
Preface

This book is concerned with the rich and fruitful interplay between the fields
of computational logic and machine learning. The intended audience is senior
undergraduates, graduate students, and researchers in either of those fields.
For those in computational logic, no previous knowledge of machine learning
is assumed and, for those in machine learning, no previous knowledge of
computational logic is assumed.

The logic used throughout the book is a higher-order one. Higher-order
logic is already heavily used in some parts of computer science, for example,
theoretical computer science, functional programming, and hardware verifica-
tion, mainly because of its great expressive power. Similar motivations apply
here as well: higher-order functions can have other functions as arguments
and this capability can be exploited to provide abstractions for knowledge
representation, methods for constructing predicates, and a foundation for
logic-based computation.

The book should be of interest to researchers in machine learning, espe-
cially those who study learning methods for structured data. Machine learn-
ing applications are becoming increasingly concerned with applications for
which the individuals that are the subject of learning have complex struc-
ture. Typical applications include text learning for the World Wide Web and
bioinformatics. Traditional methods for such applications usually involve the
extraction of features to reduce the problem to one of attribute-value learning.
The book investigates alternative approaches that involve learning directly
from an accurate representation of the complex individuals and provides a
suitable knowledge representation formalism and generalised learning algo-
rithms for this purpose. Throughout, great emphasis is placed on learning
comprehensible theories. There is no attempt at a comprehensive account
of machine learning; instead the book concentrates largely on the problem
of learning from structured data. For those readers primarily interested in
the applications to machine learning, a ‘shortest path’ through the preceding
chapters to get to this material is indicated in Chap. 1.

The book serves as an introduction for computational logicians to ma-
chine learning, a particularly interesting and important application area of
logic, and also provides a foundation for functional logic programming lan-
guages. However, it does not provide a comprehensive account of higher-order
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logic, much less computational logic, concentrating instead on those aspects
of higher-order logic that can be applied to learning.

There is also something new here for researchers in knowledge representa-
tion. The requirement of a suitable formalism for representing individuals in
machine-learning applications has led to the development of a novel class of
higher-order terms for representing such individuals. The theoretical founda-
tions of this class of terms are developed in detail. While the main application
here is to machine learning, this class has applications throughout computer
science wherever logic is used as a knowledge representation formalism.

There is a Web site for the book that can be found at
http://discus.anu.edu.au/~jwl/LogicforLearning/.
The Alkemy learning system described in the book can be obtained from
there.

I am greatly indebted to my collaborators Antony Bowers, Peter Flach,
Thomas Gärtner, Christophe Giraud-Carrier, and Kee Siong Ng over the
last six years. Without their contributions, this book would have not been
possible. Kee Siong Ng implemented Alkemy and contributed greatly to
its design. I thank Hendrik Blockeel, Luc De Raedt, Michael Hanus, Ste-
fan Kramer, Nada Lavrač, Stephen Muggleton, David Page, Ross Quinlan,
Claude Sammut, Jörg Siekmann, and Ashwin Srinivasan for technical advice
on various aspects of the material. Finally, this book builds upon a long tra-
dition of logical methods in machine learning. In this respect, I would like to
acknowledge the works of Gordon Plotkin, Ryszard Michalski, Ehud Shapiro,
Ross Quinlan, Stephen Muggleton, and Luc De Raedt that have been partic-
ularly influential.

Canberra, May 2003 John Lloyd



1. Introduction

After an outline of the book, this chapter gives a brief historical introduction
to computational logic and machine learning, and their intersection. It also
provides some motivation for the topics studied in the form of introductions
to learning and to logic.

1.1 Outline of the Book

This book is concerned with the interplay between logic and learning. It
consists of six chapters.

This chapter provides an overview of higher-order logic and its application
to learning. It is written in an informal manner. No previous knowledge of
computational logic or machine learning is assumed. Thus the section that
introduces learning does so assuming the reader has no previous knowledge of
that field. Similarly, the section that introduces logic explains the main ideas
of logic, and especially the ones that are emphasised in this book, from the
beginning. Preceding these sections is one that provides an historical context
for the material that follows.

Chapter 2 is concerned with the detailed development of the logic itself.
The logic employed is a higher-order one because this most naturally provides
the concepts needed in applications. It is based on the classical higher-order
logic of Church introduced in his simple theory of types, which is referred to
as type theory in the following. In fact, the logic presented here extends type
theory in that it is polymorphic and admits product types. The polymorphism
introduced is a simple form of parametric polymorphism. A declaration for
a polymorphic constant is understood as standing for a collection of declara-
tions for the (monomorphic) constants that can be obtained by instantiating
all parameters in the polymorphic declaration with closed types. Similarly, a
polymorphic term can be regarded as standing for a collection of (monomor-
phic) terms. The development of the logic is mainly focussed on those topics
that are needed to support its application to machine learning.

In Chap. 3, a set of terms that is suitable for representing individuals
in diverse applications is identified. The most interesting aspect of this set
of what are called basic terms is that it includes certain abstractions and
therefore is larger than is normally considered for knowledge representation.
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These abstractions allow one to model sets, multisets, and data of similar
types, in a direct way. This chapter also shows how to construct metrics and
kernels on basic terms; these are needed for metric-based and kernel-based
learning methods.

In Chap. 4, a systematic method for constructing predicates on individuals
is presented. For this purpose, particular kinds of functions, called transfor-
mations, are defined and predicates are constructed incrementally by com-
posing transformations. Each hypothesis language is specified by a predicate
rewrite system that determines those predicates that are to be admitted.
Predicate rewrite systems give users precise and explicit control over the
hypothesis language.

Chapter 5 provides a computational framework for a variety of applica-
tions, including machine learning. The approach taken here is that a declar-
ative program is an equational theory and that computation is simplification
of terms by rewriting. Thus another difference compared with the original
formulation of type theory is that the proof theory developed by Church
(and others) is modified here to give a more direct form of equational rea-
soning that is better suited to the application of the logic as a foundation
for declarative programming languages. Of particular interest is that redexes
can contain abstractions. This approach allows a uniform treatment of set
and multiset processing, as well as processing of the quantifiers.

In Chap. 6, the material developed in the book is applied to the problem of
learning comprehensible theories from structured data. The general approach
to learning involves recursive partitioning of the set of training examples by
well-chosen predicates. The resulting theories are essentially decision trees
that generally can be easily comprehended. Chapter 3 provides the knowl-
edge representation formalism for the individuals, Chap. 4 the method of
predicate construction for partitioning the training examples, and Chap. 5
the computational model for evaluating predicates applied to individuals for
the learning process. Chapter 6 also contains a description of the Alkemy

decision-tree learning system which is applied to a diverse set of learning
applications that illustrate the ideas introduced in the book.

An appendix provides some material on well-founded sets.
Each chapter has a series of exercises of varying difficulty. Some open

research problems are also given. Each chapter has bibliographical notes to
provide pointers to the original sources of results and related material.

The methods introduced here to address the problem of learning from
structured data have wide applicability throughout machine learning, be-
yond the particular focus on logical methods and comprehensibility of this
book. The reason for their wide applicability is that increasingly one has to
deal with learning problems for which the individuals that are the subject of
learning have complex structure. Such applications abound, for example, in
bioinformatics and text learning. The traditional approach usually involves
representing the individuals using the attribute-value language (that is, by a
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vector of numbers and/or constants). In contrast, the approach in this book
involves directly representing the structure of the individuals by basic terms.
Once this representation has been satisfactorily carried out, one then has
the choice of either using learning methods suitably generalised to directly
handle basic terms, as studied in this book, or else using the accurate repre-
sentation as a basis for feature extraction after which conventional learning
methods can be used. Whatever learning methods are ultimately applied, the
first stage of accurately representing the individuals in a suitably rich knowl-
edge representation language is important. For example, the detailed type
information in the representation strongly suggests the conditions that could
be used to split sets of labelled individuals and this provides the basis for
decision-tree learning algorithms. Furthermore, even if one wants to extract
features at an early stage, it is crucial to know whether the individuals under
consideration are lists or sets, for example, as the likely features differ greatly
for each of these two cases.

The issue of comprehensibility in learning also pervades the book and
contrasts with many other learning techniques, such as neural networks and
support vector machines, that do not provide comprehensible theories. Thus
the book is partly about scientific discovery – one wants to be able to show
straightforwardly why a particular theory explains some observations.

This book should be of interest to researchers in computational logic who
do not know machine learning. As the many interesting and important appli-
cations show, machine learning is an indispensable technology for achieving
the aims of artificial intelligence. For complex machine-learning applications,
logic provides a convenient and effective knowledge representation and com-
putational formalism. This book is a suitable vehicle for introducing com-
putational logicians to this exciting application area. Even for readers with
no interest in machine learning, the book provides a foundation for higher-
order computational logic that should be of interest to those who work in
functional logic programming, knowledge representation, and other parts of
computational logic.

The range of learning problems considered in this book is essentially the
same as that of inductive logic programming (ILP), a subfield of machine
learning concerned with the application of first-order logic to learning prob-
lems. However, while the starting point may have been ILP, the presentation
provided here differs from that approach, since it has resulted from a fresh
look at the foundations of ILP. In particular, the presentation here draws
upon the experience gained from working on the problem of integrating func-
tional and logic programming languages and is motivated by the attractive-
ness of the typed, higher-order approach of a typical functional programming
language, such as Haskell. With this background, it is natural to try to re-
construct ILP in a typed, higher-order context.

In this reconstruction, the first key idea is that individuals should be
represented by terms. For this idea to work, it is essential that sets, multisets,
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and similar terms be available. In higher-order logic, a set is identified with
its characteristic function, that is, a set is a predicate. Similarly, a multiset
is a mapping into the natural numbers. Certain abstractions are then used
to represent sets, multisets, and data of similar types. Higher-order logic also
provides all the machinery needed to process terms of these types.

Having represented the individuals as terms, one is then faced with the
actual learning problem: how should one learn some classification function,
for example, defined over the individuals. The key idea here, especially if one
wants to induce comprehensible theories, is to find conditions that separate
the training examples into (sufficiently) pure subsets, where ‘pure’ means
belonging to the same class. Thus one is led to the problem of finding predi-
cates that can be used to partition the training examples. The higher-order
nature of the logic can be exploited once again: predicates are constructed by
composing transformations appropriate to the application. Precise control is
exercised over the hypothesis space by specifying a system of rewrites that
is used to generate predicates. Thus the higher-order nature of the logic has
been used in two essential ways, by providing abstractions for representing
individuals and by providing composition for the construction of predicates.

Higher-order logic is undecidable in several respects: unification of terms
and checking a formula for theoremhood are both undecidable. But unifi-
cation (of higher-order terms) is not needed for the applications to either
declarative programming languages or machine learning. Also successful pro-
gramming languages such as Haskell and λProlog show that subsets of the
logic can be used efficiently. Furthermore, the use of an expressive formal-
ism like higher-order logic in machine learning does not somehow make the
learning problem harder or more complex. In fact, if anything, the reverse
is true, since the richer knowledge representation language provides a direct
representation of individuals and a perspicuous approach to predicate con-
struction. Furthermore, the complexity is in the learning problem itself, not
the knowledge representation formalism used to solve it, especially if the for-
malism provides direct representations of individuals and predicates, as is
true of the approach here.

Finally, I emphasise that a lack of knowledge of higher-order logic, even
logic itself, should not be a deterrent from reading this book as all the logic
that is needed for learning is provided here.

Shortest Path to the Machine Learning Applications

To help those readers who are primarily interested in the applications to ma-
chine learning and who would prefer to learn just enough logic to understand
those applications, I indicate a ‘shortest path’ through Chaps. 1 to 5 to get
to the material on learning in Chap. 6.

First, it is necessary to read all of the present chapter as it gives an
informal account of the material that follows. Then the following sections
from Chaps. 2 to 4 should be read: 2.1, 2.2, 2.3, 2.4 (first two pages), 2.5
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(first two pages), 3.1, 3.2, 4.1, 4.2, 4.3, and 4.4. It would even be possible to
omit all the proofs in these sections at a first reading. As a guide, the key
concepts to look for are type, type substitution, term, subterm, type weaker,
term substitution, normal term, transformation, standard predicate, regular
predicate, and predicate rewrite system. The representation of individuals
actually uses basic terms from Sect. 3.5, but substituting normal terms from
Sect. 3.2 suffices at a first reading to understand the material in Chap. 6.

Chapter 5 can be omitted at a first reading as the intuitive understanding
of computation given in the present chapter suffices to understand Chap. 6.

In addition, readers interested in metric-based learning should read
Sect. 3.6 and those in kernel-based learning should read Sect. 3.7.

The book contains a large number of rather technical results and, even
for a reader who intends to go through the entire book in detail, it is helpful
to establish in advance which of these results are the most important.

In Chap. 2, Propositions 2.5.2 and 2.5.4, which are concerned with
whether a substitution applied to a term produces a term again, are heavily
used throughout. On a similar theme, Proposition 2.4.6, is concerned with
a particular situation in which replacing a subterm of a term by another
term gives a term again. Part 2 of Proposition 2.6.4 establishes an important
property of β-reduction. Proposition 2.8.2 is a technical result that is used to
establish important properties of proofs and computations. The soundness of
the proof theory is given by Proposition 2.8.3.

In Chap. 3, Proposition 3.6.1 establishes a metric and Proposition 3.7.1
a kernel on sets of basic terms.

In Chap. 4, Propositions 4.5.3 and 4.6.10 provide important properties of
predicate rewrite systems.

Chapter 5 contains two main results. Proposition 5.1.3 shows that run-
time type checking is unnecessary and Proposition 5.1.6 establishes an im-
portant correctness property of computations.

Many proofs use structural induction because of the inductive definition
of the concepts of interest.

1.2 Setting the Scene

This section contains brief historical sketches of the fields of computational
logic and machine learning, and their intersection.

Computational Logic

Logic, of which computational logic is a subfield, is one of the oldest and
richest scientific endeavours, going back to the ancient Greeks. The original
motivation was to understand and formalise reasoning and this drove the
philosophical investigations into logic, by Aristotle, Hobbes, Leibniz, and
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Boole, for example. A landmark contribution was that of Frege in 1879 when
his Begriffsschrift – meaning something like ‘concept writing’ – was published.
While Frege’s notation is unlike anything we use today, Begriffsschrift is
essentially what is now known as first-order logic. Over the next few decades,
set theory, axiomatised in first-order logic, was employed as the foundation
of mathematics, although it had to survive various traumas such as the one
initiated by Russell’s paradox. Later, in 1931, Gödel powerfully demonstrated
the limitations of the axiomatic approach with his incompleteness theorem.
A more recent relevant development was Church’s simple theory of types,
introduced in 1940, which was partly motivated by the desire to give a typed,
higher-order foundation to mathematics.

Around 1957, computers were sufficiently widespread and powerful to
encourage researchers to attempt an age-old dream of philosophers – the au-
tomation of reasoning. After some early attempts by Gilmore, Wang, Davis,
Putnam, and others, to build automatic theorem provers, Robinson intro-
duced the resolution principle in 1963. This work had an extraordinary im-
pact and led to a flowering of research into theorem proving, so that today
many artificial intelligence systems have a theorem prover at their heart. In
the last four decades, computational logic, understood broadly as the use
of logic in computer science, has developed into a rich and fruitful field of
computer science with many interconnected subfields.

I turn now more specifically to higher-order logic. The advantages of using
a higher-order approach to computational logic have been advocated for at
least the last 30 years. First, the functional programming community has used
higher-order functions from the very beginning. The latest versions of func-
tional languages, such as Haskell98, show the power and elegance of higher-
order functions, as well as related features such as strong type systems. Of
course, the traditional foundation for functional programming languages has
been the λ-calculus, rather than a higher-order logic. However, it is possible
to regard functional programs as equational theories in a logic such as the
one introduced here and this also provides a useful semantics.

In the 1980s, higher-order programming in the logic programming commu-
nity was introduced through the language λProlog. The logical foundations
of λProlog are provided by almost exactly the logic studied in this book.
However, a different sublogic is used for λProlog programs than the equa-
tional theories proposed here. In λProlog, program statements are higher-
order hereditary Harrop formulas, a generalisation of the definite clauses used
by Prolog. The language provides an elegant use of λ-terms as data struc-
tures, meta-programming facilities, universal quantification and implications
in goals, amongst other features.

A long-term interest amongst researchers in declarative programming has
been the goal of building integrated functional logic programming languages.
Probably the best developed of these functional logic languages is the Curry
language, which is the result of an international collaboration over the last
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decade. To quote from the Curry report: “Curry is a universal programming
language aiming to amalgamate the most important declarative program-
ming paradigms, namely functional programming and logic programming.
Moreover, it also covers the most important operational principles devel-
oped in the area of integrated functional logic languages: ‘residuation’ and
‘narrowing’. Curry combines in a seamless way features from functional pro-
gramming (nested expressions, higher-order functions, lazy evaluation), logic
programming (logical variables, partial data structures, built-in search), and
concurrent programming (concurrent evaluation of expressions with synchro-
nisation on logical variables). Moreover, Curry provides additional features
in comparison to the pure languages (compared to functional programming:
search, computing with partial information; compared to logic programming:
more efficient evaluation due to the deterministic and demand-driven evalu-
ation of functions).”

There are many other outstanding examples of systems that exploit the
power of higher-order logic. For example, the HOL system is an environment
for interactive theorem proving in higher-order logic. Its most outstanding
feature is its high degree of programmability through the meta-language ML.
The system has a wide variety of uses from formalising pure mathematics
to verification of industrial hardware. In addition, there are at least a dozen
other systems related to HOL. On the theoretical side, much of the research in
theoretical computer science, especially semantics, is based on the λ-calculus
and hence is intrinsically higher order in nature.

Machine Learning

Now I turn to machine learning, which has had a similarly rich, although
very different, history. The motivating goal in machine learning is to build
computer systems that can improve their performance according to their
experience. There is good reason to want such systems: as we attempt to
build more and more complex computer systems, it becomes increasingly
difficult to plan for all the likely situations that the systems will meet in
their lifetimes. Thus it makes sense to design and implement architectures
that are flexible enough to allow computer systems to adapt their behaviour
according to the circumstances.

What is most striking about machine learning is that so many other dis-
ciplines have contributed substantially to it, and continue to do so. Indeed,
many problems of machine learning were studied in these disciplines before
machine learning came to be recognised as an independent field in the 1960s.
In no particular order, here are the main contributing disciplines.

Statisticians have long been concerned with the general problem of ex-
tracting patterns and trends from (possibly very large amounts of) data and
thus explaining what the data ‘means’. Typical problems include predicting
whether a patient, having had one heart attack, is likely to have another and
estimating the risk factors for various kinds of cancer. These problems are
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also typical machine-learning problems, so it is not so surprising that some
learning methods (decision-tree learners, for example) were developed inde-
pendently and simultaneously in both fields. More recently, the interactions
between machine-learning researchers and statisticians have been much more
synergistic.

Engineers have long been concerned with the problem of control. There
is a very close connection between adaptive control theory and what is called
reinforcement learning in machine learning. Reinforcement learning is con-
cerned with the problem of how an agent receiving percepts from an environ-
ment can learn to perform actions that will allow it to achieve its aim(s). A
typical application is training a robot to successfully negotiate the corridors
of a building. The training method involves from time to time giving the
agent rewards that are positive (if the agent has performed well) and nega-
tive (if the agent has performed badly). Over a series of training exercises,
the agent has to learn from these (delayed) rewards a policy that tells it how
to act as optimally as possible according to its perceived state of the envi-
ronment. This approach relies heavily on research in dynamic programming
and Markov decision processes developed by engineers in the 1960s.

An important input to machine learning has come from physiologists and
psychologists who have attempted to model the human brain. The work of
McCulloch and Pitts in 1943, Hebb in 1949, and Rosenblatt in 1958 on var-
ious kinds of neuron models led eventually, after a period of stagnation, to
the resurgence around 1986 of what are now usually called artificial neural
networks. These are networks of interconnected units, where the units are
mathematical idealisations of a single neuron. Like neurons, the units fire
if their input exceeds some threshold. The resurgence of these ideas in the
1980s came about because of the discovery that neural networks could be
effectively trained by a simple iterative algorithm, called backpropagation.
Today, neural networks are one of the most commonly used learning meth-
ods.

Another biologically inspired input is that of genetic algorithms that are
based loosely on evolution. In this approach, hypotheses are usually described
by bit strings (which correspond to the DNA of some species). Then the
learning process involves searching for a suitable hypothesis by starting with
some initial population of hypotheses and applying the operations of muta-
tion and crossover (which mimics sexual reproduction) to form subsequent
populations. At each step, the current hypotheses are evaluated by a fitness
function with the most fit hypotheses being selected for the next generation.
Genetic algorithms have been successfully applied to a variety of learning and
optimisation problems.

Finally, there is the influence from artificial intelligence, which from its
early days around 1956 provided researchers with a strong motivation to build
programs that could learn. An outstanding early example was the checker-
playing program of Samuels in 1959 that employed ideas similar to reinforce-
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ment learning. In the 1950s, CLS (Concept Learning System) was developed
by Hunt. This was based on the idea of recursive partitioning of the train-
ing examples and was highly influential in development of the decision-tree
systems that followed. An early motivation for this kind of learning system
was the desire to automate the knowledge acquisition task for building ex-
pert systems, as explicitly expressed by Quinlan in 1979, who developed the
ID3 system and later the C4.5 and C5.0 systems that are widely used to-
day. Another important early development was the version space concept of
Mitchell whereby the general-to-specific ordering of hypotheses was exploited
to efficiently search the hypothesis space.

Logic and Learning

So far it is not apparent where the connections between computational logic
and machine learning lie. For this, one has to go back once again to the early
philosophers. As well as studying the problem of deduction in logic (that is,
what follows from what), philosophers were also interested in the problem of
induction (that is, generalising from instances). Induction is fundamental to
an understanding of the philosophy of science, since much of science involves
discovering general laws by generalising from experimental data. Important
contributions to the study of induction were made by Bacon, Mill, Jevons,
and Peirce, for example.

With the availability of computers and the growth of artificial intelligence,
the problem of induction and especially that of building inductive systems was
studied by the pioneers of machine learning. An early use of first-order logic
for knowledge representation in concept learning was published by Banerji
in 1964. Then, in 1970, Plotkin formalised induction in (first-order) clausal
logic. The motivation here was that, since unification (which finds the great-
est common instance of a set of atoms) was the fundamental component of
deduction, anti-unification (which finds the least common generalisation of
a set of atoms) ought to be the key to induction. This work of Plotkin con-
tains several seminal contributions including an anti-unification algorithm,
the concept of relative subsumption (where ‘relative’ refers to a background
theory), and a method of finding the relative least common generalisation of
a set of clauses. Closely related work was done independently and contempo-
raneously by Reynolds.

From the early 1970s, Michalski studied inductive learning using various
logical formalisms, and generalisation and specialisation rules. Other relevant
work around this time includes that of Vere who in 1975 developed inductive
algorithms in first-order logic, building on the earlier work of Plotkin. A little
later, in 1981, Shapiro developed the influential model inference system that
was the first learning system to explicitly make use of Horn clause logic, no
doubt influenced by the arrival a few years earlier of the Prolog programming
language. Amongst other contributions, he introduced the important idea of
a refinement operator that is used to specialise a theory. The Marvin system
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of Sammut from 1981 was an interactive concept learner that employed both
specialisation and generalisation. Buntine revived interest in subsumption as
a method of generalisation for the context of Horn clause theories in 1986.
Much of this earlier work was generalised in 1988 to the setting of inverse
resolution by Buntine and Muggleton. Another influential system around this
time was the Foil system of Quinlan that induced Horn clause theories.

The increasing interest in logical formalisms for learning in the late 1980s
led to the naming of the subfield of inductive logic programming by Muggle-
ton and its definition as the intersection of logic programming and machine
learning. The establishment of ILP as an independent subfield of machine
learning was led by Muggleton and De Raedt. Much of the important work
on learning in first-order logic has since taken place in ILP and most of the
standard techniques of machine learning have now been upgraded to this con-
text. This work is partly documented in the series of workshops on inductive
logic programming that started in 1991 and continues to the present day.

1.3 Introduction to Learning

This section provides a tutorial introduction to the learning issues that will
be of interest in this book.

An Illustration

Consider the problem of determining whether a bunch of keys, or more pre-
cisely some key on the bunch, can open a door. The data for this problem are
a number of bunches of keys and the information about whether each bunch
does or does not open the door. The problem is to find an hypothesis that
agrees with the data that is given and, furthermore, will correctly predict
whether new bunches of keys will open the door or not.

For this illustration, the individuals that are the subject of learning are
the bunches of keys. First, these individuals have to be represented (that is,
modelled in a suitable knowledge representation formalism). Now a bunch is
nothing other than a set, so the problem reduces to representing a key. There
are quite a number of choices in how to do this. Let us choose to represent a
key by its values for four specific characteristics: its make, how many prongs
it has, its length, and its width. Following standard methods of knowledge
representation, this leads to the introduction of the four types:

Make,NumProngs,Length, and Width.

Also required are some constants for each of these types. These are as follows.

Abloy ,Chubb,Rubo,Yale : Make
Short ,Medium,Long : Length
Narrow ,Normal ,Broad : Width.
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The meaning of the first of these declarations is that Make is a type and
Abloy , Chubb, Rubo, and Yale are constants of type Make. The other declara-
tions have a similar meaning. The constants of type NumProngs are intended
to be integers, so NumProngs is declared to be a synonym for Int , the type
of the integers, by the declaration

NumProngs = Int .

Now a key is represented by a 4-tuple of constants from each of the four
types. This is specified by the declaration

Key = Make ×NumProngs × Length ×Width,

for which Key is the type of a key and × denotes (cartesian) product. Thus
Key has been declared to be a synonym for the product type on the right-
hand side, and 4-tuples, where the first component is a constant of type Make,
the second is a constant of type NumProngs and so on, are used to represent
keys. For example, the tuple

(Abloy , 3,Short ,Normal)

represents the key whose make is Abloy, that has 3 prongs, is short, and has
normal width.

A bunch of keys can now be represented as a set via the declaration

Bunch = {Key}.

This states that the type Bunch is a synonym for the type {Key} which
is the type of sets whose elements have type Key . A typical bunch is now
represented by a set such as

{(Abloy , 3,Short ,Normal), (Abloy , 4,Medium,Broad),
(Chubb, 3,Long ,Narrow)},

which is a bunch containing three keys. This completes the representation of
the bunches of keys.

The next task is to make precise the type of the function that is to be
learned. Recall that the illustration involved predicting whether or not a
bunch of keys opened a particular door or not. This suggests that the function
be a mapping from bunches of keys to the set of boolean values, true and
false. Now the type of the booleans is denoted by Ω, and > is the constant
representing true, and ⊥ is the constant representing false. If the desired
function is called opens, then it has the declaration

opens : Bunch → Ω.

The meaning of this declaration is that opens is a function from elements of
type Bunch to elements of type Ω. The type Bunch → Ω is the so-called
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signature of the function. If one had a definition for opens, then, given a
bunch, one could evaluate the function opens on the set representing this
bunch to discover whether the bunch opens the door or not: if the function
evaluated to >, then the bunch would open the door; otherwise, it would not.
The problem, of course, is to find a suitable definition for opens.

Part of the data for doing this are some examples that give the value of
the function opens for some specific bunches of keys. This data is the so-called
training data. Suppose that the examples are as follows.

opens {(Abloy , 3,Short ,Normal), (Abloy , 4,Medium,Broad),
(Chubb, 3,Long ,Narrow)} = >

opens {(Abloy , 3,Medium,Broad), (Chubb, 2,Long ,Normal),
(Chubb, 4,Medium,Broad)} = >

opens {(Abloy , 3,Short ,Broad), (Abloy , 4,Medium,Broad),
(Chubb, 3,Long ,Narrow)} = >

opens {(Abloy , 3,Medium,Broad), (Abloy , 4,Medium,Narrow),
(Chubb, 3,Long ,Broad), (Yale, 4,Medium,Broad)} = >

opens {(Abloy , 3,Medium,Narrow), (Chubb, 6,Medium,Normal),
(Rubo, 5,Short ,Narrow), (Yale, 4,Long ,Broad)} = >

opens {(Chubb, 3,Short ,Broad), (Chubb, 4,Medium,Broad),
(Yale, 3,Short ,Narrow), (Yale, 4,Long ,Normal)} = ⊥

opens {(Yale, 3,Long ,Narrow), (Yale, 4,Long ,Broad)} = ⊥
opens {(Abloy , 3,Short ,Broad), (Chubb, 3,Short ,Broad),

(Rubo, 4,Long ,Broad), (Yale, 4,Long ,Broad)} = ⊥
opens {(Abloy , 4,Short ,Broad), (Chubb, 3,Medium,Broad),

(Rubo, 5,Long ,Narrow)} = ⊥.

The problem can now be stated more precisely. It is to find a definition for
the function opens : Bunch → Ω that is consistent with the above examples
and correctly predicts whether or not new bunches of keys will open the door.

Stated this way, the problem is one of induction: given values of the func-
tion on some specific individuals, find the general definition of the function.
In practical applications, there are usually a very large number of definitions
that are consistent with the examples, so, to make any progress, it is neces-
sary to make further assumptions. These assumptions constrain the possible
definitions of the function, that is, the so-called hypotheses, that will be ad-
mitted. The form of the possible hypotheses is specified by the hypothesis
language. It is a general principle of learning that, in order to learn at all,
one must make some assumptions about the hypothesis language.

So let’s consider what might be a suitable hypothesis language for the
illustration under investigation. If the door is a standard one with a single
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keyhole, it seems reasonable to assume that a bunch of keys opens the door
if and only if (iff) there is some key on the bunch that opens the door. So
the problem reduces to finding a key on the bunch with some property. Now
what properties might an individual have? Given that a key is represented
by four characteristics, the assumption is made that a suitable property is
a conjunction of conditions on these characteristics. Finally, a condition on
a characteristic is assumed to be of the form whether that characteristic is
equal to some constant. To precisely specify the hypothesis language, it is
necessary to formally state these kinds of restrictions.

To get a condition on a key, one must have access to the components of
the key. This suggests introducing the projections from the keys onto each of
their components.

projMake : Key → Make
projNumProngs : Key → NumProngs
projLength : Key → Length
projWidth : Key →Width.

For example, projMake is the projection from keys onto their first component.
With these projections available, it is easy to impose a condition on a

key. For example, the condition that the make of a key k should be Abloy is
expressed by

(projMake k) = Abloy .

Conjunctions of such conditions are also admitted into the hypothesis lan-
guage by including the conjunction connective ∧. Then, according to the
assumptions made on the hypothesis language given above, conditions on
bunches have the form

∃k.((k ∈ b) ∧ C),

where ∃ is the existential quantifier, so that ‘∃k.’ means ‘there is a k such
that’, ‘k ∈ b’ means ‘k is a member of the set b’, ‘∧’ means ‘and’, and C is
some condition of the form above on keys.

Given the set of examples and the form that the hypothesis language can
take, as stated above, a learning system can now try to induce a suitable
definition for opens. The Alkemy learning system studied later in this book
finds the following hypothesis (although not in exactly this form; a more
convenient syntax will be introduced later).

opens b =
if ∃k.((k ∈ b) ∧ ((projMake k) = Abloy) ∧ ((projLength k) = Medium))
then >
else ⊥.
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This definition can be translated straightforwardly into (structured) English
that can be understood by someone who is not familiar with the knowledge
representation language employed, as follows.

“A bunch of keys opens the door if and only if it contains an Abloy
key of medium length”.

One can see that this definition agrees with all the examples given earlier
and thus it is potentially a suitable definition for opens. Whether or not it
correctly predicts that new bunches will open the door can only be checked
by trying the definition on these examples, the so-called test data.

Learning Issues

This simple illustration has highlighted most of the important issues to be
studied in this book.

First, the individuals that are the subject of learning have to be repre-
sented. In the illustration above, the individuals were represented by sets
of tuples of constants. In general, many other types are also needed such
as lists, trees, multisets, and graphs. The formalism of Chap. 3 provides a
suitable knowledge representation language for representing individuals and
is particularly concerned with the case where the individuals have complex
structure.

Second, one has to specify a signature for the target function whose defi-
nition is to be induced. This signature states that the function maps from the
type of the individuals to the type of a (usually small) finite set that consists
of the so-called classes to which the individuals can be mapped. Often there
are only two classes and one uses ⊥ and > (or 0 and 1, or −1 and 1) to
denote them. Such learning problems are called classification problems. In a
regression problem, the codomain of the target function is the real numbers.

Third, there is given some training data, which is a collection of examples
each of which gives the value of the target function for a particular indi-
vidual. For the illustration above, there are only nine examples; in practical
applications, there may be hundreds or thousands of examples available for
training. (In the case of data mining, there may be millions of training exam-
ples.) In general, the more numerous the training data the better. Learning
with such training data is called supervised learning. In some problems only
the individuals are given without a value of some function. In this case, the
problem is one of unsupervised learning and one usually wants to somehow
cluster the individuals appropriately.

Fourth, the so-called background theory must be given. This theory con-
sists of the definitions of functions that act on the individuals (together with
associated functions). For example, for the illustration above, the function
projMake is in the background theory and its definition is simply

projMake (x1, x2, x3, x4) = x1.
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For some applications, the background theory may be very extensive. Gen-
erally it can be divided into two parts. The generic background theory is
the part of the background theory that is dependent only on the type of
the individuals. For example, if the individuals are graphs, then the back-
ground theory could contain the function that maps a graph to its set of
vertices. If the individuals are lists, then the background theory could con-
tain the function that maps a (non-empty) list to its head. In contrast, the
domain-specific background theory is the part of the background theory that
depends on knowledge associated with the particular application. For exam-
ple, if the application involves the carcinogenicity of chemical molecules, then
the domain-specific background theory could contain the function that maps
a molecule to the number of benzene rings that it contains. An important
point that will be developed in this book is that much of the background
theory is largely determined by the type of the individuals. However, the key
to learning is often in the domain-specific part for which expert knowledge
may be required.

Fifth, the hypothesis language that involves the functions in the back-
ground theory must be specified. In Chap. 4, a mechanism will be introduced
for precisely stating hypothesis languages and also for enumerating hypothe-
ses in the language. Bias restricts the form of potential hypotheses and comes
in one of two forms: language bias that determines the hypothesis language
itself and search bias that determines the way the learning system searches
the hypothesis space for a suitable hypothesis. In practical applications, this
space can be huge and, therefore, it may be necessary to search it preferen-
tially, prune subspaces of it based on certain criteria, and so on.

Sixth, one has to evaluate the predictive power of the hypothesis con-
structed. Here, one is concerned with how well an hypothesis generalises,
that is, correctly predicts the class of new individuals. Typically, hypotheses
are evaluated experimentally by systematically trying them on test data, by
cross-validation techniques, for example. Also, it may be important to de-
termine experimentally how the predictive power improves as the size of the
training data increases. Finally, it may be possible to estimate analytically
the predictive power of an hypothesis by studying some characteristics of the
hypothesis language.

Seventh, it is often desirable and sometimes essential that the hypoth-
esis returned by the learning system be comprehensible, that is, be easily
understandable by humans in such a way that it provides insight into, or an
‘explanation’ of, the data. Whether comprehensibility is really required de-
pends on the application: sometimes one is satisfied with a black-box that has
good predictive power, even if the reasons for the good predictive power are
unclear; sometimes, especially in applications to expert systems, scientific
discovery, and intelligent agents, comprehensibility is essential. This book
concentrates on the case when comprehensibility is required, but also consid-
ers some learning methods that do not have this characteristic.
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There are many different kinds of learning systems employed in applica-
tions. These include neural networks, decision-tree systems, instance-based
learners based on a distance measure between individuals, kernel-based learn-
ers based on a generalised inner product defined on individuals, and learners
based on Bayesian principles. Furthermore, learning systems can be classi-
fication systems that learn a function that maps into some set of classes,
regression systems that learn a function that maps into the real numbers, or
systems that cluster individuals that are not labelled in any way.

1.4 Introduction to Logic

Examining the uses of knowledge representation in Sect. 1.3, several require-
ments become apparent: the formalism must be able to represent complex in-
dividuals, there should be a way of precisely stating the hypothesis language,
and it must be possible to compute the value of a function in the back-
ground theory on an individual. While there are other possible approaches,
this book takes the view that higher-order logic conveniently meets all the
above requirements. Consequently, in this section, I outline the basic features
of higher-order logic that are needed for learning applications.

Terms and Types

Logics, in general, have two fundamental aspects: syntax and semantics. The
syntax is concerned with what expressions are defined to be well-formed,
what formulas (that is, terms having boolean type) are theorems, and proofs
of those theorems. The semantics is concerned with the meanings of the
symbols in the terms and the terms themselves, what are the interpretations
that give those meaning, what are the models (that is, the interpretations
that make all the axioms true), and what formulas are valid (that is, true in
every possible model). In this introduction, I concentrate on syntax starting
with the concept of a term.

First, some symbols must be made available. Thus it is assumed that
there is given an alphabet of symbols that include some variables and some
constants (amongst some other symbols that will be introduced later). Then
the terms can be (informally) defined as follows. A variable is a term; a
constant is a term; an expression of the form λx.t is a term, where x is a
variable and t is a term; an expression of the form (s t) is a term, where s
and t are terms; and an expression of the form (t1, . . . , tn) is a term, where
t1, . . . , tn are terms.

Variables and constants play the part one would expect in the logic.
(There are plenty of constants in Sect. 1.3 and use was made there of variables,
as well.) Terms of the form λx.t are called abstractions and come originally
from the λ-calculus of Church. The meaning of λx.t is that it is a function
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that maps an element denoted by a term s to the element denoted by the
term obtained by replacing each free occurrence of x in t by s. So, for exam-
ple, the meaning of λx.(x + 1) is the function that increments the value of
its argument. (Note that an occurrence of a variable y is bound if it occurs
with a subterm of the form λy.s; otherwise, the occurrence is free. A variable
is free if it has a free occurrence.) A term of the form (s t) is an application
in which s is applied to t. Thus the meaning of s should be a function, the
meaning of t should be an argument to the function, and the meaning of
(s t) should the the result of applying s to t. For example, the meaning of
(λx.(x+ 1) 42) is 43. Finally, a term of the form (t1, . . . , tn) is a tuple.

What has been described so far is essentially the terms of the untyped
λ-calculus. However, in knowledge representation applications in computer
science, it is important to impose some further restrictions on the terms that
are admitted. The reason is that, with the definition so far, some strange
terms are allowed. For example, there is no restriction that the argument to
a function necessarily belong to the domain of that function, whatever that
might be. To give an example, what might (λx.(x + 1) Abloy) mean? Thus,
types are introduced to restrict term formation to terms that make intuitive
sense from this point of view. As shall be seen, the discipline of types pervades
the book and there will be a substantial payoff in accepting this discipline. I
now introduce types.

For this purpose, suppose the alphabet is enlarged with some extra sym-
bols called type constructors, each of which has an arity that determines the
number of arguments to which the type constructor can be applied. Typical
type constructors of arity 0 include Ω, the type of the booleans, Int , the
type of the integers, and Char , the type of the characters. A typical type
constructor of non-zero arity is List of arity 1.

One can then define types as follows: T α1 . . . αn is a type, where T is a
type constructor of arity n and α1, . . . , αn are types; α→ β is a type, where
α and β are types; and α1 × · · · × αn is a type, where α1, . . . , αn are types.

The first part of the definition implies that nullary type constructors are
types. Thus Ω and Int are types. Since List is a unary type constructor, it
follows that List Ω and List Int are types. The meaning of a type is a set.
In particular, the meaning of Int is the set of integers and the meaning of
List Int is the set of lists of integers. The meaning of a type of the form
α → β is a set of functions from the set giving the meaning of α to the set
giving the meaning of β. The meaning of a type of the form α1 × · · · × αn is
the cartesian product of the sets that give the meanings of α1, . . . , αn.

With types now in place, I revisit the definition of terms. To impose a
type discipline, one starts by giving types to the variables and constants. For
the variables, one assumes that for each type, there is associated a disjoint
set of variables for that type. For the constants, one assumes that for each
constant, there is specified some type, called its signature. For example, from
Sect. 1.3, Abloy is a constant with signature Make and opens is a constant
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with signature Bunch → Ω. That a constant C has signature α is denoted
by C : α.

Now the definition of terms that respect the typing discipline can be given.
A variable of type α is a term of type α; a constant with signature α is a
term of type α; an expression of the form λx.t, where x is a variable of type
α and t is a term of type β, is a term of type α → β; an expression of the
form (s t), where s is a term of type α → β and t is a term of type α, is a
term of type β; and an expression of the form (t1, . . . , tn), where ti is a term
of type αi, for 1 = 1, . . . , n, is a term of type α1 × · · · × αn.

Example 1.4.1. Suppose the alphabet contains the type constructors Ω, Int ,
and List , and the constants

[] : List Int ,
] : Int → (List Int → List Int),
p : List Int → Ω,

q : List Int → Ω, and
∧ : Ω → (Ω → Ω).

The intended meaning of [] is the empty list and ] is the constant used for
constructing lists. Thus ((] 1) ((] 2) ((] 3) []))) is intended to represent the
list [1, 2, 3]. (Since this notation is rather heavy, I usually drop the parentheses
and write ] as an infix operator. Thus the expression above can be written
more simply as 1 ] 2 ] 3 ] [].)

Some remarks about the ubiquitous use of → in type declarations are in
order. It may seem more natural to use the signature

Int × List Int → List Int

for ]. With this signature, ] is intended to take an item and a list as input
and return the list obtained by prepending the given item to the given list.
However, the signature Int → (List Int → List Int) for ], the so-called
curried form of the signature, is actually more convenient. The reason is
that, in the curried form, one only has to give ] one argument at a time.
Thus (] 3) is well-defined and, in fact, is a term of type List Int → List Int .
Thus one can then form ((] 3) []) which is a term of type List Int . Similarly,
(] 2) is well-defined and ((] 2) ((] 3) [])) is a term of type List Int , and so on.
Throughout the book, wherever possible, curried signatures will be used.

Assume now that x is a variable of type Int , and y and z are variables of
type List Int . I show that the expression

((∧ (p ((] x) y))) (q z))

is a term of type Ω. (Exploiting the infix use of ] and ∧, this expression can
be written more simply as (p (x ] y)) ∧ (q z).) First, (] x) is a term of type
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List Int → List Int , ((] x) y) is a term of type List Int , and so (p ((] x) y))
is a term of type Ω. Also, (q z) is a term of type Ω. Now (∧ (p ((] x) y))) is
a term of type Ω → Ω, and thus ((∧ (p ((] x) y))) (q z)) is a term of type Ω.

The logic is suitable for writing definitions in functional programming
languages.

Example 1.4.2. Consider the function

concat : List Int → (List Int → List Int),

whose intended meaning is that the result of applying the function to two
lists (of integers) is their concatenation. A suitable definition for this function
is

concat [] z = z

concat (x ] y) z = x ] (concat y z).

(Here I have exploited the convention that function application is left asso-
ciative so that concat [] z means ((concat []) z), and so on.) Each equation
in the definition is true using the intended meaning of concat .

So far it is not obvious how the quantifiers are introduced into the logic.
Existential quantification is considered first. Let Σ be the function having
signature

(Int → Ω)→ Ω

and with the intended meaning that Σ maps a predicate of type Int → Ω
to true iff the predicate is true on at least one element in its domain. (A
predicate is a function whose codomain is the booleans.) Suppose now that
r : Int → Ω is a predicate and consider the term (Σ λx.(r x)). According
to the meaning of Σ, this term will be true iff there is an x for which (r x)
is true. In other words, the intended meaning of (Σ λx.(r x)) is exactly the
same as ∃x.(r x), using the standard meaning of existential quantification.

A term of the form (Σ λx.t) is written as ∃x.t. Thus the existential
quantifier is introduced into higher-order logic by the function Σ applied to
an abstraction whose body is a formula. The binding aspect of the quantifier
is taken care of by the λ-expression and the precise form of quantification by
the Σ.

Similarly, let Π be the function having signature

(Int → Ω)→ Ω

and with the intended meaning that Π maps a predicate to true iff the
predicate is true on all elements in its domain. According to the meaning of
Π, (Π λx.(r x)) will be true iff (r x) is true, for every x. In other words, the
intended meaning of (Π λx.(r x)) is exactly the same as ∀x.(r x).



20 1. Introduction

A term of the form (Π λx.t) is written as ∀x.t. Thus the universal quan-
tifier is introduced by the function Π applied to an abstraction whose body
is a formula. In an analogous way to existential quantification, the binding
aspect of the quantifier is taken care of by the λ-expression and the precise
form of quantification by the Π.

Polymorphism

The logic introduced so far is expressive and powerful: all the usual con-
nectives and quantifiers are available and (many-sorted) first-order logic is a
subset. It would be possible to use this logic as the setting for the remain-
der of this book and many of the following technical results (in Chap. 2, for
example) would actually become much simpler. But the logic has one restric-
tion that makes this approach unattractive. To make the point, consider the
function concat defined above that concatenates lists of integers. A moment’s
thought reveals that the definition given for concat works perfectly well for
lists whose items are of any type. Thus, with the current version of the logic,
one would be forced to declare a concat function for each of the types one
wanted to apply it to and yet the definitions of the various concats would all
be exactly the same. One could make a similar comment about the functions
Σ and Π that work perfectly well when quantifying over variables of any
type.

For this reason, one final feature of the logic is now introduced: poly-
morphism, or more precisely because there are other forms of polymorphism,
parametric polymorphism. Thus the last ingredient of the alphabet are pa-
rameters, which are type variables. Parameters are usually denoted by a, b,
and so on. For example, one can make concat polymorphic by declaring it to
have the signature

List a→ (List a→ List a).

The intended meaning of the signature is that it declares a concat function
for each possible instantiation of the parameter a. Similarly, the signature of
the polymorphic version of both Σ and Π is

(a→ Ω)→ Ω.

The introduction of polymorphism requires extensions of some previous
definitions. For a start, the definition of types is extended as follows. A pa-
rameter is a type; T α1 . . . αn is a type, where T is a type constructor of arity
n and α1, . . . , αn are types; α → β is a type, where α and β are types; and
α1 × · · · × αn is a type, where α1, . . . , αn are types.

But the biggest complication occurs in the definition of terms. To illustrate
the point, with the functions r : Int → Ω and Σ : (a → Ω) → Ω available,
consider whether the expression (Σ λx.(r x)) should be a term or not. Now
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λx.(r x) is a term of type Int → Ω, so that one is led to compare this type
with the argument type a→ Ω of Σ. The question is whether these two types
are somehow ‘compatible’. The intuitive notion of compatibility here is that
there should be an instantiation of the parameters in the two types so that
the argument type (that is, Int → Ω) is the same as the domain type of Σ
(that is, (a → Ω)). The substitution {a/Int}, in which a is replaced by Int ,
shows that the types are indeed compatible. Thus (Σ λx.(r x)) should be a
term of type Ω, for which the specific Σ function being used here is the one
with signature (Int → Ω)→ Ω.

More generally, one could have terms s of type α → β and t of type γ
(where s and t do not share free variables) and ask whether (s t) should be
a term. The answer to the question will be yes iff the types α and γ have
a common instance. In case there is a common instance, then α and γ have
a most general unifier θ, say. (A most general unifier is a substitution that
when applied makes the two instances identical and is a substitution that
instantiates as little as possible in order to achieve this.) Then (s t) is a term
of type βθ.

Example 1.4.3. Let s be a term of type (List a × Int)→ List a and t a term
of type List Ω × b (that do not share free variables). Now {a/Ω, b/Int} is a
most general unifier of List a × Int and List Ω × b. Thus (s t) is a term of
type (List a){a/Ω, b/Int} = List Ω.

There is one other form of compatibility that has to be dealt with when
forming terms and that concerns free variables.

Example 1.4.4. Let p : Int → Ω and q : List Int → Ω be predicates. Is
it reasonable that the expression (p x) ∧ (q x) be a term? Even without a
precise definition of the notion of a term, one would expect this expression to
be problematic. To see this, note the two free occurrences of the variable x.
Now a principle of the formation of terms in logics is that all free occurrences
of a variable should denote the same individual. But this does not hold in
(p x) ∧ (q x) because the first occurrence of x has type Int because it is the
argument of p, while the second has type List Int because it is the argument
of q. Thus the expression should not be a term.

Now an informal definition of a term for the polymorphic version of the
logic can be given. For this, there is a single family of variables and the
constants may have polymorphic signatures. Free variables in a term have
a relative type according to their position in the term. For example, if p :
Int → Ω, then the free variable x in (p x) has relative type Int in (p x).
Then the definition is as follows. A variable is a term of type a, where a is a
parameter; a constant with signature α is a term of type α; an expression of
the form λx.t, where x is free with relative type type α in t and t is a term
of type β, is a term of type α → β; an expression of the form (s t), where
s is a term of type α → β and t is a term of type γ, is a term of type βθ,
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provided there is a most general unifier θ of the set of equations that arise
from unifying α and γ, and also unifying the relative types of occurrences of
free variables in s and t ; and an expression of the form (t1, . . . , tn), where
ti is a term of type αi, for 1 = 1, . . . , n, is a term of type (α1 × · · · × αn)θ,
provided there is a most general unifier θ of the set of equations that arise
from unifying relative types of occurrences of free variables in the t1, . . . , tn.

Example 1.4.5. Let p : List a → Ω and q : List Int → Ω be predicates.
Then (p x) is a term of type Ω in which the free variable x has relative type
List a, (q x) is a term of type Ω in which the free variable x has relative type
List Int , λx.(p x) is a term of type List a→ Ω, ∃x.(p x) is a term of type Ω,
((p x), (q x)) is a term of type Ω×Ω in which the free variable x has relative
type List Int , and (p x)∧ (q x) is a term of type Ω in which the free variable
x has relative type List Int .

Logic as a Computational Formalism

The logic is also suitable as a formalism in which to write definitions of
functions for declarative programming languages.

Example 1.4.6. Consider again the function

concat : List a→ (List a→ List a)

defined by

concat [] z = z

concat (x ] y) z = x ] (concat y z).

This definition can be used by a declarative programming language to con-
catenate lists. For example, one can concatenate the lists 1 ] 2 ] [] and 3 ] []
by the computation

concat (1 ] 2 ] []) (3 ] [])
1 ] (concat (2 ] []) (3 ] []))
1 ] 2 ] (concat [] (3 ] []))
1 ] 2 ] 3 ] [],

whereby the initial term is successively ‘simplified’ by rewriting steps using
the equations in the definition of concat .

Example 1.4.7. The function

length : List a→ Int

length [] = 0
length (x ] y) = 1 + length y

computes the length of a list.
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The following example is a more complicated one that illustrates the use
of existential quantification.

Example 1.4.8. The function

append : List a × List a × List a → Ω

append (u, v, w) = (u = [] ∧ v = w) ∨
∃r.∃x.∃y.(u = r ] x ∧ w = r ] y ∧ append (x, v, y))

returns true iff its third argument is the concatenation of the lists in its first
and second arguments. As an example of a computation, the term

append (1 ] 2 ] [], 3 ] [], x)

can be simplified to

x = 1 ] 2 ] 3 ] [],

using this definition. Similarly, the term

append (x, y, 1 ] 2 ] [])

can be simplified to

(x = [] ∧ y = 1 ] 2 []) ∨ (x = 1 ] [] ∧ y = 2 ] []) ∨ (x = 1 ] 2 ] [] ∧ y = []).

Representation of Individuals

The next topic is that of the representation of individuals. Learning (and
other) applications involve individuals of many different kinds. Thus the chal-
lenge is to find a suitable class of (higher-order) terms to represent this wide
range of individuals.

The formal basis for the representation of individuals is provided by the
concept of a basic term. Having defined the concept of a term, basic terms
are defined via an inductive definition that has three parts: the first part
gives those basic terms that have a data constructor (explained below) at the
top level, the second part gives certain abstractions that include (finite) sets
and multisets, and the third part gives tuples. Care is taken to order certain
subterms of abstractions to ensure uniqueness of the representation.

The simplest kinds of individuals can be represented by terms of ‘atomic’
types such as integers, natural numbers, floating-point numbers, characters,
strings, and booleans. Closely related are lists and trees. The constants

[] : List a, and
] : a→ List a→ List a
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are used to represent lists. Similarly, one could use the unary type constructor
Tree and the constants

Null : Tree a, and
Node : Tree a → a → Tree a→ Tree a

to represent binary trees in the obvious way.
The constants of the logic are divided into two kinds: functions and data

constructors. Functions have definitions and are used to compute values.
Some earlier examples of functions are concat and length. In contrast, data
constructors are used, as their name implies, to construct data. Typical ex-
amples come from the previous paragraph: numbers, characters, strings, [],
], Null , and Node. In general, data constructors have signatures of the form

σ1 → · · · → σn → (T a1 . . . ak),

for some k-ary type constructor T , types σ1, . . . , σn, and parameters a1, . . . , ak.
A data constructor with such a signature is said to have arity n. The first
part of the definition of basic terms states roughly that, if C is a data con-
structor of arity n and t1, . . . , tn are basic terms having suitable types, then
C t1 . . . tn is a basic term.

Example 1.4.9. With the declarations of Null and Node above,

Node (Node Null 21 Null) 42 (Node Null 73 Null)

is the basic term representing the tree with 42 at the root, 21 at the left child
of the root, and 73 at the right child.

The second kind of basic term are sets, multisets, and similar types. To
explain how these types are handled, I concentrate on sets. The first question
is what exactly is a set? The answer to this question for a higher-order logic
is that a set is a predicate, that is, a set is identified with its characteristic
function. Thus particular forms of abstractions are used to represent sets. To
explain this, consider the set {1, 2}. This is represented by the abstraction

λx.if x = 1 then > else if x = 2 then > else ⊥.

The meaning of this abstraction is the predicate that is true on 1 and 2, and
is false for all other numbers. Similarly,

λx.if x = A then 42 else if x = B then 21 else 0

is the multiset with 42 occurrences of A and 21 occurrences of B (and nothing
else). Thus abstractions of the form

λx.if x = t1 then s1 else . . . if x = tn then sn else s0
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are adopted to represent (finite) sets, multisets, and so on. The term s0 is
a default term, ⊥ for sets and 0 for multisets. Other types have a different
default term.

This discussion leads to the second part of the definition of basic terms.
Roughly speaking, if s1, . . . , sn and t1, . . . , tn are basic terms having suitable
types and s0 is a default term, then

λx.if x = t1 then s1 else . . . if x = tn then sn else s0

is a basic term. The precise definition takes care to put an order on t1, . . . , tn,
amongst some other things.

Finally, tuples of basic terms are basic terms. Thus, if t1, . . . , tn are basic
terms, then (t1, . . . , tn) is a basic term.

Example 1.4.10. The expression

{(Abloy , 3,Short ,Normal), (Abloy , 4,Medium,Broad),
(Chubb, 3,Long ,Narrow)}

is notational sugar for the basic term

λx.if x = (Abloy , 3,Short ,Normal) then > else
if x = (Abloy , 4,Medium,Broad) then > else

if x = (Chubb, 3,Long ,Narrow) then > else ⊥.

Other notational devices are noted here. Having identified a set with a
predicate, the type of a set has the form α→ Ω, for some type α. However,
it is still useful to think of sets as predicates in some circumstances and as
‘collections of elements’ in other circumstances. In this second circumstance,
it is convenient to introduce the notational sugar {α} to mean α→ Ω. Also,
if a set t is being thought of as a predicate, then application is denoted
in the usual way by (t x), while if t is being thought of as a collection of
elements, this same term is denoted by x ∈ t. Advantage will be taken of
these notational devices shortly.

Predicate Construction

The final topic of this section is a brief explanation of how the higher-order
nature of the logic can be exploited to construct predicates. To make the
ideas concrete, the keys illustration in Sect. 1.3 is revisited. The condition
that appears there in the induced definition for opens is

∃k.((k ∈ b) ∧ ((projMake k) = Abloy) ∧ ((projLength k) = Medium)).

A more convenient reformulation of this condition is now explored.
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For each constant of type Make, there is a corresponding predicate that
is true iff its argument is equal to the constant. For example, corresponding
to the constant Abloy , there is a predicate

(= Abloy) : Make → Ω

defined by

((= Abloy) x) = x = Abloy .

Thus ((= Abloy) x) = > iff x = Abloy . More generally, given a con-
stant C : α, there corresponds a predicate (= C) : α → Ω defined by
((= C) x) = x = C.

Conditions on the characteristics of a key can be obtained by composing
a projection with one of the predicates just introduced. Composition is given
by the (reverse) composition function

◦ : (a→ b)→ (b→ c)→ (a→ c)

defined by

((f ◦ g) x) = (g (f x)).

Note the order here: for f ◦ g, f is applied first, then g. Thus one can form a
predicate such as projMake ◦ (= Abloy) that has type Key → Ω. If k is a key,
then ((projMake ◦ (= Abloy)) k) = > iff the first component of k is Abloy .

Next consider the connective ∧ : Ω → (Ω → Ω) in the condition in
the definition for opens. Connectives act on formulas; what is needed is to
‘lift’ the connectives to functions that act on predicates. Thus consider the
function

∧2 : (a→ Ω)→ (a→ Ω)→ a→ Ω

defined by

∧2 p q x = (p x) ∧ (q x).

Using ∧2, one can form the predicate

∧2 (projMake ◦ (= Abloy)) (projLength ◦ (= Medium)).

This predicate is true on a key iff the first component of the key is Abloy and
the third component is Medium.

The final step in the reformulation of the condition in the definition of
opens is to replace the ∃k.(k ∈ b) part of it. Consider the function

setExists1 : (a→ Ω)→ {a} → Ω

defined by
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setExists1 p t = ∃x.((p x) ∧ (x ∈ t)).

(Note the use of the notation {a} here; the first argument to setExists1 is
being thought of as a predicate and the second is being thought of as a
collection of elements.) The predicate (setExists1 p) checks whether a set has
an element that satisfies p. Thus we can form the predicate

setExists1 (∧2 (projMake ◦ (= Abloy)) (projLength ◦ (= Medium))).

Note now that the condition

(setExists1 (∧2 (projMake ◦ (= Abloy)) (projLength ◦ (= Medium))) b)

is equivalent to

∃k.((k ∈ b) ∧ ((projMake k) = Abloy) ∧ ((projLength k) = Medium)).

This completes the reformulation of the condition in the definition of opens.
What has been achieved by reformulating the condition in this way? The

major gain is that it provides the basis for a convenient way of constructing
predicates. In this approach, predicates are constructed from other predicates
by composition. Thus one starts with some ‘atomic’ predicates and forms
more complex predicates by systematically composing them. A key definition
to make all this work is the following. A transformation f is a function having
a signature of the form

f : (%1 → Ω)→ · · · → (%k → Ω)→ µ→ σ,

where k ≥ 0. Clearly, ∧2 and setExists1 are transformations and many more
are introduced later in the book. In general, if pi : %i → Ω (i = 1, . . . , n), then
f p1 . . . pn : µ→ σ, and several such functions, the last of which is a predicate,
can be composed to form a predicate. A method is also introduced whereby
the hypothesis language is specified by a system of rewrites and predicates in
the hypothesis language are systematically constructed by a rewriting process
that exploits composition. This approach allows precise and explicit control
over the hypothesis language.
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Exercises

1.1 Read the brief history of artificial intelligence in [79, Chap. 1]. Comment
on the changing role of logic in artificial intelligence and machine learning
over the last 40 years.

1.2 (For those who know machine learning.) Enumerate the techniques you
know about for representing structured data in learning applications. Typical
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applications involve chemical molecules or DNA strings in bioinformatics and
XML or HTML pages for the World Wide Web. When you have finished
reading this book, discuss the pros and cons of the techniques you have listed
compared with the ones introduced here.

1.3 (For those who know computational logic.) Enumerate the advantages
and disadvantages of first-order compared with higher-order logic for com-
putational logic applications such as declarative programming languages or
theorem proving systems. When you have finished reading this book, inves-
tigate whether your earlier analysis needs modification.

1.4 For the keys example of Sect. 1.3, give two other possible hypothesis
languages. Can you give an hypothesis language for which one can express
the definition that opens is > on a bunch iff it is one of the training examples
that opens the door? If so, what implications might this have for learning a
definition that generalises to so far unseen individuals?

1.5 Consider the definition of the append function given in Sect. 1.4. In-
vestigate how the term append (1 ] 2 ] [], 3 ] [], x) might be simplified to
x = 1 ] 2 ] 3 ] [].
[Hint: You will need to invent some suitable equations for the definitions of
∃ and =. For example, what (general) equation for ∃ would allow, say,

∃x.∃y.(x = 1 ] [] ∧ append ([], x, y))

to be reduced in one step to

∃y.append ([], 1 ] [], y)?]




