Contents

1.1
1.2
1.3

1.4
1.5
1.6

How Can Invasive Software
Composition Help You

A Short OverviewoftheBook....................... 4
The ComponentDream................ eesereeeeeen 6
CoSy: A Component System for Adaptation and

EXtensionoevvniiiiniiniriiiiiiiieicieiiienns 9
Aspect Separation: New Dimensions of Modularity ... 12
Requirements for Composition..........oooeeeennn. 18
Epilogue ... et eeiiiniiii it 20
16,1 Remarkscovvviiiiiiiiiiiiiiiiiiin, 20
1.6.2 Goals of Invasive Software Composition. 20

1
This introduction explains briefly what invasive software composi-
tion is about and why it specializes a more general trend in software
engineering, composition technology.

‘

2 1 How Can Invasive Software Composition Help You

Do you want to know the level of reuse in our company?
Null, absolutely null. And do you know why?
Well, it's much better to produce software from scratch, to be able to
charge for it again and again....
Anonymous software engineer from well-known IT company

It takes time to build software. Unfortunately, the competition in the
software industry forces companies to reduce their time to market more
and more. To cut this Gordian knot, many of them try to build soft-
ware from prefabricated components, components off-the-shelf (COTS).
COTS should be reused as many times as possible so that the software
development costs can be reduced and products can be shipped faster
(component-based development) [Sun Microsystems, 1997, Siegel, 1998,
Box, 1998, JavaSoft, 2000]. However, major questions of this approach are
still open. How can components be prepared for reusability? How can they
be adapted flexibly during composition? How can the component-based
software process be organized for large systems that consist of thousands
of versions and variants?

This book answers several of these questions. It presents a new, reuse-
centered way to construct software systems, invasive software composi-
tion (ISC). The method is based on components but focuses on compo-
sition, i.e., on the methodology of how components are composed. To
achieve better reuse, the method adapts and integrates components in-
vasively. Because everything is centered around a standard language, Java,
this method provides a wealth of material for the system architect.

Invasive software composition is one methodology of the growing field
of composition systems, systems that concentrate on the composition of
components. They generalize many of the approaches to component-
based engineering we have seen the last 40 years. To show this, we present a
tower of component-based systems (Fig. 1.1). Component-based systems
can be compared in terms of three major aspects. First of all, it is impor-
tant how components appear, i.e., which kind of component model is em-
ployed. This determines when a component can be exchanged for another.
Next, we need a flexible composition technique that offers a wide range
of composition operations. Thirdly, a composition language is required,
in which composition recipes (composition specifications) can be written.
They describe how systems should be built from components and con-
tain information about the their architecture. If all three requirements are
met, we speak of a composition system. Such systems form the top level in
Fig. 1.1. Readers will gain insight into this approach, which is, so far, the
most general approach to component-based engineering.

Invasive software composition is a specific composition technology,
based on a flexible component model. Therefore, it provides a basis for
unifying several software engineering techniques, such as generic pro-
gramming, architecture systems, inheritance, view-based programming,

1 How Can Invasive Software Composition Help You

/ Aspect Control-Flow-Based =~ Composition ,
Systems Composition Systems Expression Systems }:
i Control-Flow-Based . Composition
Aspect £ mp
g Separation Composition Operato.rs and
% Language Expressions
(6] Aspect/J KN-calculus Metaclass
TL-calculus Composition
AML D Composition Filters gyperspace
Invasive Composition programming
L - s EE N P O T B BN B B B EBE BN B B W W W W e a.
Architecture Architecture UniCon CoSy
Systems as Aspect Aesop
g Classical Standard CORBA DCOM
2 Component Components Beans FEJB
8 Systems g
m
Object-Oriented Objects as Run- CH+ Java
Systems Time Components Ada-95 Sather
Modular Modules as Compile-
Systemns Time Components Modula Ada-85

Fig. 1.1. The historical and conceptual tower of component systems. Some of them
are full-fledged composition systems. The central technical concept is denoted by
italic shape. Examples are denoted by typewriter font.

and aspect systems. In the last decade, these new programming styles
have been developed more or less in isolation. Based on well-known and
new results, this book shows that all approaches can be modeled as differ-
ent variants of invasive composition techniques. Mainly, there are three
reasons for this. Firstly, invasive composition defines a graybox compo-
nent model that allows for invasive adaptations of components. A frag-
ment box may consist of a set of arbitrary program fragments! that can be
adapted at variation points, so-called hooks. Fragment boxes can be used
to model generic components, views, and aspects. Secondly, composition
operators (composers) transform the hooks to other program elements (in-
vasive composition). In this way, they parameterize, adapt, connect, and
extend components and realize the basic composition operations for the
above technologies. Thirdly, we employ an object-oriented language, Java,
for composition. Such a language facilitates configuration management
and can be employed to describe generic expanders, view mergers, and
aspect weavers. The demonstrator library of invasive composition, Com-
post, only requires standard Java tooling and can be integrated easily into
the object-oriented software development process.

! A fragment is a snippet from a program or a specification. In BETA, it is a sentinel
derivable from a nonterminal of the grammar [Lehrmann Madsen, 1994].

4 1 How Can Invasive Software Composition Help You

1

Introduction 2
Invasive
2 Composition
Criteria and Problems
for 5
Component Systems Reliable
Invasive
Composition 8
3 Inheritance
Comparison of 6 |
Composition Systems Generics)’
9
Views
7 I
Connectors *
10
Aspects
11
Progress and Outlook o

Fig. 1.2. The roadmap for this book. Readers may skip the chapters that review the
literature and start with Chap. 4. After Chap. 5, several applications are presented,
some on declared hooks, others on implicit hooks.

Invasive composition has more advantages. Although it uses a graybox
model, several soundness criteria can be defined that ensure the reliability
of the compositions. For instance, sound view merging and sound weaving
can be defined, operations that enable reliable views and aspects. Then,
software variant and build management can be simplified by composi-
tion programs. Since compositions are expressed in the same language as
the components, the same composition mechanisms can be applied to the
components as well as to composition recipes. This opens a way for meta-
composition, a technology to simplify the production of composition pro-
grams for large systems.

1.1 A Short Overview of the Book

The three basic mechanisms of a composition system — component model,
composition technique, and composition language — motivate a list of
requirements for composition (Sect. 1.5). To introduce this, the rest of
this chapter investigates three case studies of component systems. Then,

1.1 A Short Overview of the Book 5

Chap. 2 outlines the requirements. Chapter 3 evaluates several approaches
to component systems according to these criteria and introduces termi-
nology. This reveals that, over time, the component models, the compo-
sition techniques, and the composition languages have been consider-
ably generalized. Chapter 3 also presents several modern approaches to
software composition. By reading both chapters, the reader should get an
overview of what a future composition system should look like.

Chapter 4 presents the component model of invasive composition
and its demonstrator library Compost. Compost contains composers for
Java fragment boxes and can be used to write composition recipes as
object-oriented programs. Chapter 5 presents some formal features of the
composition-based software process and defines basic criteria for reliable
compositions, i.e., compositions which do not invalidate component uses.

Parts III and IV of the book present applications of invasive composi-
tion. Chapters 6 and 7 show applications of declared hooks that have been
defined by component developers in composition interfaces. Chapter 6 dis-
cusses generic programming. Hooks generalize generic type parameters to
arbitrary generic program elements. Chapter 7 discusses applications in
software architecture systems. A composer can model a connector, and a
hook can model a port (both are concepts from architecture languages).
Hence, composition programs are architecture descriptions but rely on a
standard language.

Chapters 8-10 show applications of implicit hooks, hooks that are al-
ways available in a component. Chapters 8 and 9 discuss concepts from
object-oriented programming and view-based programming. Briefly, com-
posers can extend hooks of fragment box components. This can be used to
model inheritance and views. Finally, Chap. 10 discusses aspect-oriented
programming. This engineering method separates specifications of as-
pects from the algorithmic components and weaves them together with
aspect weavers. Fragment boxes model aspects, hooks model join points,
and aspect weavers can be regarded as complex composition operators.

To begin, the rest of this introduction presents several case studies on
different aspects of system construction. Firstly, we look at the origins of
UNIX, one of the oldest component systems. Secondly, the CoSy system,
a modern component system for compiler construction and repository-
based architectures, is presented. CoSy supports view-based engineering,
and due to this flexibility, it is a commercial success. Next, aspect-oriented
programming (AOP) is investigated. We end this chapter with a list of im-
portant requirements for system composition.

6 1 How Can Invasive Software Composition Help You
1.2 The Component Dream

My thesis is that the software industry is weakly founded, and that
one aspect of this weakness is the absence of a software components
subindustry.

D. Mcllroy [Mcllroy, 1969]

Back in 1968, a group of leading computer scientists met in Garmisch-
Partenkirchen, Germany, to look at an important question encountered
in the software development of the 1960s: how can software be produced
systematically. A draft of the conference was recorded [Buxton et al., 1969],
showing that the conference invented three terms that shaped the field of
software construction for at least 30 years. :

Firstly, the conference coined the term software crisis, stating that the
size and complexity of software systems had grown so enormously that
planning, implementation, and maintenance could no longer be man-
aged. Secondly, the conference proposed considering this black art of pro-
gramming as a well-defined engineering science, the science of software
engineering [Thayer and McGettrick, 1993]. Thirdly, a visionary engineer
named Douglas Mcllroy presented a paper, Massproduced Software Com-
ponents, in which he claimed that any ripe industry is based on com-
ponent technology [Mcllroy, 1969]. Several phases of industrial maturity
can be distinguished: the phase of manufacturing by skilled individu-
als, the chaotic phase at the beginning of industrial rationalization, and
the mature phase of well-defined production processes in which all steps
of a product’s assemblage are standardized so that the products can be
massproduced. In the 1960s, software construction was undoubtedly in
the first phase. But still today, we see many products produced in the way
our forefathers produced their clothes: by individual handcrafting. Mcll-
roy clearly stated that what was needed to overcome this phase of infancy
was a mature technology that would provide parameterizations, assemble
components in well-defined procedures, and configure complete systems
by pressing some buttons in a configuration tool.

Despite enormous progress in software construction, Mcllroy’s vision
has not yet become a reality. Both research and industry have developed a
large number of approaches for component technology, but none of them
has solved all of the problems. Mcllroy himself has realized at least part
of his dream. In the 1970s, he influenced UNIX. One of his major con-
tributions was pipes {Kernigham and Mcllroy, 1990]. The idea is to have a
set of components (called processes), which communicate via byte streams
(pipes) and build up pipe-and-filter graphs. The UNIX shell has been built
around this paradigm and is still one of the most popular component en-
vironments [Bourne, 1978].

Why has Mcllroy’s component model been successful? In this early
work, we can already identify the three basic concepts of composition

1.2 The Component Dream 7

systems. Firstly, the component model of UNIX is very simple but, never-
theless, flexible. Every component has a standardized interface with sim-
ple connection points, three standard byte streams stdio, stdout, and
stderr. Due to this strict standardization, every component can be cou-
pled to every other component while it can interpret the byte stream in its
own way, keeping the information about what the data means as its secret.

Secondly, the composition technique of UNIX is also simple: compo-
nents are attached to byte streams, no matter where they come from or
go to. The technique abstracts from the byte stream’s location and trans-
fer method, i.e,, it ignores whether a component is reading from a shared
buffer, from an Internet socket, from a named pipe, or from a disk; all tech-
niques are hidden behind the same interface. Also, UNIX provides simple
filter components (such as cat, tr, or sed). These filters modify data in the
byte streams between components and can be used to adapt components
to each other if they do not fit. Without these little languages, UNIX would
not have had that much success.

Thirdly, UNIX contains at least three composition languages
for constructing composition recipes, the shell, the C program-
mers workbench [Dolottaetal, 1978], and makefiles [Feldman, 1978,
Feldman, 1988]. Both shell scripts and C programs connect sets of com-
ponents and build larger systems. Shells focus on flexibility and ease,
while C provides type checking? and efficiency. Makefiles provide a simple
mechanism to rebuild a system. Makefile-like tools are the most widely
used system configuration mechanisms, in particular, for large systems
with thousands of variants and versions.

What Can We Learn for Software Composition? Future component sys-
tems should support standard interfaces. They should provide languages
or other mechanisms to adapt components to each other, as well as a
bunch of composition languages. On the other hand, UNIX pipes-and-
filters are not the only way towards component systems that you can imag-
ine. But how do we go beyond them? What about other application do-
mains where pipe-and-filters are not sufficient? The next section presents
a system that goes beyond UNIX, in so far as data that is exchanged can be
typed and extended easily.

2 Of course, C has a weak typing concept, but it is stronger than that of the shell,
which only knows about strings.

8 1 How Can Invasive Software Composition Help You

Generated
Access Layer

Repository

Fig. 1.3. A CoSy compiler’s architecture: a repository system. Adding a new opti-
mizer leads to extension of shared data structures. The logical view of an engine on
the repository is mapped to the physical form with the help of a generated factory
class and access layer.

Compiler

Semantics sl b
i

Static Semantics

Repository

Fig. 1.4. The CoSy compiler architecture can group engines into compound en-
gines. Appropriate glue code is generated to mediate between engine protocols.

1.3 CoSy: A Component System for Adaptation and Extension

1.3 CoSy: A Component System for Adaptation and
Extension

As far back as 1988, ACE could see the limitations of the classical
approach to compiler construction and joined forces with Europe’s
best compiler researchers to create a revolution in compiler produc-
tion technology. Today, compiler developers use the CoSy Compila-
tion System to construct production quality compilers for a variety of
programming languages, processor architectures, and software de-
velopment markets...
The modular approach, covering isolated compiler component de-
velopment, reuse of components and the specialization and focus of
compiler development groups, leads in turn to lower development
and maintenance costs...
Within two days of installing the CoSy software, Ericsson Radio Sys-
tems’ engineers had modified a sample CoSy compiler and were gen-
erating executable code for their DSP cores. Within 12 months, vali-
dated compilers were available ...

Excerpts from advertisements on CoSy (ACE b.V,, Amsterdam)

From 1990 to 1995, a group of several European companies and re-
search institutes executed a research project on compilers and compiler
frameworks, COMPARE (COMPilers for PARallE]l architectures). Its goal was
to develop compilers for efficient code on novel architectures and to pro-
vide a compiler component system that would facilitate their construc-
tion. It was foreseen that novel architectures would need extensive opti-
mizations; and since developing optimizers would cost a lot, the compo-
nent system should guarantee a maximal amount of reuse of components.
Somewhat later, the project resulted in a commercial product, the CoSy
compiler framework. This frarnework is now successfully marketed by ACE
b.V,, Amsterdam, and has already been used to build many industrial-
strength compilers [ACE b.V, 2000a, ACE b.V, 2000b}.

The motivations for developing the CoSy framework were the follow-
ing [Alt et al., 1994]. Firstly, it should be easy to assemble new compilers
from a set of prefabricated components. Secondly, extending compilers
with new parts should be easy (Fig. 1.3). Different phases of the com-
piler share common data in a repository, and that data has to be extended
appropriately. Since a compiler company ships binary components to its
clients, extension of the data structures should not require recompilation
of the components. Thirdly, despite the necessary modular structure, com-
pilers should still run fast. Having too many interfaces within the system
should be avoided since it slows down the compiler.

Most of these goals have been reached in CoSy. First of all, CoSy permits
configuring new compilers from a prefabricated set of components (also
called engines) within an hour. CoSy contains a composition language, the

10 1 How Can Invasive Software Composition Help You

engine description language (EDL), which is used to specify the architec-
ture of the compiler. Since sets of engines can be encapsulated into larger
subsystems, a compiler is hierarchically structured (Fig. 1.4). Engines may
be grouped sequentially, in a data parallel or pipelined fashion, or in a
client-server manner. From these specifications, the EDL compiler gener-
ates coordination code [Alt et al., 1993, Alt, 1997]. EDL offers several stan-
dard interaction protocols that the EDL compiler maps to each other. For
engines that do not fit directly with each other, it generates adaptation
code. Hence, CoSy is one of the few commercially available frameworks
for repository-based architectures.

Secondly, CoSy-made compilers can be extended easily, since it pro-
vides a flexible access mechanism to the shared-data repository. Each en-
gine accesses the common data with a specific view. Depending on which
and how many engines are configured in the compiler, the common data
is extended appropriately. Due to the extension mechanism, even binary
engines can be reused without recompilation, although their underlying
data structures are extended.

Conceptually, this provides two advances over UNIX. Firstly, compo-
nents no longer read and write streams of bytes. Instead, they communi-
cate complex data structures in a repository. This saves the overhead of
externalizing and reparsing data structures. It is the reason why repository-
based systems are more efficient than their UNIX counterparts. Secondly,
components can be extended, together with the data they communicate in
the repository. In UNIX, components are blackboxes.

However, such an extensible component system is confronted with a
severe technical problem. What happens if we extend a compiler with
a new optimizer phase Optimizer-II (Fig. 1.3)? In a class-based sys-
tem, this means that base classes common to the parser and the op-
timizers have to be extended (base-class extension). However, then all
their subclasses must be recompiled, as well as all client components
that use them. In a commercial setting in which binary components are
sold and distributed, this poses a problem: whenever a compiler is ex-
tended with a new component, all other components will be invalidated.
Hence, when a company extends the framework’s base classes it should
ship new binaries of all components and force the client to recompile
his applications. Normally, a company cannot afford such a procedure.
This extensibility problem is called the syntactic fragile base-class problem
(syntactic FBCP) [Szyperski, 1998]. First identified in [Forman et al., 1995,
Hamilton, 1996], it is an obstacle to the commercial component-based de-
velopment of large object-oriented systems or libraries.

As a solution to this extensibility problem, CoSy employs the view con-
cept. An engine’s view describes which data is required from the reposi-
tory, which data is shared with others, and how the data is accessed. Views
are specified in a data description language, fSDL, which supports multi-

1.3 CoSy: A Component System for Adaptation and Extension 11

K

View 1 . K

ors

View 2

View 3

Fig. 1.5. A view merge operator in CoSy.

Fig. 1.6. When a new component is added, factory and access layers are regener-
ated, to hide the extension of the common data structures.

12 1 How Can Invasive Software Composition Help You

ple and mixin-based inheritance [Walters et al., 1994, Buhl, 1995].2 Based
on this, fSDL defines view merge operators (Fig. 1.5). With these operators,
CoSy merges all view specifications of engines. The operators check that
no fields are contradictorily defined and calculate the final layout of every
class in the repository.

Then, this layout is used to calculate an engine-specific view map-
ping that maps the logical view of every component to the access
of the physical structures. From the view mapping, the implemen-
tation of two system layers is generated: a factory to create repos-
itory data objects [Gamma etal., 1994] and an access layer to access
the objects (Fig. 1.3). (A factory is a class whose methods create ob-
jects [Gamma et al., 1994]. If it substitutes standard object constructors, its
implementations can be exchanged, parameterizing the behavior of the
system.) At runtime, the factory is used to allocate data in the repository;
the data is accessed by the access layer.

Equipped with this generation power, extending a compiler becomes
easy. When a component with a new view is added to the system, the view
mapping is recalculated and the factory and the access are regenerated and
recompiled (Fig. 1.6). However, the rest of the system, also binary compo-
nents, need not be recompiled and can be reused as is.

What Can We Learn for Software Composition? CoSy indicates that exten-
sibility is important for future component-based development. It demon-
strates that views and view mappings permit systems to be extended easily.
CoSy solves the syntactic fragile base-class problem: even if a compiler has
been built from binary components, it can be evolved easily since all ac-
cesses to the repository are generated.

1.4 Aspect Separation: New Dimensions of Modularity

Modularity helps when developing systems. Modules can be replaced by
other modules while the rest of the system stays intact. However, design-
ers would like to modularly exchange in several dimensions: different fea-
tures should be exchanged independently of each other. For instance, in
the architecture of buildings, plans for rooms, water, gas, and electricity are
specified separately (Fig. 1.7). When architects want to exchange parts of
the electricity support for aroom, they never exchange the complete room.
Instead, they only modify the electricity plan of the room, which does not
affect the other plans. After all plans are finished, the construction process
integrates them into the physical layout of the building and eliminates re-
maining conflicts.

3 Mixin-based inheritance is a variant of inheritance. During the inheritance step,
class fragments, so-called mixins, are integrated into the superclass to form the
subclass.

1.4 Aspect Separation: New Dimensions of Modularity 13

Structure

Fig. 1.7. Aspect separation in architecture. The construction process weaves sepa-
rate plans into an integrated building.

This principle of aspect separation can also be found in software en-
gineering [Kiczales et al., 1997]. Aspects of software, such as persistence,
debugging, or animation, should be described separately and exchanged
independently without disturbing the modular structure of the system.

Example 1.1 For the examples in this book, we use a simple scenario, the
production cell case study [Lewerentz and Lindner, 1995]. The case study
models part of a production cell from a company in Karlsruhe, Germany.
The cell contains several machines that process a pipeline of metal blanks.
A conveyor belt, a rotary table, and a robot transport the metal blanks to
a press. After giving the workpieces a new form, the robot takes the forged
metal plates out of the press and a second conveyor belt transports them
into a repository. Appendix B explains in more detail how the cell works.

As an example for aspects, consider the class Robot in Fig. 1.8. If we
want to debug an implementation of the production cell, we might want
to insert print statements at the entry and exit of the procedures. Usually,
this is done by hand, by preprocessor macros, or by delegation to a debug-
ging class; none of the methods supports specifying the algorithm and its
debugging aspect separately.

Separating specifications of aspects from the core components is the
main idea of aspect-oriented programming (AOP) [Kiczales et al., 1997].

14 1 How Can Invasive Software Composition Help You

1 public class Robot { 1 publi(.: clas.s Rojbot {
2 public void spin() { 2 public void spin() { .
3 while (true) { lifeCycle (); } 3 System.out.println("enter spin");
4} 4 while (true) { lifeCycle (); }
5 5 System.out.println("exit spin");
6 6 }
7 public void lifeCycle () { 7 public void lifeCycle () {
8 WorkPiece p; 8 System.out.println("enter lifeCycle");
9 rotateToTable(); 9 WorkPiece p;
10 p = takeUp(); 10 rotateToTable();
11 rotateToPress(); 11 p = takeUp();
12 layDown(p); 12 rotateToPress();
13} 13 layDown(p);
14 14 System.out.println("exit lifeCycle");
16 } 16 }

Fig. 1.8. A method with algorithm and debugging aspect. On the right side, the de-
bugging aspect is woven in (denoted by underlined font).

While the essence of an algorithm, i.e., the application-specific function-
ality, still resides in the core, all other aspects are segregated out to aspect
specifications. A special compiler, a so-called weaver, mixes the specifi-
cations and translates them to the final form (Fig. 1.9). Most often, the
weaving process relies on common names in the specifications which re-
late specification items to each other. Those names are called join points.
They must occur in the core components so that the aspect specifications
can refer to them. Hence, in AOB, systems have a core part to which several
aspects relate.

Example 1.2 Figure 1.9 mentions two aspects, debugging and persistence.
A production cell might be programmed for persistent behavior. When the
cell must be stopped the machines should not forget which workpieces
they carried such that the cell can be revived. Let us suppose that we define
the following two aspect specifications for the class Robot.

1.4 Aspect Separation: New Dimensions of Modularity 15

Persistence

1’ Debugging Aspect |
| | Persistence Aspect
[Debugging Aspect -

| Persistence

- DebuggingAspect | Aspect

s S e T

Fig. 1.9. Aspect-oriented specification of software. Aspects are separated, but wo-
ven together with a specific compiler, the weaver.

1 aspect Persistence {

2 Robot is persistent;

3}

4 aspect Debugging {

5 Robot.methods have prologue {

6 System.out.printin("enter <method>");
7}

8 Robot.methods have epilogue {

9 System.out.println("exit <method>");

10 }
11 }

A weaver could be specified with the following simple expression in a
weaving language:

1 Package robots = weave Robot with Persistence, Debugging;

It evaluates the aspect specifications and generates the code of List. 1.1
for Robot, distributing the aspect code over the system: all methods of
Robot are extended with debugging code, and the constructor is made to
load objects from a database.

16 1 How Can Invasive Software Composition Help You

1 public class Robot {

2 public Robot() {

3 System.out.println("enter Robot");

4 this = <<load Robot object from database>>;
5 System.out.println("exit Robot");
6

7

8

return this;

public void spin() {

9 System.out.printIn("enter spin");

10 while (true) { lifeCycle (); }
11 < <store Robot object to database>>;
12 System.out.println("exit spin");
13

14 public void lifeCycle () {

15 System.out.println("enter lifeCycle");
16 WorkPiece p;

17 rotateToTable();

18 p = takeUp();

19 rotateToPress();
20 layDown(p);
21 System.out.println("exit lifeCycle");
22 }

23 }

List. 1.1. A first version of the robot of the production cell.

This separation of concerns simplifies the structure of the software.
Since aspects are specified independently, the algorithms can be described
more clearly, without being intermingled with unnecessary details. Also,
the aspect specifications become rather simple, clear, and concise.

Hence, aspect weaving offers a new form of configuration manage-
ment. Aspect specifications can be exchanged independently of the core
and independently of each other. Each configuration creates a system that
may have different behavior or nonfunctional qualities. A simple gedanken
experiment shows why this increases reuse. If a system consists of n mod-
ules with v variants per module, n x v variants can be built. If it consists
additionally of k aspects and each aspect has [variations, nvkl variants can
be built without ever editing one of the n x v modules. In other words, nvkl
variants can be built by developing nv + kI module and aspect variants.
Since the same core components can be reused in entirely different reuse
contexts, aspect-oriented programming improves reuse.

What Can We Learn for Software Composition? Future component systems
should support aspect separation and should integrate a mechanism to
compose the aspects and the components.

1.4 Aspect Separation: New Dimensions of Modularity 17

Fig. 1.11. Tasks during composition from top to bottom: 1) parameterization, 2)
parameterization and adaptation to interfaces, 3) parameterization and connec-
tion with adaptation, and 4) parameterization, connection, adaptation, and gluing.

18 = 1 How Can Invasive Software Composition Help You

L LA
(2]} 3 oo
2] 2] (22

Components with Hooks

Invasive
Software
Composition
Composition Operators
System Constructed with an
| Invasive Architecture

Composition Recipe

Fig. 1.12. The global picture of invasive software composition. Components are
grayboxes. Composers glue components, modify them at hooks, and integrate
them into each other.

1.5 Requirements for Composition

The previous sections raised some questions that are important to an-
swer for future composition systems. These questions lead to the following
composition requirements (Fig. 1.10), to be detailed in Chap. 2. The figure
groups them into three categories, requirements of the component model
(what should a component look like?), requirements of the composition
technique (how should components be composed?), and requirements of
the composition language (how is a system composed?).

Component model The following requirements should hold for a compo-
nent model of a composition system.

Modularity. Building software is expensive. We would like to reduce the
costs and shorten the time to market. Building software from prefabri-
cated components off-the-shelf is attractive, since components can be
reused in several, if not many, systems. But what should the interfaces
of a module look like? '

Parameterizability. Often components need to be parameterized before
they can be reused in an application. However, standard parameteri-
zation mechanisms are restricted to type parameters in languages with
generic classes. Can we generalize these?

1.5 Requirements for Composition 19

Conformance to Standards. Components should conform to standards.
They guarantee a better fit of components during composition and
lower the learning curve for component-based development.

Composition Technique The following should hold for the basic composi-
tion technique of a composition system.

Connection. Types of parameters, protocols, and assertions should be
adapted to each other. For this, a component system should provide
adaptation and gluing (Fig. 1.11). Adaptation makes a component fit
to an interface. Then the component is better prepared for reuse and
can be plugged together with other components. Gluing mediates be-
tween specific components. Often, a component system generates glue
code that maps component protocols specifically to each other. And
this increases reuse.

Extensibility. Often, software is not built for change. Instead, it should be
easy to extend existing systems with new functionality, new parts, and
new nonfunctional qualities. Such updates should be done automati-
cally, i.e., without editing old parts of the system.

Aspect Separation. In analogy to building architectures, components
should not only be composed in a blackbox manner. Instead, different
functional and nonfunctional aspects should be distinguished.

Scalability. Connections and other compositions should scale in binding
time and technique.

Metamodeling. For components to be adapted and modified during com-
position, the composition needs to have a model of the components.
If composition language and component language coincide, such a
model is a metamodel.

Composition Language Besides a component model and a composition
technique, a component system should provide a composition language.

Product-Consistency Support. A composition language should help to
ensure quality features of software systems.

Software-Process Support. The language should support the
composition-based software construction process. The language
should be expressive enough to express variants and versions of prod-
uct lines, and should be powerful enough to describe large systems.
Additionally, the language should be easy to understand.

Metacomposition Support. Asthe composition recipes can grow with the
system, the language itself should be based on composition.

20 1 How Can Invasive Software Composition Help You
1.6 Epilogue
1.6.1 Remarks

What should be understood as a component is pretty much debated in
the literature. Components appear on different granularity levels, deal with
different stakeholder requirements, or are simply design concepts. In this
book, we will assume that a component is a software part that must be
composed with other components in a system composition to form a final
system. Hence, a software component is simply a software item that is sub-
ject to software composition. It may appear on different levels of granular-
ity, may be a design or implementation item, and may be in source or bi-
nary form. Anda system composition is a software build process by which
components are composed for software products. On top of this pretty
general definition, specific component models can be defined. A compo-
nent model summarizes requirements, features, and interfaces of a set of
components off-the-shelf.

In some systems, a component is understood to be a runtime object.

Although we refer to components as static items, invasive composition can
also be defined similarly for runtime components (Sect. 4.5.1). Focusing on
the static scenario has advantages: firstly, it permits a static type check of
the system composition, and secondly, it produces more efficient systems.

1.6.2 Goals of Invasive Software Composition

The quality of life is just like that: it cannot be made, but only gener-
ated. In our time we have come to think of works of art as "creations",
conceived in the minds of their creators.
The quality without a name cannot be made like this.

C. Alexander [Alexander, 1979]

The following chapters intend to show that invasive software compo-
sition is a new technology for improving reuse in the construction of
software systems (Fig. 1.12). Invasive composition fulfills many of the
requirements from the previous section. Hence, it provides a basis for
second-generation component systems, composition systems. Along with
the technique, the Compost system will be described. It supports a gray-
box component model, an invasive composition technique, and Java as the
composition language.

Was [Alexander, 1979] right in claiming that beauty cannot be invented,
but only be generated, i.e., composed from basic patterns? For the field
of software, judge yourself, after you have seen the concepts of invasive
software composition.

