If no consistent initial estimator is available, then one can
repeat these updating steps until convergence is established. To guarantee
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convergence, the following modification of the algorithm is often needed.
For a given vector norm ‖ · ‖, we can define

l(µ) ≡‖
n∑

i=1

IC0(Yi | Gn, Dh(· | µ, ρn)) ‖ .

For example, we could use the Euclidean norm or average of absolute value
norm. Now, if l(µl+1

n ) < l(µl
n), then we accept the update µl+1

n , but other-
wise we take as update εµl

n+(1−ε)µl+1
n with ε chosen to be the minimizer of

ε → l(εµl
n +(1−ε)µl+1

n ). It actually is not necessary to determine the exact
minimizer, but one needs to find an ε that improves the update w.r.t. the
criterion l. This minimization problem can be carried out with the S-plus
function nlminb().

In this book, we will not be concerned with the existence of solutions
and or multiple solutions o estimating equations, but we would like to
make the following suggestions. The existence of solutions has been a non
issue in our experience, but we have experienced cases where estimating
equations had multiple solutions. In this case, it is very helpful if either a
consistent initial estimator µ0

n is available so that the one-step estimator
suffices or that an initial ad hoc guess is available so that certain solu-
tions can be ruled out right away. A useful idea to deal with multiple
solutions comes from noting that it is unlikely that the same wrong solu-
tion will consistently come up in different estimating equations. Therefore,
solving a number of estimating equations can be a sensible approach to
rule out certain solutions. More formally, a promising method is to solve
a number of estimating equations simultaneously. In other words, let U(β)
be a stack (i.e., vector) of estimating equations, and we estimate β by
minimizing U(β)�E(U(β)U(β)�)−1U(β) over β. By incorporating enough
estimating equations, this method will often uniquely identify the true β.
By Hansen (1982), the efficiency of the resulting estimator corresponds
with the estimator solving the optimal k-dimensional linear combination
of the components of U(β), provided the number of components in U(β)
does not increase too quickly with sample size.

Example 2.5 (Linear regression with right-censored outcome;
continuation of Example 2.3) Let βn be the solution of

0 =
n∑

i=1

min(h(Zi), M)I(Zi ∈ Z(β, Gn))εi(β)
∆i

Ḡn(Ti | Zi)
,

where Gn is an estimator of the conditional distribution G(t | Z) = P (C ≥
t | Z). For example, we could assume the Cox proportional hazards model
for λC (t | Z) and estimate G accordingly. We have

Z(β, Gn) = {z : Ḡn(β0 + β1z + τ | z) > δ > 0}.
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Instead of enforcing Ḡn to be larger than δ > 0, we could also just require
positivity. In this case,

I(Z ∈ Z(β, G)) = I(β0 + β1Z + τ < αZ).

We will now verify that, under some smoothness conditions, the
changes of the order σ in β and αZ only have an effect of order σ2

on E
{

min(h(Z), M)I(Z ∈ Z(β, G))ε(β) ∆
Ḡ(T |Z)

}
. Let us denote the set

Z(β, G) with Z(β, αZ). Define the set A(σ) as all elements z ∈ Z(β +
σ, αZ +σ) that are not an element of Z(β, αZ), where �x+σ denotes adding
the constant σ to each component of �x. By noting that the conditional ex-
pectation, given Z = z ∈ Z(β, G), of the estimating function equals zero,
it follows that

E

(
h(Z){I(Z ∈ Z(β + σ, αZ + σ)) − I(Z ∈ Z(β, αZ))}ε(β)

I(T ≤ C)
Ḡ(T | Z)

)
≤
∫

Z∈A(σ)

{∫
T

h(Z)(T − βZ)I(Ḡ(T |Z) > 0)dF (T |Z)
}

dFZ(Z)

≡
∫

Z∈A(σ)

g(Z)dFZ(Z).

Now, note that g(Z) = 0 for Z ∈ Z(β, αZ). Thus, if g is a smooth function
in Z, then g(Z) = O(σ) for Z ∈ Z(β + σ, αZ + σ) and, in particular,
for Z ∈ A(σ). This shows that the last term equals

∫
A(σ)

O(σ)dFZ(z) =
FZ(A(σ))O(σ) = O(σ2).

As a consequence of this result, the asymptotics of βn is not affected by
the first-order behavior of Z(βn , Gn). Thus, under weak conditions, βn will
be asymptotically equivalent with the estimator using Z(β, G) as given and
known. This is a helpful insight for derivation of the influence curve of βn.
�

A general initial mapping only indexed by the censoring distribution.

Firstly, consider a censored data model for which

P (X is observed | X = x) > 0 for almost all x. (2.18)

Given a D(X), define a random variable that is 1 if D(X) is observed and
zero otherwise:

∆(D) =
{

1 if D(X) is observed.
0 if D(X) is censored.

Define ΠG,D(x) = P (∆(D) = 1 | X = x). Now, define for D ∈ L2
0(FX) the

following inverse probability of censoring weighted mapping

IC0(Y | G, D) =
D(X)∆(D)
ΠG,D(X)

.
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Notice that indeed E(IC0(Y | G, D) | X) = D(X) for all D(X). If (2.18)
only holds on a subset of the support of X, then, as in our linear regression
Example 2.3, EG(IC0(Y | G, D) | X) = D(X) can still hold for a subset
of D’s covering full data structure estimating functions for a parameter of
interest.

In censored data models in which X is never completely observed, such
as in the current status data example below, it might not be so easy to
find an initial mapping IC0(· | G, D). In this case, the following theorem
provides a general representation of an initial mapping IC0.

Theorem 2.1 Let AFX : L2
0(FX) → L2

0(PFX ,G) be the nonparametric score
operator for FX:

AFX (s)(Y ) = E(s(X) | Y ).

The adjoint A�
G : L2

0(PFX ,G) → L2
0(FX) of AFX is given by

A�
G(V )(X) = E(V (Y ) | X).

Let IFX ,G = A�
GAFX : L2

0(FX) → L2
0(FX) which will be referred to as the

nonparametric information operator.
Let F1 be given. Let (L(X ), ‖ · ‖∞) be the space of all functions of X

defined on set K with P (X ∈ K) = 1 with finite supremum norm over this
set K. We have that IF1,G : (L(X ), ‖ · ‖∞) → (L(X ), ‖ · ‖∞). Assume that
D ∈ L(X ); that is, D has finite supremum norm in X, and either (i) D
lies in the range of IF1,G : (L(X ), ‖ · ‖∞) → (L(X ), ‖ · ‖∞) or (ii) in the
range of IF1,G : L2

0(FX) → L2
0(FX). Then

IC0(Y | G, D) ≡ AF1I
−
F1,G(D)(Y ) ∈ L2

0(PFX ,G)

satisfies E(IC0(Y | G, D) | X) = D(X) for all values of X ∈ K (if (i)
holds) or with probability one (if (ii) holds).

By Theorem 1.3 we also have

AF1I
−1
F1,G(D) = UF1,G(D) − ΠF1,G(UF1,G(D) | TCAR(PF1,G))

for any UF1,G(D) satisfying E(UF1,G(D)(Y ) | X) = D(X).

Proof. Given assumption (i), for each x ∈ K we have

E(AF1I
−
F1,G(D)(Y ) | X = x) = IF1,GI−F1,G(D)(x) = D(x).

Similarly, given assumption (ii), we prove this statement with probability
one. �

Condition (i) is stronger than condition (ii), but the supremum norm
invertibility condition (i) is needed to prove most asymptotic theorems for
the estimator solving the corresponding estimating equation.

Example 2.6 (Current status data structure) Consider a carcino-
genicity experiment in which the time T until onset of a tumor in a
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mouse is the random variable of interest. Suppose that one collects time-
independent covariates L(0) and possibly time-dependent covariates (such
as the weight of the mouse) L(t) up to the sacrificing time C. Then, the
full data structure is X = (T, L(·)) and the observed data structure is
Y = (C, ∆ = I(T ≤ C), L̄(C)).

To begin with, we will consider the current status data structure (C, ∆, L)
with time-independent covariates L. In this case, X = (T, L) and CAR is
equivalent with assuming G(· | X) = G(· | L). Below we will derive an
explicit form of IC0(Y | G, D) = AF1I

−
F1,G(D) that will provide an IC0(Y |

G, D) for the general data structure (C, ∆, L̄(C)) by simply replacing G(· |
L) by the true G only satisfying CAR w.r.t. the general data structure. We
actuall suggest this as a general method for finding such mappings IC0; that
is, first obtain a mapping for a marginal data structure (e.g., not involving
covariates or not involving time-dependent covariates) and subsequently
simply replace the censoring mechanism for the marginal data structure by
the true censoring mechanism. The latter type of method will be discussed
in more detail in the next subsection.

We have

AF1(h) =

∫ C

0
h(t, L)dF1(t | L)

F1(C | L)
∆ +

∫∞
C

h(t, L)dF1(t | L)
1 − F1(C | L)

(1 − ∆),

and its adjoint is given by

A�
G(V ) =

∫ T

0

V (c, 0, L)dG(c | L) +
∫ ∞

T

V (c, 1, L)dG(c | L).

Thus

IF1,G(h)(T, L) =
∫ T

0

∫ c

0
h(t, L)dF1(t | L)

F1(c | L)
dG(c | L)

+
∫ ∞

T

∫∞
c

h(t, L)dF1(t | L)
1 − F1(c | L)

dG(c | L).

Consider the equation IF1,G(h)(t, L) = D(t, L) for a D that is differen-
tiable in the first coordinate. We assume that dG(t | L) = g(t | L)dt.
Differentiation w.r.t. t yields∫ t

0
h(s, L)dF1(s | L)

F1(t | L)
−
∫∞
t

h(s, L)dF1(s | L)
1 − F1(t | L)

=
D1(t, L)
g(t | L)

,

where D1(t, L) = d/dtD(t, L). Now, we write
∫ t

0 h(s, L)dF1(s | L) =∫∞
0

h(s, L)dF1(s | L)− ∫∞
t

h(s, L)dF1(s | L). Solving for
∫∞

t
h(s, L)dF1(s |

L) in terms of D1 and Φh(L) ≡ ∫∞
0

h(s, L)dF1(s | L) now yields∫ ∞

t

h(s, L)dF1(s | L) =
D1(t, L)
g(t | L)

F1(1 − F1)(t | L) + {1− F1(t | L)}Φh(L).
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The last equality gives us also

−
∫ t

0

h(s, L)dF1(s | L) =
D1(t, L)
g(t | L)

F1(1 − F1)(t | L) − F1(t | L)Φh(L).

Thus

AF1I
−
F1,G(D) =

D1(C, L)
g(C | L)

{F1(C | L) − ∆} + Φh(L).

Consider now the equation IF1,G(h)(αL, L) = D(αL, L), where αL is the
most leftmost point of the support of g(· | L). This equation reduces to

Φh(L) = D(αL, L) −
∫ ∞

0

D1(c, L){1 − F1(c, L)}dc.

We conclude that (here F̄1 = 1 − F1):

IC0(Y | G, D) =
D1(C, L)
g(C | L)

{F̄1(C | L) − (1 − ∆)}

−
∫

D1(c, L)F̄1(c | L)dc + D(αL, L). (2.19)

Consider now the general data structure (C, ∆, L̄(C)). We still assume
the full data estimating functions D to depend only on data (T, W = L(0)).
For this data structure, g(C | X) satisfies CAR if g(C | X) = h(C, L̄(C))
for some measurable function h. In (2.19), replace g(C | L) by g(C | X),
and we can replace F̄1(C | L) by any function φ(C, L̄(C)). Assume that
D1(c, L)I(T > c)/g(c | L) < ∞ for all c, FX -a.e. We will now verify that
IC0(Y | G, D) indeed satisfies the desired property: for any D(T, W =
L(0)), we have

E(IC0(Y | G, D) | X) =
∫

D1(c, W )φ(c, L̄(c))dc +
∫ T

αL

D1(c, W )dc

−
∫

D1(c, W )φ(c, L̄(c))dc + D(αL, W )

= D(T, W ).

By setting φ = 1, we obtain the mapping

IC0(Y | G, D) =
D1(C, L)(1− ∆)

g(C | L)
+ D(αL, L).

One can also treat the conditional distribution F1(· | L(0)) as a nuisance
parameter of the mapping IC0 and thus define

IC0(Y | F, G, D) =
D1(C, L)
g(C | X)

{F̄ (C | L(0)) − (1 − ∆)}

−
∫

D1(c, L)F̄ (c | L(0))dc + D(αL, L).
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Since E(IC0(Y | F1, G, D) | X) = D(X) for all F1, the resulting estimator
will remain CAN under misspecification of F (· | L(0)). Therefore, the latter
is an example of an initial mapping indexed by the censoring mechanism
and a protected nuisance parameter Q0. By Theorem 1.3, if there are no
time-dependent covariates (i.e., L = L(0)), and D = Dopt is the optimal
full data estimating function choice, then IC0(Y | F, G, D) is the efficient
influence curve. �

2.3.2 Initial mapping indexed by censoring and protected
nuisance parameter

By Theorem 2.1, we have IF,G : (L(X ), ‖ · ‖∞) → (L(X ), ‖ · ‖∞) for all
F, G. Let R∞(IF,G) denote its range. Consider as mapping

IC0(Y | FX , G, D) ≡ AFX I−FX ,G(D)(Y ), (2.20)

which can also be represented as IC0(Y | G, D) − Π(IC0 | TCAR) for any
IC0(Y | G, D) satisfying E(IC0(Y | G, D) | X) = D(X) (Theorem 1.3
Chapter 1). Given a working model MF,w, suppose that

D(ρ1, G) = {D ∈ D : D ∈ R∞(IF1,G) for all F1 ∈ MF,w}.
is non empty. By Theorem 2.1, for any D ∈ D(ρ1, G) it satisfies E(IC0(Y |
F, G, D) | X) = D(X) FX-a.e. for all F ∈ MF,w. Thus, this map-
ping indeed satisfies (2.11) with Q0(FX) = FX for appropriately chosen
HF (µ, ρ, ρ1, G) (e.g., defined by the conditions of Theorem 2.1 at a fixed
FX , G).

Again, when applied to full data estimating functions for a particular
parameter of interest, IC0 yields a mapping from full data estimating
functions Dh(· | µ, ρ) for µ into observed data estimating functions
IC0(· | Q0, G, Dh(· | µ, ρ)) for µ indexed by unknown nuisance parameter
G ∈ G and Q0. As in the previous subsection, one needs 1) to iden-
tify a subset HF (µ, ρ, ρ1, G) ⊂ HF so that for all h ∈ HF (µ, ρ, ρ1, G)
EG(IC0(Y | F, G, Dh(· | µ, ρ)) | X) = Dh(X | µ, ρ) FX -a.e. (for all possible
µ, ρ, G) and 2) to reparametrize this restricted class of full data struc-
ture estimating functions {Dh : h ∈ HF (µ, ρ, ρ1, G)} as {Dr

h : h ∈ HF }
by incorporating the extra nuisance parameters ρ1, G (needed to map any
h ∈ HF into HF (µ, ρ, ρ1, G)) in the nuisance parameter of Dr

h. Subse-
quently, we denote this reparametrized class of estimating functions with
{Dh(· | µ, ρ) : h ∈ HF } again, where ρ includes the old ρ, ρ1, and G.

This mapping is actually the optimal mapping of the next section, which
can be used to construct locally efficient estimators of µ in model M. We
highlight this in this section as a special choice that one can use to con-
struct estimators in M(G), where one might even consider extremely small
parametric models MF,w since one already assumed correct specification
of G.
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2.3.3 Extending a mapping for a restricted censoring model
to a complete censoring model

The basic goal in this section is to find a mapping IC0(Y | Q0, G, D) such
that for a reasonable set of full data structure functions D (i.e., D(ρ1 , G)
is rich enough) and all G ∈ G

EG(IC0(Y | Q0, G, D) | X) = D(X) FX-a.e. for all possible Q0. (2.21)

For each particular full data structure model and parameter of interest,
one still needs to specify the actual class D(ρ1, G) of full data structure
estimating functions for which (2.21) holds (see (2.11)) and specify the cor-
responding index sets HF (µ, ρ, ρ1, G). Thus, (2.21) is not a formal property,
but we want to separate the construction of sensible (i.e., in principle satis-
fying (2.21)) initial mappings from the verification of (2.21) for a particular
set of full data estimating functions.

The mapping (2.20) is the optimal mapping defined in the next section,
which might not always be easy to calculate. Therefore, we proceed with
discussing various useful approaches for obtaining ad hoc mappings IC0(Y |
Q0, G, D) satisfying (2.21). Suppose that one has obtained a particular
mapping satisfying (2.21) for G in a restricted censoring model G∗ ⊂ G of
the true model G: for a desired set of full data structure functions D

EG(IC0(Y | Q0, G, D) | X) = D(X) FX-a.e. for all Q0, G ∈ G∗.

For example, one might develop such a mapping under the assumption
that censoring C is completely independent of X: in particular, one can set
IC0(Y | Q0, G, D) equal to the influence curve of an ad hoc RAL estima-
tor under such an independent censoring model. In this case, the mapping
IC0(Y | Q0, G, Dh) straightforwardly extended to all G ∈ G typically sat-
isfies (2.21) at all G. When formulating the extension, one might want to
note that IC0(Y | Q0, G, Dh) depends on (FX , G) only through the law
PFX,G ∈ M(G∗) of the observed data when the conditional distribution
of C, given X, is given by an element of G∗. Thus, one needs to extend
this mapping defined on M(G∗) to M(G), but a straightforward ad hoc
substitution typically works. This method provides a powerful way of ob-
taining initial mappings from full data estimating functions into observed
data estimating functions since it only requires understanding a strongly
simplified version (e.g., independent censoring) of the true data-generating
experiment.

Example 2.7 (Right censored data structure: continuation of
Example 2.2) Consider the right-censored data structure (T̃ =
min(T, C), ∆, X̄(T̃ )) and suppose that µ is a parameter of the marginal
distribution F of T . Firstly, assume the independent censoring model
G∗ = {G(· | X) = G(·)}, where C is independent of X under G∗. In
this model, one can use the optimal mapping AF I−1

F,G(D) for the marginal



126 2. General Methodology

right-censored data structure (T̃ , ∆), which is given by

IC0(Y | F, G, D) = D(T )∆/Ḡ(T ) +
∫

E(D(T ) | T > u)dMG(u)/Ḡ(u),

where dMG(u) = I(T̃ ∈ du, ∆ = 0) − I(T̃ ≥ u)dG(u)/Ḡ(u) and Ḡ(u) ≡
P (C ≥ u). Simply replacing the independent censoring G ∈ G∗ by a G ∈
G(CAR) now yields an extension IC0(Y | F, G, D) with protected nuisance
parameter F satisfying the desired property (2.21) for all G ∈ G(CAR)
provided D(T )/Ḡ(T | X) < ∞ FX-a.e. �

Example 2.8 (Multivariate right censored data structure) Let
(T1, T2) be a bivariate survival time of interest, and let µ be a param-
eter of the bivariate cumulative distribution function F of (T1, T2). Let
C = (C1, C2) be a bivariate censoring variable. Suppose that we observe
(T̃j = min(Tj , Cj), ∆j = I(Tj ≤ Cj), L̄j(T̃j)), j = 1, 2, where Lj(·) are
covariate processes. We have for full data X = (T1, L̄1(T1), T2, L̄(T2)). The
observed data distribution is indexed by the full data distribution FX and
the conditional bivariate distribution G of (C1, C2), given X. CAR is a com-
plicated concept for this data structure, but nice rich submodels of CAR
are provided in Chapter 6, where we study this data structure in detail.

Firstly, assume the independent censoring model G∗ = {G : G(· | X) =
G(·)}. In this model, one can use the optimal mapping AF I−1

F,G(D) for the
marginal bivariate right-censored data structure (T̃j , ∆j), j = 1, 2. The
inverse I−1

F,G(D) =
∑∞

k=0(I − IF,G)k(D) can be represented by a Neu-
mann series mapping, which has been implemented in (Quale, van der
Laan and Robins, 2001, see also Chapter 5). Replacing the marginal G
by G ∈ G(CAR) now yields a mapping IC0(Y | F, G, D) = AF I−1

F,G(D)
from full data estimating functions into observed data estimating functions
with protected nuisance parameter F (bivariate cumulative distribution
function) satisfying the desired property (2.21) for all G ∈ G(CAR). �

2.3.4 Inverse weighting a mapping developed for a restricted
censoring model

We will now provide an alternative to the previous method. Again, consider
a particular mapping IC0(Y | Q1, G, Dh) developed under a restricted
censoring model G∗ ⊂ G of the true model G. Thus, it satisfies (2.21) at
G ∈ G∗ ⊂ G. For each G ∈ G, let G∗ = G∗(G) ∈ G∗ be an approximation
of G defined by a mapping Π : G → G∗. For example, if G is an element
of a multiplicative intensity model, then Π might correspond with setting
some or all of the regression coefficients equal to zero. Alternatively, Π
can be an unknown mapping defined by the Kullback–Leibner projection
of G onto G∗: the latter would be estimated by maximizing the likelihood
over the restricted model G∗. In addition, suppose that for each G ∈ G it is
known that the Radon–Nykodim derivative dG∗/dG exists and is uniformly
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bounded:

G∗(· | X) � G(· | X) FX-a.e.

In this case, the mapping

IC0(Y | Q0, G, Dh) ≡ IC0(Y | Q0, G
∗, Dh)

dG∗(Y | X)
dG(Y | X)

(2.22)

satisfies (2.21) at all G ∈ G.

Example 2.9 (Marginal structural models, continued) Consider the
previously covered example in Section 1.3 of Chapter 1. Thus, for each sub-
ject, we observe a realization (i.e., the data) of vector Ā = (A(1), . . . , A(p))
of exposures and treatments, a vector of outcomes Z̄ = (Z(1), . . . , Z(p)),
and the covariates L(·) (including many time-dependent covariates) of
interest. For observed data we have

Y = (Ā, Z̄, L̄),

which in terms of counterfactuals is represented as the missing data
structure:

Y = (Ā, X̄Ā) = (Ā, Z̄Ā, L̄Ā).

It is assumed that the missingness mechanism (i.e., the conditional
distribution of Ā, given X) satisfies the SRA,

g(Ā | X) =
∏

t

g(A(t) | Ā(t−), X) =
∏

t

g(A(t) | Ā(t−), X̄Ā(t)), (2.23)

and we consider a marginal structural repeated measures regression model
as the full data model,

E(Zā(t) | V ) = gt(ā, V | β),

where gt(ā, V | βj) is some specified regression curve (e.g., linear or logistic
regression) indexed by the unknown regression coefficient vector, β, and
V is the set of adjustment covariates (i.e., variables not affected by ā by
which one wants to stratify). The goal is to estimate the causal parameter
β based on the observed data Y .

Let A be the set of possible sample paths of Ā, where we assume that
A is finite. In Example 1.3, we showed that the set of full data estimating
functions is given by{

Dh(X | β) =
∑

ā

h(ā, V )εā(β) : h

}
.

Let G∗ = {g : g(A(j) | Ā(j − 1), X̄A(j)) = g(A(j) | Ā(j − 1), V )} assume
SRA w.r.t. treatment past and V . Thus, for each g ∈ G∗, we have g(Ā |
X) = g(Ā | V ). We define IC0(Y | G, Dh) = h(Ā,V )

g(Ā|V )
εA(β). Note that,
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indeed, at any G ∈ G∗ we have

EG(IC0(Y | G, Dh) | X) =
∑

ā

h(ā, V )εā(β) = Dh(X).

Given g ∈ G(SRA), let g∗ = g∗(g) ∈ G∗ be its projection (in some sense)
of g onto G∗ satisfying maxā∈A{h(ā, V )g∗(ā | V )}/g(ā | X) < ∞ FX -a.e.
Then

IC0(Y | G, Dh) ≡ IC0(Y | G∗, Dh)
g∗(Ā | X)
g(Ā | X)

=
h(Ā, V )ε(β)

g(Ā | X)

is the IPTW mapping presented in Example 1.3, which satisfies the de-
sired property EG(IC0(Y | G, Dh) | X) = Dh(X) FX -a.e. and at each
G ∈ G(SRA). Note that this condition on h defines the set of allowed
indexes H(µ, ρ, ρ1, G) and the allowed set of full data functions D(ρ1, G).
Notice that we would have obtained the same IPTW mapping by simply
extending IC0(Y | G, Dh) = h(Ā,V )

g(Ā|V )
εA(β) to G(SRA). Thus, the methods

of the previous subsection and this subsection yield identical results for this
example.

In Chapter 6, we also apply this method to obtain the class of all es-
timating functions in marginal structural nested models, another class of
causal inference models that allows one to estimate dynamic treatment-
regime-specific outcome distributions. Other important applications of this
method in causal inference are covered in Murphy, van der Laan and Robins
(2001) and van der Laan, Murphy and Robins (2002). �

2.3.5 Beating a given RAL estimator

We will now show, given an RAL estimator of µ, how one can obtain
a mapping Dh → IC0(Y | F, G, Dh) from full data estimating func-
tions into observed data estimating functions so that for a specified full
data estimating function Dh it provides an estimating function that when
evaluated at the true parameter values equals the influence curve of the
given RAL estimator (and thus results in an estimator that is asymp-
totically equivalent with the given RAL estimator). Let µn be a given
RAL estimator, and let IC(Y | FX , G) be its influence curve. Since
IC(Y | FX , G) is a gradient of the pathwise derivative of µ, we have that
EG(IC(Y | F, G) | X) ∈ TF,⊥,∗

nuis (F ) for all F ∈ MF . Thus, by taking a
conditional expectation, given X, IC(Y | F, G) maps into a particular full
data estimating function for µ. Let h∗ ≡ hind,FX (E(IC(Y | FX , G) | X))
be the corresponding index of this estimating function:

Dh∗ (X | µ(FX), ρ(FX)) = E(IC(Y | FX , G) | X).

For a multivariate full data function D = (D1 , . . . , Dk), one defines
hind,FX (D)= (hind,FX (D1), . . . , hind,FX(Dk)). Note that h∗ = h∗(FX , G).
Let Dh → IC0(Y | G, Dh) be an initial mapping from full data estimating
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functions into observed data estimating functions satisfying EG(IC0(Y |
G, Dh∗(FX ,G)(· | µ(FX), ρ(FX , G))) | X) = Dh∗(FX ,G)(· | µ(FX), ρ(FX , G))
for all FX ∈ MF and G ∈ G. We now define ICCAR(Y | FX , G) as

IC(Y | FX , G)− IC0(Y | G, Dh∗(FX ,G)(· | µ(FX), ρ(FX))).

Note that E(ICCAR(Y | F, G) | X) = 0 for all F ∈ MF .
We now define as mapping from full data estimating functions into

observed data estimating functions

IC(Y | FX , G, Dh) = IC0(Y | G, Dh) + ICCAR(FX , G).

Note that it satisfies (2.21) and, in addition, IC(Y | FX , G, Dh∗) = IC(Y |
FX , G). Consequently, under the regularity conditions of our asymptotic
Theorem 2.4, the estimating equation with index h∗ (or a consistent esti-
mator thereof) yields an estimator that is asymptotically equivalent with
µn. Other choices of h might result in more efficient estimators than µn.

In the following example, we combine this method described above with
the extension method of Subsection 2.3.3 into a powerful application for
the bivariate right-censored data structure.

Example 2.10 (Multivariate right-censored data structure; con-
tinuation of Example 2.8) We refer to Example 2.8. Thus, we observe
(T̃j = min(Tj , Cj), ∆j = I(Tj ≤ Cj), L̄j(T̃j)), j = 1, 2, where Lj(·) are
covariate processes. The parameter of interest is µ = S(t1 , t2) = P (T1 >
t1, T2 > t2). Let F be the bivariate cumulative distribution of (T1, T2).
For full data, we have X = (T1, L̄1(T1), T2, L̄(T2)). The observed data dis-
tribution is indexed by the full data distribution FX and the conditional
bivariate distribution G of (C1, C2), given X, which is assumed to be mod-
eled with some submodel G of CAR, as provided in Chapter 6. Let the full
data model be nonparametric so that the only full data estimating function
is D(X | µ) = I(t1,∞)×(t2,∞)(T1, T2) − µ. Firstly, assume the independent
censoring model G∗ = {G(· | X) = G(·)}.

A well-known estimator of µ = S(t1 , t2) based on marginal bivariate
right-censored data in the independent censoring model is the Dabrowska
estimator (Dabrowska, 1988,1989). We want to apply the method above to
find an estimating function for µ that yields an estimator that is asymptot-
ically equivalent with Dabrowska’s estimator. Subsequently, extending this
mapping to G ∈ G yields an estimating function for our extended bivariate
data structure only assuming our posed model G for G. The influence curve
ICDab(Y | F, G, (t1, t2)) of Dabrowska’s estimator is derived in Gill, van
der Laan and Wellner (1995) and van der Laan (1990) and is given by

IC(Y ) = F̄ (t1, t2)

{
−
∫ t1

0

I(T̃1 ∈ du, ∆1 = 1) − I(T̃1 ≥ u)Λ1(du)
PF,G(T̃1 ≥ u)

−
∫ t2

0

I(T̃2 ∈ du, ∆2 = 1) − I(T̃2 ≥ u)Λ2(du)
PF,G(T̃2 ≥ u)
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+
∫ t1

0

∫ t2

0

I(T̃1 ∈ du, T̃2 ∈ dv, ∆1 = 1, ∆2 = 1)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

−
∫ t1

0

∫ t2

0

I(T̃1 ≥ u, T̃2 ≥ v)Λ11(du, dv)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

−
∫ t1

0

∫ t2

0

I(T̃1 ∈ du, T̃2 ≥ v, ∆1 = 1)Λ01(dv, u)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

+
∫ t1

0

∫ t2

0

I(T̃1 ≥ u, T̃2 ≥ v)Λ10(du, v)Λ01(dv, u)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

−
∫ t1

0

∫ t2

0

I(T̃1 ≥ u, T̃2 ∈ dv, ∆2 = 1)Λ10(du, v)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

+
∫ t1

0

∫ t2

0

I(T̃1 ≥ u, T̃2 ≥ v)Λ10(du, v)Λ01(dv, u)
PF,G(T̃1 ≥ u, T̃2 ≥ v)

}
,

where Λj(du) = P (Tj ∈ du | Tj ≥ u), j = 1, 2, Λ10(du | v) = P (T1 ∈
du | T1 ≥ u, T2 ≥ v), Λ01(dv, u) = P (T2 ∈ dv | T1 ≥ u, T2 ≥ v), and
Λ11(du, dv) = P (T1 ∈ du, T2 ∈ dv | T1 ≥ u, T2 ≥ v). Here PF,G(T̃1 >

s, T̃2 > t) = S(s, t)Ḡ(s, t). Firstly, we note that it is straightforward to
verify that, if Ḡ(t1, t2) > 0, then EG(ICDab(Y | F, G, (t1, t2)) | X) =
D(X | µ) for all G ∈ G∗ satisfying independent censoring. In addition, if
we replace G by any G ∈ G(CAR) satisfying CAR, then we still have

EG(ICDab(Y | F, G, (t1, t2)) | X) = I(t1,∞)×(t2,∞)(T1, T2) − µ

for all bivariate distributions F , as predicted in Subsection 2.3.3.
Let IC0(Y | G, D) = D(X)∆1∆2/Ḡ(T1, T2 | X). We now define

ICCAR(Y | F, G) ≡ ICDab(Y | F, G)− IC0(Y | G, D(· | µ(F ))).

Note that EG(ICCAR(Y | F, G) | X) = 0 for all bivariate distributions F
and all G ∈ G(CAR).

We now define an observed data estimating function for µ indexed by
the true censoring mechanism G and a bivariate distribution F :

IC(Y | F, G, D(· | µ)) = IC0(Y | G, D(· | µ)) + ICCAR(F, G). (2.24)

It follows that this estimating function for µ satisfies EG(IC(Y | F, G, D(· |
µ) | X) = D(X | µ) for all G ∈ G(CAR) and, at the true µ and F , it reduces
to Dabrowska’s influence curve. Given consistent estimators Fn of F and
Gn of G according to model G, let µn be the solution of

0 =
1
n

n∑
i=1

IC(Yi | Fn, Gn, D(· | µ)).

Under the regularity conditions of Theorem 2.4, µn is asymptotically lin-
ear with influence curve IC(Y ) ≡ Π(IC(· | F, G, D(· | µ)) | T2(PFX,G)),
where T2(PFX,G) ⊂ TCAR is the observed data tangent space of G under
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the posed model G. Firstly, assume that G∗ is the independent censoring
model. Since IC(Y | F, G, D(· | µ)) is already orthogonal to the tangent
space T (G∗) of G for the independent censoring model G∗, we have that
IC(Y ) = ICDab(Y ). Secondly, if the tangent space T2(PFX,G) contains
scores that are not in T (G∗), then it will result in an estimator more effi-
cient than Dabrowska’s estimator, even when (C1, C2) is independent of X.
In Chapter 5, we provide a simulation study comparing this estimator with
Dabrowska’s estimator and further improve on this estimating function by
orthogonalizing w.r.t. a tangent space of a rich submodel G of G(CAR) for
G.

Note that the method used in this example can be used, in general, to
generalize an estimator for a marginal data structure into an estimator for
an extended data structure. �

2.3.6 Orthogonalizing an initial mapping w.r.t. G: Double
robustness

Consider the following class of parametric submodels through the censoring
mechanism GY |X :

{(1 + εV (y))dG(y|x) : V ∈ L2
0(PFX ,G), E(V (Y ) | X) = 0}.

It is straightforward to show that the tangent space of G in the model
M(GCAR) generated by this class of parametric submodels is given by

TCAR(PFX ,G) = N(A�
G) = {v ∈ L2

0(PFX,G) : E(v(Y ) | X) = 0}.
An initial mapping can be orthogonalized w.r.t. TCAR(PFX ,G) itself, re-
sulting in the optimal mapping in the next section, or w.r.t. subspaces of
TCAR(PFX ,G) as in this subsection.

We will now present a general way of obtaining a mapping of estimating
functions IC0(Y | Q0, G, D) indexed by nuisance parameters Q0, G with
a double robustness property. Let H(PFX ,G) be a tangent space of G ac-
cording to some submodel of G(CAR). Thus H(PFX,G) ⊂ TCAR(PFX ,G)
is a subspace of TCAR(PFX,G) for all PFX,G ∈ M. For example, one can
set H(PFX ,G) equal to the observed data tangent space T2(PFX ,G) of G in
model M(G).

Since TCAR(PFX,G) = {V (Y ) ∈ L2
0(PFX ,G) : EG(V (Y ) | X) = 0} only

depends on FX to make sure that the elements have finite variance w.r.t.
PFX,G, it is always possible to find a rich common subset of TCAR(PFX ,G)
only depending on G. By the same argument, one will also always be able
to choose a rich common subset H(G) of H(PFX ,G). Let Q0 be an index
set (independent of (FX , G)) for H(G) so that

H(G) ≡ {ICnu(· | Q0, G) : Q0 ∈ Q0} ⊂ H(PFX,G) for all G ∈ G,

where ICnu(· | Q0, G) denotes the Q0 indexed element of H(G). It will be
possible to define (Q0, G) → (Y → ICnu(Y | Q0, G)) as a mapping from
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Q0 × G into pointwise well-defined functions of Y , which we will need in
order to define the estimating function IC0(Y | Q0, G, D) below.

We can now make a mapping IC0(Y | G, D) satisfying (2.21) orthogonal
(at the truth) to H(PFX ,G) by introducing another nuisance parameter
Q0 = Q0(FX , G) as follows:

IC0(Y | Q0, G, D) = IC0(Y | G, D) − ICnu(Y | Q0, G),

where the unknown parameter Q0(FX , G) is defined by

ICnu(· | Q0(FX , G), G) = ΠFX ,G (IC0(· | G, D) | H(PFX ,G))

and the equality holds in L2
0(PFX ,G).

This mapping D → IC0(Y | Q0, G, D) maps full data estimating
functions Dh(· | µ, ρ) for µ into observed data estimating functions
IC0(· | Q0, G, Dh(· | µ, ρ)) for µ with unknown nuisance parameters Q0 =
Q0(FX , G) and G. It has the property EG(IC0(Y | Q0, G, D) | X) = D(X)
for all possible Q0, and thus it remains unbiased when Q0 is misspecified.
Therefore, it can be used to construct an initial estimator in the model
M(G) in which we assume that G ∈ G: for a given h ∈ H, an estimator ρn

of ρ, Q0n of Q0, Gn of G, let µ0
n be the solution of the estimating equation

0 =
n∑

i=1

IC0(Yi | Q0n, Gn, Dh(· | µ, ρn)). (2.25)

If Q0n converges to some Q0 not necessarily equal to Q0(FX , G), then
application of Theorem 2.4 yields, under regularity conditions, that the
estimator is asymptotically linear with influence curve −Π(c−1IC0(· |
Q0, G, Dh(· | µ, ρ)) | T2(PFX,G)⊥), where c is the derivative matrix
w.r.t. µ of the expectation of IC0. In particular, if Q0 = Q0(FX , G)
and H(PFX,G) = T2(PFX ,G), then this influence curve equals −c−1IC0(· |
Q0(FX , G), G, D, Dh(· | µ, ρ)).

Finally, we note that the mapping IC0(Y | F, G, D) = AF I−F,G(D)
considered in the previous subsection is also of this type since

AFX I−FX ,G(D) = IC0(Y | G, D) − ΠFX ,G(IC0(Y | G, D) | TCAR)

for any initial IC0(Y | G, D) satisfying E(IC0(Y | G, D) | X) = D(X). In
other words, if we set H(PFX,G) = TCAR(PFX,G), then IC0(Y | Q1, G, D)
reduces to IC0(Y | F, G, D) = AF I−F,G(D).

Example 2.11 (Right-censored data structure; continuation of
Example 2.2) Consider the right-censored data structure Y = (T̃ =
min(T, C), ∆ = I(T̃ = T ), L̄(T̃ )). Suppose that H(PFX,G) is the tan-
gent space of G in the independent censoring model. We have that
H(PFX,G) = {∫ H(u)dMG(u) : H} ∩ L2

0(PFX ,G), where dMG(u) = I(T̃ ∈
du, ∆ = 0) − I(T̃ ≥ u)ΛC(du). If

∫ | dMG(u) |< ∞, then one can choose
H(G) = {∫ H(u)dMG(u) :‖ H ‖∞< ∞}. Let IC0(Y | G, D) = D(X)∆(D)

Ḡ(V (D)|X)
,
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where ∆(D) is the indicator that D(X) is observed, V (D) is the minimum
time at which D is fully observed, and Ḡ(V (D) | X) is the probability that
∆(D) = 1, given X.

Application of Lemma 3.2, formula (3.17) from the next chapter, yields

ΠFX ,G (IC0 | H(PFX ,G)) = −
∫ EFX,G

(
D(X)∆(D)
Ḡ(V (D)|X)

I(T ≥ u)
)

P (T̃ ≥ u)
dMG(u)

so that, for any function Q0(u), we can define

IC0(Y | Q0, G, D) =
D(X)∆(D)

Ḡ(V (D) | X)
+
∫

Q0(u)dMG(u),

where Q0(FX , G)(u) = EFX ,G(D(X)∆(D)I(T ≥ u)/Ḡ(V (D) | X))/P (T̃ ≥
u)= EFX (D(X) | T > u)/Ḡ(u).

Let us now consider the special case in which µ = F (t) = P (T ≤ t),
D(X) = I(T ≤ t)−F (t), and we assume the independent censoring model
G(· | X) = G(·) for G. Then IC0(Y | Q0(FX , G), G, D) equals the influence
curve ICKM of the Kaplan–Meier estimator. The corresponding estimating
equation results in an estimator µn that is asymptotically equivalent with
the Kaplan–Meier estimator. If one assumes the Cox proportional hazards
model for G with covariates extracted from the observed past, then µn is
asymptotically linear with influence curve ICKM −Π(ICKM | T2(PFX,G)),
where T2(PFX,G) denotes the tangent space of the Cox proportional hazards
model. Thus, in the last case, µn will be more efficient than the Kaplan–
Meier estimator. �

Double protection (robustness) when orthogonalizing w.r.t. convex
censoring models

If H(PFX ,G) is the tangent space of G for a convex model G(conv) ⊂
G(CAR) containing G, then the mapping D → IC0(· | Q0, G, D) from full
data estimating functions to observed data estimating functions satisfies a
double protection property against misspecification of G and FX defined
by (2.27) below. This follows from Theorem 1.6 and Lemma 1.9. As a con-
sequence, in this case it actually yields estimating functions in model M. A
special case is H(PFX ,G) = TCAR(PFX ,G), where TCAR(PFX,G) is the tan-
gent space of G for the model G(CAR), which makes IC0 corresponded with
the optimal mapping AF I−F,G(D) as introduced above. The latter mapping
will actually be the mapping proposed in the next section and applied in all
subsequent chapters, which will allow locally efficient estimation. For some
data structures, the projection on TCAR(PFX ,G) does not exist in closed
form. In that case, the estimating function IC0(· | Q0, G, Dh(· | µ, ρ))
with H(PFX ,G) ⊂ TCAR(PFX ,G) chosen so that the projection operator on
H(PFX,G) exists in closed form provides an interesting alternative. Such a
mapping is used in Chapter 5 to provide estimators for the extended bivari-
ate right-censored data structure and in Chapter 6 to identify causal and
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non causal parameters in complex longitudinal data structures involving
censoring and time-dependent informative treatment assignments.

Let us prove the double protection property (2.27) to make this section
self-contained. By definition, IC0(· | Q0(FX , G), G, D) is actually orthog-
onal to the tangent space H(PFX ,G). By the convexity of G(conv), we
know that for all G1 ∈ G(conv) with dG1/dG < ∞, αG1 + (1 − α)G
is a submodel of G(conv). Consequently, the line dPFX,αG1+(1−α)G is a
submodel of M(G(conv)) that has score (by linearity of G → PFX ,G)
(dPFX,G1 − dPFX,G)/dPFX,G. Thus, the latter score is an element of
H(PFX,G). Thus, the orthogonality of IC0(Y | Q0(FX , G), G, D) to
(dPFX,G1 − dPFX,G)/dPFX,G now yields

0 = EPFX ,GIC0(Y | Q0(FX , G), G, D)
dPFX,G1 − dPFX,G

dPFX,G
(Y )

= EPFX ,G1−PFX ,GIC0(Y | Q0(FX , G), G, D)
= EPFX ,G1

IC0(Y | Q0(FX , G), G, D) if D ∈ D(ρ1(FX), G)

and EFXD(X) = 0. Here we used that D ∈ D(ρ1(FX), G) guarantees that
EPFX,GIC0(Y | Q(FX , G), G, D) = EFXD(X) = 0. Exchanging the role of
G and G1 proves the following result: for all pairs G, G1 ∈ G(conv) with
dG/dG1 < ∞, we have for all D ∈ D(ρ1(FX), G1) with EFX D(X) = 0

0 = EPFX,GIC0(Y | Q0(FX , G1), G1, D).

We note that this provides a sufficient, but not necessary condition. For
example, if the identity holds at G1 = G1m for a sequence at G1m,
m = 1, . . ., which approximates a G∗ in the sense that EPFX ,GIC0(Y |
Q0(FX , G1m), G1m, D) → EPFX,GIC0(Y | Q0(FX , G∗), G∗, D), then it fol-
lows that the identity also holds at G1 = G∗. Therefore, it is not surprising
that in many applications the identity also holds for pairs G1, G not satisfy-
ing dG/dG1 < ∞. This identity gives us protection against misspecification
of G when the Q0 component of IC is correctly estimated in the sense that
if Gn converges to some G1 ∈ G(conv) with dG/dG1 < ∞, then µ0

n (2.25)
will still be consistent.

Given D ∈ D(ρ1(FX), G), the conditional expectation of IC0(Y |
Q0, G, D), given X, equals D(X), which proves that for any Q0 ∈ Q0

EFX,GIC(Y | Q0, G, D) = 0. This gives us protection against misspeci-
fication of Q0(FX , G) when G is correctly estimated. To summarize, our
definition of the mapping IC0(· | Q0, G, D) of full data estimating functions
to observed data estimating function depends on the unknown Q0(FX , G)
and G, but it is protected by misspecification of either FX or G in the
following sense.

Theorem 2.2 We have

EFX,GIC0(Y | Q0(FX , G1), G1, D) = EFXD(X) for D ∈ D(ρ1(FX), G1)
and all G1 ∈ G(conv) with G � G1. (2.26)
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EFX,GIC0(Y | Q0, G, D) = EFXD(X)
for all Q0 ∈ Q0 and D ∈ D(ρ1(FX), G). (2.27)

Note that the protection against misspecification of G can be exploited by
estimating Q0 and the nuisance parameter ρ(FX , G) in Dh(· | µ, ρ) with
substitution estimators Q0(Fn, Gn) and ρ(Fn, Gn).

2.3.7 Ignoring information on the censoring mechanism
improves efficiency

Let T2(PFX,G) be the tangent space of G in model M(G). Application of
Theorem 2.4 below shows that, under regularity conditions, µ0

n (2.25) is
asymptotically linear with influence curve

Π(c−1IC0(· | Q0, G, Dh(· | µ, ρ)) | T⊥
2 (PFX,G)), (2.28)

where c = d/dµEIC0(Y | Q0, G, Dh(· | µ, ρ)) and Q0 is the limit of Q0n.
In particular, this teaches us that µ0

n will become more efficient if one
estimates G more nonparametrically. Thus, if G is known and one sets
Gn = G in the estimating equation (2.25), then µ0

n is asymptotically linear
with influence curve c−1IC0(· | G, c(µ), Dh(· | µ, ρ)), which can have much
larger variance than the influence curve (2.28) for a reasonable size model
G.

To understand this feature of the estimator, we prove the following gen-
eral result. The proof of this theorem actually shows, in general, that
optimal estimation of an orthogonal nuisance parameter leads to an asymp-
totic improvement of the estimator. Application of this theorem with
µn(Gn) = µ0

n and µn(G) being the solution of the estimating equation
(2.25) with Gn = G known explains the result (2.28).

Theorem 2.3 Let M(G) = {PFX,G : FX ∈ MF} be the model M with G
known. Let µn(G) be a regular asymptotically linear estimator of µ in the
model M(G) with G known with influence curve IC0(Y | FX , G). Assume
now that for an estimator Gn

µn(Gn) − µ = µn(G) − µ + Φ(Gn) − Φ(G) + oP (1/
√

n)

for some functional Φ of Gn. Assume that Φ(Gn) is an asymptotically effi-
cient estimator of Φ(G) for the model M(G) with tangent space generated
by G given by T2(PFX ,G). Then µn(Gn) is regular asymptotically linear
with influence curve

IC1(FX , G) = Π(IC0(FX , G) | T2(PFX,G)⊥).

Proof. We decompose L2
0(PFX ,G) orthogonally in T1(PFX,G)+T2(PFX,G)+

T⊥(PFX ,G), where T⊥(PFX ,G) is the orthogonal complement of T1+T2, and
T1 = T1(PFX ,G) and T2(PFX ,G) are the tangent spaces corresponding to FX

and G, respectively. The assumptions in the lemma imply that µn(Gn) is
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asymptotically linear with influence curve IC = IC0 + ICnu, where ICnu

is an influence curve corresponding with an estimator of the nuisance pa-
rameter Φ(G) estimated under the model with nuisance tangent space T2.
Let IC0 = a0 +b0 +c0 and ICnu = anu +bnu +cnu according to the orthog-
onal decomposition of L2

0(PFX ,G) above. From now on, the proof uses the
following two general facts about influence curves of regular asymptotically
linear estimators (see Bickel, Klaassen, Ritov and Wellner, 1993): an influ-
ence curve is orthogonal to the nuisance tangent space, and the efficient
influence curve lies in the tangent space. Since ICnu is an influence curve
of Φ(G) in the model where nothing is assumed on FX it is orthogonal to
T1; that is, anu = 0. Since Φ(Gn) is efficient, ICnu lies in the tangent space
T2 and hence cnu = 0 as well. We also have that IC0 + ICnu is an influence
curve for an estimator of µ and hence is orthogonal to T2, so b0 + bnu = 0.
Consequently, we have that

IC1 = IC0 + ICnu = a0 + c0 = Π(IC0 | T⊥
2 ).

This completes the proof. �

Example 2.12 (Marginal right-censored data) Suppose that we ob-
serve n i.i.d. observations of Y = (T̃ = T ∧C, ∆ = I(T̃ = T ) = I(C ≥ T )).
Let F be the cumulative distribution function of the full data T , and let G
be the conditional distribution of C, given T , satisfying CAR. In this case,
CAR is equivalent with assuming that the censoring hazard λC|T (t | T )
only depends on X̄(t), where X(t) = I(T ≤ t).

Let us first consider the observed data model with G known. In that
model, we could estimate µ = F (t) with the inverse probability of censoring
weighted estimator

µn(G) =
1
n

n∑
i=1

I(Ti ≤ t)
∆i

Ḡ(Ti)
,

where Ḡ(t) = P (C ≥ t). We have that µn(G) is regular and asymptoti-
cally linear with influence curve IC0(Y | G, µ) = I(T ≤ t)∆/Ḡ(T ) − µ.
Consider now the model where we only assume CAR on G. Let Gn be
the Kaplan–Meier estimator of G based on the n censored observations
(T̃ , 1 − ∆). It is well-known that Gn is an efficient estimator of G in the
model M(CAR). Application of Lemma 2.3 yields that µn(Gn) is a regu-
lar and asymptotically linear estimator with influence curve IC0(Y | G, µ)
minus its projection on the tangent space TCAR(PFX ,G) for G when only
assuming CAR.

Let AF : L2
0(F ) → L2

0(PF,G) AF (h)(Y ) = EF (h(T ) | Y ) be the nonpara-
metric score operator, and let AG(V )(X) = EG(V (Y ) | X) be its adjoint.
Since the full data model is nonparametric, we actually have that the clo-
sure of the range of AF is the tangent space of F in the model M(CAR).
We have that T⊥

CAR = N(A�
G)⊥ = R(AF ). This proves that the influ-

ence curve of µn(Gn) is an element of the tangent space R(AF ) and thus
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must equal the efficient influence curve; Here, we use the fact that the effi-
cient influence curve (which equals the canonical gradient of the pathwise
derivative) is the only influence curve which is an element of the tangent
space. This proves that µn(Gn) is an efficient estimator of µ, while µn(G)
is far from efficient. In this particular example, we have the remarkable
coincidence that µn(Gn) equals the Kaplan–Meier estimator algebraically,
assuming that we define the Kaplan-Meier estimator to be zero after the
last uncensored observation. �

2.4 Optimal Mapping into Observed Data
Estimating Functions

Let Dh → IC0(Y | Q0, G, Dh) be an initial mapping from full data esti-
mating functions into observed data estimating functions satisfying (2.21).
Let ICCAR(· | Q, G) with Q ranging over a parameter space Q be pointwise
well defined functions of Y satisfying

{ICCAR(· | Q, G) : Q ∈ Q} ⊂ TCAR(PFX,G) for all PFX ,G ∈ M. (2.29)

Let ICCAR(· | Q(FX , G), G, D) be a pointwise well-defined function of Y
that equals the projection

ΠFX ,G(IC0(· | Q0, G, D) | TCAR(PFX ,G))

of IC0(· | Q0, G, D) onto TCAR(PFX ,G) in the Hilbert space L2(PFX,G).
Then, for any D ∈ D, Q0 ∈ Q0, Q ∈ Q, FX ∈ MF , G ∈ G,

IC(Y | Q0, Q, G, D) ≡ IC0(Y | Q0, G, D) − ICCAR(Y | Q, G, D)

is a pointwise well-defined function of Y . Note that if IC0(Y | Q0, G, D) =
IC0(Y | G, D) + ICnu(Y | Q0, D) with ICnu(Y | Q0, G, D) ∈ TCAR, such
as the orthogonalized mapping of the previous subsection, then IC(Y |
Q0, Q, G, D) does not depend on Q0. For simplicity, let Q include Q0 if
needed so that we can denote IC(Y | Q0, Q, G, D) with IC(Y | Q, G, D).

Again, this mapping can be viewed as a mapping from full data estimat-
ing functions Dh(· | µ, ρ) for µ into observed data estimating functions
IC(· | Q, G, Dh(· | µ, ρ)) for µ, indexed by unknown nuisance param-
eters Q(FX , G) and G. Theorem 1.3 proves that, if the set {Dh(· |
µ(FX), ρ(FX)) : h ∈ HF (µ(FX), ρ(FX), ρ1(FX), G)} of full data functions
satisfying EG(IC(Y | Q(FX , G), G, Dh(· | µ(FX), ρ(FX))) | X) = Dh(X |
µ(FX), ρ(FX)) equals TF,⊥

nuis(FX), then {IC(Y | Q(FX , G), G, D) : D ∈
TF,⊥

nuis(FX)} equals the orthogonal complement of the nuisance tangent
space T⊥

nuis(PFX,G) in model M(CAR), which includes the efficient in-
fluence curve IC(Y | Q(FX , G), G, Dhopt(FX ,G)(· | µ(FX), ρ(FX , G))). This
mapping generates a class of estimating functions for the model M because
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of the double protection property proved above:

EFX,GIC(Y | Q(FX , G1), G1, D) = EFX D(X)
for all D ∈ D(ρ1(FX), G1) and G1 ∈ G with dG/dG1 < ∞. (2.30)

EFX,GIC(Y | Q, G, D) = EFX D(X)
for all Q ∈ Q, D ∈ D(ρ1(FX), G). (2.31)

Implications of protection property (2.30) for estimation of Q and ρ.

In model M(G), one only needs to rely on (2.31), which allows one to
estimate Q(FX , G) with any estimator Qn, and one needs to estimate ρ =
ρ(FX , G) with a consistent estimator. However, in model M, one needs to
exploit (2.30). Let Fn be an estimator of FX according to a working model
Mw, and assume that we use a substitution estimator Qn = Q(Fn, Gn),
and ρn = ρ(Fn, Gn) of ρ(FX , G). Consider the situation that Fn → FX but
Gn → G1 for a possibly wrong G1. Then (2.30) teaches us that we need
Qn → Q(FX , G1), which naturally will hold, and D ∈ D(ρ1(FX), G1). We
will now explain why the latter condition can also be expected to hold.
Recall that the nuisance parameter ρ in the full data structure estimating
function Dh(X | µ, ρ) includes G as a component, which we needed to
make sure that the estimating function at the true parameter values is an
element of D(ρ1(FX), G). Since we estimate G with Gn, Gn → G1, and
Fn → FX , we would precisely obtain that

Dh(· | µn, ρn) → Dh(· | µ(FX), ρ(FX , G1)) ∈ D(ρ1(FX), G1),

in the limit, as required.
Note also, as stressed in the discussion after Theorem 1.6, one does not

need that Dh(· | µ(FX), ρ(FX , G)) ∈ D(ρ1(FX), G)) necessarily; that is,
IC0(Y | G, D(· | µ(FX), ρ(FX , G))) is allowed to be biased under the true
data generating distribution PFX ,G, but we do need that IC0(Y | G1, D(· |
µ(FX), ρ(FX , G1))) needs to be unbiased under the possibly misspecified
PFX,G1 , which holds if Dh(· | µ(FX), ρ(FX , G1)) ∈ D(ρ1(FX), G1).

A score operator representation

Let AFX : L2
0(FX) → L2

0(PFX,G) be the nonparametric score operator for
FX :

AFX (s)(Y ) = E(s(X) | Y ).

The adjoint A�
G : L2

0(PFX,G) → L2
0(FX) of AFX is given by

A�
G(V )(X) = E(V (Y ) | X).

Let IFX ,G = AFX A�
G : L2

0(FX) → L2
0(FX) which will be referred to as the

nonparametric information operator. As shown in Theorem 1.3 (Chapter
1), for D ∈ R(IFX ,G) we have

IC(Y | Q(FX , G), G, D) = AFX I−1
FX ,G(D). (2.32)
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Double protection property

The least squares representation D → IC(· | Q(FX , G), G, D) = IC(· |
FX , G, D) ≡ AFX I−FX ,G(D) from full data estimating functions to observed
data estimating equations indexed by nuisance parameters FX , G satisfies
the double protection property (see Theorem 1.7 for the fact that we do
not need the condition dG/dG1 < ∞):

EFX,GIC(Y | FX , G1, D) = EFXD(X) for D ∈ D(FX , G1)
for all G1 ∈ G(CAR),

EFX,GIC(Y | FX1, G, D) = EFXD(X)
for FX1 ∈ MF , D ∈ D(FX , G),

where

D(FX , G) = {D ∈ D : D ∈ R(IF1,G) for all F1 ∈ MF }
plays the role of D(ρ1(FX), G). Here D ∈ R(IF1,G) denotes that D is an
element of the range of the information operator IF1,G : L2

0(FX) → L2
0(FX).

Alternatively, we could require D ∈ R∞(IF1,G) for all F1 ∈ MF , as defined
in Theorem 2.1.

2.4.1 The corresponding estimating equation

Consider the optimal mapping IC(Y | Q, G, D) from full data structure
estimating functions {Dh : h ∈ HF } into observed data estimating func-
tions. As described in detail in the previous section, given such a mapping,
one first needs to identify the index set HF (µ, ρ, ρ1, G) ⊂ HF so that

{Dh(· | µ(FX), ρ(FX)) : h ∈ HF ((µ, ρ, ρ1)(FX), G)} ⊂ D(ρ1(FX), G).

Subsequently, one reparametrizes the allowed full data structure estimating
functions {Dh : h ∈ HF (µ, ρ, ρ1, G)} as {Dr

h : h ∈ HF } by including
the membership I(Dh(· | µ(FX), ρ(FX)) ∈ D(ρ1(FX), G)) as an additional
nuisance parameter as in (2.14). In this manner, one obtains a set of full
data estimating functions that satisfy EG(IC(Y | Q(FX , G), G, Dr

h) | X) =
Dr

h(X) FX -a.e. when Dr
h is evaluated at the true parameter values. As we

mentioned, for notational convenience, this reparametrized set of allowed
full data structure estimating functions is denoted with Dh(· | µ, ρ), where
ρ now also includes G as a component.

Consider estimators Gn and Qn. In model M, we assume that Qn =
Q(Fn, Gn) is a substitution estimator, where Fn is an estimator of FX that
is consistent at FX ∈ MF,w so that either Gn or Fn will be consistent.
Assume also that we have available an estimator ρn that is consistent for
ρ(FX , G1, where G1 is the limit of Gn; that is, ρn is consistent for ρ(FX , G)
in model M(G), and consistent for ρ(FX , G1) in model M. Thus, in model
M one should use a substitution estimator ρn = ρ(Fn, Gn). In the next
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paragraph we provide a general strategy for providing such a estimator
ρn in model M. Note that in essence we require the existence of a doubly
robust estimator of the FX-parameter ρ(FX , G1), which might itself require
the doubly robust estimation methodology we present for estimation of µ.

Remark: Doubly robust estimation of nuisance parameter ρ in model M.

For simplicity, consider the case where the nuisance parameter ρ = ρ(FX)
does not have a G-component. As pointed out above, if ρ includes a
G-component and Gn converges to a G1, then we need that ρn converges
to ρ = ρ(FX , G1). As a consequence, in this case one just applies the
following to the FX -parameter ρ1(FX) = ρ(FX , G1), where G1 is estimated
with Gn. We can obtain consistent estimator (i.e. doubly robust estimator)
ρn of ρ under Model M , even when ρ is a non-regular parameter (i.e.,
a parameter for which the semiparametric information bound is 0) in
model MF . To do so, we express the non-regular parameter ρ as the limit
of a regular parameter ρσ as σ → 0, where σ is a bandwidth or other
regularization parameter. See van der Laan and Robins (1998) for an
example, and van der Laan, van der Vaart (2002). Because ρσ is a regular
parameter of FX we can often construct consistent estimators of ρ(σ) in
Model M (i.e., doubly robust estimators of ρσ). Let σn be an appropriate
bandwidth or regularization parameter corresponding to sample size n and
let ρ̂σn be the corresponding doubly robust estimator of ρσn . Then, as in
Robins and Rotnitzky (2001), we obtain a doubly robust estimator of µ
using the approach discussed above by using ρ̂σn as an estimator of ρ

To achieve higher efficiency, it makes sense to use a data-dependent index
hn. We use as the estimating equation for µ

0 =
1
n

n∑
i=1

IC(Yi | Qn, Gn, Dhn(· | µ, ρn)). (2.33)

Note that h indexes a whole class of estimating functions. In Section 2.8, we
identify the optimal index hopt(FX , G), which yields the optimal estimating
function, given that we know the true (FX , G). In model M, one estimates
hopt(FX , G) with a plug-in estimator hn = hopt(FX,n, Gn), assuming our
working models MF,w and G. This estimator hn will be consistent for
hopt(FX , G) if both working models MF,w and G are correctly specified.

One can solve the estimating equation (2.33) with the Newton–Raphson
procedure described in Section 2.3. Let µ0

n be an initial estimator or guess.
The first step of the Newton–Raphson procedure involves estimation of a
derivative (matrix) w.r.t. µ0

n. This derivative is defined by

c(µ) = c(h, µ, ρ, Q, G, P ) =
d

dµ
PIC(Y | Q, G, Dhn(·µ, ρ)),
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where we used the notation Pf ≡ ∫
f(y)dP (y). Let

IC(Y | Q, G, c, Dh(·µ, ρ)) = c−1IC(Y | Q, G, Dh(·µ, ρ)) (2.34)

be the standardized estimating function in the sense that it has the
derivative minus the identity.

Note that c(µ) is a k × k matrix with cij(µ) = P d
dµj

ICi(Y |
Q, G, Dhn(µ, ρ)). Its estimate cn(µ0

n) is given by

c(hn, µ0
n, ρn, Qn, Gn, Pn) =

1
n

n∑
i=1

d

dµ
IC(Yi | Qn, Gn, Dhn(µ, ρn))

∣∣∣∣
µ=µ0

n

.

If IC(Y | Qn, Gn, Dhn(· | µ, ρn)) is not differentiable in µ, but the integral
of IC(Y ) w.r.t. PFX,G is differentiable w.r.t. µ, then the derivative d/dµ
is defined as a numerical derivative. The first step of the Newton–Raphson
procedure is now defined by

µ1
n = µ0

n − cn(µ0
n)−1 1

n

n∑
i=1

IC(Yi | Qn, Gn, Dhn(· | µ0
n, ρn)). (2.35)

If one has a decent initial estimator µ0
n available, then one can use this one-

step estimator µ1
n. Otherwise, one iterates until convergence is established

and we possibly need to use the line-search modification as provided in
Section 2.3.

2.4.2 Discussion of ingredients of a one-step estimator

At this stage, it is appropriate to discuss the ingredients of our proposed
estimator (2.35). To begin with, let us discuss estimation of Q = Q(FX , G)
and the censoring mechanism G. Under coarsening at random, the likeli-
hood of Y actually factorizes in a likelihood parametrized by FX and a
likelihood parametrized by G. In model M, one assumes that the user has
supplied a lower-dimensional model MF,w for FX and a lower-dimensional
model G for G. If these models are of low enough dimension, then one
can estimate FX and G by maximizing their corresponding likelihoods. In
all applications covered in this book, we can estimate G with maximum
likelihood methods. For example, in the right-censored data structures, we
estimate G with the maximum partial likelihood estimator for the multi-
plicative intensity (i.e., Cox proportional hazards) model. However, since
one does not need to estimate the whole full data distribution FX but
just the component Q(FX , Gn), other direct methods for estimation of
Q(FX , Gn) are often available. We provide such methods in Chapters 3
and 6.

In model M(G), one does not need to estimate Q by substituting esti-
mators Fn of FX and Gn of G. Instead, one can often estimate Q directly
with standard software, which will be illustrated in our examples.
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Another issue is the choice h of the full data estimating function.
The efficiency of the proposed estimator depends on this choice. In par-
ticular, in Section 2.8 we provide a choice hopt = hopt(FX , G), which
makes the estimating function optimal. In model M, one estimates hopt

with hn = hopt(Fn, Gn), while in model M(G), other direct methods are
often available. In particular, Theorem 2.8 establishes such a direct easy-
to-estimate representation of hopt for the multivariate generalized linear
regression full data model. If the full data model is locally saturated then
the optimal choice of full data structure estimating function is actually
the optimal estimating function one would use in the full data model. In
that case, Dhopt (X | µ(FX), ρ(FX)) equals the efficient score or efficient
influence function S∗F

eff (X | FX) of µ in the full data structure model.
In general, evaluating Dhopt requires inverting a linear Hilbert space op-

erator (i.e., a possibly infinite-dimensional system of linear equations). In
Section 2.8, we provide a Neumann series algorithm for evaluating Dhopt

for a given (FX , G) and useful characterizations of the inversion problem
that have resulted in closed-form solutions in many of our examples.

2.5 Guaranteed Improvement Relative to an Initial
Estimating Function

If one assumes model M(G), then it will be possible to construct an esti-
mating function that yields estimators at least as efficient as a given initial
estimator.

Define

IC(· | Q0, Q, G, cnu, D) = IC0(· | Q0, G, D)−cnuICnu(· | Q, G, D), (2.36)

where ICnu(Y | Q(FX , G), G, D) parametrizes the projection of IC0(Y |
Q0, G, D) onto a subspace H(PFX ,G) of TCAR, as in Section 2.3. Given
functions IC0(Y ) and ICnu(Y ), we define cnu = cnu(IC0, ICnu, PFX,G) as
the projection matrix

EPFX,G(IC0(Y )IC�
nu(Y ))EPFX ,G{ICnu(Y )IC�

nu(Y )}−1

so that cnuICnu = Π(IC0 | 〈ICnu〉). Note that the j-th component of
cnuICnu equals the projection of IC0j on the space 〈ICnu,l, l = 1, . . . , k〉kj=1

spanned by ICnu,l, l = 1, . . . , k. Note also that if ICnu equals the pro-
jection of IC0 onto a subspace of L2

0(PFX,G), then cnu = I, where I
denotes the identity matrix. Estimation of cnu only involves taking empir-
ical expectations of the already estimated IC0, ICnu, and it will guarantee
that the estimating function is more efficient than the estimating function
IC0(· | Q0, G, Dh(· | µ, ρ)), even when Qn is an inconsistent estimator of
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Q(FX , G). We estimate cnu with

cnu,n =

[
1/n

n∑
i=1

ÎC0(Yi)ÎC
�
nu(Yi)

][
1/n

n∑
i=1

ÎCnu(Yi)ÎCnu(Yi)�
]−1

,

where ÎC0(Y ) = IC0(Y | Q0n, Gn, Dh(µ, ρn)) and similarly we define
ÎCnu. With this cnu extension, the estimating equation (2.33) for µ
becomes

0 =
1
n

n∑
i=1

IC(Yi | Q0n, Qn, Gn, cnu,n, Dhn(· | µ, ρn)). (2.37)

If the parameter Q0(FX , G) of the initial estimating function IC0(· |
Q0, G, D(· | µ, ρ)) is already easy to estimate in the model MF , then we
recommend estimating Q0(FX , G) consistently. In that case, the proposed
one-step estimator µ1

n corresponding with our estimating function (2.37)
is asymptotically linear with an influence curve with smaller variance than
c−1IC0(· | Q0(FX , G), G, Dh(· | µ, ρ)), even when Qn is inconsistent. Note
that IC0(· | Q0(FX , G), G, Dh(· | µ, ρ)) can be chosen to represent the
influence curve of a good initial estimator µ0

n (e.g., inverse probability of
censoring weighted estimator estimating G according to a model G) so that
µ1

n is guaranteed to be more efficient than µ0
n. It is also of interest to note

that inspecting cnu,n for a number of fits ÎCnu can provide insight into
which fit Qn results in the best approximation of Π(ÎC0 | H(PFX ,G)); that
is, one selects the fit which makes cnu,n closest to the identity matrix.

If one assumes the more nonparametric model M, then the cnu extension
is not a good idea since it will destroy the protection w.r.t. misspecification
of G at correctly specified guessed full data structure model MF,w.

Example 2.13 (Multivariate right censored data structure; con-
tinuation of Example 2.8) Let (T1, T2) be a bivariate survival time of
interest, and let µ = S(t1 , t2) = P (T1 > t1, T2 > t2). Let F be the bivariate
cumulative distribution function of (T1, T2). Let C = (C1, C2) be a bivari-
ate censoring variable. Suppose that we observe (T̃j = min(Tj , Cj), ∆j =
I(Tj ≤ Cj), L̄j(T̃j)), j = 1, 2, where Lj(·) are covariate processes. We
have for full data X = (T1, L̄1(T1), T2, L̄(T2)). The observed data distri-
bution is indexed by the full data distribution FX and the conditional
bivariate distribution G of (C1, C2), given X, which is assumed to be mod-
eled with some submodel of CAR (e.g., see Chapter 6). Let the full data
model be nonparametric so that the only full data estimating function is
D(X | µ) = I(t1,∞)×(t2,∞)(T1, T2) − µ.

In the previous coverage of this example, we derived an estimating func-
tion IC(Y | F, G, D(· | µ)) (2.24) for µ indexed by a marginal bivariate
distribution F and the censoring mechanism G, which yields an influence
curve equal to or better than the influence curve of Dabrowska’s estima-
tor. We propose now to use this as the initial influence curve IC0 in the
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estimating function IC0 − cnuICnu, where ICnu denotes the projection of
IC0 onto a subspace of TCAR.

In this multivariate right-censored data model (no common censoring
time), the CAR model G(CAR) for the censoring mechanism is hard to un-
derstand and, in particular, projections on its tangent space TCAR(PFX ,G)
do not exist in closed form. However, in Chapter 6, we consider an in-
teresting submodel of CAR, only assuming that censoring actions at time
t are sequentially randomized w.r.t. the observed past. This submodel of
G(CAR) has a closed-form observed data tangent space TSRA(PFX,G) ⊂
TCAR. In Chapter 6, we also propose a semiparametric multiplicative in-
tensity model G of this SRA model that yields an estimator of G with
standard software. A closed-form representation of its tangent space TSRA

and the projection operator on this tangent space are provided in Chap-
ter 6. Thus ICnu = Π(IC0 | TSRA) exists in closed form. The estimating
function IC0 − cnuICnu now yields an RAL estimator of µ based on the
extended bivariate right-censored data structure in model M(G), which is
guaranteed to be more efficient than the Dabrowska estimator under inde-
pendent censoring, even for the marginal data structure in which data on
the covariate processes Lj(·) are not available. �

2.6 Construction of Confidence Intervals

Firstly, consider model M(G); that is, we are willing to assume that the cen-
soring mechanism is correctly specified so that G contains the true G. Let
T2(PFX,G) denote the corresponding tangent space generated by G. Given
an initial estimator µ0

n that converges to µ at an appropriate rate, we con-
sider the one-step estimator (2.35) that is given by µ0

n + 1/n
∑n

i=1 ÎC(Yi),
where ÎC(Y ) ≡ IC(Y | Qn, Gn, cnu,n, cn, Dhn(· | µ0

n, ρn)) defined by (2.34).
Under the conditions of Theorem 2.4, µ1

n is asymptotically linear with influ-
ence curve IC1(Y ) − Π(IC1 | T2), where IC1(Y ) = IC(Y | Q1, G, c, Dh(· |
µ, ρ)) represents the limit for n → ∞ of ÎC(Y ). Thus, estimation of the
influence curve requires computing an expression for the projection for-
mula of IC1 onto the tangent space generated by the censoring mechanism
in the observed data model M(G). We provide this projection formula
in Lemma 3.2 for the case where C is identified with a counting process
and one uses a multiplicative intensity model to model the intensity of
this counting process w.r.t. the observed past. Alternatively, one can note
that this influence curve has variance smaller than or equal to the vari-
ance of IC1(Y ) ≡ IC(Y | Q1, G, cnu, c, Dh(· | µ, ρ)) and use a conservative
estimate of the asymptotic covariance matrix of µ1

n:

Σ̂ =
1
n

n∑
i=1

ÎC(Yi)ÎC(Yi)�.
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This can be used to construct a conservative 95% confidence interval for µ,

µ1
nj ± 1.96

Σ̂jj√
n

. (2.38)

This confidence interval is asymptotically correct if one consistently esti-
mates Q(FX , G), and it is asymptotically conservative otherwise. However,
if one uses the cnu,n adjustment and guarantees that Q0n is consistent,
then it is always less conservative than using as the influence curve
c−1IC0(Y | Q0(FX , G), G, Dh(µ, ρ)); see Section 2.5. This confidence in-
terval (2.38) is practical since one gets it for free after having computed
the estimator µ1

n.
Consider now the more nonparametric model M only assuming that ei-

ther the censoring mechanism model G or the MF,w is correctly specified.
Under the conditions of Theorem 2.5, µ1

n is asymptotically linear with an
influence curve equal to a sum of two components of which one is con-
sistently estimated by ÎC. The other component of this influence curve
will depend on the linear expansion of the estimators of a smooth func-
tional of the unknown parameters in model MF,w. If one wants to avoid
the MF,w-specific technical exercise and wants a confidence interval that is
also correct when G is misspecified (and MF,w is correctly specified), then
we recommend using the semiparametric or nonparametric bootstrap (e.g.,
Gill, 1989; Efron, 1990; Gine and Zinn, 1990; Efron and Tibshirani, 1993;
van der Vaart and Wellner; 1996).

2.7 Asymptotics of the One-Step Estimator

An estimator µn of µ is asymptotically linear at PFX,G with influence curve
IC(Y | FX , G) if µn − µ = n−1

∑n
i=1 IC(Yi | FX , G) + oP (n−1/2). From

Bickel, Klaassen, Ritov and Wellner (1993), we have that an estimator
is asymptotically efficient if it is asymptotically linear with the influence
curve the so-called efficient influence curve, IC∗(Y | FX , G). The efficient
influence curve is also called the canonical gradient and IC∗(Y | FX , G) =
IC(Y | Q(FX , G), G, Dhopt(FX ,G)(· | µ(FX), ρ(FX))) for a specified (next
section) index hopt(FX , G).

We prove two asymptotics theorems for the one-step estimator µ1
n cor-

responding with the estimating equation (2.37), one for model M(G)
and one for model M. We note that the estimating function IC(Y |
Q0, G, cnu, Dh) = IC0(Q0, G, Dh) − cnuICnu(Q, G, Dh) captures all pro-
posed estimating functions in the previous sections, where one can set
cnu = I and/or ICnu = 0 and/or IC0 equal to the optimal mapping to
obtain the various proposed estimating functions. In particular, in model
M we set cnu = I. Theorem 2.4 for M(G) below assumes consistent es-
timation of the censoring mechanism. Theorem 2.5 for M assumes either
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consistent estimation of the censoring mechanism or consistent estimation
of FX . This does not require choosing which of the two quantaties are
consistently estimated. Obviously, the last theorem provides the most non-
parametric consistency and asymptotic normality result, but the price one
has to pay is that one cannot use the conservative confidence interval (2.38).
Because of this and the fact that for many censored data structures it is
easier to estimate the censoring mechanism than it is to estimate the full
data distribution, we feel that the theorem for M(G) deserves a separate
treatment.

We note that Theorem 2.4 can be applied to any one-step estimator
corresponding with the non optimal estimating equations 0 =

∑
i IC0(Yi |

Q1n, Gn, Dhn(· | µ, ρn)) provided in Section 2.3. Similarly, Theorem 2.5
can be applied to any IC0 that is orthogonalized w.r.t. the tangent space
T2(PFX,G) of G so that it satisfies (2.30).

2.7.1 Asymptotics assuming consistent estimation of the
censoring mechanism

The following theorem provides a template for proving asymptotic linearity
with specified influence curve of this one-step estimator µ1

n (2.35) (i.e., set
cnu,n = cnu = 1) or, if one uses the adjustment constant cnu,n, then it is the
one-step estimator corresponding with (2.37). Recall the following Hilbert
space terminology: L2

0(PFX ,G) is the Hilbert space of functions of Y with
finite variance and mean zero endowed with the covariance inner product

< v1, v2 >PFX ,G≡
√∫

v1v2dPFX,G. The tangent space T2 = T2(PFX ,G)
for the parameter G is the closure of the linear extension in L2

0(PFX ,G) of
the scores at PFX,G from all correctly specified parametric submodels (i.e.,
submodels of the assumed semiparametric model G) for the distribution G.

Theorem 2.4 Consider the observed data model M(G). Let Y1, . . . , Yn

be n i.i.d. observations of Y ∼ PFX,G ∈ M(G). Consider a one-step
estimator of the parameter µ ∈ IRk of the form µ1

n = µ0
n − PnIC(· |

Qn, Gn, cnu,n, cn, Dhn(µ0
n, ρn)) corresponding with (2.37). Assume that the

limit of IC(Qn, Gn, cnu,n, Dhn(µ0
n, ρn)) specified in (ii) below satisfies

EG(IC(Y | Q1, G, cnu, Dh(· | µ, ρ)) | X) = Dh(X | µ, ρ) FX -a.e.(2.39)

Dh(· | µ, ρ) ∈ TF,⊥
nuis(FX). (2.40)

Let fn(µ) ≡ PnIC(· | Qn, Gn, cnu,n, Dhn(µ, ρn)). Assume (we write f ≈
g for f = g + oP (1/

√
n))

c−1
n {fn(µ0

n) − fn(µ)} ≈ µ0
n − µ. (2.41)

and

EPFX ,GIC(Y | Qn, G, cnu,n, Dhn(µ, ρn)) = oP (1/
√

n). (2.42)
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where the G component of ρn is set equal to G as well.
In addition, assume

(i) IC(· | Qn, Gn, cnu,n, cn, Dhn(· | µ0
n, ρn)) falls in a PFX ,G-Donsker class

with probability tending to 1.
(ii) Let ICn(·) = IC(· | Qn, Gn, cnu,n, cn, Dhn(· | µ0

n, ρn)). For some
(h, Q1), we have

‖ ICn(·) − IC(· | Q1, G, cnu, c, Dh(· | µ, ρ)) ‖PFX ,G→ 0,

where the convergence is in probability. Here (suppressing the dependence of
the estimating functions on parameters) cnu = 〈IC0, IC�

nu〉〈ICnu, IC�
nu〉−1

is such that cnuICnu equals the projection of IC0 onto the k-dimensional
space < ICnu,j, j = 1, . . . , k > in L2

0(PFX ,G).
(iii) Define for a G1

Φ(G1) = PFX,GIC(· | Q1, G1, cnu, c, Dh(µ, ρ)).

For notational convenience, let

ICn(G) ≡ IC(· | Qn, G, cnu,n, cn, Dhn(µ, ρn)),
IC(G) ≡ IC(· | Q1, G, cnu, c, Dh(µ, ρ)).

Assume

PFX ,G{ICn(Gn) − ICn(G)} ≈ Φ(Gn) − Φ(G).

(iv) Φ(Gn) is an asymptotically efficient estimator of Φ(G) for
the CAR model G containing the true G with tangent space
T2(PFX,G) ⊂ TCAR(PFX ,G).

Then µ1
n is asymptotically linear with influence curve given by

IC ≡ Π(IC(· | Q1, G, cnu, c, Dh(· | µ, ρ)) | T⊥
2 (PFX,G)).

If Q1 = Q(FX , G) and IC(Y | Q(FX , G), G, cnu, Dh(· | µ, ρ)) ⊥ T2(PFX,G),
then this influence curve equals IC(· | Q(FX , G), G, cnu = 1, c, Dh(µ, ρ)).
In particular, if h = hopt so that IC(Y | Q(FX , G), G, Dhopt(· |
µ(FX), ρ(FX , G))) equals the efficient influence curve S∗F

eff (Y | FX , G),
then µ1

n is asymptotically efficient.

Discussion of asymptotic linearity Theorem 2.4

We will discuss the assumptions of Theorem 2.4 and illustrate that the
assumptions are natural. Firstly, note that the structural conditions (2.39)
and (2.40) hold for our estimating functions by (2.31) and the fact that
we choose the full data estimating functions to be elements of TF,⊥

nuis(FX)
at the true parameter values. Note also that these conditions imply that
the estimating function is orthogonal to all FX nuisance parameters in the
sense that it is an element of T⊥

nuis(M(G)) in the model with G known
at any Q1. This explains why condition (2.42) is a natural condition; see
Subsection 1.4.3.
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Condition (2.41) is a natural condition as well, which is illustrated as
follows. Define fn(µ) ≡ PnIC(· | Qn, Gn, Dhn(· | µ, ρn)). By definition, we
have

cn = f ′
n(µ0

n) ≡ d/dµfn(µ)|µ=µ0
n

.

In this notational setting, condition (2.41) translates to

{f ′
n(µ0

n)}−1{fn(µ0
n) − fn(µ)} = µ − µ0

n + oP (1/
√

n). (2.43)

Under regularity conditions (e.g., a Taylor expansion of fn(µ) at µ0
n), one

expects to have a first-order expansion

fn(µ) − fn(µ0
n) = f ′

n(µ0
n)(µ0

n − µ) + o(| µ0
n − µ |). (2.44)

If the second-order term is oP (n−1/2) and the determinant f ′
n(µ0

n) is
bounded away from zero uniformly in n, then this expansion proves (2.43)
and thus (2.41). If fn(µ) is continuously differentiable in µ with bounded
derivative, then the second order term is oP (| µ0

n − µ |), while if it is twice
continuously differentiable, then the second-order term is O(| µ0

n − µ |2).
Consider now the case where f(µ) = PFX,GIC(· | Q, G, Dh(· | µ, ρ)) is con-
tinuously differentiable but fn(µ) is not differentiable. In that case, one still
expects this expansion (2.44) to hold with f ′

n(µ0
n) now being a numerical

derivative. In many of our censored data models with a nonparametric full
data model, we actually have that fn(µ) is linear in µ so that (2.41) holds
with remainder zero. However, in general, we can conclude that condition
(2.41) typically requires a convergence rate of the initial estimator µ0

n.
Condition (i) can often be arranged by choosing truly lower-dimensional

working models G and MF,w when estimating G and FX . This condition
formally represents the “asymptotic curse of dimensionality” since if one
uses as working models MF,w = MF and G = G(CAR), then the class
of functions of IC(· | Qn, Gn, Dhn(· | µ0

n, ρn)) of Y generated by vary-
ing Qn, Gn over all possible parameter values will typically be very large
(meaning that for finite samples the first-order asymptotics is irrelevant)
or not even be a Donsker class. Condition (ii) is a weak consistency condi-
tion requiring that Gn be consistent and Qn converge to something. This
condition will hold if our model M(G) contains the true PFX ,G. Regarding
condition (iii), we have

PFX,GICn(Gn) − ICn(G) ≈ PFX,GICn(Gn) by (2.42)
≈ PFX,G−GnICn(Gn),

where the latter approximation is expected to hold because of the pro-
tection (2.31) against misspecification of Q with the data-generating
distribution being PFX,Gn . Thus, condition (iii) requires that second-order
terms involving integrals of differences (Gn−G)(Qn−Q1), (Gn−G)(ρn−ρ)
be oP (1/

√
n). Thus, if Gn converges to G at a rate n−1/2, then this con-

dition typically only requires consistency of the other nuisance parameter
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estimates Qn, ρn, µ0
n, but if Gn converges at a very low rate to G, then

the other nuisance parameter estimates will have to compensate for this by
converging at an appropriate rate.

Condition (iv) just requires that one estimates G with an efficient proce-
dure such as maximum likelihood estimation. Condition (iv) is not needed
to establish that µ1

n is RAL, but it is needed to obtain the elegant formula
of its influence curve.

This finishes our discussion of the assumptions. Let us now consider
the conclusions of Theorem 2.4. It is interesting to consider what the
limit distribution of µ1

n would be when G(· | x) is known and is used
in the one-step estimator. In that case, the nuisance tangent space T2 is
empty. Thus, by Theorem 2.4, the influence curve of µ1

n is then given by
IC(· | Q1, G, cnu, c, Dh(· | µ, ρ)), which has variance greater than or equal
to that of the influence curve IC based on an efficient estimator of G(· | X)
according to a (any) model for G. Lemma 2.3 provides the general under-
standing of the fact that efficient estimation of a known orthogonal nuisance
parameter (such as G) improves efficiency of estimation of a parameter µ
of the distribution of the full data structure X.

We also note that, due to the cnu-adjustment, IC(· | Q1, G, cnu, c, Dh(· |
µ, ρ)) has variance smaller than or equal to the variance of IC0(· |
Q0, G, c, Dh(· | µ, ρ)). Thus, by choosing IC0(· | Q0(FX , G), G, c, Dh(· |
µ, ρ)) equal to an influence curve of a given estimator, the one-step es-
timator will always be asymptotically more efficient than this estimator.
Therefore, the inclusion of cnu in the definition of the one-step estimator is
only really useful if one sets IC0(· | Q0, G, c, Dh(µ, ρ)) equal to a challeng-
ing influence curve. Note that one can always make the choice IC0 more
challenging by redefining a new IC0 as the old IC0 minus the projection
of the old IC0 onto any given subset of scores in TCAR.

Finally, we make some comments about the efficiency condition. We have
that hopt = hopt(FX , G) is a functional of the true (FX , G). In some exam-
ples, one has available a closed-form representation of hopt that will imply
natural methods of estimation. In general, we provide a Neumann series
algorithm for calculating hopt(FX , G) for a given (FX , G). Let FX,n and
Gn be the estimates of FX and G assuming the lower dimensional working
models MF,w ⊂ MF and G ⊂ G(CAR). Then, one can estimate hopt with
the plug-in method:

hn = hopt(FX,n, Gn).

If the working model contains the truth, then (hn, Qn) consistently esti-
mates (hopt, Q(FX , G)) so that under the “regularity” conditions (i)–(iv) µ1

n

is asymptotically efficient. Otherwise, (hn, Qn) will still converge to some
(h, Q1) so that µ1

n will still be consistent and asymptotically linear.
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2.7.2 Proof of Theorem 2.4

For notational convenience, we give the proof for cnu,n = 1 and use obvious
short-hand notation. We have

µ1
n = µ0

n + c−1
n Pn

{
IC(Qn, Gn, Dhn(µ0

n, ρn)) − IC(Qn, Gn, Dhn(µ, ρn))
}

+c−1
n PnIC(Qn, Gn, Dhn(µ, ρn)).

By condition (2.41), the difference on the right-hand side equals µ − µ0
n +

oP (1/
√

n). Thus, we have

µ1
n − µ = (Pn − P )c−1

n IC(Qn, Gn, Dhn(µ, ρn))
+c−1

n PIC(Qn, Gn, Dhn(µ, ρn)).

For empirical process theory, we refer to van der Vaart and Wellner
(1996). Conditions (i) and (ii) in the theorem imply that the empiri-
cal process term on the right-hand side is asymptotically equivalent with
(Pn −PFX,G)c−1IC(· | Q1, G1, Dh(µ, ρ)), so it remains to analyze the term

c−1
n PIC(Qn, Gn, Dhn(µ, ρn)).

Now, we write this term as a sum of two terms A + B, where

A = c−1
n P

{
IC(Qn, Gn, Dhn(µ, ρn)) − IC(Q1, G, Dh(µ, ρ))

}
,

B = c−1
n PIC(Q1, G, Dh(µ, ρ)).

By (2.39) and (2.40), we have B = 0. As in the theorem, let

ICn(G) ≡ IC(· | Qn, G, Dhn(µ, ρn(G))),
IC(G) ≡ IC(· | Q1, G, Dh(µ, ρ)).

We decompose A = A1 + A2 as follows:

A = PFX ,G{ICn(Gn) − IC(G)}
= PFX ,G{ICn(G) − IC(G)} + PFX ,G{ICn(Gn) − ICn(G)}.

By assumption (2.42), we have A1 = oP (1/
√

n). By assumption (iii),

A2 = Φ2(Gn) − Φ2(G) + oP (1/
√

n).

By assumption (iv), we can conclude that µ1
n is asymptotically linear with

influence curve IC(· | Q1, G, c, cnu, Dh(µ, ρ))+ ICnuis, where ICnuis is the
influence curve of Φ2(Gn). Now, the same argument as given in the proof
of Theorem 2.3 proves that this influence curve of µ1

n is given by

Π(IC(· | Q1, G, c, cnu, Dh(µ, ρ)) | T⊥
2 ).

This completes the proof. �
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2.7.3 Asymptotics assuming that either the censoring
mechanism or the full data distribution is estimated
consistently

If one is only willing to assume that either the censoring mechanism or the
full data distribution is modeled correctly (but not necessarily both), then
one can apply the following asymptotic theorems.

Theorem 2.5 Consider the observed data model M. Let Y1, . . . , Yn be
n i.i.d. observations of Y ∼ PFX,G ∈ M. Consider a one-step esti-
mator µ1

n = µ0
n + PnIC(Yi | Qn, Gn, cn, Dhn(µ0

n, ρn)) (e.g., (2.35) or
the one-step estimator corresponding with estimating equation (2.37) with
cnu = I) of the parameter µ ∈ IRk. Assume that the limit of IC(· |
Q1, G1, c, Dh(µ, ρ(FX , G1))) in (ii) satisfies

PFX,GIC(Y | Q1, G1, cn, Dhn(µ(FX), ρ(FX , G1))) = 0. (2.45)

Let fn(µ) = Pn {IC(· | Qn, Gn, Dhn(µ, ρn))}. Assume that

c−1
n {fn(µ0

n) − fn(µ)} = µ0
n − µ + oP (1/

√
n). (2.46)

In addition, assume that
(i) IC(· | Qn, Gn, cn, Dhn(µ0

n, ρn)) falls in a PFX ,G-Donsker class with
probability tending to 1.
(ii) Let ICn(·) = IC(· | Qn, Gn, cn, Dhn(· | µ0

n, ρn)). For some (h, Q1, G1)
with either Q1 = Q(FX , G1) or G1 = G, we have

‖ ICn(·) − IC(· | Q1, G1, c, Dh(· | µ, ρ(FX , G1))) ‖PFX ,G→ 0,

where the convergence is in probability.
(iii) Let ρ = ρ(FX , G) = (ρ∗, G) for a FX-parameter ρ∗(FX). Define

Φ1(Q) = PFX ,GIC(· | Q, G1, c, Dh(· | µ, (ρ∗, G1))),
Φ2(G′) = PFX ,GIC(· | Q1, G′, c, Dh(· | µ, (ρ∗, G′))),
Φ3(ρ∗) = PFX ,GIC(· | Q1, G1, c, Dh(· | µ, (ρ∗, G1))).

Assume that

PFX,G

{
IC(· | Qn, Gn, cn, Dhn(µ, ρn)) − IC(Q1, G1, cn, Dhn(µ, ρ∗, G1))

}
= Φ1(Qn) − Φ1(Q1) + Φ2(Gn) − Φ2(G1) + Φ3(ρ∗n) − Φ3(ρ∗) + oP (1/

√
n).

(iv) Assume that Φ1(Qn) is a regular asymptotically linear estimator at
PFX,G of Φ1(Q1) with influence curve IC1(Y | FX , G), Φ2(Gn) is a regular
asymptotically linear estimator at PFX ,G of Φ2(G1) with influence curve
IC2(Y | FX , G), and Φ3(ρ∗n) is a regular asymptotically linear estimator at
PFX,G of Φ3(ρ∗(FX)) with influence curve IC3(Y | FX , G).

Then µ1
n is a regular asymptotically linear estimator with influence curve

IC ≡ IC(· | Q1, G1, c, Dh(· | µ, ρ)) + (IC1 + IC2 + IC3)(Y | FX , G).
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Now, also assume

Φ1(Qn) = oP (1/
√

n) at G1 = G, (2.47)
Φ2(Gn) = oP (1/

√
n) at Q1 = Q(FX , G1), (2.48)

Φ3(ρ∗n) = oP (1/
√

n) at G1 = G. (2.49)

If G1 = G, then IC1 = IC3 = 0. If Q1 = Q(FX , G), then IC2 = 0. If
G1 = G and Q1 = Q(FX , G), then IC = IC(· | Q(FX , G), G, c, Dh(· |
µ, ρ)). In particular, if also h = hopt so that IC(Y | Q(FX , G), G, Dhopt(· |
µ(FX), ρ(FX , G))) = S∗

eff (Y | FX , G), then µ1
n is asymptotically efficient.

Note that condition (2.45) relies on the double robustness of the esti-
mating function. One expects (2.47) and (2.48) to hold by the protection
(2.31) against misspecification of Q and protection (2.30) against misspec-
ification of G, respectively. In addition, one often expects (2.49) to hold
since the estimating function at G is orthogonal to all FX nuisance param-
eters in the sense that it is an element of T⊥

nuis(M(G)) in the model with G
known at any Q1. Specifically we would expect (2.49) to hold when regular
estimators of µ can be constructed based on full data structure X, and
consistent estimators of ρ(FX , G1) can be constructed in model M using
the approach described in the remark in Section 2.4.1. This shows that all
structural conditions in this theorem are natural.

2.7.4 Proof of Theorem 2.5

We have

µ1
n = µ0

n + c−1
n PnIC(Qn, Gn, Dhn(µ0

n, ρn)) − IC(Qn, Gn, Dhn(µ, ρn))
+c−1

n PnIC(Qn, Gn, Dhn(µ, ρn)).

By condition (2.41), the difference on the right-hand side equals µ − µ0
n +

oP (1/
√

n). Thus, we have

µ1
n − µ = (Pn − P )c−1

n IC(Qn, Gn, Dhn(µ, ρn))
+c−1

n PIC(Qn, Gn, Dhn(µ, ρn)).

For empirical process theory, we refer to van der Vaart and Wellner
(1996). Conditions (ii) and (iii) in the theorem imply that the empiri-
cal process term on the right-hand side is asymptotically equivalent with
(Pn − PFX,G)IC(· | Q1, G1, Dh(µ, ρ)), so it remains to analyze the term

c−1
n PIC(Qn, Gn, Dhn(µ, ρn)).

Now, we write this term as a sum of two terms A + B, where

A = c−1
n PIC(Qn, Gn, Dhn(µ, ρn)) − IC(Q1, G1, Dhn(µ, (ρ∗, G1))),

B = c−1
n PIC(Q1, G1, Dhn(µ, (ρ∗, G1))).
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We have B = 0 by (2.45). By conditions (iii) and (iv), we have that A equals
in first order (Pn −P ){IC(Q1, G1, Dh(µ, ρ(G1)))+ IC1 + IC2 + IC3}. The
other statements are true by assumption. �

2.8 The Optimal Index

Consider representations TF,⊥
nuis(FX) = {Dh(X | µ(FX), ρ(FX)) : h ∈

HF (FX)} of the orthogonal complement of the full data nuisance tan-
gent space for all FX ∈ MF . Let hind,FX : L2

0(FX) → HF (FX) be
the index mapping (2.2) from L2

0(FX) to the index set HF (FX). Let
heff (FX) = hind,FX (SF

eff (· | FX)) be the index of the full data canonical
gradient.

Consider the optimal mapping Dh → IC(Y | Q(FX , G), G, Dh) char-
acterized by the conditions EG(IC(Y | Q, G, Dh) | X) = Dh(X) FX -a.e.
and IC(Y | Q(FX , G), G, Dh) ⊥ TCAR(PFX,G). For simplicity, we will here
assume that this mapping satisfies these conditions for all D ∈ TF,⊥

nuis(FX).
Due to its double robustness property, Theorem 2.5 for model M shows,
under regularity conditions, that if both working models are correctly
specified, then our proposed estimator µ1

n is regular and asymptotically
linear at PFX,G ∈ M with influence curve IC(Y | Q(FX , G), G, Dh(· |
µ(FX), ρ(FX))). The following corollary of Theorem 1.3 in Chapter 1
shows that, given any influence curve IC(Y | FX , G) of a regular asymp-
totically linear estimator of µ at PFX,G, we can choose Dh(FX ,G)(· |
µ, ρ) ∈ TF,⊥

nuis(FX) in such a way that IC(Y | Q(FX , G), G, Dh(FX,G)(· |
µ, ρ)) = IC(Y | FX , G). In particular, it shows that for an appro-
priate choice Dhopt(FX ,G)(· | µ, ρ) ∈ TF,⊥

nuis(FX) we have that IC(Y |
Q(FX , G), G, Dhopt(FX , G)(· | µ, ρ)) equals the efficient influence curve
S∗

eff (Y | FX , G) of µ at PFX ,G.

Theorem 2.6 Consider the model M(CAR). Let IC(Y |
Q(FX , G), G, D) ⊥ TCAR and E(IC(Y | Q(FX , G), G, D) | X) = D(X)
FX-a.e. for all D ∈ TF,⊥

nuis. Let IC(Y | FX , G) be a gradient of µ in the
model M(CAR). We have that

D(X) ≡ E(IC(Y | FX , G) | X) ∈ TF,⊥
nuis(FX)

and

IC(Y | Q(FX , G), G, D) = IC(Y | FX , G).

In particular, if S∗
eff (Y | FX , G) is the canonical gradient (i.e., the efficient

influence curve) of µ at PFX ,G, then

Dopt(X) = E(S∗
eff (Y | FX , G) | X) ∈ TF,⊥

nuis(FX)
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and

IC(Y | Q(FX , G), G, Dopt) = S∗
eff (Y | FX , G).

Equivalently, but in terms of indexes, if h(FX , G) ≡ hind,FX (E(IC(Y |
FX , G) | X)), then

IC(Y | Q(FX , G), G, Dh(FX,G)(· | µ(FX), ρ(FX))) = IC(Y | FX , G),

and if hopt(FX , G) = hind,FX (E(S∗
eff (Y | FX , G) | X)), then

IC(Y | Q(FX , G), G, Dhopt(FX ,G)(· | µ(FX), ρ(FX))) = S∗
eff (Y | FX , G).

Thus, the optimal index hopt(FX , G) is uniquely identified as the index
h ∈ HF (FX), for which

Dh(X | µ(FX), ρ(FX)) = E(S∗
eff (Y | FX , G) | X). (2.50)

If the full data model is locally saturated, then TF,⊥∗
nuis (FX) = {S∗F

eff (X |
FX)} so that the right-hand side of (2.50) equals S∗F

eff (X | FX) and hopt =
heff (FX) is the index of the full data canonical gradient.

Since S∗
eff is not always trivially computed, we will now provide

algorithms for determining the optimal index hopt(FX , G).

Theorem 2.7 In this theorem, we will suppress in the notation the de-
pendence on FX , G of Hilbert space operators, Hilbert spaces, index sets,
and indexes (such as heff and hopt). Let A(s) = E(s(X) | Y ) and
A�(V ) = E(V (Y ) | X). Let I = A�A : L2

0(FX) → L2
0(FX). Let I∗ ≡

ΠT F I : TF → TF , where ΠT F is the projection operator onto the full data
tangent space TF in the Hilbert space L2

0(FX). It is assumed that both opera-
tors I∗ and I are 1-1. Assume that the efficient score SF

eff = Dheff ∈ R(I∗).
Let hind : L2

0(FX) → HF (FX) be the index mapping. Then, we have the
following representations of hopt.

• (Robins and Rotnitzky, 1992) Consider the mapping B : TF,⊥
nuis ∩

R(I) → TF,⊥
nuis defined by

B(D) = Π(I−1(D) | TF,⊥
nuis).

Then

hopt = hindB
−1Dheff .

An alternative way to define hopt is the following. Define B′ :
HF (FX) → HF (FX) by

B′(h) = hindI−1Dh.

Then

hopt = B′−1heff .
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• (van der Vaart, 1991) We have

hopt = hindII∗−1Dheff .

In full notation, this theorem provides us with the following representations
of hopt:

hopt(FX , G) = hind,FX

{
B−1

FX ,GDheff (FX)(· | µ(FX), ρ(FX))
}

, (2.51)

hopt(FX , G) = B′−1
FX ,G(heff(FX)), (2.52)

hopt(FX , G) = hind,FXIFX ,GI∗−FX ,GDheff (FX )(· | µ(FX), ρ(FX)).(2.53)

Thus, we have two mappings, B−1
FX ,G and IFX ,GI∗−1

FX ,G, mapping Dheff (FX )

into the optimal full data function Dhopt(FX ,G). Although, by definition
B−1

FX ,G maps TF,⊥
nuis(FX) into itself, it might be less obvious to see that

IFX ,GI∗−1
FX ,G maps Dheff into an element of TF,⊥

nuis. We will now give a proof
of this fact. We parametrize the projection operator on the full data tangent
space as

Π(D | TF ) = Π(D | 〈Dheff 〉) + D − Π(D | TF,⊥
nuis).

Note that, for any D ∈ TF,⊥
nuis, we have

D − Π(D | TF ) ∈ TF,⊥
nuis.

Define D = IFX ,GI∗−FX ,G(Dheff ). Now write

D = {D − Π(D | TF )} + Π(D | TF ),

and note that the second term equals Dheff ∈ TF,⊥
nuis. This proves

that IFX ,GI∗−1
FX ,GDheff (FX )(· | µ(FX), ρ(FX)) ∈ TF,⊥

nuis(FX). Since
TF,⊥

nuis(FX) = {Dh(· | µ(FX), ρ(FX)) : h ∈ HF (FX)}, we have that
IFX ,GI∗−1

FX ,GDheff (FX)(· | µ(FX), ρ(FX)) = Dhopt(FX ,G)(· | µ(FX), ρ(FX))
for some hopt(FX , G) ∈ HF (FX).

The proof in the preceding paragraph actually shows which arguments
in

IFX,GI∗−1
FX ,GDheff (FX )(· | µ(FX), ρ(FX)) = Dhopt(FX ,G)(· | µ(FX), ρ(FX))

(2.54)
determine that the left-hand side of (2.54) is an element of TF,⊥

nuis(FX),
and which arguments determine hopt. The µ(FX), ρ(FX) in Dheff (FX )(· |
µ(FX), ρ(FX)) and in TF,⊥

nuis(FX) = {Dh(· | µ(FX), ρ(FX)) : h ∈ HF (FX)}
determine that the left-hand side of (2.54) is an element of TF,⊥

nuis(FX) while
1) (FX , G) in IFX,G, 2) FX in heff(FX) and 3) FX in hind,FX determine
the index of ΠFX (· | T⊥

nuis(FX)) and the index hopt(FX , G).
Proof of Theorem 2.7. If S∗F

eff ∈ R(I∗), then by van der Vaart (1991)
S∗

eff = AI∗−1(S∗F
eff ). This can be written as

S∗
eff = AI−1(II∗−1)(S∗F

eff ),
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which proves by Theorem 1.3 that Dopt = II∗−(S∗F
eff ) and proves the second

expression for hopt(FX , G).
We will now prove the first statement. Since I∗−1(S∗F

eff ) ∈ 〈S∗F
eff ⊕

TF
nuis(FX), it follows that Π(I∗−1(S∗F

eff ) | TF,⊥
nuis(FX)) = S∗F

eff , and thus
that Dopt = II∗−(S∗F

eff ) solves

Π(I−1(D) | T⊥
nuis) = S∗F

eff . (2.55)

In addition, by definition, it is an element of R(I) and ΠT F Dopt = S∗F
eff

so that it is indeed an element of R(I) ∩ TF,⊥
nuis. We will now show that

if D ∈ TF,⊥
nuis ∩ R(I) and solves (2.55), then AI−1(D) = S∗

eff and thus
D = Dopt.

Firstly, if D ∈ TF,⊥∗
nuis , then it follows that AI−1(D) ∈ T⊥∗

nuis. Consider the
following representation:

I−1(D) = Π(I−1(D) | TF ) − Π(I−1(D) | SF
eff ) + Π(I−1(D) | TF,⊥

nuis).

Thus, (2.55) teaches us that I−1(D) ∈ TF . Therefore AI−1(D) is an element
of the tangent space T in M(G). It is well known that if a gradient is an
element of the tangent space, then it equals the canonical gradient. This
proves that if D ∈ TF,⊥∗

nuis and solves (2.55), then AI−1(D) = S∗
eff , which

proves the first statement. �
We will provide two examples in which we solve for hopt(FX , G) using

representation (2.51).

Example 2.14 (Current status data structure; continuation of Ex-
ample 2.6) Consider the current status data structure Y = (C, ∆ = I(T ≤
C), L̄(C)), where we have for the full data X = (T, L̄). Assume as the full
data model the univariate linear regression model T = βZ + ε, where it
is assumed that, for a given monotone function K, E(K(ε(β)) | Z) = 0.
Lemma 2.1 tells us T F,⊥

nuis(FX) = {h(Z)K(ε(β)) : h} and

Π(I−FX ,G(D) | TF,⊥
nuis(FX)) =

E(I−1
FX ,G(D)(X)K(ε) | Z)

E(K(ε)2 | Z)
K(ε).

By (2.51), we have that hopt(Z) is the solution h(Z) of

E(I−1
FX ,G(hK)(X)K(ε) | Z)

E(K(ε)2 | Z)
K(ε) = heff (Z)K(ε),

where heff (Z) = Z/E(K(ε)2 | Z) is the index of the efficient score
SF

eff of β. Since Z is always observed, we have that I−FX ,G(hK)(X) =
h(Z)I−FX ,G(K)(X). Thus, this proves the following representation of hopt:

hopt(Z) =
heff (Z)

E(I−1
FX ,G(K)(X)K(ε) | Z)

E(K(ε)2 | Z).
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If L is time-independent, then I−FX ,G has a simple closed-form expression
derived in Example 2.6. However, if L is time-dependent, then this in-
verse is very involved. Therefore, the following derivation is very useful.
Let 〈f, g〉Z = E(f(X)g(X) | Z). Using that A�

G is also the adjoint of AFX

in the world where one conditions on Z, it follows that

〈I−FX ,G(K), K〉Z = 〈I−FX ,G(K), IFX ,GI−FX ,G(K)〉Z
= 〈AFX I−FX ,G(K), AFX I−FX ,G(K)〉Z
= 〈IC(· | Q(FX , G), G, K), IC(· | Q(FX , G), G, K)〉Z
= E

{
IC(Y | Q(FX , G), G, K)2 | Z

}
.

This proves the representation of hopt

hopt(Z) =
ZE(K(ε)2 | Z)

E {IC(Y | Q(FX , G), G, K)2 | Z} ,

where the denominator is actually straightforward to estimate by regressing
IC(Yi | Qn, Gn, K) onto Zi, i = 1, . . . , n. �

Example 2.15 (Generalized linear regression with missing co-
variate; continuation of Example 1.1) We refer to Example 1.1 in
Chapter 1 for a description of this example and the optimal mapping (1.24)
IC(· | Q(FX), G, D) = D(X)∆

Π(W)
− (∆− Π(W ))E(D(X)|W)

Π(W)
. Thus, we have for

the observed data Y = (∆, ∆X + (1 − ∆W )), W ⊂ X, and we consider
a univariate generalized linear regression model Z = g(X∗ | β) + ε, where
E(K(ε) | X∗) = 0. Here Z ⊂ W is always observed, while X∗ ⊂ X

has missing components. We have TF,⊥
nuis(FX) = {h(X∗)K(ε) : h} and

Π(D | TF,⊥
nuis(FX)) = E(D(X)K(ε)|X∗)

E(K2(ε)|X∗) K(ε). Our first goal is to determine
a closed-form expression for I−1

FX ,G : L2
0(FX) → L2

0(FX). By Theorem 1.3,
we have

AFX I−1
FX ,G(D) = IC(· | Q(FX), G, D)

=
D(X)∆
Π(W )

− (∆ − Π(W ))
E(D(X) | W )

Π(W )
.

By definition of AFX , we have

AFX I−1
FX ,G(D) = I−FX ,G(D)∆ + E(I−FX ,G(D)(X) | W )(1 − ∆).

Combining these two identities yields

I−FX,G(D) =
D(X)
Π(W )

+
(

1 − 1
Π(W )

)
E(D(X) | W ).
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Thus Π(I−FX ,G(Dhopt ) | TF,⊥
nuis(FX)) = Dheff translates into

E({Dhopt (X)/Π(W ) + E(Dhopt(X) | W ) − 1}K(ε) | X∗)
E(K2(ε) | X∗)

K(ε)

= heff (X∗)K(ε).

Since Dhopt(X) = hopt(X∗)K(ε), this reduces to

hopt(X∗)E(K2(ε)/Π(W ) | X∗) + E (E(hopt(X∗)K(ε) | W )K(ε) | X∗)

= heff (X∗)E(K2(ε) | X∗) + E(K(ε) | X∗).

Thus, the function x∗ → hopt(x∗) is the solution of an integral equation,
first derived in Robins, Rotnitzky, Zhao (1994). �

In the current status data example above, we made use of the following
general lemma for any censored data model.

Lemma 2.5 Let Y = Φ(X, C), X ∼ FX, C | X ∼ G(· | X) and
assume that the conditional distribution G satisfies CAR. Consider the
nonparametric information operator IFX ,G : L2

0(FX) → L2
0(FX) defined

by IFX ,G(s) = A�
GAFX (s) = EGEFX (s(X) | Y ) | X). Let X∗ ⊂ X and

X∗ ⊂ Y (i.e., X∗ is part of the full data structure and is always observed).
Then, for any pair of functions D1, D2 ∈ L2

0(FX) in the range of IFX ,G,
we have

E(I−1
FX ,G(D1)D2 | X∗) = E(AFX I−1

FX ,G(D1)AFX I−1
FX ,G(D2) | X∗).

Proof. In the Hilbert space with X∗ fixed, we need to prove

〈I−1(D1), D2〉 = 〈AI−1(D1), AI−1(D2)〉.
Since A� is still the adjoint of A conditional on X∗, moving the first A to
the other side and noting that A�AI−1 is the identity operator gives the
desired result. �

The closed-form representation of the optimal full data index hopt in
the current status example above can be generalized to general censored
data structures with the full data model being the multivariate generalized
linear regression model with covariates always observed.

Theorem 2.8 Let Y = Φ(X, C), X ∼ FX, C | X ∼ G(· | X) and assume
that the conditional distribution G satisfies CAR. Let the full data model
be the p-variate generalized regression model Z = g(X∗ | β) + ε, β ∈ IRk,
E(K(ε) | X∗) = 0, and K(ε) = (K(ε1), . . . , K(εp)). We refer to Lemma 2.1
for 1) the orthogonal complement of the nuisance tangent space in the full
data model given by {Dh(X) = h(X∗)K(ε) : h 1 × p vector}, 2) the index
heff (k × p matrix) so that heff(X∗)K(ε) is the efficient score of β, and
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3) the index mapping given, for a function D ∈ L2
0(FX)k, by

hind,FX (D) ≡ E({D(X)−E(D(X) | X∗)}K(ε)� | X∗)E(K(ε)K(ε)� | X∗)−1.

Note that hind,FX (D) is an k × p matrix function of X∗.
Assume that X∗ is always observed (i.e., X∗ is a component of the full

data X, which is also a function of Y ). Consider the nonparametric in-
formation operator IFX ,G : L2

0(FX) → L2
0(FX) defined by IFX ,G(s) =

A�
GA(s) = EGEFX (s(X) | Y ) | X). Define IC(Y | FX , G, D) =

AFX I−1
FX ,G(D). We have that the p × p matrix

{
hind,FXI−1

FX ,GK
}

is given
by

E(IC(Y | FX , G, K)IC(Y | FX , G, K)� | X∗)E(K(ε)K(ε)� | X∗)−1.

If

hopt(X∗) ≡ heff(X∗)
{

hind,FXI−1
FX ,GK

}−1

p×p
, (2.56)

where we assume that the inverse exists a.e., then IC(Y | FX , G, Dhopt)
equals the efficient influence curve for β.

This is clearly an important result since it allows us to compute closed
form locally efficient estimators of regression parameters in univariate and
multivariate generalized linear regression models under any type of censor-
ing of the full data structure as long as the covariates X∗ in the regression
model are always observed.

2.8.1 Finding the optimal estimating function among a given
class of estimating functions

Consider a class of estimating functions IC(Y | Q, G, Dh(· | µ, ρ)),
h ∈ HF . If for all FX ∈ MF and G ∈ G {IC(Y | Q(FX , G), G, Dh(· |
µ(FX), ρ(FX , G))) : h ∈ HF } ⊂ T⊥

nuis(PFX,G) in model M(G), then
c−1IC(Y | Q(FX , G), G, Dh(· | µ, ρ)) denotes the influence curve corre-
sponding with the estimating function IC(Y | Q, G, Dh(· | µ, ρ)), assuming
correct specification of the nuisance parameters Q, G. Theorem 2.9 below,
based on Newey and McFadden (1994), provides us with a formula iden-
tifying the estimating function whose corresponding influence curve has
minimal variance among the class of estimating functions.

Theorem 2.9 Consider the censored data structure Y = Φ(C, X), X ∼
FX ∈ MF , and C | X ∼ G(· | X) ∈ G ⊂ G(CAR). Let µ be a k-dimensional
real-valued parameter of FX. Consider a class of k-dimensional full data
structure estimating functions Dh(· | µ, ρ) for µ indexed by h ranging over a
set Hk that satisfies for all FX ∈ MF and all G ∈ G TF,⊥

nuis(FX) ⊃ {Dh(· |
µ(FX), ρ(FX , G)) : h ∈ H}. Let (H, 〈·, ·〉H) be a Hilbert space defined by



160 2. General Methodology

the closure of the linear span of H, which is assumed to be embedded in a
Hilbert space with inner product 〈·, ·〉H.

Consider a class of k-dimensional observed data estimating functions
IC(Y | Q, G, Dh) indexed by h ∈ Hk, where IC(Y | Q, G, Dh) = (IC(Y |
Q, G, Dh1), . . . , IC(Y | Q, G, Dhk)). Here Q = Q(FX , G) and G denote the
true parameter values for Q and G. Define for h ∈ Hk

κ(h) = − d

dµ
EPFX,GIC(Y | Q(FX , G), G, Dh(· | µ, ρ(FX , G)))

∣∣∣∣
µ=µ(FX )

,

where we assume that this k × k derivative matrix is well-defined. As-
sume that κ(·) is bounded and linear, so that (by the Riesz Representation
theorem) there exists h∗ ∈ Hk so that for all h ∈ Hk

κ(h)ij = 〈h∗
i , hj〉H , (i, j) ∈ {1, . . . , k}2.

For notational convenience, define Ã : (H, 〈·, ·〉H) → L2
0(PFX ,G) by

Ã(h) ≡ IC(· | Q(FX , G), G, Dh). Let Ã� : L2
0(PFX ,G) → (H, 〈·, ·〉H) be the

adjoint of Ã. By applying these operators to each component of a multivari-
ate function, we can also define these operators on multivariate functions
so that Ã : Hk → L2

0(PFX ,G)k and Ã� : L2
0(PFX ,G)k → Hk. Define

Σ(h) ≡ E(κ(h)−1Ã(h)(Y )(κ(h)−1Ã(h)(Y ))�).

Assume that h∗ is an element of the range of Ã�Ã : Hk → Hk and that
(Ã�Ã) : H → H is 1-1. Then

hopt ≡ min−1
h∈Hk c�Σ(h)c for all c ∈ IRk

exists, and is given by

hopt = (Ã�Ã)−(h∗).

Thus

Ã(hopt) = Ã(Ã�Ã)−1h∗.

Proof. Firstly, note that

κ(h) = 〈h∗, h〉H = 〈Ã(Ã�Ã)−1(h∗), Ã(h)〉PFX ,G ,

where the inner product 〈h1, h2〉H is defined as the matrix with (i, j)th
element 〈h1i, h2j〉H . Using this notation for inner products of vectors, it
follows that

c�E(κ(h)−1Ã(h)(Y )(κ(h)−1Ã(h)(Y ))�)c

= c�κ(h)−1〈Ã(h), Ã(h)〉PFX ,Gκ(h)−1�c

= c�D(Ã(h))〈Ã(h), Ã(h)〉PFX ,GD(Ã(h))�c,
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where D(Ã(h)) = 〈Ã(Ã�Ã)−1(h∗), Ã(h)〉−1
PFX ,G

. By the Cauchy–Schwarz

inequality, this expression in Ã(h) is minimized by Ã(hopt) = Ã(Ã�Ã)−1h∗.
�

A special case of Theorem 2.9 is obtained by letting the index set H be
the class of full data estimating functions itself. Application of this theorem
to our TCAR-orthogonalized mapping from full data structure estimating
functions to observed data estimating functions results in the formula for
the efficient influence curve (and efficient score) as presented in Theorem
1.3 and originally derived in Robins, and Rotnitzky (1992). However, note
the next theorem is more general since it can be applied to any mapping
from full-data structure estimating functions to observed data estimating
functions.

Theorem 2.10 Consider the censored data structure Y = Φ(C, X), X ∼
FX ∈ MF , and C | X ∼ G(· | X) ∈ G ⊂ G(CAR). Let µ be a k-
dimensional real-valued parameter of FX. Consider a class of k-dimensional
full data structure estimating functions Dh(· | µ, ρ) for µ indexed by
h ranging over a set Hk that satisfies for all FX ∈ MF and G ∈ G
TF,⊥

nuis(FX) ⊃ {Dh(· | µ(FX), ρ(FX , G)) : h ∈ H}. Let (H, 〈·, ·〉FX) ⊂
L2

0(FX) be the sub-Hilbert space of L2
0(FX) defined by the closure of the

linear span of {Dh(· | µ(FX), ρ(FX)) : h ∈ H}. Consider a class (not
necessarily TCAR-orthogonalized) of k-dimensional observed data estimat-
ing functions IC(Y | Q, G, Dh(· | µ, ρ)) indexed by h ∈ Hk with nuisance
parameters Q(FX , G), G and ρ(FX , G).

Define for h ∈ Hk

κ(Dh) = − d

dµ
EPFX,GIC(Y | Q(FX , G), G, Dh(· | µ, ρ(FX , G)))

∣∣∣∣
µ=µ(FX )

,

where we assume that this k × k derivative matrix is well-defined. Assume
that κ : (H, 〈·, ·〉FX) → IR is bounded and linear, so that (by the Riesz
Representation theorem) there exists D∗ ∈ Hk so that for all h ∈ Hk

κ(Dh) = 〈Dh, D∗〉FX ≡ E(Dh(X)D∗�(X)).

For notational convenience, define Ã : (H, 〈·, ·〉H) → L2
0(PFX ,G) by

Ã(D) ≡ IC(· | Q(FX , G), G, D). Let Ã� : L2
0(PFX,G) → (H, 〈·, ·〉H) be the

adjoint of A. By applying these operators to each component of a multivari-
ate function, we can also define these operators on multivariate functions
so that Ã : Hk → L2

0(PFX,G)k and Ã� : L2
0(PFX ,G)k → Hk. Define the

covariance matrix

Σ(D) ≡ E(κ(D)−1A(D)(Y )(κ(D)−1A(D)(Y ))�).

Assume that D∗ is an element of the range of Ã�Ã : Hk → Hk and that
Ã�Ã : H → H is 1-1. Then

Dopt ≡ min
D∈Hk

−1c�Σ(D)c for all c ∈ IRk
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exists, and is given by

Dopt = (Ã�Ã)−1(D∗).

Thus

Ã(Dopt) = Ã(Ã�Ã)−1D∗.

Remark:

Suppose that we apply this theorem to the TCAR-optimal mapping into
observed data estimating functions satisfying IC(Y | Q(FX , G), G, Dh(· |
µ(FX), ρ(FX , G)) satisfies for all Dh EG(IC(Y | Q(FX , G), G, Dh) | X) =
Dh(X), IC(Y | Q(FX , G), G, Dh(· | µ(FX), ρ(FX , G)) ⊥ TCAR(PFX,G),
and {Dh(· | µ(FX), ρ(FX , G)) : h ∈ H} = TF,⊥

nuis(FX). Then Ã(Ã�Ã)−1(D∗)
has to equal the efficient influence curve S∗

eff (· | PFX,G) = AFX I∗−1
FX ,G(SF∗

eff )
for µ at PFX ,G, Off course, this identity is a consequence of (by Theorem
1.3) the fact that in this case Ã(Dh) = AI−1Dh. It follows that D∗ = S∗F

eff

and Dopt = (Ã�Ã)−1(D∗) corresponds with the optimal full data function
defined by Dopt = IFX ,GI∗−1

FX ,G(S∗F
eff ) or the solution in TF,⊥

nuis satisfying
Π(I−1

FX ,G(D) | TF,⊥
nuis) = S∗F

eff .

Closed-form optimal estimating functions for MGLM

We will now apply Theorem 2.9 to obtain a closed-form representation of
the optimal estimating function among a general class (not necessarily the
class of all estimating functions including the efficient influence curve as in
Theorem 2.8) of estimating functions in a multivariate generalized linear
regression model with covariates always observed. In such models, classes
of estimating functions obtained by mapping full data estimating functions
h(X∗)K(ε(β)) into observed data estimating functions IC(Y | Q, G, Dh)
will have the property that IC(Y | Q, G, Dh) = h(X∗)IC(Y | Q, G, Kβ),
where Kβ(X) = K(ε(β)). This special property combined with Theorem
2.9 results in a closed-form representation of the optimal estimating func-
tion. The result is a generalization of Theorem 2.8 since it specifies the
optimal estimating function among any given class of estimating functions,
not necessarily the class including the efficient influence curve and/or a
TCAR-orthogonalized class of estimating functions. For example, if one uses
non optimal mappings only orthogonalizing w.r.t. a subspace of TCAR, as
provided in this chapter, then Theorem 2.11 below can be used to find the
optimal choice.

Theorem 2.11 Let Y = Φ(X, C), X ∼ FX, C | X ∼ G(· | X), and as-
sume that the conditional distribution G satisfies CAR. Let the full data
model be the p-variate generalized regression model Z = g(X∗ | β) + ε,
β ∈ IRk, E(K(ε) | X∗) = 0, and K(ε) = (K(ε1), . . . , K(εp)). Assume
that g(X∗ | β) is differentiable in β for each possible X∗ and that K is
differentiable. Consider the full data estimating functions {Dh(X | β) =
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h(X∗)�K(ε(β)) : h ∈ H}, where H is an index set of 1 × p vector-valued
functions of X∗. Consider a class of k-dimensional observed data estimat-
ing functions IC(Y | Q, G, Dh(· | µ, ρ)) with unknown nuisance parameters
Q(FX , G), G, ρ(FX, G) indexed by h ∈ Hk, where h denotes a k × p matrix
valued function of X∗. Suppose that for each k × p matrix-valued function
h ∈ Hk of X∗,

IC(Y | Q, G, Dh(· | β)) = h(X∗)IC(Y | Q, G, Kβ).

Here Kβ(X) = K(ε(β)). For each h ∈ Hk, we define the k × k derivative
matrix κ(h):

κ(h) = −E(d/dβIC(Y | Q, G, Dh)) = −E(h(X∗)d/dβIC(Y | Q, G, Kβ)).

For each h ∈ Hk, let Σ(h) = E(κ(h)−1IC(Y | Q, G, Dh)(κ(h)−1IC(Y |
Q, G, Dh)�) be the covariance matrix of κ(h)−1

k×kIC(Y | Q, G, Dh). Let H
be the sub-Hilbert space defined by the closure of the linear span of H w.r.t.
the norm in L2

0(F
∗
X). Consider

h∗ = −E(d/dβIC(Y | Kβ) | X∗)k×pE(IC(Y | Kβ)IC(Y | Kβ)� | X∗)−1,

where we used shorthand notation IC(Y | Kβ) = IC(Y | Q, G, Kβ). As-
sume h∗ is well defined (i.e., derivative and inverse exist) and h∗ ∈ Hk.
Then

hopt ≡ min
h∈Hk

−1c�Σ(h)c for all c ∈ IRk

exists, and is given by hopt = h∗.

This theorem is a straightforward consequence of Theorem 2.9. In a typical
application of this theorem one would have that H = L2

0(F
∗
X) so that the

last condition holds.

Example 2.16 (Optimal IPTW estimating function) Let A(t) rep-
resent a time-dependent treatment process that potentially changes value
at a finite prespecified set of points. Let A be the set of possible sample
paths of A, where we assume that A is finite. For each possible treatment
regime ā, we define Xā(t) as the data that one would observe on the subject
if, possibly contrary to the fact, the subject had followed treatment regime
ā. It is natural to assume that Xā(t) = Xā(t−) (i.e., the counterfactual
outcome at time t is not affected by treatment given after time t). One
refers to Xā = (Xā(t) : t) as counterfactual. Suppose that Xā = (Zā, Lā)
consists of an outcome process Zā and covariate process Lā. The baseline
covariates are included in Lā(0) = L(0). Let X = (Xā, ā ∈ A) be the full
data structure, and the observed data structure is given by

Y = (Ā, XĀ) = (Ā, ZĀ, LĀ).

Let Y ∗̄
a be a counterfactual outcome of interest such as Zā(τ ) at an endpoint

τ . Consider a marginal structural generalized linear regression model:

Y ∗
ā = m(ā, V | β) + εā, where E(εā | V ) = 0,
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where V is a subset of the baseline covariates and m(ā, V | β) denotes a
parametrization of the conditional mean of Y ∗

ā , given V , parametrized by
the parameter of interest β. Assume that g(ā | X) satisfies the SRA (i.e.,
P (A(t) = a(t) | Ā(t−), X) = P (A(t) = a(t) | Ā(t−), X̄ā(t))). Consider the
class of IPTW estimating functions{

IC(Y | G, Dh) =
h(Ā, V )ε(β)

g(Ā | X)
: h

}
indexed by real-valued functions h of Ā, V , where ε(β) = Y ∗ −m(Ā, V | β)
is the observed residual. An interesting choice of h is the h that gives
an optimal covariance matrix E(IC(Y | G, Dh)IC(Y | G, Dh)�) when g
is known. In the same way as one proves Theorem 2.11, application of
Theorem 2.9 teaches us that this optimal index is given by

h∗(Ā, V ) =
d

dβ
m(Ā, V | β)

E(1/g(Ā | X) | Ā, V )
E(ε2(β)/g2(Ā | X) | Ā, V )

.

It is interesting to compare this choice with the computationally simple
choice recommended in Robins (1999), given by

h(Ā, V ) =
g∗(Ā | V )d/dβm(Ā, V | β)

E(ε2(β) | Ā, V )
,

where g∗(Ā | V ) is the conditional density of Ā, given V . Note that both
choices reduce to the optimal weighted least squares estimating function
that is optimal among all estimating functions whose weights only depend
on Ā, V in the situation where g(Ā | X) = g(Ā | V ) is only a function of V .
Robins (1999, Section 4.1) provides the efficient choice hopt(Ā, V ) for this
model in the special case where A is time independent. However, hopt(Ā, V )
is the solution to a Fredholm integral equation of the second kind which
does not admit a closed form solution. Thus an easily computed alternative,
although less efficient, is useful.
�

An algorithm for evaluating the representations of the optimal full data
structure function

Consider the representations IFX ,GI∗−FX ,G(Dheff ) and B−1
FX ,G(Dheff ) for

Dhopt . The following two lemmas prove that under reasonable conditions
these inverses exist and provide general simple algorithms for determining
them.

Lemma 2.6 For notational convenience, in this lemma we suppress the
dependence on (FX , G) of the Hilbert space operators. Let I∗ = ΠT F I :
TF → TF be the information operator. Assume that for all h ∈ TF with
‖ h ‖FX> 0 we have ‖ A(h) ‖PFX ,G> 0. Then I∗ is 1–1.
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Suppose that for some δ > 0

inf
‖h‖FX

=1,h∈T F
‖ A(h) ‖2

PFX,G
≥ δ. (2.57)

Then inf‖h‖F =1 ‖ I∗(h) ‖FX≥ δ, (I − I∗) has operator norm bounded by
1− δ, I∗ is onto and has bounded inverse with operator norm smaller than
or equal to 1/δ, and its inverse is given by

I∗−1 =
∞∑

i=0

(I − I∗)i.

In addition, the following algorithm converges to I∗−1(f): Set k = 0

h0 = 0,

hk+1 = f − I∗(hk) + hk,

and iterate until convergence. The convergence rate is bounded by

‖ hk − I∗−(f) ‖FX≤ (1 − δ)k

δ
‖ f ‖FX .

If ∆ = I(X observed) and infx P (∆ = 1 | X = x) > 0, then the condition
for bounded invertibility above holds with δ ≥ infx P (∆ = 1 | X = x).
Finally, we note that

I∗(h) = Π(I(h) |< SF
eff > ⊕TF

nuis)

= Π(I(h) |< SF
eff >) + {I(h) − Π(I(h) | TF,⊥

nuis)}.
The condition infx P (∆ = 1 | X = x) > 0 is not a necessary condition
for the bounded invertibility of I∗. This lemma does not prove that the
Neumann series converges if ‖ A(h) ‖> 0 for all h �= 0 (thus I∗ is 1-1),
but inf‖h‖=1 ‖ A(h) ‖2= 0. We conjecture that if Dheff ∈ R(I∗) and I∗ is
1-1, then the Neumann series applied to Dheff will converge to I∗−(S∗F

eff ).
We feel (based on our empirical findings) comfortable recommending this
algorithm in practice.

Proof. This lemma can be found in van der Laan (1998) except the
actual convergence rate. The convergence rate is proved as follows. Firstly,
we have that if ‖ I∗(h) ‖F≥ δ ‖ h ‖F , then

‖ I∗(hk − I∗−(f)) ‖≥ δ ‖ hk − I∗−(f) ‖ .

This proves that

‖ hk − I∗−(f) ‖≤ 1/δ ‖ f − I∗(hk) ‖ .

Now, note that f − I∗(hk) = hk+1 − hk. We have

hk+1 − hk = (I − I∗)(hk − hk−1) = (I − I∗)k(h1 − h0) = (I − I∗)k(f).
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Since I − I∗ is a contraction with operator norm 1 − δ, this shows that

‖ hk − I∗−(f) ‖≤ 1
δ
(1 − δ)k ‖ f ‖ .�

Similarly, one proves the following algorithm for inverting BFX ,G.

Lemma 2.7 Consider the operator BFX ,G : T⊥
nuis(FX) → T⊥

nuis(FX) de-
fined by B(D) = Π(I−FX ,G(D) | T⊥

nuis(FX)). We have that with D ∈
TF,⊥

nuis(FX) and D1 ≡ I−FX ,G(D),

BFX ,G(D) = Π(I−(D) | TF,⊥
nuis(FX))

= D1 − Π(D1 − IFX ,G(D1) | Tnuis(FX))
≡ D1 − B1,FX,G(D1).

Thus B−1
FX ,G(f) = IFX ,G(I − B1,FX,G)−1(f). If IFX ,G : L2

0(FX) → L2
0(FX)

is 1–1, then for all D1 ∈ L2
0(FX) ‖ B1,FX ,G(D1) ‖FX <‖ D1 ‖FX . If

B1,FX ,G : L2
0(FX) → L2

0(FX) has operator norm strictly smaller than 1,
for example (2.57) holds, then

(I − B1,FX ,G)−1 =
∞∑

k=0

Bk
1,FX ,G

and (I − B1,FX ,G)(D1) = f can be solved by successive substitution:

Dk+1
1 = f + B1,FX ,G(Dk

1 ).

In many examples, it is possible to invert BFX ,G : TF,⊥
nuis(FX) →

TF,⊥
nuis(FX) explicitly. In other examples, solving BFX ,G(D) = Dheff results

in integral equations for which particular algorithms are available. Lemma
2.7 above shows, in particular, that the operator BFX ,G is invertible. There-
fore, another sensible strategy is to approximate B′

FX ,G : HF → HF (2.53)
by a square matrix mapping index vectors (identifying the index h of the el-
ement in T⊥

nuis(FX)) into index vectors and invert this matrix using matrix
inversion routines. The advantage of the general algorithm of Lemma 2.6 is
that it never requires more than being able to apply and store one matrix
identifying I∗FX ,G. The same remark holds for the algorithm of Lemma 2.7.
The algorithms for IFX,GI∗−FX ,G(Dheff ) and B−1

FX ,G(Dheff ) are of similar
complexity so that there is little reason to prefer one above the other.

2.9 Estimation of the Optimal Index

Given the estimates Qn, Gn, µ0
n, ρn, the best estimating function for µ is

IC(Y | Qn, Gn, Dhopt(FX ,G)(· | µ, ρn)), where we provided representations
of the optimal index hopt(FX , G) in the preceding sections. In this section,
we propose a representation of hopt which naturally provides an estimator
hn of hopt.
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In the previous section, we obtained representations hopt of the form
hind,FX (the index mapping) applied to the optimal full data estimating
function Dopt(X | FX , G) as a function of FX and G. However, we know
that Dopt(X | FX , G) = Dhopt(FX ,G)(· | µ(FX), ρ(FX)). Therefore, we are
now concerned with establishing a parametrization of Dopt in terms of its
index h and (µ, ρ) so that we can estimate it by substitution.

In general, an estimator hn of hopt proceeds as follows. Firstly, we con-
struct an estimate Dn(X) of the optimal full data function Dhopt(FX ,G)(X |
µ, ρ). If Dn is of the form Dhn (· | µ0

n, ρn), then we also have obtained as
estimate hn of hopt. However, if Dn is based on an implicit representation
of Dopt involving an inverse B−1 or I∗−, then estimation of this inverse
using a truncated Neumann series representation can result in an estimate
Dn �∈ D(µ0

n, ρn). In that case we need, as discussed below, to project Dn

into D(µ0
n, ρn) to obtain an estimate hn of hopt.

To be specific, let L(X ) be a subspace of all pointwise well-defined func-
tions of X with finite supremum norm. We call any function h : L(X ) →
HF an index mapping, and hind,FX : L(X ) → HF is the true index mapping
defined by

Dhind,FX
(D)(· | µ(FX), ρ(FX)) = ΠFX (D | TF,⊥

nuis(FX)).

Let hind,n be an estimator of hind,FX . Then, if Dn �∈ D(µ0
n, ρn) we estimate

hind,FX (Dn), and we denote the resulting estimator of hopt with hn:

hn ≡ hind,n(Dn).

In the next subsections, we reparametrize the representations (2.51) and
(2.53) of Dopt(X | FX , G) in terms of µ, ρ and the parameters identifying
the optimal index hopt and estimate hopt, and Dopt accordingly.

2.9.1 Reparametrizing the representations of the optimal full
data function

If we state an inverse of an operator applied to a function, then it will
be implicitly assumed that this operator is 1 − 1 and that this function is
in the range of the operator. Firstly, consider the representation (2.51) of
Dopt = B−1

FX ,G(SF
eff ). Recall the definition D(µ, ρ) = {Dh(· | µ, ρ) : h ∈

HF }. For each (hind, µ, ρ) (hind being an index mapping), let Πhind,µ,ρ :
L(X ) → D(µ, ρ) be an operator such that for all FX ∈ MF and D ∈ L(X )

Πhind,FX
,µ(FX ),ρ(FX )(D) = Π(D | T⊥

nuis(FX))

= Dhind,FX
(D)(· | µ(FX), ρ(FX)).

Thus Πh,µ,ρ parametrizes the projection operator onto TF,⊥
nuis in terms of an

index mapping h and the parameter values µ, ρ. Let IF1,G1 : L(X ) → L(X )
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and denote its range with R∞(IF1,G1). For any D ∈ R∞(IF1,G1), define

BF1,G1,hind,µ,ρ(D) = Πhind ,µ,ρI−1
F1,G1

(D).

Consider now the following representation of Dopt:

Dopt(F1, G1, hind, heff , µ, ρ) ≡ B−1
F1,G1,hind,µ,ρDheff (· | µ, ρ).

We can now show the following result.

Lemma 2.8 Let (µ, ρ), (F1, G1), hind(·) be given. Assume D(µ, ρ) ⊂
R∞(IF1,G1). We have that BF1,G1,hind,µ,ρ : D(µ, ρ) → D(µ, ρ). In
particular, for any heff ∈ HF

Dopt(F1, G1, hind, heff , µ, ρ) ≡ B−1
F1,G1,hind,µ,ρDheff (· | µ, ρ) ∈ D(µ, ρ).

(2.58)

This shows that given (µ, ρ) we end up in D(µ, ρ) regardless of our choice
of F1, G1, hind, and heff . Thus

Dopt(F1, G1, hind, heff , µ, ρ) = Dhopt(F1,G1,hind,heff ,µ,ρ)(· | µ, ρ)

for some mapping (F1, G1, hind, heff , µ, ρ) →
hopt(F1, G1, hind, heff , µ, ρ) ∈ HF . Thus, estimation of F, G, hind, heff only
affects the estimator hopt,n of the optimal index hopt in Dhopt,n(· | µ0

n, ρn).
Since we prove a similar lemma for the representation (2.53) below, we
will omit the proof of Lemma 2.8 here.

Consider now the representation (2.53) of Dopt(FX , G) =
IFX ,G {ΠT F IFX ,G}−1 (SF

eff ). Let us start by parametrizing the projection
operator ΠT F onto the full data tangent space. We have

ΠFX (D | TF (FX)) = ΠFX (D |< SF
eff (· | FX) >)+D−ΠFX (D | TF,⊥

nuis(FX)).

The first projection operator is given by

ΠFX (D |< SF
eff (· | FX) >) = cFX (D)Dheff (FX )(· | µ(FX), ρ(FX)),

where cFX (D) = 〈D, SF�
eff 〉FX 〈SF

eff , SF�
eff 〉−1

FX
, and SF

eff = Dheff (· |
µ(FX), ρ(FX)). Above, we reparametrized the projection operator
onto TF,⊥

nuis as Πhind,µ,ρ in terms of (hind,FX , µ(FX), ρ(FX)). This
suggests the following parametrization of the projection operator
ΠFX (D | TF (FX)): suppose that for every (c, hind, heff , µ, ρ) ∈
{(cFX , hind,FX , heff(FX), µ(FX), ρ(FX)) : FX ∈ MF }

Πc,hind,heff ,µ,ρ(D) ≡ c(D)Dheff (· | µ, ρ) + D − Dhind(D)(· | µ, ρ)

is a well-defined operator from L(X ) → L(X ) satisfying

ΠcFX
,hind,FX

,heff (FX ),µ(FX),ρ(FX ) = ΠFX (· | TF (FX)).

The unknown index mapping parameter hind ranges over all index
mappings h : L(X ) → HF .
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This suggests the following parametrization
Dopt(F1, G1, c, hind, heff , µ, ρ) of Dopt(FX , G) (2.53):

IF1,G1{Πc,hind,heff ,µ,ρIF1,G1}−1Dheff (· | µ, ρ).

Here, we implicitly assumed that this is an element of L(X ). Notice that in-
deed Dopt(FX , G, cFX , hind,FX , heff (FX), µ(FX), ρ(FX)) = Dhopt(FX ,G)(· |
µ(FX), ρ(FX)).

We can now prove the following lemma.

Lemma 2.9 For notational convenience, let Π1,µ,ρ = Πc,hind,heff ,µ,ρ. As-
sume that hind : L(X ) → HF . For any F1, G1 and heff ∈ HF (so that
Dheff (· | µ, ρ) ∈ D(µ, ρ)) satisfying {Π1,µ,ρIF1,G1}−1(Dheff ) ∈ L(X ), we
have

IF1,G1{Π1,µ,ρIF1,G1}−1Dheff (· | µ, ρ) ∈ D(µ, ρ). (2.59)

Proof. We will show that for any possible value of the parameters we
have Dopt(F1, G1, c, hind, heff , µ, ρ) ∈ D(µ, ρ). The proof is almost a direct
consequence of the fact that for any D ∈ L(X ) and heff ∈ HF

D − Πc,hind,heff ,µ,ρ(D) = Dh(D)(· | µ, ρ) − c(D)Dheff (· | µ, ρ) ∈ D(µ, ρ)
(2.60)

and that

Πc,hind,heff ,µ,ρDopt(F1, G1, c, hind, heff , µ, ρ) = Dheff (· | µ, ρ). (2.61)

Using short-hand notation Dopt = Dopt(F1, G1, c, hind, heff , µ, ρ), Π1,µ,ρ =
Πc,hind,heff ,µ,ρ, we have by (2.60) and (2.61)

Dopt = {Dopt − Π1,µ,ρDopt} + Π1,µ,ρDopt

= Dh(Dopt)(· | µ, ρ) − c(Dopt)Dheff (· | µ, ρ) + Dheff (· | µ, ρ).

Since Dopt ∈ L(X ) and h : L(X ) → HF , this proves that Dopt ∈ D(µ, ρ).
�

2.9.2 Estimation of the optimal full data structure estimating
function

Consider the representation (2.58) of the optimal full data structure func-
tion Dopt(FX , G). Estimation of this representation involves estimation of
the components (FX , G) identifying the nonparametric information opera-
tor, hind,FX identifying the index mapping of the projection operator onto
the orthogonal complement of the nuisance tangent space, and heff(FX)
identifying the index of the full data canonical gradient SF

eff (· | FX) and
(µ(FX), ρ(FX)). Substitution of estimators for each of these components
yields an estimator of Dopt:

Dn = Dopt(Fn, Gn, hn, heff,n, µ0
n, ρn)

=
{

Πhn,µ0
n,ρn

I−Fn,Gn

}−1

Dheff,n (· | µ0
n, ρn).
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Similarly, an estimator based on representation (2.59) is given by

Dn = Dopt(Fn, Gn, cn, hn, heff,n, µ0
n, ρn)

= IFn,Gn{Πcn,hn,heff,n,µ0
n,ρn

IFn,Gn}−Dheff,n(· | µ0
n, ρn).

Lemmas 2.8 and 2.9 show that the right-hand side is indeed an element of
D(µ0

n, ρn) so that

Dn = Dhopt,n(· | µ0
n, ρn) for some hopt,n ∈ HF .

Thus Fn, Gn, cn, hn, heff,n only affect the index estimate hopt,n. If one uses
approximations D̃n of these estimators Dn that are not necessarily elements
of D(µ0

n, ρn), then, as mentioned in the previous subsection, one should use

hopt,n = hind,n(D̃n).

If in model M the full data working model Mw is such that it yields an
(e.g., maximum likelihood) estimator Fn of the full data distribution FX

itself, then one could decide to use a substitution estimator for each of the
full data distribution parameters:

Dn(· | µ0
n, ρn) = IFn,GnI∗−1

Fn,Gn
Dheff (Fn)(· | µ0

n, ρn), (2.62)

where

I∗−1
Fn,Gn

= ΠcFn ,hFn ,heff (Fn),µ0
n,ρn

IFn,Gn .

2.10 Locally Efficient Estimation with
Score-Operator Representation

Recall that at the true FX , G

IC(· | Q(FX , G), G, Dh(· | µ, ρ)) = AFX I−FX ,GDh(· | µ, ρ).

Suppose that we actually use this representation in terms of FX , G to define
our estimating function; that is, just parametrize IC in terms of FX and
G:

IC(· | FX , G, Dh(· | µ, ρ)) = AFX I−FX ,GDh(· | µ, ρ).

Let Fn be an estimator of FX according to the working model MF,w and
let Gn be an estimator of G according to the working model G. In addition,
assume that we estimate Dhopt with Dhopt,n = IFn,GnI∗−1

Fn,Gn
Dheff (Fn)(· |

µ, ρn) as defined by (2.62) using Fn and Gn. Then, the resulting estimating
function for µ is given by

IC(· | Fn, Gn, Dhopt,n(· | µ, ρn)) = AFnI∗−Fn,Gn
Dheff (Fn)(· | µ, ρn).

Since this is just a special application of the one-step estimator (2.35),
we can apply Theorem 2.5, which shows, under regularity conditions, that
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the resulting one-step estimator is consistent and asymptotically normal
if either MF,w is correctly specified or G is correctly specified and that it
is efficient if both are correctly specified. The one-step estimator can be
computed by inverting I∗Fn,Gn

with the successive substitution method of
Lemma 2.6.

Note that, given estimators Fn, Gn, this provides us with a completely au-
tomated method for locally efficient estimation in any censored data model.
Off course, here one also uses a substitution estimator ρn = ρ(Fn, Gn).


