
Preface

What does a typical foam cell look like? How do wemeasure spatially structured phases
of composite materials? What patterns can be observed in thin films, emulsions, or
polymer blends? Is it possible to describe and compare structures of complex, often
disordered, materials quantitatively and relate the observed structure to macroscopic
physical properties? Does the liquid flow through porous rocks, for instance, depend on
the shape of the pores? These are only a few questions which are of enormous interest
to both the scientific and the industrial communities.

The rapid growth of high resolution three-dimensional imaging technology is likely
to impact on numerous experimental areas in physics, chemistry, geology and biology
as well as on technical disciplines, includingmaterials science, chemical engineering, or
diagnostic medicine. Nowadays, experimental techniques such as high-resolution X-ray
computed tomography or confocal microscopy are available to measure themorphology
of complex materials and visualise, for instance, multiple fluid phases in porous mate-
rials. Such experimental facilities will provide researchers in the near future with a rich
source of experimental data to further the goals of their research. The development of
facilities which can acquire images, perform geometric analysis, visualise and calculate
physical properties will have a major impact on the goal to catalogue material structure
and infer physical properties from structural characteristics. Therefore, the development
of expertise in computational image analysis, spatial statistics and materials modelling
using typical three-dimensional data sets will become an essential requirement in these
fields. Morphological and spatial statistics techniques are therefore certain to be more
generally useful for a range of researchers.

The objective behind this volume is to bring the tools of physics, spatial statistics and
mathematics to bear on these problems, which concern not only workers in those fields
but also, for instance, engineers, geologists and forestry researchers. While the previous
volume ‘Statistical Physics and Spatial Statistics – The Art of Analysing and Modelling
Spatial Structures and Pattern Formation’, edited by Klaus Mecke and Dietrich Stoyan
(Lecture Notes in Physics, Vol. 554, Springer, July 2000) focuses on the statistical char-
acterisation of random spatial configurations, in particular point processes and Gibbsian
particle models, we try to emphasise here applications of morphology on real physical
systems ranging from porous and composite materials to microemulsions and foams .
Additional techniques of spatial statistics and integral geometry, such as shape analysis
and mark correlations, as well as measures such as contact distributions, topological
Betti numbers and tensor valuations are also considered.
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In an attempt to guide the reader and categorise the diverse contributions we have
divided the articles into two parts: the first focusing on physical systems such as spatially
structured solids and complex fluids. The second part comprises contributions with a
background in spatial statistics and morphology. Of course, a strict distinction is not
possible since each article provides some insight in each category but nevertheless the
book tries to group together main features, such as solids, fluids, shape measures and
spatial distributions.

Part I. Complex Structured Condensed Matter

Porous media, foams , microemulsions and liquid crystals are examples of spatially
structured materials. Since they are nowadays experimentally accessible, these systems
are particularly interesting for spatial statisticians and mathematicians in order to apply
their techniques to characterise and model random spatial configurations.

Porous materials such as sandstones or papers are considered as standard examples
in nature for a complex spatial structure. Worldwide, the petroleum industry spends an
excess of a billion dollars annually on the characterisation of reservoirs and on laboratory
measurements of core materials. These measurements are critical in the development of
oil and gas fields because they play amajor role in predicting hydrocarbon recovery. De-
spite the large sums spent on measurements and the ability to image and visualise, there
is little basic science to support the interpretation of data and to improve the quantita-
tive morphological description andmodelling of laboratory core measurements. Modest
improvements in relating physical properties to geometric shapes of pores would sig-
nificantly reduce the economic risk associated with new oil and gas developments and
have amajor impact on the petroleum industry. Such a structure–property relationship is
also essential in crustal geophysics. Within the Earth’s crust, fluid flow in fractured rock
masses influences a range of important geological processes, particularly the genesis of
many types of precious metal and base metal ore deposits and hydrocarbon migration
in some reservoir types. A rigorous understanding of fracture-controlled fluid migration
based on statistical measures of structure and distribution of fractures is also required to
develop more effective strategies for the sustainable development of geothermal energy
resources and for the analysis of risk associated with toxic waste - both nuclear and
chemical - containment in deep underground repositories. Another important applica-
tion of morphological techniques to describe the shape of solids is in paper manufacture:
the development of improved printing mediums and technologies depends on an under-
standing of how a complex material made up of cellulose fibre matrix, often coated with
a consolidated mass of pigment and binder, can be modified to improve printability,
durability and appearance. To understand the flow, optical and mechanical properties
of paper products, one must develop a realistic structural description of the pore space
coupled with an ability to simulate flow and mechanical properties.

A major shortcoming in the understanding of processes involving complex porous
and composite materials has been the inability to accurately characterise the statistical
distribution of shape and structure of disordered microstructures. Successful predictive
modelling of the properties of ‘real world’ materials is reliant on accurate statistical
characterisation, such as for the generation of equivalent network structures required
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for multiphase flow studies or fracture prediction. Dominique Jeulin shows in ‘Spatial
Statistics andMicromechanics of Materials’ how useful bounds of elastic properties can
be determined from the three-point statistics of randommedia and how fracture statistics
models based on random functions allow us to predict the probability of fracture of
materials.

The availability of direct measurements of the three-dimensional microstructure of
sedimentary rocks, for example, requires the development of computational tools to
gauge the stochastic nature of the void space and to construct realistic model repre-
sentations of the complex space. We need to generate stochastic model networks with
topological properties representative of real sedimentary rocks andmeasure and quantify
pore geometry and correlations that occur at the pore scale. This task is approached in
the contribution ‘Characterising the Morphology of Disordered Materials’ by Christoph
Arns, Mark Knackstedt and Klaus Mecke, where advanced methods of image analy-
sis and integral geometry (see Part II) are applied to reconstruct and predict physical
properties of porous media based on the measurement of pore space. A major aim is to
understand the structure–property correlation since the relationship betweenmicrostruc-
ture andmacroscopic properties is a central issue inmaterials science. To date, engineers
have relied on simple empirical models that ignore actual microstructural information,
to correlate macroscopic properties of disordered materials to their microstructure. The
bulk of experimental and theoretical work has been devoted to establishing the empirical
coefficients for each class of material. Imaging materials via high-resolution X-ray CT,
for instance, and subsequent laboratory measurement of material properties may help
us form a more accurate and comprehensive picture of the role of the shape of disor-
dered materials in governing the mechanical and transport properties. The development
of theoretical models describing the relationships between disordered media and fluid
transport properties is of specific interest to geologists, both in the laboratory and the
field. Hans-J̈org Vogel demonstrates in ‘Topological Characterisation of Porous Media’
the significance of the Euler characteristic for the prediction of transport in natural soil
where it is used as a function of pore diameter to generate network models of the porous
structure. Other applications of the Euler characteristic are studied in Part II of this vol-
ume, for instance, in the contributions by Vanessa Robins on Betti numbers, Joachim
Ohser et al. on discretized sets, and Claus Beisbart et al. on vector and tensor-valued
descriptors, as well as in Part II of the previous Lecture Notes in Physics, Vol. 554.

Most modern materials have complex three-dimensional structures on the micron
and nanometer scale. Unfortunately, most microscopy techniques available today are
limited to two-dimensional imaging and the choices for obtaining nanometer-resolution
three-dimensional volume images are rather limited, at least in materials science. This
considerably hinders a detailed study of the structure–property relationship and renders a
direct comparison between simulation results, the materials microstructure and its phys-
ical properties difficult, if not impossible. In particular, quantitative experimental data
is needed as input for reliable computer simulations and for benchmarking of models.
To this end, Robert Magerle presents nanotomography as a general procedure for high-
resolution three-dimensional volume imaging of composite materials based on scanning
probe microscopy. The specimen under study is eroded gradually and the remaining
material is imaged with scanning probe microscopy at each freshly exposed surface.
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From the resulting series of images, the specimen’s three-dimensional microstructure
can be reconstructed with methods adopted from computed tomography. This approach
is expected to be a simple and versatile means for the imaging of various materials and
physical properties with micron, nanometer and even atomic resolution.This effort is of
immediate benefit tomodelling scientists, spatial statisticians and physicists to interprete
and compare model assumptions to reliable data of real-space volume images in three
dimensions.

In contrast to solid structures, soft condensed matter, such as foams and fluids, have
a typical energy scale which is comparable with thermal energies at room temperature.
Thus, thermally activated movement of its molecular components are sufficient to in-
duce configurational changes, which may eventually lead to complex spatial structure
at room temperatures. Such thermally induced patterns are of particular importance
for biological systems, such as living organisms, which are based on self-organisation
of molecules in membranes and cells. However, the understanding of the underlying
mechanisms is also essential for the application of many technologies in everyday life,
including colloidal dispersions (paints, inks, food, creams, lotions), foams (beverages,
see the contribution by Francois Graner), liquid crystals (displays, see the contribution
by Friederike Schmid and Nguyen Phuong), polyelectrolyte gels used in diapers, as well
as soaps for washing and cleaning. Most biomaterials, for example blood or cartilage,
belong to the material class of soft condensedmatter. One particularly important bioma-
terial is the biomembrane, that is, the protein carrying lipid bilayer which surrounds each
cell and its organelles and which form spontaneously in mixtures of water and lipids. A
good model system for the structural properties of biomembranes are self-assembling
amphiphilic systems studied by Ulrich Schwarz and Gerhard Gompper in this volume,
but also Langmuir monolayers studied by Mathias Lösche und Peter Krüger.

Soft condensed matter has received much attention in the past mainly because of its
spatial structure and relevance for biological studies. Bicontinuous phases inmicroemul-
sions (see U. Schwarz and G. Gompper), complex domain patterns in fluid layers on
substrates (see M. Lösche und P. Kr̈uger), orientational order in liquid crystals (see F.
Schmid and N. H. Phuong), or cellular shapes in foams (see F. Graner) are just a few
spatial features observable in soft condensed matter. As for solid structures, the shape
and connectivity of the constituents are essential for physical properties and biological
function, so that techniques from spatial statistics and morphology become useful.

Ulrich Schwarz and Gerhard Gompper demonstrate in ‘Bicontinuous Surfaces in
Selfassembling Amphiphilic Systems’ the richness of emerging structures in the case of
self-organising amphiphiles. These are molecules with both hydrophilic and hydropho-
bic parts and which are particularly relevant for biological studies. In water, they self-
assemble into extended sheet-like structures due to the hydrophobic effect. Many dif-
ferent interfacial structures emerge such as random surfaces, bicontinuous labyrinths,
triply periodicminimal surfaces, their constantmean curvature and parallel surface com-
panions. The free energy of an amphiphilic system can be written as a functional of its
geometry andphasediagramscanbe calculated by comparing the free energies following
from different geometries. Due to the richness of its spatial structures, self-organising
amphiphiles may serve as model systems for the study of the relationship of shape and
energy in soft condensed matter.
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Related systems are Langmuir monolayers which are commonly used as model sys-
tems for biological membranes. Biomembranes are complex, quasi-two-dimensional
lipid-protein structures that self-assemble in aqueous media. For a quantitative under-
standing of the physics that underlies the functioning of biological cells, an assessment
of the structural aspects of the molecular interactions within the membrane is neces-
sary. These interactions may lead to complex two-dimensional domain patterns which
are studied and characterised by Mathias Lösche and Peter Krüger in ‘Morphology of
Langmuir Monolayer Phases’ using geometric tools such asMinkowski functionals (see
Part II in this volume as well as in the previous Lecture Notes in Physics, Vol. 554).

Orientational order in liquid crystals is another important example of complex struc-
tures in condensed matter. Randomly distributed hard spheres in three dimensions form
two types of structures, depending on their density: a disordered fluid phase and an
ordered crystalline phase. For randomly distributed anisotropic particles, the situation is
different: several so-called ‘mesophases’ exist at intermediate densities between the fluid
and the solid state. For instance, the particles may be oriented in one common preferred
direction, but do not have crystalline translational order (nematic phase). Alternatively,
the particlesmay be arranged in layers of two dimensional fluids (smectic phases). Since
these mesophases are neither crystalline nor truly liquid, they are commonly referred
to as ‘liquid crystal phases’. Friederike Schmid and Nguyen Phuong present computer
simulationsof simplemodel systemswith special emphasis onsystemsof hardellipsoids.
The occurring orientational order of the molecules can be described by mark correlation
functions which are introduced and studied in detail in Part II.

Whereas in liquid crystals geometric order is induced by molecular interactions, in
foams the reverse effect occurs: geometrical constraints determine the energy landscape
of the configurations. Liquid foams consist of gas bubbles separated by a continuous
film of liquid which exhibit a complex spatial structure. The morphology of the vapour
cells is a fascinating topic as shown by Graner in ‘Two-Dimensional Fluid Foams at
Equilibrium’. Fluid foams try to minimise their surface energy by decreasing the area of
the bubbles. This mathematical ‘minimum perimeter’ problem has previously been ap-
proached by Gompper and Schwarz dealing with amphiphilic systems, but the minimal
surfaces in foams are subjected to complex topological constraints which are very com-
mon in nature. Such foam-like structures occur also as grain boundaries in crystals, as
magnetic domains in solids, as honeycombs, as biological epithelia, or as retina patterns.

In all these examples of structured condensedmatter, the use of techniques stemming
from spatial statistics and morphology are indispensable. The methods are described in
detail in Part II, although the tools of mathematical morphology will have already been
introduced and applied in the previous sections: for instance, mark correlations by F.
Schmid and N. H. Phuong, Minkowski functionals and parallel surfaces by C. Arns et
al., by U. Schwarz and G. Gompper, and by M. Lösche and P. Krüger, or the topology
of minimal surfaces and perimeters by F. Graner. These techniques and other methods
of spatial statistics to characterise the morphology of structures are considered in detail
in the second part of this volume.
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Part II. Spatial Statistics and Morphology

The imaging of complex topologies and geometries, typical of all real world materials,
is now feasible, due to advances in three-dimensional imaging technology and computer
processing. These advances are of importance to a variety of scientists, both academic
and industrial, leading to an increasing interest not only to capture images but also to
model and characterise them, that is, to quantify disordered morphologies. The abil-
ity to generate non-destructively three-dimensional images will allow the cataloguing
of the detailed microstructure of a range of complex materials. The question remains:
How can one describe disordered forms of arbitrary shape?We need to quantify random
morphologies obtained experimentally utilising tools from integral, statistical and dif-
ferential geometry and topology, and generate a complete inventory of forms using these
techniques. This is of fundamental interest to scientists grappling with the quantifica-
tion and comparison of disorder in general. Therefore, in Part II, stochastic techniques
and geometric measures are introduced to characterise spatial structures occurring, for
instance, in the physical systems introduced in Part I. Its first part focuses on the mor-
phology, i.e., on the shape and connectivity of spatial domains, whereas in the second
part the spatial arrangement, i.e., correlation functions and distance distributions, play
a more important role.

Variousstatisticalmethods for thecharacterisationof textures, shapesand topological
properties of geometrical structures are described. In contrast to the papers in Part I,
the texts here are method-oriented. Pierre Soille describes in ‘Morphological Texture
Analysis: An Introduction’ texture analysis methods based on ideas from mathematical
morphology. Texture is usually defined as ‘the characteristic physical structure given to
an object by the size, shape, arrangement, and proportions of its parts’. It is shown that
granulometries, certain families of transformations of images constructed by means of
structuring elements, are very helpful for describing textures. A particular case of such
a transformation is the construction of the parallel set for various radii. Soille shows that
it is useful to evaluate the transformed images by geometrical measures such as area or
volume. A project for the near future is to use other geometrical measures as well and,
in particular, to use Minkowski functionals of dimensions smaller thand if the object
of interest lives inRd. Soille studies in detail two of the possible structuring elements:
discrete lines and discs, and then describes the application of granulometries for the
characterisation of anisotropy.

Claus Beisbart, Robert Dahlke, Klaus Mecke and Herbert Wagner demonstrate in
‘Vector- andTensor-ValuedDescriptors forSpatial Patterns’ the successful applicationof
an advanced concept of integral geometry: additive tensor valuation. This is an important
generalisation of the well-known Minkowski functionals and enable novel characterisa-
tions of orientations in structures of physical interest. Applications to density functional
theory for fluids (see Part I) are possible, as are applications to the galaxy distribution
in the universe and the geometry of the electric charge distribution in molecules, which
may be relevant in chemistry.

The next two papers describe methods of computational topology. As already em-
phasised in Part I, one important problem in the analysis of three-dimensional image
data is the estimation of topological characteristics such as the Euler characteristic of
a porous medium (cf. Arns et al. and Vogel). The Euler characteristic is an appropriate
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parameter for the quantification of the connectivity of a phase and of its complement.
If the structure is on the scale of the resolution of the grid of observation points, then
the crucial point for the study of topological properties of a discretized set is the choice
of an adjacency system in a point lattice. The theoretical foundation of the concepts of
adjacency is still under development. In the paper ‘The Euler Number of Discretized
Sets –On theChoice of Adjacency inHomogeneous Lattices’ by JoachimOhser,Werner
Nagel, and Katja Schladitz, the commonly used graph theoretic approach is related to
convex and integral geometry. This allows an improved mathematical approach and a
proof of the consistency of certain estimators of the Euler characteristics of a set and of
its complement (‘foreground’ and ‘background’ of an image, respectively). Sufficient
conditions for the unbiasedness of the estimators are also formulated.

Vanessa Robins extends in ‘Computational Topology for Point Data: Betti Numbers
of α-Shapes’ the topic of Minkowski functionals by considering Betti numbers. These
numbers, which were formulated in algebraic topology, yield more detailed information
on the topology of structures in physics than the Euler characteristic. In fact, the Euler
characteristic is simply a linear combination of Betti numbers. In this paper, the Betti
numbers are determined forα-shapes, which are planar sets of the formS ⊕ b(o, α),
whereS is the data set, a finite point set approximating some target setX, andb(o, α)
is the disc of radiusα centred at the origino. In other words, theα-shape is the parallel
set ofS with radiusα. The aim of these calculations is to obtain topological information
onX by using various values ofα.

DietrichStoyan, AshotDavtyan andDaulet Turetayev present in ‘ShapeStatistics for
RandomDomains andParticles’ a short survey on themethods developed by statisticians
for the description of the shape of planar sets such as images of particles, grains or
vesicles. This includes the simple shape indices likearea/perimeter ratios, but offersmore
sophisticated approaches using various functions and models. Additionally, a family of
models of planar ‘lattice animals’ is introduced. These models have some similarity to
the smoother objects studied in Part I by Schwarz et al. and Lösche et al.

The rest of Part II is closer still to classical methods of spatial statistics. Daniel
Hug, Günter Last and Wolfgang Weil discuss in their long paper ‘A Survey on Contact
Distributions’ contact distribution functions systematically. The classical spherical con-
tact distributionHs(r) is the probability distribution function of the random distance
from a random test point outside a structureX to the boundary ofX. This function
is closely related to thed-dimensional Minkowski measure intensity ofX ⊕ b(o, r),
which is the simplest of Mecke’s morphological functions. For the Boolean model with
isotropic grains there are beautiful and well-known formulae forHs(r). This contri-
bution gives formulae for contact distribution functions corresponding to structuring
elements different to the sphere or disc used inHs(r), also for anisotropic Boolean
models. Furthermore, Poisson cluster point processes and grain models constructed by
means of such point processes are considered. Finally, contact distribution functions of
inhomogeneous cluster processes and Boolean models are presented.

Claus Beisbart, Martin Kerscher and Klaus Mecke apply in ‘Mark Correlations:
Relating Physical Properties to Spatial Distributions’ ideas of the second-order theory
of marked point processes to physical data. In one of their applications, the ‘points’ are
positionsofgalaxiesand the ‘marks’ arecharacteristicsof thegalaxiessuchas luminosity.
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They use known types of mark correlation functions and introduce some new concepts
which are particularly powerful for the case where the marks are directions. Their aim
is to interpret physically the information obtained.

Kasper Berthelsen and Jesper Møller study in ‘Spatial Jump Processes and Perfect
Simulation’ finite spatial jump processes. These are Markov processes with piecewise
constant sample paths which play an important role in the simulation of Gibbs point
processes. Known particular cases are spatial birth-and-death processes. It is shown
how perfect simulation enables an efficient form of simulation of these processes. As
a particular case, their application to the case of planar hard core Gibbs processes is
demonstrated.

Gunter D̈oge and Dietrich Stoyan describe in ‘Statistics for Non-Sparse Spatially
Homogeneous Gibbs Point Processes’ the application of the Takacs–Fiksel method to
point data. The idea is to interpret a given pattern as a sample of a homogeneous Gibbs
point processwith a pair potential and to estimate parameters of the potential function by
means of a least squares technique. The new problem here is that the patterns analysed
are dense, while in the statistical literature typically sparse patterns have been analysed.

Turbulence is ubiquitous in nature and is not only observed in fluid flow. Although
responsible formany interesting disordered structure formation, its detailedmechanisms
are still not understood. Martin Greiner introduces in ‘Spatial Statistics of a Turbulent
Random Multiplicative Branching Process’ random multiplicative branching processes
as empirical models for fully developed turbulence. In order to compare these geometric
cascade models with experimental data, it is necessary to discuss spatial statistics in
terms of a generating functional. This application of a statistical standard technique
closes the second part of this volume.

It is a pleasure to thank all participants of the second international Wuppertal work-
shop on ‘Statistical Physics and Spatial Statistics’ for their valuable contributions, their
openness to share their experience and knowledge, and for the numerous discussions
which made the workshop so lively and fruitful. The workshop took place at the Uni-
versity of Wuppertal from 5 to 9 March 2001. Its aim was to provide a forum for the
exchange of fundamental ideas between physicists and spatial statisticians, bothworking
in a wide spectrum of science related to stochastic geometry. This volume comprises the
majority of the papers presented orally at the workshop as plenary lectures. The editors
are in particular grateful to all authors of this volume for their additional work.

Stuttgart and Freiberg, Klaus Mecke
September 2002 Dietrich Stoyan
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