
5

Web Services

In previous chapters we have discussed the architecture of information systems
(Chapter 1), middleware and enterprise application integration (Chapters 2
and 3), and the basics of Web technology (Chapter 4). These chapters have
shown a chronological evolution of the technology used for EAI and for build-
ing distributed applications. All these technologies have been rather successful
in addressing several of the problems created by application integration. The
success, however, has been restricted to certain settings (e.g., LAN-based sys-
tems, homogeneous middleware platforms, etc.). True application integration
requires tools that go one step beyond what conventional middleware and
EAI platforms have achieved. Web services and the associated technology are
being leveraged to take such a step.

To establish the context for the rest of the book, we provide in this chapter
an introduction to Web services. We look at Web services as a way to expose
the functionality of an information system and make it available through stan-
dard Web technologies. The use of standard technologies reduces heterogene-
ity, and is therefore key to facilitating application integration. Furthermore,
we show that Web services naturally enable new computing paradigms and
architectures, and are specifically geared toward service-oriented computing,
a paradigm often touted in the past but never quite realized.

This chapter is structured along a continuum that goes from the needs
that motivate the introduction of Web services to the solutions that Web ser-
vices provide. We begin by showing the limitations of conventional technology
in tackling some of the application integration challenges, thereby raising the
need for a novel technology–a need addressed by Web services. We then de-
scribe the essential concepts behind Web services and how they tackle the
application integration problem (Section 5.1). Next, we provide an overview
of Web services middleware, focusing in particular on the functionality that
this middleware must provide to support the development of distributed appli-
cations based on Web services (Section 5.2). Finally, we discuss Web services
architectures (Section 5.3).



124 5 Web Services

5.1 Web Services and their Approach to Distributed
Computing

Before describing the problems Web services try to solve and how they address
them, we define what Web services are.

5.1.1 Defining Web Services

The term Web services is used very often nowadays, although not always with
the same meaning. Nevertheless, the underlying concepts and technologies are
to a large extent independent of how they may be interpreted.

Existing definitions range from the very generic and all-inclusive to the
very specific and restrictive. Often, a Web service is seen as an application
accessible to other applications over the Web (see e.g., [72, 133]). This is a
very open definition, under which just about anything that has a URL is a
Web service. It can, for instance, include a CGI script. It can also refer to a
program accessible over the Web with a stable API, published with additional
descriptive information on some service directory.

A more precise definition is provided by the UDDI consortium, which char-
acterizes Web services as “self-contained, modular business applications that
have open, Internet-oriented, standards-based interfaces” [203]. This defini-
tion is more detailed, placing the emphasis on the need for being compliant
with Internet standards. In addition, it requires the service to be open, which
essentially means that it has a published interface that can be invoked across
the Internet. In spite of this clarification, the definition is still not precise
enough. For instance, it is not clear what it is meant by a modular, self-
contained business application.

A step further in refining the definition of Web services is the one pro-
vided by the World Wide Web consortium (W3C), and specifically the group
involved in the Web Service Activity: “a software application identified by a
URI, whose interfaces and bindings are capable of being defined, described, and
discovered as XML artifacts. A Web service supports direct interactions with
other software agents using XML-based messages exchanged via Internet-based
protocols” [212].

The W3C definition is quite accurate and also hints at how Web services
should work. The definition stresses that Web services should be capable of
being “defined, described, and discovered,” thereby clarifying the meaning
of “accessible” and making more concrete the notion of “Internet-oriented,
standards-based interfaces.” It also states that Web services should be “ser-
vices” similar to those in conventional middleware. Not only they should be
“up and running,” but they should be described and advertised so that it is
possible to write clients that bind and interact with them. In other words, Web
services are components that can be integrated into more complex distributed
applications. This interpretation is very much in line with the perspective we



5.1 Web Services and their Approach to Distributed Computing 125

take in this book, and explains why we place so much emphasis on the need to
understand middleware as the first step toward understanding Web services.

The W3C also states that XML is part of the solution. Indeed, XML is
so popular and widely used today that, just like HTTP and Web servers, it
can be considered as being part of Web technology. There is little doubt that
XML will be the data format used for many Web-based interactions.

Note that even more specific definitions exist. For example, in the online
technical dictionary Webopedia, a Web service is defined as “a standardized
way of integrating Web-based applications using the XML, SOAP, WSDL, and
UDDI open standards over an Internet protocol backbone. XML is used to tag
the data, SOAP is used to transfer the data, WSDL is used for describing
the services available, and UDDI is used for listing what services are avail-
able” [110]. Specific standards that could be used for performing binding and
for interacting with a Web service are mentioned here. These are the lead-
ing standards today in Web services. As a matter of fact, many applications
that are “made accessible to other applications” do so through SOAP, WSDL,
UDDI, and other Web standards. However, these standards do not constitute
the essence of Web services technology: the problems underlying Web services
are the same regardless of the standards used. This is why, keeping the above
observations in mind, we can adopt the W3C definition and proceed toward
detailing what Web services really are and what they imply.

5.1.2 Motivating the Need for B2B Integration

Before describing in more detail what Web services are about, we introduce
an example that shows why the middleware and EAI platforms discussed
in the previous chapters are not sufficient in certain application integration
scenarios. The limitations of these systems are what led to the current efforts
around Web services as well as the shift to a service-oriented paradigm in
application development.

Consider again the supply chain scenario introduced in Chapter 3. When
describing the problem behind supply chain automation, we observed that the
main issues were the integration of several autonomous and heterogeneous sys-
tems and the automation of business processes spanning across these systems.
Until very recently, such processes were executed manually for the most part.
The advent of EAI platforms made it possible to automate most of such pro-
cesses.

In that example, we assumed that all the components belonged to one
company. Consider now the same problem in the general case, where the
systems are not all running within a company but are instead managed and
operated by different companies. Specifically, consider a procurement scenario,
where a company (acting as a customer) needs to order goods from another
company (a supplier). The supplier then processes the order and delivers the
goods, either directly (if it has goods in stock) or by requesting that the goods
be shipped by a third party (in this example, a warehouse that serves several



126 5 Web Services

suppliers and delivers goods upon requests). Once the order is processed, the
customer makes the payment.

web 

server

internal 

infrastructure

suppliercustomer

warehouse

web 

server

internal 

infrastructure

internal 

infrastructure

internal procurement
requests

B2B interactions 
occur by accessing 
Web pages, filling 
Web forms, or via 
email.

Fig. 5.1. Very often, integration across companies is still done manually

For all the parties involved (customers, suppliers, and the warehouse), it
would be very beneficial if the whole procurement process was automated, all
the way from requesting quotes to processing payments. Today, in all but very
few cases, even if business processes within a company are automated, business
processes across companies are carried out manually. This is exemplified in
Figure 5.1, which emphasizes the fact that the “integration” is performed
manually by means of employees who access the internal systems (for example
to retrieve the list of products to be ordered) and then communicate with
other companies by filling out Web forms (e.g., to order the goods) or via
email or fax. The attentive reader will observe that Figure 5.1 is very similar
to Figure 3.1 of Section 3.1, the only difference being that in this case we
are focusing on a B2B scenario rather than an EAI one. The problems are
similar and the need for automation is driven by the same goals, such as lower
costs, streamlined and more efficient processes, ability to monitor and track
process executions, and ability to detect and manage exceptions. Yet, while
the problems are the same, the solution needed in this case is different. In
fact, none of the technologies that we have described so far either for EAI or



5.1 Web Services and their Approach to Distributed Computing 127

for wide area integration have been able to fully address the challenges posed
by the above scenario and become widely adopted.

5.1.3 Limitations of Conventional Middleware in B2B Integration

There are several reasons why conventional middleware platforms cannot be
used in this setting. The first one is that in cross-organizational interactions
there is no obvious place where to put the middleware. The basic idea for
conventional middleware was for it to reside between the applications to be
integrated and to mediate their interactions. While the applications were dis-
tributed, the middleware was centralized (at least logically), and it was con-
trolled by a single company. Adopting the same solution in this context would
require that the customer, supplier, and warehouse agree on using and coop-
eratively managing a certain middleware platform (e.g., a specific message
broker, a specific workflow system, and a specific name and directory server)
and on implementing a “global workflow” that drives the whole business pro-
cess. This approach is presented in Figure 5.2, and is analogous to Figure 3.10
of Section 3.3, which described how EAI middleware can integrate applica-
tions.

internal 
infrastructure

suppliercustomer

warehouse

internal 
infrastructure

internal 
infrastructure

internal procurement
requests

message broker

WfMS adapter

WfMS a “global” workflow is executed 
here

the combination of message 
broker and adapters enables 
interoperability

third party

customer’s 
adapters

warehouse’s 
adapters

supplier’s 
adapters

Fig. 5.2. B2B integration performed in the same way EAI is done. While this is
conceptually possible, it rarely happens in practice due to lack of trust, autonomy,
and confidentiality reasons



128 5 Web Services

While this approach is feasible in some restricted settings (e.g., a very small
number of companies that have frequent, close cooperation), in the general
case it turns out to be an unlikely proposition. In fact, the lack of trust
between companies, the autonomy that each company wants to preserve, and
the confidentiality of the business transactions play against the idea of having
a centralized middleware hosted by one of the participating companies or by
a third party. Each company wants to control its own business operations and
how they are carried out, and does not want its business transaction data to
be seen by anybody other than its intended recipient.

An alternative solution for a company would be to address the problem in
a point-to-point fashion, by separately tackling the integration problem with
each of the partners. This means that whenever two parties (the customer and
the supplier) want to communicate, they agree on using certain middleware
protocols and infrastructure. For example, they can both deploy a message
broker and use it to send messages to each other (Figure 5.3), as long as this
message broker provides the necessary support for wide area integration (e.g.,
firewall traversal, discussed in the previous chapter). We have already seen in
Section 3.2.5 how two or more applications sitting on top of two distinct but
homogeneous message brokers can communicate. With this approach, there is
no third party involved and confidentiality is preserved, as only the intended
recipient can see the business transactions.

internal 
infrastructure

suppliercustomer

internal 
infrastructure

customer’s 
adapters

supplier’s 
adapters

message broker 
XYZ

message broker 
XYZ

Fig. 5.3. Point-to-point integration across companies

However, since a company typically interacts with many different partners
and each partner could require the use of a different middleware platform,
this leads to a scenario where a company has to support many heterogeneous
middleware systems. The result is that each company must integrate these
different middleware systems (not to mention purchasing and maintaining
them), which were instead intended to facilitate the integration (Figure 5.4).



5.1 Web Services and their Approach to Distributed Computing 129

internal infrastructure

supplier

warehouse

middleware for 
supplier-customer 

interaction

middleware for 
supplier-warehouse 

interaction

middleware for 
supplier-XYZ 
interaction

m
id
d
le
w
a
re

 f
or

 i
nt

e
g
ra

ti
ng

 
th

e
 m

id
d
le
w
a
re

customer

another party (XYZ)

yet another party 
(ABC)

middleware for 
supplier-ABC 
interaction

supplier’s 
adapters

supplier’s 
adapters

supplier’s 
adapters

Fig. 5.4. The lack of a central middleware platform means that interactions are
managed in a point-to-point manner, possibly using different middleware platforms
to communicate with different parties

Another reason that makes conventional middleware unsuitable is that
many assumptions that were valid in EAI do not hold here. One such difference
is that EAI interactions are typically short lived, while cross-organizational
interactions last longer, and sometimes much longer. Rather than calling a
procedure, a method, or a function, interactions involve coarse-grained opera-
tions lasting possibly for hours or days. As an example of the delays involved,
the supplier may confirm that the order has been processed only after the re-
quested goods have been physically picked up by a shipping company. Such de-
lays explain why cross-organizational interactions are mostly implemented as
asynchronous exchanges. However, asynchronous interactions introduce their
own problems. For example, consider the problem of providing transactional
properties to the interaction between two or more parties. If the operations are
long-lasting, then conventional protocols such as 2PC are not applicable, as
they would lock resources for long period of time and therefore severely limit
the possibility of executing concurrent operations. Yet, this are the protocols
supported by conventional middleware and EAI tools.

Furthermore, while EAI interactions occur in the same trust domain, cross-
organizational interactions occur across trust domains, and there is an implicit
lack of trust between interacting entities. Not only does this require authen-
tication and encryption of messages, but it also implies that companies will
severely restrict what clients can do on their system. Referring again to the
transactional example, service providers will want to control and limit the re-



130 5 Web Services

sources that can be locked, and are certainly not going to give up the control
of the locking mechanisms to a possibly malicious outside entity.

5.1.4 B2B Integration before Web Services

The limitations just described arise from the fundamental assumption behind
conventional middleware that the middleware platform can be centralized and
is trusted by the components to be integrated. This is not the case in B2B ex-
changes. In addition, the lack of standardization across middleware platforms
makes point-to-point solutions (i.e., solutions tailored to concrete middleware
platforms) costly to realize in practice.

Note that this does not mean that B2B integration has never been tech-
nically possible or was never achieved. Indeed, there are several successful
examples of cross-enterprise integration. Some of them are represented by
broker companies such as Ariba or CommerceOne. The purpose of these bro-
kers is to facilitate integration by performing functions analogous to those
of centralized EAI middleware, from supporting binding to routing messages
among the services provided by the different companies. However, the lack of
support by major software vendors for the formats and protocols defined by
these brokers and the trust-related problems that undermine any centralized
solution have resulted in limited acceptance for these solutions.

Other successful examples of B2B integration are systems based on EDI-
FACT (discussed in the previous chapter). For instance, the US retailer Wal-
Mart was able to automate some of its cross-enterprise processes, in particular
with respect to co-managing the inventory with its suppliers, setting stock lev-
els, and automatically ordering supplies when in-stock levels were low.

In spite of the success stories, standards like EDIFACT and systems based
on such standards have never become widely adopted for a variety of reasons.
First, designing such systems is typically an ad hoc endeavor and the result
of a one time programming effort. The lack of standards and the lack of an
appropriate infrastructure (from middleware to networks) made each one of
these systems unique in that each one of them had to implement everything
almost from scratch. In addition, the underlying hardware and communica-
tion support was very heavy-handed. In terms of networks, before the Web
appeared communication often used to take place through leased lines to ob-
tain the necessary bandwidth and security guarantees. In terms of computer
cycles, most of these systems were very heavy. As a result, such systems were
expensive to develop, almost impossible to reproduce, difficult to maintain,
and could not be adapted to new technologies. Moreover, because of the devel-
opment effort and costs involved, only large companies could afford deploying
such systems.

The Internet alleviated some of these design problems by allowing design-
ers to replace leased lines with a network that was pervasive and more cost-
efficient. Nevertheless, the lack of standardization at the system and commu-
nication protocol levels still remained a significant hurdle in the path toward



5.1 Web Services and their Approach to Distributed Computing 131

reducing the cost and complexity of building and deploying such systems.
This problem was recognized years ago and there were many standardization
attempts but, for reasons not always entirely rational, they had only limited
success. At the core of these efforts were technologies that would allow ho-
mogeneous middleware platforms to communicate with each other (such as
Inter-ORB communication via GIOP/IIOP). These technologies can be easily
extended to act as the middleware for the Web. However, as it often happens,
these early approaches were never widely used and, in time, were obscured by
new developments.

The Web constituted an important step toward facilitating application in-
tegration. In fact, it probably was the crucial step toward systems that were
more than isolated, ad hoc efforts. The Web brought standard interaction pro-
tocols (HTTP) and data formats (XML) that were quickly adopted by many
companies, thereby creating a base for establishing a common middleware
infrastructure that reduces the heterogeneity among interfaces and systems.
However, HTTP and XML by themselves are not enough to support applica-
tion integration. They do not define interface definition languages, name and
directory services, transaction protocols, and the many other abstractions
that, as the previous chapters have shown, are crucial to facilitate integra-
tion. It is the gap between what the Web provides (HTTP, XML) and what
application integration requires that Web services are trying to fill.

5.1.5 B2B Integration with Web Services

The contribution of Web services toward resolving the limitations of conven-
tional middleware involves three main aspects: service-oriented architectures,
redesign of middleware protocols, and standardization.

Service-oriented Paradigm

Web services work on the assumption that the functionality made available
by a company will be exposed as a service. In middleware terms, a service is
a procedure, method, or object with a stable, published interface that can be
invoked by clients. The invocation, and this is very important, is made by a
program. Thus, requesting and executing a service involves a program calling
another program.

In terms of how they are used, Web services are no different from middle-
ware services, with the exception that it should be possible to invoke them
across the Web and across companies. As a consequence, Web services assume
that services are loosely-coupled, since in general they are defined, developed,
and managed by different companies. As Web services become more popular
and widely adopted, they are likely to lead to a scenario where service-oriented
architectures, advocated for many years, finally become a reality. In fact, with
Web services, designers and developers are led to think in the direction that



132 5 Web Services

“everything is a service,” and that different services are autonomous and inde-
pendent (as opposed to being, for example, two CORBA objects developed by
the same team). As we will see, this interpretation has important implications
in that it leads to decoupling applications and to making them more modular.
Therefore, individual components can be reused and aggregated more easily
and in different ways.

Note that not every service available through the Web is a Web service.
This is a common mistake that leads to quite a lot of confusion when discussing
Web services technology. There is a difference between services in the software
sense and services in the general sense, i.e., activities performed by a person
or a company on behalf of another person or company. Take as examples
bookstores, restaurants, or travel agencies. They all provide services. In some
cases, a customer might even be able to obtain such services through the Web
server of the company. Strange as it might seem at first, this is not what Web
services are about. A Web service is a software application with a published
a stable programming interface, not a set of Web pages.

Middleware Protocols

The second aspect of the Web services approach is the redesign of the mid-
dleware protocols to work in a peer-to-peer fashion and across companies.
Conventional middleware protocols, such as 2PC, were designed based on as-
sumptions that do not hold in cross-organizational interactions. For example,
they assumed a central transaction coordinator and the possibility for this
coordinator to lock resources ad libitum. As we have seen, lack of trust and
confidentiality issues often make a case against a central coordinator, and
therefore 2PC must now be redesigned to work in a fully distributed fashion
and must be extended to allow more flexibility in terms of locking resources.
Similar arguments can be made for all interaction and coordination protocols
and, in general, for many of the other properties provided by conventional mid-
dleware, such as reliability and guaranteed delivery. What was then achieved
by a centralized platform must be now redesigned in terms of protocols that
can work in a decentralized setting and across trust domains.

Standardization

The final key ingredient of the Web services recipe is standardization. In con-
ventional application integration, the presence of standards helped to address
many problems. CORBA and Java, for example, have enabled the develop-
ment of portable applications, have fostered the production of low cost mid-
dleware tools, and have considerably reduced the learning curves due to the
widespread adoption of common models and abstractions. Whenever stan-
dardization has failed or proved to be inapplicable due to the presence of
legacy systems, the complexity and cost of the middleware has remained quite
high and the effectiveness rather low. For Web services, where the interactions



5.1 Web Services and their Approach to Distributed Computing 133

occur across companies and on a global scale, standardization is not only ben-
eficial, but a necessity. Having a service-oriented architecture and redefining
the middleware protocols is not sufficient to address the application integra-
tion problem in a general way, unless these languages and protocols become
standardized and widely adopted.

This problem was recognized by major software vendors that have recently
showed an unprecedented commitment to standardization. Many standardiza-
tion efforts in Web services have been initially driven by a small, focused group
of companies, and have then been adopted by different organizations such as
OASIS (Organization for the Advancement of Structured Standards) or the
W3C. These consortia attempt to standardize all the different aspects of the
interaction, ranging from interface definition languages to message formats
and interaction protocols. We will see many examples of these standards in
the following chapters.

This need for standardization is also why we speak today about Web ser-
vices. The Web has itself been characterized by a high degree of standardiza-
tion, which has allowed it to function and prosper without centralized coor-
dination (with the exception of the Domain Name System or DNS) and has
enabled its expansion at an unthinkable rate. Web technologies are now widely
accepted and are very successful in enabling the interaction between humans
and applications (through Web browsers and Web servers). It is therefore nat-
ural for this novel application integration technology to use the Web as its
basic foundation and to try to proceed along the same, successful path taken
by the Web in terms of standardization.

Observe that the commitment to standardization does not necessarily
mean that there will be only one specification for each aspect of the interac-
tion. As we will see throughout the following chapters, sometimes competing
and conflicting specifications appear, possibly developed at the same time by
different groups or as a result of slightly different needs. This is natural in the
early days of a new technology, and does not severely limit its adoption as
long as the number of such competing specifications remains relatively small,
especially if they eventually converge into one commonly adopted specifica-
tion. Indeed, the need for a unique solution is already bringing some order in
the initially fragmented Web services landscape, and it is likely that in the
end a limited number of specifications will emerge as winners.

Figure 5.5 summarizes this discussion on how Web services address the
B2B integration problem. The figure shows that each party exposes its in-
ternal operations as (Web) services, which therefore act as entry points to
the local information systems. The interactions between companies occur in
a peer-to-peer fashion (although we will see later in this chapter that some
middleware components can indeed be centralized) and take place through
standardized protocols, which are designed to provide the interaction with
the same properties that conventional middleware provided, but without the
presence of a central middleware platform. It will be up to the Web services



134 5 Web Services

middleware, as we will see, to facilitate the execution of such protocols and
hide from the programmer the complexities intrinsic in application integration
problems.

internal 

infrastructure

supplier

customer

warehouse

internal 

infrastructure

internal 

infrastructure

internal procurement
requests

internal functionality made 
available as a service

Web 

service

Web 

service

Web 

service

interactions based on protocols 
redesigned for peer to peer and 
B2B settings

languages and protocols 
standardized, eliminating need for 
many different middleware 
infrastructures (need only the 
Web services middleware)

Fig. 5.5. Service-oriented architectures, redesigned (peer-to-peer) middleware pro-
tocols, and standardization are the main ingredients of the solution offered by Web
services

5.1.6 Web services and EAI

Web services and their technologies are being developed with one specific use
in mind: that of being entry points to the local information system. Thus,
the primary use of a Web service is that of exposing (through the Web ser-
vice interface) the functionality performed by internal systems and making
it discoverable and accessible through the Web in a controlled manner. Web
services are therefore analogous to sophisticated wrappers that encapsulate
one or more applications by providing a unique interface and a Web access
(Figure 5.6). Of course this is a simplification and the reality is a little more
complex, but this interpretation helps in clarifying how Web services are used.

We have already encountered and discussed wrappers and adapters in the
context of EAI. In particular, we have observed that wrapping components
and hiding heterogeneity is the key to enabling application integration. From
the perspective of the clients, the wrappers are actually the components to



5.1 Web Services and their Approach to Distributed Computing 135

internal 
service 

middleware

client

internal 
service 

Web 

service

Web 

service

Web 

service

Web 

service

Web 

service

Web 

service

Company A (provider) 

w
id

e
 a

re
a
 n

e
tw

o
rk

 (
I
n
te

rn
e
t)

internal 
service 

middleware

internal 
service 

Company B (client)

Fig. 5.6. Web services provide an entry point for accessing local services

be integrated, as they are what the integrating application can see of the
underlying system.

Having homogeneous components considerably reduces the difficulties of
integration. This is also true for Web services, which are indeed wrappers and
are homogeneous, in that they interoperate through Web standards. As such,
they constitute the base on which we can construct middleware supporting ap-
plication integration on the Web, by allowing designers to avoid the problems
generated by the lack of standardization typical of previous approaches.

This is an interesting aspect of Web services in spite of the fact that most
of the literature on the subject is strongly biased toward B2B applications and
that B2B integration is what generated the need for Web services. Indeed, Web
services do not need to be accessed through the Internet. It is perfectly possible
to make Web services available to clients residing on a local LAN (Figure 5.7).
At the time of this writing, many Web services are used in this context, i.e.,
intra-company application integration rather than inter-company exchanges.
This trend will be reinforced as software vendors enhance and extend their
support for Web services. In fact, if software applications come out of the box
with a Web services interface, then their integration is considerably simplified,
as all components are homogeneous. Comparing Figure 5.7 with Figure 3.6
of Section 3.2.5, both related to EAI, the reader will notice that there is no
need for adapters in this case. Nevertheless, the challenge and ultimate goal
of Web services is inter-company interactions. Existing efforts around Web
services go in this direction although this is clearly a long-term goal.



136 5 Web Services

DBMS 
applications

Web service-enabled broker

sendmail
application

SmartQuotation SmartForecasting XYZ

integrating application 
(contains the composition logic)

assumes all back-end 
systems are accessible 
as Web services

Company A (or a LAN within Company A) 

Fig. 5.7. Web services can be also used within the enterprise or even a LAN, to
integrate enterprise applications

5.2 Web Services Technologies

After describing what Web services are, we now go into more detail over the
different aspects addressed by Web services.

5.2.1 Service Description

Since the Web services approach is centered on the notion of “service”, one of
the first issues to be addressed by its technology is what exactly a service is
and how it can be described. Service description in conventional middleware
is based on interfaces and interface definition languages. In that context, IDL
specifications are needed to automatically generate stubs and to constitute
the basis for dynamic binding. The semantics of the different operations, the
order in which they should be invoked, and other (possibly non-functional)
properties of the services are assumed to be known in advance by the pro-
grammer developing the clients. This is reasonable, since clients and services
are often developed by the same team. In addition, the middleware platform
defines and constrains many aspects of the service description and binding
process that are therefore implicit, and they do not need to be specified as
part of the service description. In Web services and B2B interactions, such
implicit context is missing. Therefore, service descriptions must be richer and
more detailed, covering aspects beyond the mere service interface.

The stack of Figure 5.8 illustrates the different aspects involved in Web
services description. The figure essentially shows a stack of languages, where



5.2 Web Services Technologies 137

elements at higher levels utilize or further qualify the descriptions provided
by elements at the lower levels.

properties and semantics

interfaces

common base language 

vertical standards

business protocols

d
ir
e
c
t
o
r
ie
s

Fig. 5.8. Service description and discovery stack

• Common base language. The first problem to be addressed is the defi-
nition of a common meta-language that can be used as the basis for speci-
fying all the languages necessary to describe the different aspects of a ser-
vice. XML is used for this purpose, both because it is a widely adopted and
commonly accepted standard and because it has a syntax flexible enough
to enable the definition of service description languages and protocols.

• Interfaces. Interface definition languages are at the base of any service-
oriented paradigm. In Web services, interface definitions resemble CORBA-
like IDLs, although there are a few differences between the two. The avail-
ability of different interaction modes in the interface definition language
and the XML schema-driven type system are two of them. In addition,
since (as mentioned above) Web services lack an implicit context (often
there is no centralized middleware), their description needs to be more
complete. For example, it is necessary to specify the address (URI) of the
service and the transport protocol (e.g., HTTP) to use when invoking the
service. With this information, it is possible to construct a client that in-
vokes the operations offered by a Web service. The dominant proposal for
IDLs in this area is the Web Services Description Language (WSDL) [49].

• Business protocols. A Web service often offers a number of operations
that clients must invoke in a certain order to achieve their goals. In the
procurement example, the customer will have to first request a quote,
then order the goods, and finally make a payment. Such exchanges be-
tween clients and Web services are called conversations. Service providers
typically want to impose rules that govern the conversation, stating which
conversations are valid and understood by the service. This set of rules is
specified as part of the so called business protocol supported by the service
(where the word “business” is used to differentiate it from a communi-
cation protocol). Business protocols are examples of why simple interface



138 5 Web Services

description is not enough in Web services. In fact, to completely describe
a service, it is necessary to specify not only its interface but also the busi-
ness protocols that the service supports. In this regard, there are several
proposals to standardize the languages for defining business protocols (as
opposed to standardizing the protocols, discussed next). Examples are the
Web Services Conversation Language (WSCL) [14] and the Business Pro-
cess Execution Language for Web Services (BPEL) [7]. This is nevertheless
a rather immature area in terms of standardization at the time of writing.

• Properties and semantics. Most conventional middleware platforms
do not include anything but functional interfaces in the description of a
service. Again, this is because the system context allows designers to in-
fer other information needed to bind to a service, and because services are
tightly coupled. Web services provide additional layers of information to fa-
cilitate binding in autonomous and loosely-coupled settings, where the ser-
vice description is all that clients have at their disposal to decide whether
to use a service or not. For instance, this may include non-functional prop-
erties such as the cost or quality of a service, or a textual description of
the service such as the return policy when making a purchase. This is in-
formation that is crucial for using the service but is not part of what we
traditionally understand as the interface of the service. In Web services,
such information can be attached to the description of a service by using
the Universal Description, Discovery, and Integration (UDDI) [20] specifi-
cation. This specification describes how to organize the information about
a Web service and how to build repositories where such information can
be registered and queried.

• Verticals. All the layers explained so far are generic. They standardize
neither the contents of the services nor their semantics (e.g., the meaning of
a certain parameter or the effect of a certain operation). Vertical standards
define specific interfaces, protocols, properties, and semantics that services
offered in certain application domains should support. For example, Roset-
taNet [171] describes commercial exchanges in the IT world, standardizing
all the aspects described above. These vertical standards complement the
previous layers by tailoring them to concrete applications, further facil-
itating the use of standard tools for driving the exchanges. Specifically,
they enable the development of client applications that can interact in a
meaningful manner with any Web service that is compliant with a certain
vertical standard.

5.2.2 Service Discovery

Once services have been properly described, these descriptions must be made
available to those interested in using them. For this purpose, service descrip-
tions are stored in a service directory (represented by the vertical pillar in
Figure 5.8). These directories allow service designers to register new services



5.2 Web Services Technologies 139

and allow service users to search for and locate services. Service discovery can
be done both at design-time, by browsing the directory and identifying the
most relevant services, and at run-time, using dynamic binding techniques.
These directories can be hosted and managed by a trusted entity (centralized
approach) or otherwise each company can host and manage a directory ser-
vice (peer-to-peer approach). In both cases, APIs and protocols are needed
for clients to interact with the directory service or for the local directory ser-
vices to exchange information among themselves in a peer-to-peer fashion.
The above-mentioned UDDI specification defines standard APIs for publish-
ing and discovering information into service directories. It also describes how
such directories should work.

5.2.3 Service Interactions

Service description and discovery are concerned with static and dynamic bind-
ing. Once the binding problem has been addressed, a set of abstractions and
tools that enable interactions among Web services is needed. In Web services,
these abstractions take the form of a set of standards that address different
aspects of the interactions at different levels. Figure 5.9 summarizes these dif-
ferent aspects by presenting them as a protocol stack since, as we will see,
each aspect is characterized by one or more protocols defined on top of the
lower layers. Unlike the verticals discussed in the previous section, these pro-
tocols are useful to any Web service and are therefore implemented by the
Web services middleware. As such, they are transparent (for the most part)
to the developers, just as the interactions established internally between two
CORBA objects are hidden from the programmers, who can then focus on
the business logic.

middleware properties (horizontal protocols)

protocol infrastructure (meta-protocols)

basic and secure messaging

transport

Fig. 5.9. Service interaction stack

The different types of protocols that compose the service interaction stack
are:

• Transport. From the point of view of Web services, the communication
network is hidden behind a transport protocol. Web services consider the
use of a wide range of transport protocols, the most common one being
HTTP.



140 5 Web Services

• Messaging. Once a transport protocol is in place, there needs to be a
standard way to format and package the information to be exchanged. In
Web services, this role is played by the Simple Object Access Protocol
(SOAP) [32]. SOAP does not detail what properties are associated with
the exchange (e.g., whether it is transactional or encrypted). It simply
specifies a generic message template to add to the top of the application
data. Additional specifications standardize the way to use SOAP to im-
plement particular features. For instance,WS-Security [13] describes how
to implement secure exchanges with SOAP.

• Protocol infrastructure (meta-protocols). We have emphasized above
that Web services are characterized not only by an interface but also by
the business protocols they comply with. While business protocols are ap-
plication specific, mcuh of the software required to support such protocols
can be implemented as generic infrastructure components. For example,
the infrastructure can maintain the state of the conversation between a
client and a service, associate messages to the appropriate conversation,
or verify that a message exchange occurs in accordance to the rules de-
fined by the protocols. Part of the task of the infrastructure is also the
execution of meta-protocols, which are protocols whose purpose is to fa-
cilitate and coordinate the execution of business protocols. For example,
before the actual interaction can begin, clients and services need to agree
on what protocol should be executed, who is coordinating the protocol exe-
cution, and how protocol execution identifiers are embedded into messages
to denote that a certain message exchange is occurring in the context of a
protocol. WS-Coordination [41] is a specification that tries to standardize
these meta-protocols and the way WSDL and SOAP should be used for
conveying information relevant to the execution of a protocol.

• Middleware (horizontal) protocols. Ideally, the Web service middle-
ware should provide the same properties as conventional middleware (e.g.,
reliability and transactions), as these are likely to be useful in this con-
text as well. Since Web services and their supporting infrastructure are
distributed in nature, middleware properties that go beyond basic com-
munication are achieved by means of standardized peer-to-peer protocols,
called horizontal since they are generally applicable to many Web services.
For example, reliability and transactions require the execution of proto-
cols (e.g., 2PC) among the interacting entities. Just like business protocols,
horizontal ones can be supported by the meta-protocols described above.
However, they are likely to be hidden from the Web service developers
and users, and to be entirely managed by the infrastructure. This is why
we do not list them as part of the service description stack, but as part
of the interaction stack: they are not used to describe a service, but to
provide higher-level properties to any sort of interaction. The first pro-
tocol of this kind that has been defined is WS-Transaction [42], which
builds upon WS-Coordination to define how to implement transactional
properties when dealing with Web services.



5.3 Web Services Architecture 141

5.2.4 Combining Web Services: Composition

A Web service can be implemented by invoking other Web services, possibly
provided by different companies. For example, a reseller of personal computers
may offer a Web service that allows customers to request quotes and order
computers. However, the implementation of the requestQuote operation may
require the invocation of several Web services, including for example those
provided by PC manufacturers and shippers, for the latest prices and delivery
schedules. A Web service implemented by invoking other Web services is called
a composite service, while a Web service implemented by accessing the local
system is called basic service. Observe that whether a Web service is basic
or composite is irrelevant from the perspective of the clients, as it is only an
implementation issue. In fact, they are all Web services and can be described,
discovered, and invoked in the same way.

As the number of available Web services continues to grow and as the busi-
ness environment keeps demanding newer applications that have to be rolled
out according to very tight schedules, both the opportunity and the need for
service composition technologies provided as part of the Web services mid-
dleware arises. These technologies resemble those of workflow systems, and
have the potential to enable the rapid development of complex services from
basic ones, as well as to simplify the maintenance and evolution of such com-
plex services. In terms of standardization, this area is still rather immature,
although the above-mentioned BPEL seems to be emerging as the leading
service composition language.

5.3 Web Services Architecture

Now that we have described the main ingredients of Web services middleware,
we show how they can be combined in an overall architecture.

5.3.1 The Two Facets of Web Services Architectures

The discussion in the previous section has shown that there are two different
aspects to be considered when analyzing Web services architectures.

The first aspect is related to the fact that Web services are a way to expose
internal operations so that they can be invoked through the Web. Such an
implementation requires the system to be able to receive requests through
the Web and to pass them to the underlying IT system. In doing this, the
problems are analogous to those encountered in conventional middleware. We
will refer to such an infrastructure as internal middleware for Web services.
Correspondingly, we will use the term internal architecture to refer to the
organization and structure of the internal middleware (Figure 5.10).

The other facet of Web services architectures is represented by the middle-
ware infrastructure whose purpose is to integrate different Web services. We



142 5 Web Services

will refer to such an infrastructure as external middleware for Web services
(Figure 5.10). Correspondingly, we will use the term external architecture to
refer to the organization and structure of the external middleware. The ex-
ternal architecture has three main components:

• Centralized brokers. These are analogous to the centralized components
in conventional middleware that route messages and provide properties
to the interactions (such as logging, transactional guarantees, name and
directory services, and reliability). However, as we will see, in practice the
name and directory server is often the only centralized component present
in Web services architectures.

• Protocol infrastructure. This refers to the set of components that coor-
dinate the interactions among Web services and, in particular, implement
the peer-to-peer protocols (such as the horizontal protocols and the meta-
protocols discussed in the previous section) whose aim is to provide mid-
dleware properties in those B2B settings where a centralized middleware
platform cannot be put in place due to trust and privacy issues.

• Service composition infrastructure. This refers to the set of tools that
support the definition and execution of composite services.

internal 
service 

internal 
service 

Company A (provider) 

Web service interface

Access to internal systems

Web service interface

Access to internal systems

internal 

architecture

internal 

architecture

Web service

client

Company D (client)

client

Company D (client)

Web 
service

Web 
service

Web 
service

Web 
service

Web 
service

Web 
service

Web 
service

Web 
service

external 

architecture

external 

architecture

Company B (provider) 

Company C 
(provider) middleware

Fig. 5.10. Web services require an internal and an external architecture, along with
corresponding middleware support



5.3 Web Services Architecture 143

Observe that, in our definition, whether a component is part of the internal
or external architecture is independent, to a large extent, on whether the
component is deployed by the service provider or by a third party. Indeed, the
same differentiation between internal and external architectures can be made
when Web services are used for EAI, i.e., within the same company.

This distinction between internal and external architecture is crucial to
understanding much of what is happening around Web services. There are
Web services technologies and products that take care solely of the internal
architecture of a Web service. There are also technologies and products that
address only the external architecture of a Web service. Standardization ef-
forts, however, mainly revolve around the external architecture. In practice
both the internal and the external architecture must work together so that a
Web service can make its functionality accessible to clients.

5.3.2 Internal Architecture of a Web Service

The easiest way to understand the internal architecture of Web services is
to view them as yet another tier on top of the other tiers of the enterprise
architecture.

In EAI, conventional middleware is used to build multi-tier architectures.
In these architectures, individual programs or applications are hidden behind
service abstractions that are combined into higher order programs or applica-
tions by using the functionality provided by the underlying middleware. The
resulting higher order programs can in turn be hidden behind new service
abstractions and can be used as building blocks for new services. Since the
composition of service abstractions can be repeated ad libitum, the result is a
multi-tier system in which services are implemented atop other services and
basic programs. The corresponding architecture is shown in Figure 5.11.

When multiple middleware instances are stacked on top of each other, the
middleware used at each level does not need to be the same. The important
point is to have compatible service abstractions or to make them compatible
using wrappers. The middleware simply acts as the glue necessary to make
all the components in a given level interact with each other to form services
that can be used by clients or higher levels in the hierarchy. Although it is not
strictly necessary, usually the basic components of each middleware instance
reside on a LAN and the resulting application also runs on the same LAN.

Web services or, better, the technologies supporting Web services, play
the same role as conventional middleware, but on a different scale. The basis
for composition is service abstractions very similar in nature to those used
in conventional middleware, so that implementing a Web service essentially
requires an extra tier on top of the others to enable access using standard
Web services protocols. Figure 5.12 shows a typical example of such an internal
architecture. Note that the figure emphasizes the fact that the implementation
does not occur at the Web services layer, but within conventional middleware.



144 5 Web Services

resource 

manager

resource 

manager

middleware

service interface

integration logic

resource 

manager

resource 

manager

middleware

service interface

integration logic

service interface

integration logic

resource 

manager

resource 

manager

middleware

service interface

integration logic

resource 

manager

resource 

manager

middleware

service interface

integration logic

service interface

integration logic

middleware

service interface

integration logic

service interface

integration logic

other tiers

Fig. 5.11. Conventional middleware as an integration platform for basic programs
and applications

As observed earlier, Web services are just wrappers. They invoke internal
services that implement whatever application logic is needed, and then collect
the results.

Today, much of the internal middleware for Web services revolves around
packing and unpacking messages exchanged between Web services and con-
verting them into the format supported by the underlying middleware. This
is similar to how an application server maps data into HTML pages and back.
Observe that the presence of this additional tier and the need for converting
messages causes an overhead in processing the messages. This is also why
Web services tend to be used for coarse-grained operations, where the over-
head caused by the conversion is small compared to the operation execution
time.

5.3.3 External Architecture of a Web Service

Using conventional middleware platforms to implement the internal architec-
ture of a Web service is a natural step. However, what we have discussed
until now is related to wrapping internal functionality as a Web service, and
not to integrating these “wrappers.” This aspect, which was addressed by
message brokers and workflow management systems (WfMSs) in conventional
middleware, should be the job of the external middleware.



5.3 Web Services Architecture 145

Web service interface

access to internal systems

Web service interface

access to internal systems

conventional middleware  
(includes middleware services)

service interface

integration logic

service interface

integration logic

other tiers other tiers

Company A (service provider) 

clients 
from other 
companies

Conventional 
middleware provides 
lots of services (load 
balancing, transaction 
support, etc). 
Current Web services 
middleware is quite 
poor in this respect.

Web services middleware (internal)

Fig. 5.12. Basic architecture of a set of Web services implemented atop a tiered
architecture

However, as we have observed earlier, it is not clear where this middle-
ware should reside. Consider as an example the implementation of name and
directory services (this problem was already briefly discussed in Chapter 4).
In LAN-based systems, the middleware and the applications developed using
the middleware run next to each other. Thus, it is easy for the middleware to
provide the necessary brokerage for name and directory services to all parties
involved. In Web services, the parties can reside in different locations, and
there is therefore no obvious place where to locate the middleware.

There are two solutions to this problem. One is to implement the mid-
dleware as a peer-to-peer system where all participants cooperate to provide
name and directory services. Conceptually, this is a very appealing approach;
but it is not obvious how to provide the degree of reliability and trustworthi-
ness required in industrial strength systems. The other solution is to introduce
intermediaries or brokers acting as the necessary middleware. Assuming we
find a site somewhere in the network that we can trust and that is reliable
enough, the site could act as a name and directory server for Web services.
If we see such servers as part of the Web services middleware infrastructure,
it follows that the participants and (part of) the middleware may reside at
different locations.

Currently, there is only one type of Web services broker that has been
standardized and that is used in practice, although to a very limited extent:
the name and directory server. As a result, much of the existing literature on
the architecture of Web services revolves around such a broker.



146 5 Web Services

Figure 5.13 shows the external architecture of Web services as it is com-
monly understood today, with respect to centralized components [115, 83].
This representation emphasizes that abstractions and infrastructures for Web
services discovery are part of the external middleware.

Web service client

Company A (service requester) 

other tiers

Web service

other tiers

Company B (service provider) 

Company C (directory service provider) 

service descriptions

1. publish the service description2. find

3. interact

the abstraction 
and 
infrastructure 
provided by the 
registry are part 
of the external 
middleware

Web services middleware 
(internal)

Web services middleware 
(internal)

Web services middleware 
(internal)

Web services middleware 
(internal)

Fig. 5.13. External architecture of Web services

The figure describes how service discovery takes place in a Web service
environment. Ignoring the details of the protocols and the syntax underlying
the corresponding exchanges, the procedure shown is a normal mechanism for
service discovery. It could apply not just to Web services, but also to almost
any form of middleware, including the earliest versions of RPC. The idea is
for service providers to create Web services and to define an interface for
invoking them. The service provider also has to generate service descriptions
for those services. The service provider will then make its services known to the
world by publishing the corresponding service descriptions in a service registry.
The information included with the service description is used by the service
registry to catalog each service and search for it when requests from service
requesters arrive. When a service requester tries to find a service, it queries
the service registry. The service registry answers with a service description
that indicates where to locate the service and how to invoke it. The service
requester can then bind to the service provider by invoking the service. The
directory itself is very likely available as a Web service, whose address and
interface are assumed to be known a priori by the requester.

What is relevant about Figure 5.13 is not so much the mechanism it de-
scribes but the fact that it depicts service discovery as the only component of



5.3 Web Services Architecture 147

Web services middleware. Where are the transaction management features
offered by a TP monitor? Where are all the different services offered by
CORBA? In some cases they are simply not there, and in others they are
there but not in a centralized architecture. As in the case of service registry,
a centralized architecture requires brokers that provide a middleware service
to be located in well-known locations. But in some cases we do not know how
to build such brokers and still provide a sufficient degree of efficiency. In other
cases, companies simply cannot permit a broker to mediate their business
interactions.

Consider again the example of transaction management. We could use ex-
actly the same approach of conventional middleware and have a centralized
transaction broker for Web services, much in the same way the name and di-
rectory server operates. Figure 5.13 would be extended by adding a new party
corresponding to the hypothetical transaction broker, whose implementation
would resemble that of brokers in conventional middleware. Such a solution
is technically feasible but opens up many issues that are very difficult to sort
out in practice. For one, it requires a standard way of running transactions
accepted by everybody so that transactional semantics are not violated. Since
the transactional semantics at each endpoint of the transaction are dictated
by the underlying middleware platform, this amounts to standardizing trans-
actional interactions across middleware tools. There are ongoing efforts to do
just that [42] but they have just started and it would be quite some time
before middleware platforms follow a common transactional interface.

A much more important constraint is that this approach assumes that
all participants trust the broker. Except in restricted settings, this is highly
improbable. There is a big difference between consulting a service registry
provided by an external company and giving away a complete track of every
transaction run as part of the Web services of a company. Companies jealously
guard this information and it is not reasonable to assume they will rely on
some external system to keep track of it. Even the very basic functionality
of service registry that is available in a centralized architecture is not widely
used today, as central directories are mostly applicable in closed settings,
where there is trust among the companies acting as clients, providers, and
directory servers. This may change in the future, if trusted brokers appear
that can play a role similar to that played by companies like Yahoo! or Lycos
for online shopping.

An alternative solution is to implement our hypothetical transaction bro-
ker as a peer-to-peer system. The idea here is that each service requester will
have its own transaction manager. When the service requester invokes Web
services in a transactional manner, its own transaction manager becomes re-
sponsible for orchestrating the execution so that the transactional semantics
are preserved. As in the centralized solution, this also requires standardized
transactional interaction [42]. However, the functionality provided by this so-
lution will likely be a subset of that provided by conventional middleware
systems.



148 5 Web Services

Similar arguments can be made for other components that would normally
be centralized in any external architecture. This is why middleware properties
are in general provided through peer-to-peer protocols and through an infras-
tructure that supports the execution of such protocols. Such an infrastructure
is part of the external architecture, but it is typically owned and controlled
by the service requestor and by the service provider, not by a third party
(Figure 5.14).

Web service 

client

other tiers

Web service

other tiers

Company A  
(service requester) 

Company B 
(service provider) 

internal 
middleware 

transaction 
mgmt internal 

middleware

Company C 
(directory service provider) 

service descriptions

composition 
engine

other protocol 
infrastructure

transaction 
mgmt

composition 
engine

other protocol 
infrastructure

external middleware

Fig. 5.14. External architecture of a Web service augmented with peer-to-peer
protocol execution capabilities and with service composition

Service composition tools are another ingredient of external Web service
architectures, likely to gain more importance as technology matures. We con-
sider composition as part of the external architecture since it is about the
integration of other Web services. Technically, the service composition in-
frastructure could be centralized. However, since the implementation is often
proprietary and confidential, it is likely that such an infrastructure will be
deployed by the service provider, and not by a third party (Figure 5.14).

5.4 Summary

In this chapter we have tried to clarify what Web services are and how they are
being built. We have followed the W3C definition of a Web service, described
as “a software application identified by a URI, whose interfaces and bind-
ings are capable of being defined, described, and discovered as XML artifacts.



5.4 Summary 149

A Web service supports direct interactions with other software agents using
XML-based messages exchanged via Internet-based protocols.” While this def-
inition is quite open in terms of what a Web service can be, current prac-
tice indicates that Web services are being used as sophisticated wrappers
over conventional middleware platforms. As such, they are an additional tier
that allows middleware services to be invoked as Web services. This implies
that Web services can be characterized by an internal architecture (supported
by internal middleware), defining its connection with the local information
systems, and an external architecture (supported by external middleware),
defining how Web services discover and interact with each other. The exter-
nal architecture is particularly critical in that it requires cross-organizational
interactions across the Internet, often without centralized control.

The external architecture relies on standards. These standards configure
to a large extent the current Web services landscape. In the chapter we have
outlined many of these standards and explained how they relate to each other.
In the following chapters we will describe these standards in more detail.
We will start from the basics (binding and interaction) and then proceed
to more advanced topics (and correspondingly more advanced forms of Web
services middleware) that become possible, and even necessary, once a basic
interoperability infrastructure is in place.




