
CHAPTER 3

The purpose of this chapter is to define some physical properties of hydraulic fluids, 
and to discuss the fundamental laws and equations of fluid motion, types of flow, 
and the flow through orifices and valves. It should be mentioned that the intention of 
this chapter is not to present the complete theoretical basics of fluid motion in 
hydraulics (or fluid mechanics); it rather summarises those equations and concepts 
which will be required in the subsequent chapters. For more details and information 
the reader is always referred to the corresponding literature given throughout the 
whole chapter. 

The writing of this chapter was largely influenced by the extensive discussions 
on flow through orifices and valves in the standard textbooks by Merritt (1967), and 
more recently the fine work by Beater (1999). Analyses and discussions on the 
material of this chapter can also be found, e.g., in Findeisen and Findeisen (1994) 
and in the recent work by Will et al. (1999). 

3.1 Physical Properties of Fluids 

Fluids (liquids and gases) are bodies without their own shape; they can flow, i.e., 
they can undergo great variations of shape under the action of forces; the weaker the 
force, the slower the variation (Lencastre, 1987).  

The normal tension on the surface element of a fluid is called pressure. It is, at a 
given point, identical in all directions. Pressure can be calculated as 

A
Fp ==

Area
Force  (3.1) 

and thus has the dimensions of force per unit area (N/m2). 

3.1.1 Viscosity and Related Quantities 

The coefficient of dynamic viscosity, η, is the parameter that represents the 
existence of tangential forces in liquids in movement. Suppose two plates (or fluid 
layers) are moving at a distance apart of dy, and at a relative velocity dvx (see Figure 
3.1.), then the shear stress 

y
vx

d
d

Area
ForceShear ητ ==                                       (Newton) (3.2) 

arises. Thereby, η is a proportionality factor and is called dynamic viscosity. 
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Figure 3.1. Couette flow; definition of shear stress 

The coefficient of kinematic viscosity, µ, is the ratio of the coefficient of dynamic 
viscosity to the fluid density, i.e., 

ρ
ηµ ==

Density
Viscosity Dynamic  (3.3) 

The dynamic viscosity of liquids varies considerably with the temperature: 

1 0( )
0 e

λ θ θ
ϑη η − −=  (3.4) 

where η0 is the dynamic viscosity at reference temperature θ0. The viscosity–
temperature coefficient λ1 should be determined by experiments for the fluid 
considered. For mineral oils, it lies between 0.036 and 0.057 K–1 (Ivantysyn and 
Ivantysynova, 1993).  

The influence of pressure is given by 

0 e
pαη η=  (3.5) 

where α is the viscosity–pressure coefficient that depends on the temperature; see 
Table 3.1 for the mineral oil HLP 32. For HFC fluids and HFD fluids the values of 
α = 0.35 Pa–1 and α = 2.2 Pa–1 can be used respectively (Ivantysyn and Ivantysynova, 
1993). The effect of pressure on viscosity is not so important in practice. 

Table 3.1. Viscosity–pressure coefficient for the mineral oil HLP 32 (Ivantysyn and 
Ivantysynova, 1993) 

θ [°C] α [10–2Pa–1] 
0 3.268 
10 2.900 
20 2.595 
30 2.339 
40 2.121 
50 1.933 
60 1.770 
70 1.626 
80 1.499 
90 1.385 
100 1.283 
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3.1.2 Mass Density, Bulk Modulus and Related Quantities 

Mass density, ρ, or simply density is the mass contained in a unit volume: 

0

Mass ∆ dlim
Volume ∆ dV

m m
V V∆

ρ
→

= = =  (3.6) 

The density of hydraulic fluids normally lies between 0.85 and 0.91 kg/dm3. Indeed, 
the density of hydraulic fluids is a function of both pressure and temperature, i.e., 
ρ = ρ(p,θ). The first three terms of a Taylor’s series for two variables may be used as 
an approximation (Merritt, 1967): 

0 0 0( ) ( )
p

p p
p θ

ρ ρρ ρ θ θ
θ

 ∂ ∂ ≈ + − + −   ∂ ∂  
  

0 0 0
1  1 ( ) ( )p p
E

ρ α θ θ = + − − −  
 (3.7) 

where ρ, p and θ are respectively the mass density, pressure, and temperature of the 
fluid about the initial values ρ0, p0 and θ0. Equation 3.7 is the linearised equation of 
state for fluids. In hydraulic phenomena, the usual assumption of constant 
temperatures reduces the linearised state Equation 3.7 of fluids to the simple form 
(Merritt, 1967) 

i
i p

E
ρρ ρ= +  (3.8) 

where ρi is the mass density at zero pressure. 
The quantity 

0 0
p pE V

V θθ

ρ
ρ

 ∂ ∂ ≡ = −   ∂ ∂  
 (3.9) 

is the change in pressure divided by the fractional change in volume at a constant 
temperature. It is called the modulus of elasticity, also termed the isothermal bulk 
modulus or simply bulk modulus of the liquid. It significantly influences the 
dynamics of hydraulic servo-systems. For mineral oils, and for common pressures 
and temperatures (θ ∈ [–40,120]°C, p ≤ 450 bar), one may assume a mean value for 
the bulk modulus, typically 

Emineral oil = (14–16)×103 bar = (1.4–1.6)×109 N/m2 = (1400–1600) MPa (3.10) 

However, from a practical viewpoint, this is a very rough approximation, as the bulk 
modulus varies considerably with pressure, for instance, according to 

isen pE E K p= +  (3.11) 

Typical values are E = 16500 bar and Kp = 9.558. The influence of temperature is 
negligible. 

The quantity 
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is the fractional change in volume due to a change in temperature at constant 
pressure. It is called the cubical expansion coefficient of the liquid. 

In the literature, there are many formulae for the calculation of the density of 
hydraulic fluids as a function of temperature and pressure. For example, the density 
at atmospheric pressure (1 bar = 105 N/m2) and variable temperature θ is given by 

0

01 ( )θ
θ

ρρ
β θ θ

=
+ −

 (3.13) 

where ρ0 is the density at reference temperature θ0 (say 15°C), and βθ denotes the 
heat expansion factor, e.g., 0.65×10–3 K–1 for mineral oils, 0.7×10–3 K–1 for HFC-
fluids, and 0.75×10–3 K–1 for HFD-fluids (Matthies, 1995). The density of hydraulic 
fluids following a change in pressure can be expressed as 

0

01 ( )p
p p p
ρρ

κ
=

− −
 (3.14) 

where pκ  is the compressibility factor 

0

1
p

V
V p θ

κ  ∂=  ∂ 
 (3.15) 

For variable temperature and variable pressure the density can be calculated by 

( )1 ∆p pθρ ρ κ= +  (3.16) 

Typical values for κp are: 0.7×10–4 bar–1 for mineral oils, 0.3×10–4 bar–1 for HFC-
fluids, and 0.35×10–4 bar–1 for HFD-fluids (Matthies, 1995). From these values, it 
can be concluded that the effect of pressure on the fluid density is minor, and thus 
negligible in practice. 

3.1.3 Effective Bulk Modulus 

The bulk modulus of a liquid is substantially lowered by entrained gas and 
mechanical compliance. According to Merritt (1967), estimates of entrapped air in 
hydraulic systems run as high as 20% when the fluid is at atmospheric pressure. As 
the pressure is increased, much of this air dissolves into the liquid and does not 
affect the bulk modulus. The major source of mechanical compliance may be the 
hydraulic lines connecting valves and pumps to actuators.  

3.1.3.1 Influence of Entrained Air 

Some work has been done on determining the bulk modulus of liquid–air mixtures 
and that of containers due to mechanical compliance. Backé und Murrenhoff 
(1994:103) proposed the following formulae for the isentropic bulk modulus of 
liquid–air mixtures (see also Beater, 1999:26): 
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with 

isenE  isentropic bulk modulus of the liquid (without entrained air), 

G0V  volume of gas entrained in the liquid at atmospheric pressure, 

L0V  volume of the liquid at atmospheric pressure, 

0p  atmospheric pressure 0( 1 bar)p = , 
p  liquid pressure, and 
κ  isentropic exponent ( 1.4)κ = . 
 
Figure 3.2 shows traces of the ratio '

isen isen( ) /E p E  for some values of the volume 
ration rV. In Figure 3.3, specific pressure-dependence of bulk modulus is plotted. 

Figure 3.2. Influence of entrained air volume on the isentropic bulk modulus 

Especially in low-pressure regions (say, p ≤ 100 bar), the influence of entrained 
gas on the bulk modulus is substantial. At a pressure of about 0.6 bar, entrained air 
can explode (so-called Diesel effect). This effect cause highly undesired erosion 
defects, power losses, pressure peaks, and noise. This phenomenon is better known 
as cavitation (sudden implosion of gas bubbles, when fluid pressure decreases under 
vapour pressure) (Lemmen, 2002).  

Note that the expressions given above require the accurate determination of 
many quantities (for example, of the volume of gas entrained in the liquid), and thus 
may be difficult to use in practice.  
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Figure 3.3. Typical trace of isentropic bulk modulus (rV = 0.0001) 

3.1.3.2 Influence of Mechanical Compliance 

The bulk modulus of cylindrical pipelines can be calculated as (Theißen, 1983) 

w
E
EEE

p

'

1

1

+
=  (3.18) 

where Ep is the bulk modulus of the (steel) pipeline. For thick-walled pipelines the 
coefficient w is given by 

1
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 (3.19) 

with 

od  outer diameter, 

id  inner diameter, and 
ν  Poisson’s number, 3.0=ν  for steel. 
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For thin-walled pipelines with the wall thickness s, (s/do < 0.1), Equation 3.19 
approximates to 

s
dw i=  (3.20) 

Table 3.2 shows some results found by experiment. It can be seen that especially 
in the case of high-pressure rubber-based hoses, reinforced with interwoven metal 
threads, the influence of elasticity is considerable. 

Table 3.2. Values for bulk modulus E' (Viersma, 1980) 

Nominal pressure [Mpa] E' [MPa] for steel pipeline 
Ri = 6.25 mm; Ro = 8 mm 

E' [MPa] for high-pressure  
hose Ri = 6.25 mm 

5 
9 
13 

      22.5 

1460 
1510 
1570 

      1890 

500 
537 

      568 

3.1.3.3 Empirical Effective Bulk Modulus 

Other researchers have derived empirical formulae for the calculation of the effective 
bulk modulus E', including the effects of entrained air and mechanical compliance, 
based on direct measurements. The commonly used equation for calculation of the 
bulk modulus E' for hydraulic cylinders in German literature is that of Lee (1977): 

( )'
1 max 2 3

max

log pE p a E a a
p

 
= + 

 
 (3.21) 

with the parameters a1 = 0.5, a2 = 90, a3 = 3, Emax = 18000 bar, and pmax = 280 bar.  
Hoffmann (1981) proposed the formula 

( ) ( )' 7
max 1 exp 0.4 2 10E p E p− = − − − ×   (3.22) 

with the pressure p in pascals. 
According to Eggerth (1980), the effective bulk modulus can be expressed as 

( ) λ−+
=

021

'

/
1)(

ppkk
pE  (3.23) 

with the parameters k1 and k2 in Table 3.3; p0 is assumed to be 10 bar. 

Table 3.3. Parameters of Eggerth’s formula (Beater, 1999) 

Temperature [°C] k1 [10–10 m2/N]  k2 [10–10 m2/N] λ 
20 
50 
90 

4.943 
5.469 
5.762 

1.9540 
3.2785 
4.7750 

1.480 
1.258 
1.100 

 
The relations for effective bulk modulus E' are plotted in Figure 3.4. Although 

these formulae are approximate, they are sufficient for design purposes. However, 
experimental data are always preferable.  
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Figure 3.4. Comparison of different formulae for the calculation of E' 

3.1.4 Section Summary 

The most important three physical properties (viscosity, density and bulk modulus) 
have been introduced and discussed. The following concluding statements are 
important from a practical viewpoint: 
• Density can be considered constant. 
• Viscosity of fluids varies markedly with temperature (Equation 3.4), and to a 

much lesser degree with pressure. 
• Bulk modulus essentially depends on pressure, entrained air and mechanical 

compliance. Empirical formulae, such as Equations 3.21, 3.22, and 3.23, are 
recommended for the calculation of the effective bulk modulus. However, some 
parameter adjustments may be necessary in practice. 

3.2 General Equations of Fluid Motion 

In this section, the basic principles of conservation and laws governing fluid flow 
and associated phenomena will be briefly summarised. More detailed derivations 
can be found in a number of standard textbooks on fluid mechanics (e.g., Slattery, 
1972; White, 1986; Lencastre, 1987; Spurk, 1996; Oertel, 1999). Detailed theoretical 
development and discussions about the conservation laws in fluid mechanics with a 
special “nice” section (4.3) on pipeline hydraulics can be found in the excellent book 
by Truckenbrodt (1996). 
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Conservation laws can be derived by considering a given quantity of matter, 
control mass or control volume, and its extensive properties, such as mass, 
momentum and energy. In fluid mechanics, there are several ways to present the 
conservation equations, such as the control mass approach, the control volume 
approach and the control tube approach. 

3.2.1 Continuity Equation and Pressure Transients 

Consider a control tube as depicted in Figure 3.5. The integral form of the mass 
conservation (continuity) equation can be formulated as (Truckenbrodt, 1996) 

(2)

2 2 2 1 1 1
(1)

( ) d 0                  (control tube)A s v A v A
t

ρ ρ ρ∂ + − =
∂∫  (3.24) 

where the density ρ = ρ(t,s) is, in general, not constant.  

 
 
 
 
 
 
 
 
 
 

Figure 3.5. Definition of control tube 

For incompressible fluids, i.e., ρ = const. (which is a standard assumption in 
hydraulics), Equation 3.24 can be reduced to 

1 1 2 2( ) ( )                                             ( const.)v t A v t A ρ= =  (3.25) 
or more generally 

flow) (volume                                           const.)( == AtvQ  (3.26) 

For steady flow, the continuity equation can be expressed as 

1 1 1 2 2 2                                              ( const.)v A v Aρ ρ ρ= ≠  (3.27) 

or in the general form 

rate) flow (mass                                             const.== vAm ρ  (3.28) 

Next, the mass conservation equation is written in the differential coordinate-free 
form (for a control tube element of length ds; see Figure 3.5) 

div( ) 0
t
ρ ρ∂ + =

∂
v  (3.29) 

Again, two special cases can be given: 

A2

A1

v1,, ρ1, p1

v2, ρ2, p2
dV=A ds

ds (2)

(1)
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div 0                                                         ( const.)ρ= =v  (3.30) 
div( ) 0                                                   (steady flow)ρ =v  (3.31) 

Given a coordinate system (Cartesian, cylindrical or spherical), Equation 3.29 
can take a specific form by providing the expression for the divergence (div) 
operator in that coordinate system. The expression of the continuity equation in a 
cylindrical coordinate system (r,ϕ,x) is given by (Truckenbrodt, 1996) 

0)()()(1 =
∂

∂+







∂

∂
+

∂
∂+

∂
∂

x
vv

r
rv

rt
xr ρ

ϕ
ρρρ ϕ  (3.32) 

Consider again the mass conservation equation for a control volume V and let the 
accumulated or stored mass of fluid inside be m with a mass density of ρ. Since all 
fluid must be accounted for, as the medium is assumed continuous, the rate at which 
mass is stored must equal the incoming mass flow rate minus the outgoing mass 
flow rate. Therefore, we can write 

ρρρ VV
t
Vmm +==∑−∑

d
)(d

outin  (3.33) 

Taking into account Equation 3.8 and dividing Equation 3.33 by ρ leads to 

p
E
VVQQ +=∑−∑ outin  (3.34) 

If the volume is fixed (V = V0), Equation 3.33 becomes 

( )∑−∑= outin
0

QQ
V
Ep . (3.35) 

This equation is fundamental for the description of the pressure dynamics in 
hydraulic compartments. 

3.2.2 Navier–Stokes Equation  

The momentum conservation equation is known as the Navier–Stokes equation (in 
differential form) (Lencastre, 1987) 

d 1grad div(grad ) grad(div )
d 3

p
t

ρ ρ η  = − + +  

v g v v  (3.36) 

where 
• ρg represents the body forces.  
• ρ dv/dt the inertial forces.  
• grad p is the vector of components ∂p/∂xi. It corresponds to the derivative or 

inclination of the pressure in the direction of the flow.  
• The term η div (grad v) represents diffusion of the vector v within the flow.  It 

represents the action of one particle on the others owing to the effect of viscosity. 
• The term 1/3η grad(div v) represents the influence of compressibility and 

vanishes in the case of incompressible liquids. 
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Letting the fluid be incompressible and dividing Equation 3.36 throughout by ρ 
leads to 

d 1 grad div(grad )
d

p
t

µ
ρ

= − +v g v  (3.37) 

Given the hypothesis of the external forces being derived from a potential ξ, then 
g = grad ξ. Thus, in the case of incompressible liquids, Equation 3.37 becomes 

1 dgrad grad div(grad )
d

p
t

ξ µ
ρ

− + = − +v v  (3.38) 

If the potential is that of gravity, i.e., ξ = –gz, then dividing throughout by g gives: 

1 dgrad div(grad )
d

pz
g t

η
γ γ

 
+ = − + 

 

v v  (3.39) 

with γ = ρg. In the case of a perfect or ideal liquid, i.e., η = 0, which does not exist in 
reality, Equation 3.39 becomes 

tg
pz

d
d1grad v−=








+

γ
 (3.40) 

For a fluid element along the path line, Equation 3.39 can be rearranged, taking 
into account η = ρµ and γ = ρg, to give Euler’s equation 

1 d div(grad )                 
d s

p vz v v v
s g t g

µ
γ

 ∂ + = − + = ∂  
 (3.41) 

Let us now return to the Navier–Stokes Equation 3.37 and write the system in 
cylindrical coordinates (Truckenbrodt, 1996): 
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 (3.43) 
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3.2.3 Bernoulli’s Theorem 

Considering Equation 3.41, and bearing in mind that  

d                                         (substantial acceleration)
d
v v vv
t t s

∂ ∂= +
∂ ∂
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( )2 / 2vvv
s s

∂∂ =
∂ ∂

 (3.45) 

it follows that 

2 1 d div(grad )
2 d

p v vz v
s g g t g

µ
γ

 ∂ + + = − + ∂  
 (3.46) 

The first element of the equation has an essentially global energy significance. It 
represents the variation in the total energy discharged per unit weight of a particle 
along its trajectory. 

If the viscosity terms are removed from the equation, i.e., the flow may resemble 
a perfect fluid, we have 

( )
t
v

g
vgpgz

s ∂
∂−=++

∂
∂ 12// 2γ  (3.47) 

In the case of steady flow, / 0,v t∂ ∂ =  energy conservation holds: 

const.
2

2
=++=

g
vpzE

γ
 (3.48) 

this being the expression that represents Bernoulli’s theorem for one-dimensional 
steady flows. In the case of an incompressible liquid in steady flow, in which the 
friction forces and, consequently, energy losses can be disregarded, the total energy 
of a particle is maintained along its trajectory. 

3.2.4 Section Summary 

From the variety of formulae presented in this section, those most important and 
those most often needed in practice are the continuity equations for incompressible 
fluids (Equations 3.25–3.28) and Bernoulli’s Equation 3.48 (or other equivalent 
variants of it). Another often-used equation is the fundamental Equation 3.35 for the 
description of the pressure dynamics in hydraulic compartments. 

The general continuity equation and Navier–Stokes equations are only 
interesting for the analysis of pipeline dynamics, see Section 4.2.5. 

3.3 Flow Through Passages 

Two distinct types of fluid flow through passages can occur: 
• Laminar or viscous flow, in which each fluid particle describes a well-defined 

trajectory, with a velocity only in the direction of the flow. 
• Turbulent or hydraulic flow (this being the most usual in hydraulic phenomena), 

in which each particle, apart from the velocity in the direction of the flow, is 
animated by fluctuating cross-current velocities.  
The Reynolds number, Re, defined by 
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µη
ρ hhRe vdvd ==  (3.49) 

is the characteristic parameter: for lower values of Re, the flow is laminar; for higher 
values the flow is turbulent. Thereby, ν is the average velocity of flow. dh represents 
the hydraulic diameter, which is defined by 

S
Ad 4

h =  (3.50) 

where A is the flow section area and S is the flow section perimeter. For each flow 
case, the characteristic length is agreed upon and empirical values are obtained for 
the Reynolds number which describes transition from that viscosity- to inertia-
dominated flows. 

3.3.1 Flow Establishment in Pipelines 

One basic element of hydraulic systems is cylindrical pipelines, in which flow may 
be laminar or turbulent. The characteristic length to be used for the Reynolds 
number is inside pipeline diameter d, i.e., 

µ
vd=Re  (3.51) 

The transition from laminar to turbulent flow has been observed experimentally to 
occur in the range 2000 < Recrit < 4000, typically Recrit = 2300. Below Re = 2300 the 
flow is always laminar; above Re = 4000 the flow is usually, but not always, 
turbulent. It is possible to have laminar flow at Reynolds number considerably 
above 4000 if extreme care is taken to avoid disturbances which would lead to 
turbulence. However, these instances are exceptional, and the upper limit of 4000 is 
a good rule (Viersma, 1980). 

 

Figure 3.6. Force equilibrium of fluid elements in cylindrical pipelines 

3.3.1.1 Hagen–Poiseuille Law 

Consider a cylindrical pipeline of radius r ≤ R and let the flow be steady and 
laminar. The starting point is the force equilibrium in the axial direction (Figure 
3.6); that means 
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w
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d d                 
2 d 2 d
r p R p r

x x R
ττ τ

τ
= − = − =  (3.52) 

where τw is the shear stress at the pipeline wall (i.e., at r = R). On the other hand, the 
shear stress Equation 3.2 can be written as (v ≡ vx, dy ≡ –dr) 
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d
d

2d
d −=−= ητ  (3.53) 

Equations 3.52 and 3.53 can then be combined to obtain 

x
pr

r
v

d
d

2d
d

η
=  (3.54) 

the relationship for calculating the velocity profile for laminar flows in cylindrical 
pipelines. In fact, the integration of Equation 3.54 (with dp/dx = const., and v(R) = 0) 
yields the velocity profile (Figure 3.7) 
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prRrv

d
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1)( 22 −−=
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 (3.55) 

and leads to the maximum velocity and the mean velocity 
2 2

max
d d(0)             

4 d 8 d
R p R pv v v

x xη η
= = − = −  (3.56) 

respectively. 
Finally, the continuity Equation 3.26 and Equation 3.56 are combined to give the 

so-called Hagen–Poiseuille equation 
4π d  

8 d
R pQ Av

xη
= = −  (3.57) 

 

Figure 3.7. Velocity profiles for laminar and turbulent flows in a cylindrical pipeline 

3.3.2 Flow Through Orifices 

Orifices are sudden restrictions of short length (ideally zero length for a sharp-edged 
orifice) in the flow passage and may have a fixed or variable area (see Figure 3.8). 
Orifices are generally used to control flow, or to create a pressure differential 
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(valves). Two types of flow regime exist, depending on whether inertia or viscous 
forces dominate. The flow velocity through an orifice must increase above that in 
the upstream region to satisfy the law of continuity. At high Reynolds numbers, the 
pressure drop across the orifice is caused by the acceleration of the fluid particles 
from the upstream velocity to the higher jet velocity. At low Reynolds numbers, the 
pressure drop is caused by the internal shear forces resulting from fluid viscosity. 

Figure 3.8. Round, slit-type and short tube orifices 

3.3.2.1 Orifice Equations for Turbulent Flow 

Since most orifice flows occur at high Reynolds numbers, this region is of major 
importance. Such flows are often referred to as “turbulent” (Figure 3.9b), but the 
term does not have quite the same meaning as in pipeline flow (Merritt, 1967). 
Referring to Figure 3.9a, the fluid particles are accelerated up to the jet velocity 
between sections 1 and 2. The flow between these sections is streamline or potential 
flow, and experience justifies the use of Bernoulli’s theorem in this region. 

Figure 3.9. Flow through an orifice: (a) laminar flow; (b) turbulent flow 

According to Bernoulli’s theorem (Equation 3.48), the total energy losses of the 
hydraulic flow are derived from the energy degraded into heat by friction of the 
particles against one another and by friction of the particles against the walls of the 
conduit. The energy dissipated due to friction between sections 1 and 2 will be equal 
to 
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( ) ( )2 2
ls 1 1 1 2 2 2∆ / 2 / 2p p v gz p v gzρ ρ ρ ρ= + + − + +  (3.58) 

It is common to use the dimensionless pressure loss factor ζ, which is defined as 

ls
2
1

∆
/ 2

p
v

ζ
ρ

=     or  2
ls 1∆ / 2p vζρ=  (3.59) 

The factor ζ depends on the geometry of the conduit and on the Reynolds number 
which can be approximated by 

2
1

Re
(Re) kk +=ζ  (3.60) 

Taking into account that at a point far from the orifice 

vvv == 21     and  2
1 2

π const.
4

A A A d= = = =  (3.61) 

we get the flow as the product of conduit area and the speed, i.e., 

( )21
2 ppAAvQ −==

ρζ
 (3.62) 

Instead of Equation 3.62, it is common in the field of hydraulics to use the modified 
orifice equation 

d
2 ∆Q A pα
ρ

=  (3.63) 

where αd is the discharge coefficient. Theoretically, αd = π/(π+2) = 0.611 (von 
Mises, 1917). This can be used for all sharp-edged orifices regardless of the 
particular geometry, if the flow is turbulent and A0 << A. 

3.3.2.2 Discharge Coefficient for Turbulent Flow 

Sharp-edged orifices (Figure 3.8) are desirable for their predictable characteristics 
and insensitivity to temperature changes. However, cost frequently prohibits their 
use, especially as fixed restrictors, and orifices with length (Figure 3.8c) are often 
employed instead. An average discharge coefficient for such short tube orifices can 
be expressed as (Merritt, 1967); see Figure 3.10: 
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Figure 3.10. Discharge coefficient αd for short tube orifices according to Equation 3.64 

According to Lichtarowicz et al. (1965), the average discharge coefficient can be 
estimated using (see Figure 3.11) 
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where 
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h
maxd, 0085.0827.0

d
L−=α  (3.67) 

3.3.2.3 Discharge Coefficient for Turbulent–Laminar Flow 

The formulae proposed above are only valid if turbulent flow occurs. Turbulence is 
ensured only at “large enough” Reynolds numbers: 

µ
vh2Re =  (3.68) 

where h is the smallest dimension of the (rectangular) orifice. At low temperatures, 
low orifice pressure drops, and/or small orifice openings, the Reynolds number may 
become sufficiently low to permit laminar flow. 
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Figure 3.11. Discharge coefficient αd for short tube orifices according to Equation 3.65 

Experiments carried out by Viersma (1980) proved that at very sharp edges in 
narrow orifices the critical value Recrit is as low as 20, whereas slightly rounded off 
edges increased Recrit to 80 or higher. Thus, at very sharp edges, αd may be assumed 
to be constant at Re > Recrit ≈ 20. 

Although the analysis leading to Equation 3.63 is not valid at low Reynolds 
numbers, many attempts have been made to extend this equation to the laminar 
region by plotting the discharge coefficient as a function of Reynolds number, i.e., 

Red δα =  (3.69) 

as pointed out by many investigators (Wuest, 1954; Viersma, 1980). The quantity δ 
depends on geometry and is called the laminar flow coefficient. Viersma (1980) 
found that  

1932.0
10
611.0

Recrit

turbd, ≈==
α

δ            hypothetical  (3.70) 

1366.0
20
611.0

Recrit

turbd, ≈==
α

δ          for sharp edges (3.71) 

0683.0
80
611.0

Recrit

turbd, ≈==
α

δ          for slightly rounded-off edges (3.72) 

The discharge coefficient can then be represented by the asymptotes shown in 
Figure 3.12 in the laminar region and αd = 0.611 in the turbulent region. 
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Figure 3.12. ( )d Refα =  according to Viersma (1980) 

3.3.2.4 Orifice Equations for Laminar Flow 

Expressing the Reynolds number as 

µ
h0 )/(Re dAQ=  (3.73) 

and substituting Equations 3.73 and 3.69 into Equation 3.63 yields 
2

h
0

2
∆

dQ A pδ
µρ

=  (3.74) 

for low Reynolds numbers. 
Wuest (1954) has theoretically determined expressions for laminar flow through 

sharp-edged circular orifices (in an infinite plane, i.e., d0 << d in Figure 3.8a) as 
3
0π

∆
50.4

dQ p
µρ

=  (3.75) 

and through sharp-edged rectangular slits (of height b0 and width w in an infinite 
plane, i.e. , b0 << B in Figure 3.8b, with w >> b0) 

2
0π

∆
32

b wQ p
µρ

=  (3.76) 

Equating Equation 3.74 to Equations 3.75 and 3.76 gives δ = 0.2 for a sharp-edged 
round orifice and δ = 0.157 for a sharp-edged slit orifice. 
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3.3.3 Flow Through Valves 

Flows through valving orifices (Figure 3.13) are usually described by the orifice 
Equation 3.63 with a linear relationship between the valve spool position xv and the 
flow area (critical centre), i.e., 

v v v 1 2 v v( ,∆ ) ∆Q Q x p c x p p c x p= = − =  (3.77) 

with the flow coefficient 

v v d
2πc d α
ρ

=  (3.78) 

for servo-valves (dv: diameter of the valve spool), and 

ρ
αα 2)2/tan(4 dvv xc =  (3.79) 

for special proportional valves with triangular valve seats having groove angle α  
(see Köckemann et al., 1991).  

 

Figure 3.13. Axial flow force on spool due to unequal jet angles 

Note that cv is usually given in 
3 3dm m     or equivenlently  

min bar mm s N
 (3.80) 

Note also that Equation 3.77 can be written using the valve voltage uv as 
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u

= = − ≡  (3.81) 

This means that the value and the dimension of cv have to be adapted to the signal 
used (which can be the valve stroke xv, the valve voltage uv, or the valve current Iv). 
In the rest of this book, only the symbol cv will be used without regard to the nature 
of the valve signal (normalised or not). 
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In practice, the flow coefficient may best be determined experimentally, or it 
may be calculated using the catalogue data (QN, ∆pN, and xv,max) of the valve 
manufacturer 

N
v

v,maxN

1
∆ / 2
Qc

xp
=  (3.82) 

where QN is the nominal flow, ∆pN the nominal pressure drop, and xv,max the 
maximum stroke of the valve. The corresponding discharge coefficient is 

N
d

v,max N( ) ∆ /
Q

A x p
α

ρ
=  (3.83) 

Since Equation 3.77 is not valid for low Reynolds numbers, Feigel (1987a) 
derived the following flow equation to be used for laminar–turbulent valve flow 
cases 

2

lt lt
v v

v v

∆
c cQ c x p
x x

   = + −     

 (3.84) 

It is assumed that A = πdxv, and the introduced laminar–turbulent flow coefficient is 
calculated by 

crit
lt 2

Re

4 2
c

δµ ρ
δ

=  (3.85) 

where δ  is the slope of the curve d ( Re)fα =  according to Equation 3.69. As 
∞→vx  Equation 3.84 becomes Equation 3.77, and thus may also be used for 

turbulent valve flow. A typical value of clt is 0.6 (Saffe, 1986). 
Yet another approximation formula for the discharge coefficient that has been 

used by many researchers (e.g., Klein, 1993), and which considers the dependence 
on the valve spool position xv, is given by 

v
d d v d0 d,corr
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| |
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xx K
x

α α α
 

= = −  
 

 (3.86) 

where αd0 is the basic discharge coefficient, Kd,corr a correction factor, and xv,max the 
maximum spool displacement. Typical values are αd0 = 0.65, and Kd,corr = 0.32. 

Finally, a generalised expression for the flow through valve orifices reads: 

v d v( ,∆ ) ( ) 2 / ∆Q Q x p A x pα ρ= =  (3.87) 

where A(xv) is the area of the valve orifice. A(xv) depends on the orifice geometry 
(i.e., geometrical form of the orifice and centre type), which varies from one 
manufacturer to another, especially for proportional valves. 
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3.3.4 Section Summary 

Orifice flow is laminar for Re < Recrit with flow rates directly related to pressure 
drop as given by Equation 3.74. In the vicinity of Recrit, both inertia and viscosity are 
important. For Re > Recrit, the flow can be treated as turbulent and is described by 
the orifice Equation 3.63. Commonly, the orifice Equation 3.63 is most used for all 
situations with a total disregard for the types of flow that can be encountered. This is 
justified in the majority of cases, but it can lead to gross errors in certain instances. 
Typical and realistic values of αd lie between 0.65 and 0.75. 

The more practical way is to apply the orifice Equation 3.77 with the calculation 
of the flow coefficient according to Equation 3.82 (or equivalently Equation 3.83). 

3.4 Spool Port Forces 

Closely related to the flows through the spool ports is the axial force on the spool. 
This flow force is caused by the change of momentum of the flow, due to a 
difference in jet angles for the inlet flows and outlet flows, as depicted in Figure 
3.13. 

The steady-state axial flow force on the spool can be calculated by (Merritt, 
1967; Lausch, 1990) 

2
ax,steady d v2 ( ) cos  ∆F A x pα θ=  (3.88) 

The jet angle θ can be assumed constant, namely θ ≈ 69°, leading to cosθ = 0.358, 
which corresponds to the theoretical value (if there is no radial clearance between 
the valve spool and sleeve) derived by von Mises (1917). 

Feigel (1992) proposed the following formulae for the calculation of steady-state 
flow forces on uncompensated spool valves: 

ax,steady f ∆F K Q p=  (3.89) 

with Kf = 0.077 [N min/(dm3 bar)] for one-edge valves, Kf = 0.054 for two-edge 
valves, and Kf = 0.109 for tetragonal valves. Equation 3.89 is combined with 
Equation 3.77 to give 

ax,steady f v v∆F K c px=  (3.90) 

Thus far the discussion has considered only the steady-state flow force. If the 
slug of fluid in the valve chamber is accelerated, then a force is produced which 
reacts on the face of the spool valve lands. The magnitude of dynamic flow force is 
given by Newton’s second law as 

QlmaF ρ==dynax,  (3.91) 

With Equation 3.77, the dynamic flow force becomes 

ax,dyn v v v v
∆∆

2 ∆
pF lc px lc x

p
ρ ρ= +  (3.92) 
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Therefore, the dynamic flow force is proportional to spool velocity and pressure 
changes. The velocity term is the more significant because it represents a damping 
force; the pressure rate term is usually neglected. 

In practice, the axial spool forces do not seem to play any significant role for the 
valve manufacturers. Although several compensation techniques to reduce or 
eliminate these forces have been investigated (see Merritt, 1967, and Feigel, 1992), 
none has found wide acceptance by practitioners. The practical solution to this 
problem is to use a two-stage servo-valve, in which the pilot stage, usually a flapper-
nozzle valve, provides an appropriate force to stroke the main-stage spool valve. 

3.5 Electro-hydraulic Analogy 

The principles of electro-hydraulic analogy are summarised in Figure 3.14. 

Figure 3.14. Relationships between variables in (a) electrical and (b) hydraulic systems 
(Beater, 1999) 

3.5.1 Hydraulic Capacitance 

Equation 3.35 can be written as 

pCp
E
VQ h

0 ==  (3.93) 

The proportionality factor hC  is referred to as the hydraulic capacitance 
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 (3.94) 

in analogy to the capacitance of a capacitor in electrical circuits. 

3.5.2 Hydraulic Resistance 

The hydraulic resistance Rh,L for laminar flow can, for instance, be determined from 
the Hagen–Poiseuille Equation (3.57) 
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4π ∆
8
RQ p

lη
=  (3.95) 

for cylindrical pipelines of radius R and length l. Equation 3.95 gives 

h,L 4

∆ 8
π

p lR
Q R

η= =  (3.96) 

Since in this case the pressure drop is directly proportional to the flow, a resistance 
given by this equation is called a linear resistance to motion. 

In general, however, the hydraulic resistance is non-linear to motion, e.g., due to 
the square-root function in Equation 3.63, which can be rearranged to yield: 

h,t 2 2 2
d

∆
2

pR
Q A

ρ
α

= =  (3.97) 

or from Equation 3.77: 

h,t 2 2 2
v v

∆ 1pR
Q c x

= =  (3.98) 

In practice, it is preferable to work with the ∆p vs. Q characteristic (or flow–pressure 
function) established by measurements on the actual valve in question. The 
manufacturers of standardised valves usually present this characteristic in their 
catalogues. 

3.5.3 Hydraulic Inductance 

The combination of Newton's law 

 aF ma Al aρ= =  (3.99) 

the continuity equation 

A
QvaAvQ ==⇒=  (3.100) 

and 

∆aF A p=  (3.101) 

leads to the hydraulic inductance 

h
∆p lL

AQ
ρ= =  (3.102) 

 




