
1 The Discrete Case

In this first chapter, we bring together results concerning both the valuation
of financial assets and equilibrium models, in a discrete framework: there are
two dates, and the asset prices only take a finite number of values. We have
chosen to introduce in the context of very simple models, concepts that will
be developed further on in the book, in the hope of easing the reader’s task.

1.1 A Model with Two Dates and Two States of the
World

Here we study a financial market with two dates, time 0 and time 1, in the
very simple case of two possible states of the world at time 1. Obviously, this
situation is not very realistic. It is a textbook case, which will allow us to
draw out concepts (such as hedging portfolios, arbitrage and the risk-neutral
measure), which will be useful for dealing with more sophisticated models,
describing more realistic situations.

1.1.1 The Model

The financial market that we are studying is made up of one stock, and one
riskless investment (such as a savings account).

At time 0 (today), the stock is worth S euros. At time 1 (tomorrow, or in
six months’ time), the stock will be worth either Su euros or Sd euros with
Sd < Su, depending on whether its price goes up or down. The outcome is not
known at time 0. We usually say that the stock is worth Su or Sd depending
on the “state of the world”.

The riskless investment has a rate of return equal to r (r > 0) : one euro
invested today will yield 1 + r euros at time 1 (whatever the state of the
world). This is why the investment is called riskless.

We now consider a call option (an option to buy). A call option is a
financial instrument: the buyer of the option pays the seller an amount q
(the premium) at time 0, in return for the right, but not the obligation, to
buy the stock at time 1, and at a price K (the exercise price or strike),
which is set when the contract is signed at time 0. At the time when the
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buyer decides whether or not to buy the stock, he knows its price, which here
is either Su or Sd. If the price of the stock at time 1 is greater than K, the
option holder buys the stock at the agreed price K and immediately sells it
on, so making a gain; otherwise, he does not buy it.

A put option (an option to sell) gives the right to its buyer to sell a stock
at a price K, which is agreed upon when the contract is signed.

The profit linked to a call is unlimited, and the losses are limited to q.
For a put, the profit is limited, and the losses are unlimited.

The valuation of an option consists in determining the price q of the
option under normal market conditions.

1.1.2 Hedging Portfolio, Value of the Option

Call Options First, we consider the case where Sd ≤ K ≤ Su. The other
two cases are not as interesting: if K < Sd, the option holder will gain at
least Sd −K whatever the state of the world, and the seller will always make
a loss (and the opposite is true when Su < K).

Suppose then that Sd ≤ K ≤ Su. We will see how to build a “portfolio”
with the same payoff as the option at time 1. A portfolio is made up of a pair
(α, β), where α is the amount, in euros, invested in the riskless asset, and β is
the number of stocks the investor holds (α and β can be of any sign: one can
sell stocks one does not hold1, and borrow money). If (α, β) is the portfolio
held at time 0, its value in euros is α + βS. At time 1, this same portfolio is
worth:

α(1 + r) + βSu if we are in the first state of the world, the high state
(the stock price has risen),

α(1 + r) + βSd if we are in the second state of the world, the low state.

We say that a portfolio replicates the option if it has the same payoff at
time 1 as the option, and this whatever the state of the world. In other words,
the two following equalities must hold:

α(1 + r) + βSu = Su − K

α(1 + r) + βSd = 0 .

By solving the linear system above, we can easily obtain a pair (α∗, β∗):

α∗ = − Sd(Su − K)
(Su − Sd)(1 + r)

; β∗ =
Su − K

Su − Sd
.

1 A short sale: we can short the stock, or have a short position in the stock. Having
a long position means holding the stock.
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The price of the option is the value at time 0 of the portfolio (α∗, β∗),
that is

q = α∗ + β∗S =
Su − K

Su − Sd

(
S − Sd

1 + r

)
. (1.1)

This is a “fair price”: with the amount q received, the option seller can
buy a portfolio (α∗, β∗), which generates the gain Su − K if prices rise, and
which will then cover (or hedge) his losses (we call this a hedging portfolio2).
As to the option buyer, he is not prepared to pay more than q, because oth-
erwise he could use the money to build a portfolio which would yield more
than the option, for example using the same β∗ and an α that is larger than
α∗.

To obtain the option pricing formula without assuming Sd ≤ K ≤ Su, we
use the same method. We look for a pair (α∗, β∗) such that

α∗(1 + r) + β∗Su = max (0, Su − K) := Cu ,

α∗(1 + r) + β∗Sd = max (0, Sd − K) := Cd .

We find β∗ =
Cu − Cd

Su − Sd
. Notice that β∗ ≥ 0. In other words, the hedging

portfolio of a call is a long position in the stock.

Moreover,

q := α∗ + β∗S =
1

1 + r
(πCu + (1 − π)Cd) , (1.2)

where
π :=

1
Su − Sd

((1 + r)S − Sd) . (1.3)

Put Options Similarly, we can show that the price P of a put option satisfies

P :=
1

1 + r
(πPu + (1 − π)Pd) ,

where Pu = max (0, K − Su); Pd = max (0, K − Sd).
Of course, call options (options to buy) and put options (options to sell)

can themselves be either bought or sold.
The valuation principle employed here is very general, and can be applied

to other contingent claims. The cost of replicating a cash flow of Hu in the
high state and of Hd in the low state is 1

1+r (πHu + (1 − π)Hd).

2 The hedging portfolio covers the losses whatever the state of the world.
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1.1.3 The Risk-Neutral Measure, Put–Call Parity

The Risk-Neutral Probability Measure Let us comment on the formulae
in (1.2) and (1.3).

If Sd < (1 + r)S < Su, then π ∈]0, 1[. We can interpret (1.2) in terms of
“neutrality with respect to risk”. Equation (1.3) can be written

(1 + r)S = πSu + (1 − π)Sd . (1.4)

The left-hand side of (1.4) is the gain obtained by putting S euros into
a riskless investment, the right-hand side is the expected gain attained by
buying a stock at a price of S euros, if the probability of the high state
of world occurring is π, and if the low state of the world has probability
(1 − π). Equality (1.4) translates the fact we are in a model that is “neutral
with respect to risk”: the investor would be indifferent to the choice between
the two possibilities for investment (the riskless one and the risky one) as
his (expected) gain remains the same. It is “as if” there were a probability
π attached to the states of the world, and under which the investor were
neutral with respect to risk.

Proposition 1.1.1. The price of a contingent claim (for example an option)
is the discounted value of the expected gain with respect to the “risk-neutral”
probability measure.

Proof. For a call option, the realized gain is equal to Cu or to Cd, depending

on the state of the world. As the present value of 1 euro at time 1 is
1

1 + r
eu-

ros at time 0, so the present values of the realized gains are
1

1 + r
Cu and

1
1 + r

Cd. The fair price of the option being given by (1.2), the result follows.

¤
There is another interpretation of this result: let S1 be the price of the

asset at time 1, and let P be the risk-neutral probability measure defined
by P (S1 = Su) = π, P (S1 = Sd) = 1 − π. The price of a call option
is the expectation, under this probability measure, of (S1 − K)+/(1 + r).
Similarly, we can show that the price of a put is the expectation under P of
(K − S1)+/(1 + r).

Put–Call Parity It is obvious that we have (S1 − K)+ − (K − S1)+ =
S1−K. Hence, taking present values and expectations under the risk-neutral
measure, and noticing also that the expectation of S1/(1 + r) is equal to S
(property (1.4)), we obtain

C = P + S − K/(1 + r) (1.5)

where C is the price of the call and P is that of the put. This formula, which
we will later generalize, is known as the “put–call parity”.
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Remark 1.1.2. It would be tempting to model the situation by introducing
the probability of the event “the price goes up”. However, the proof above
shows that this probability does not come into the valuation formulae.

1.1.4 No Arbitrage Opportunities

An arbitrage opportunity occurs if, with an initial capital that is strictly
negative, an agent can obtain a positive level of wealth at time 1, or if, with
an amount capital that is initially zero, an agent can obtain a level of wealth
that is positive and not identically zero. We generally make the assumption
that no such opportunities exist.

Let us first show that there are no arbitrage opportunities (NAO) if and
only if Sd < (1 + r)S < Su.
If Sd < (1 + r)S < Su, there exists π ∈]0, 1[ such that (1 + r)S = πSu + (1−
π)Sd. Suppose that (α, β) satisfies

α(1 + r) + βSu ≥ 0, α(1 + r) + βSd ≥ 0

with at least one strict inequality. Then, multiplying the first inequality by
π and the second by 1− π, and by summing the two, we obtain α + βS > 0.
Similarly, if we have simply

α(1 + r) + βSu ≥ 0, α(1 + r) + βSd ≥ 0

then we deduce that α + βS ≥ 0. In neither case do we have an arbitrage
opportunity.
Conversely, if (1 + r)S ≤ Sd, then the agent can, at time 0, borrow S at a
rate of r, and buy the stock at price S. At time 1, he sells the stock for Su

or Sd, and repays his loan with (1 + r)S. So he has made a gain of at least
Sd − (1 + r)S ≥ 0. It is easy to apply an analogous reasoning to the case
Su < (1 + r)S.

We can justify the option valuation formula using the assumption of no
arbitrage opportunities. Let us assume that Sd ≤ K ≤ Su. If the price of
the option is q > q, where q is defined as in (1.2), then there is an arbitrage
opportunity:

• at time 0, we sell the option (even if we do not actually own it) at price q.
With q, we can build a hedging portfolio (α∗, β∗) as described previously,
and we invest the remaining money q − q at a rate of r. We have:

q = α∗ + (q − q) + β∗S .

The initial investment is zero.
• at time 1:
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– if the price of the stock is Su: the option is exercised by the buyer. We buy
the stock at price Su and hand it over to the option buyer as agreed, at a
price of K; the portfolio (α∗+(q−q), β∗) is worth Su−K+(q−q)(1+r),
and our final wealth is K−Su +[Su−K +(q−q)(1+r)] = (q−q)(1+r),
and is strictly positive,

– if the price of the stock is Sd: the option buyer does not exercise his
right, and we are left with the portfolio, which is worth

(q − q)(1 + r) > 0 .

Hence, we have strictly positive wealth in each state of the world with an
initial funding of zero, that is, an arbitrage opportunity.

We can reason analogously in the case q < q.
We will come back to the concept of no arbitrage opportunities repeatedly

throughout this book.

Exercise 1.1.3. Show by reasoning in terms of no arbitrage opportunities
that:

– the put–call parity formula holds,
– the price of a call is a decreasing function of the strike price,
– the price of a call is a convex function of the strike price.

We can turn to Cox–Rubinstein [71] for further consequences of no arbitrage
opportunities.

1.1.5 The Risk Attached to an Option

In this section, we assume that investors believe that the stock will rise with
probability p. The calculations here are carried out under this probability
measure.

Risk Linked to the Underlying The rate of return on the stock is by

definition R =
S1 − S

S
. Its expectation is

mS =
pSu + (1 − p)Sd

S
− 1 ,

where p is the probability of being in state of the world u.
The risk of the stock is usually measured by the variance of the rate of

return of its price:

v2
S = p

(
Su − S

S
− mS

)2

+ (1 − p)
(

Sd − S

S
− mS

)2

,

i.e.,

vS =
Su − Sd

S
(p(1 − p))1/2 .

We say that vS is the volatility of the asset.
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Risk Linked to the Option Let C be a call on the stock. The delta (∆) of
the option is the number of shares of the asset that are needed to replicate the

option (it is the β of the hedging portfolio given in (1.2)), i.e., ∆ =
Cu − Cd

Su − Sd
.

This represents the sensitivity of C to the price S of the underlying asset.

The elasticity Ω of the option is equal to
Cu − Cd

C

/
Su − Sd

S
,

i.e., Ω =
S

C
∆ where C is the price of the option. We denote by mC the

expectation of the rate of return on the option. The risk of the option is
measured by the variance of the rate of return on the option:

mC =
pCu + (1 − p)Cd

C
− 1

vC = {p(1 − p)}1/2 Cu − Cd

C
.

We have that vC = Ω vS : the risk of the call is equal to the product of the
elasticity of the option by the volatility of the underlying asset. The greater
the volatility of the underlying asset, the greater is the risk attached to the
call.

Proposition 1.1.4. The volatility of an option is greater than the volatility
of the underlying asset:

vC ≥ vS .

The excess rate of return of the call is greater than the excess rate return of
the asset:

mC − r ≥ mS − r .

Notice that this last property makes it worthwhile to purchase a call.

Proof. First, we show that Ω ≥ 1.

We have seen how C =
πCu + (1 − π)Cd

1 + r
where π =

(1 + r)S − Sd

Su − Sd
.

Thus

(1 + r) (S(Cu − Cd) − C(Su − Sd)) + (SuCd − SdCu) = 0 .

Using the relation Cu = (Su −K)+ and the equivalent formula for Cd, we
check that SuCd − SdCu ≤ 0, and hence that Ω ≥ 1.

We would like to establish a relationship between mC and mS . To do this,
we use the hedging portfolio (α, β), which satisfies{

Suβ + (1 + r)α = Cu

Sdβ + (1 + r)α = Cd ,

as well as the equality C = α + Sβ. We then obtain (using β = ∆)
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Su∆ − Cu = (1 + r)(S∆ − C)

Sd∆ − Cd = (1 + r)(S∆ − C) ,

and hence

p(Su∆ − Cu) + (1 − p)(Sd∆ − Cd) = (1 + r)(S∆ − C) .

Rearranging terms,

mSS∆ − mCC = r(S∆ − C)

where
mC − r = Ω(mS − r) .

The excess rate of return on the call is equal to Ω, the elasticity of the
option, multiplied by the excess rate of return on the asset (with Ω ≥ 1). ¤

In Chap. 3, we will study these concepts in continuous time.

1.1.6 Incomplete Markets

A Finite Number of States of the World When the asset takes the
value sj at time 1 in state of the world j with j = 1, . . . , k, for k > 2,
it is no longer possible to replicate the option, as we obtain k equations
(k > 2) with 2 unknowns. We consider contingent claims that are of the form
H = (h1, h2, . . . , hk), where hj corresponds to the payoff in state of the world
j. This contingent claim is replicable if there exists a pair (α, θ) such that
α(1 + r) + θS1 = H, that is such that

α(1 + r) + θsj = hj ; ∀j .

In this case, the price of the contingent claim H is the initial value h = α+θS
of the replicating portfolio.

The set P of risk-neutral probability measures is by definition the set of
probability measures Q that assign strictly positive probability to each state
of the world, and satisfy

EQ(S1) = S(1 + r) .

The set of risk-neutral probabilities (q1, q2, . . . , qk) is determined by

qj > 0 for j = 1, 2, . . . , k

k∑
j=1

qj = 1

k∑
j=1

qjsj = (1 + r)S .
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The price range associated with the contingent claim H is defined by]
inf

Q∈Q
EQ(H̃), sup

Q∈Q
EQ(H̃)

[
,

where H̃ is the discounted value of H, i.e., H̃ = H/(1 + r) in our model. We
will come back to the price range later. In the meantime, we note that if the
market is incomplete, and if H is replicable, then the value of EQ(H/(1+ r))
does not depend on the choice of risk-neutral measure Q. Indeed, if there
exists (α, θ) such that

α(1 + r) + θsj = hj , ∀j

then for any choice of risk-neutral probability measure (qj , 1 ≤ j ≤ k), we
have

EQ(H) =
k∑

j=1

qjhj =
k∑

j=1

qj(α(1 + r) + θsj) = α(1 + r) + θ(1 + r)S .

A Continuum of States of the World Let (Ω,A, Q) be a given probabil-
ity space. Let S be the price of the asset at time 0. Suppose that there exist
two numbers Sd and Su such that the price at time 1 is a random variable
S1 taking values in [Sd, Su], and with a density f that is strictly positive
on [Sd, Su]. Suppose moreover that Sd < (1 + r)S < Su. Let P be the set
of risk-neutral probability measures, that is, the set of probability measures

P such that EP

(
S1

1 + r

)
= S (condition (1.4)). We need these probability

measures to be equivalent to Q. In other words, we need S1 to admit under
P (or Q) a density function that is strictly positive on [Sd, Su].

Proposition 1.1.5. For any convex function g (for example g(x) = (x −
K)+), we have

sup
P∈P

EP

(
g(S1)
1 + r

)
=

g(Su)
1 + r

S(1 + r) − Sd

Su − Sd
+

g(Sd)
1 + r

Su − S(1 + r)
Su − Sd

.

If g is of class C1, we have

inf
P∈P

EP

(
g(S1)
1 + r

)
=

g
(
(1 + r)S

)
1 + r

.

Proof. Let g be a convex function. Let µ and ν be the slope and y-intersect
of the line that goes through the points with coordinates (Sd, g(Sd)) and
(Su, g(Su)). We then have:

∀x ∈ [Sd, Su], g(x) ≤ µx + ν

g(Sd) = µSd + ν

g(Su) = µSu + ν ,
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and hence, for all P ∈ P,

EP (g(S1)) ≤ µEP (S1) + ν = µS(1 + r) + ν .

As µ = g(Su)−g(Sd)
Su−Sd

and ν = g(Sd) − Sd
g(Su)−g(Sd)

Su−Sd
, we obtain an upper

bound.
Let P ∗ be the probability measure such that

P ∗(S1 = Su) = p

P ∗(S1 = Sd) = 1 − p

EP∗(S1) = S(1 + r) .

The last condition above determines p (equal to the π appearing in for-
mula (1.3)):

p =
S(1 + r) − Sd

Su − Sd
, 1 − p =

Su − S(1 + r)
Su − Sd

.

We have EP∗(g(S1)) = µS(1 + r) + ν . The supremum is attained under P ∗.
We notice that this probability measure does not belong to P, as it does
not correspond to the case where S1 has a strictly positive density function.
However we can approach P ∗ with a sequence of probability measures Pn

belonging to P, in the sense that EP∗(g(S1)) = lim EPn
(g(S1)).

Similarly, we can obtain a lower bound

inf
P∈P

EP

(
g(S1)
1 + r

)
=

g(S(1 + r))
1 + r

.

Indeed, if γ and δ are the slope and the y-intersect of the tangent to the curve
y = g(x) at the point with coordinates (S(1 + r), g(S(1 + r))), then

g(x) ≥ γx + δ, γS(1 + r) + δ = g(S(1 + r)) .

Hence EP (g(S1)) ≥ EP (γS1 +δ) = g(S(1+r)), and the minimum is attained
by the Dirac measure at S(1 + r). ¤

This result can be interpreted in terms of volatility. If S1 takes values in
[Sd, Su] and has expectation S(1 + r), then its variance is bounded below by
0 (this value is attained when S1 = S(1+r)), and achieves a maximum when
S1 takes only the extreme values Sd and Su.

As we remarked earlier, if there does not exist a portfolio that replicates
the option, we cannot assign the option a unique price. We define the selling
price of the option as the minimal expenditure enabling the seller to hedge
himself: it is the smallest amount of money to be invested in a portfolio (α, β)
with final value greater than the value of the option g(S1). Hence the selling
price is
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inf
(α,β)∈A

(α + βS)

with A = {(α, β)| α(1 + r) + βx ≥ g(x), ∀x ∈ [Sd, Su]}. We have

inf
(α,β)∈A

(α + βS) = sup
P∈P

EP

(
g(S1)
1 + r

)
.

Indeed, by definition of A, we have α(1 + r) + βS1 ≥ g(S1), and hence

inf
(α,β)∈A

(α + βS) ≥ sup
P∈P

EP

(
g(S1)
1 + r

)
.

Moreover, using the pair (µ, ν) from the previous section, we can check

that
(

ν

1 + r
, µ

)
is in A:

inf
(α,β)∈A

(α + βS) ≤ µS +
ν

1 + r
= sup

P∈P
EP

(
g(S1)
1 + r

)
.

The two problems,

sup
P∈P

EP

(
g(S1)
1 + r

)
and inf

(α,β)∈A
(α + βS)

are called “dual problems”.

We define the buying price of an option as the maximum amount that
can be borrowed against the option. The buying price of a call is then defined
by:

sup
(α,β)∈C

(α + βS)

with C = {(α, β)| α(1 + r) + βx ≤ g(x), ∀x ∈ [Sd, Su]}.
Similarly, we get:

sup
(α,β)∈C

(α + βS) = inf
P∈P

EP

(
g(S1)
1 + r

)
.

1.2 A One-Period Model with (d + 1) Assets and k
States of the World

We now construct a model that is slightly more complex than the previous
one. We consider the case of a one-period market with (d + 1) assets and k
states of the world. Here again, we do not claim to describe the real world
(and nor will we at any point of the book). Instead, we aim to draw out
concepts with which we can develop acceptable forms of model.
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If Si is the price at time 0 of the i-th asset (i = 0, . . . , d), then let its
value at time 1 in state j be denoted by vi

j .

A portfolio (θ0, θ1, . . . , θd) is made up of θi stocks of type i, and therefore
its value at time 0 is

∑d
i=0 θiSi, and its value at time 1 is

∑d
i=0 θivi

j if we are
in the j-th state of the world.

Notation 1.2.1. The column vector S has components Si, and the column
vector θ has components θi.

Let V be the matrix of prices at time 1: that is the (k × (d + 1))-matrix
whose i-th column is made up of the prices of the i-th asset at time 1, that
is (vi

j , 1 ≤ j ≤ k).
We use matrix notation: θ · S =

∑d
i=0 θiSi is the scalar product of θ and

S, and V θ denotes the Rk-vector with components (V θ)j =
∑d

i=0 θivi
j .

We write V T for the matrix transpose of V , and ST for the vector trans-
pose of S.

A riskless asset is an asset worth (1 + r) at time 1 whatever the state of
the world, and worth 1 at time 0. The rate of interest r is used as both a

lending rate and as a borrowing rate for the sake of simplicity. Thus,
1

1 + r
is the price that must be paid at time 0 in order to hold one euro at time 1
in all states of the world.

Notation 1.2.2. Rk
+ denotes the set of vectors of Rk that have non-negative

components. Rk
++ denotes the set of vectors of Rk that have strictly positive

components. ∆k−1 refers to the unit simplex in Rk:

∆k−1 =

{
λ ∈ Rk

+ |
k∑

i=1

λi = 1

}
.

Let z and z′ be two vectors in Rk. We write z ≥ z′ to express zi ≥ z′i for all
i.

Exercise 1.2.3. Show that if V is a k × (d + 1)-matrix, then there is an
equivalence between the statements:

(i) The rank of the mapping associated with V is k.
(ii)The linear mapping associated with V is surjective, and the one associated

with V T is injective.

1.2.1 No Arbitrage Opportunities

We now introduce the concept of an arbitrage opportunity, which was touched
upon earlier.
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The Assumption of No Arbitrage Opportunities

Definition 1.2.4. An arbitrage is a portfolio θ = (θ0, θ1, . . . , θd) with a non-
positive initial value S · θ =

∑d
i=0 θiSi and a non-negative value V θ at time

1, with at least one strict inequality. In other words, either S · θ < 0 and
V θ ≥ 0, or S · θ = 0 and V θ ≥ 0 with a strict inequality in at least one state
of the world.
We say that there are no arbitrage opportunities when there is no arbi-
trage. That is to say, the following conditions must hold:

(i) V θ = 0 implies S · θ = 0 ,

(ii) V θ ≥ 0 , V θ 6= 0 implies S · θ > 0 .

Indeed, in the first case, if we had V θ = 0 and S · θ < 0 (or S · θ > 0),
then the portfolio θ (or −θ) would be an arbitrage. In the second case, if
V θ ≥ 0, V θ 6= 0 and S · θ ≤ 0, then θ would be an arbitrage.

An arbitrage opportunity is a means of obtaining wealth without any
initial capital. Obviously an arbitrage opportunity could not exist without
being very quickly exploited. We therefore make the following assumption,
referred to as the assumption of no arbitrage opportunity (NAO).

The NAO Assumption: there exists no arbitrage opportunity.

Using the same notation as before, we recall a result from linear program-
ming:

Lemma 1.2.5 (Farkas’ Lemma). The implication V θ ≥ 0 ⇒ S · θ ≥ 0
holds if and only if there exists a sequence (βj)k

j=1 of non-negative numbers
such that Si =

∑k
j=1 vi

j βj , i ∈ {0, . . . , d}.

We remark that the assumption of NAO is a little bit stronger than the
assumptions of Farkas’ Lemma, as according to the former, if the portfolio’s
payments are non-negative, and strictly positive in at least one state of the
world, then the price of the portfolio is strictly positive. From this we will
deduce (with a proof that is in fact simpler than that of Farkas’ Lemma) that
the βj are strictly positive.

We recall the Minkowski separation theorem.

Theorem 1.2.6 (The Minkowski Separation Theorem). Let C1 and
C2 be two non-empty disjoint convex sets in Rk, where C1 is closed and C2
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is compact. Then there exists a family (a1, . . . , ak) of non-zero coefficients,
and two distinct numbers b1 and b2 such that

∀ x ∈ C1, ∀ y ∈ C2,

k∑
j=1

ajxj ≤ b1 < b2 ≤
k∑

j=1

ajyj .

Theorem 1.2.7. The NAO assumption is equivalent to the existence of a
sequence (βj)k

j=1 of strictly positive numbers, called state prices, such that

Si =
k∑

j=1

vi
j βj ; i ∈ {0, . . . , d} . (1.6)

Proof. (of Theorem 1.2.7)
Let ST be the row vector (S0, S1, . . . , Sd) and let U be the vector subspace
of Rk+1

U :=
{

z ∈ Rk+1 | z =
(
−ST

V

)
x; x ∈ Rd+1

}
.

The assumption of NAO implies that U∩Rk+1
+ = {0}, so that in particular,

U ∩∆k = ∅. According to Minkowski’s theorem, there exists a set of non-zero
coefficients {βj ; j = 0, . . . , k} and two numbers b1 and b2, such that

k∑
j=0

βjzj ≤ b1 < b2 ≤
k∑

j=0

βjwj ; z ∈ U, w ∈ ∆k .

As 0 ∈ U , b1 ≥ 0, and hence, by choosing a vector w whose components
are all zero except for the j-th, which is equal to 1, we deduce that βj > 0,
∀ j ∈ {0, . . . , k}. Without loss of generality, we can take β0 = 1.

Then let β be the vector (β1, . . . , βk)T . Taking into account the form
of the elements of U , we write the inequality z0 +

∑k
j=1 βjzj ≤ 0 as

(−S + V T β) · x ≤ 0. Hence S = V T β, i.e., Si =
∑k

j=1 βjv
i
j with βj > 0,

j ∈ {1, . . . , k}.
The proof of the converse is trivial. ¤
The vector β is called a state price vector: βj corresponds to the price at

time 0 of a product that is worth 1 at time 1 in state j, and 0 in all the other
states. We will come back to this interpretation later.

Probabilistic Interpretation of the State Prices Until now in this sec-
tion, we have not used probabilities. We will now give a probabilistic interpre-
tation of the NAO assumption and of Theorem 1.2.7. Introducing probabili-
ties will enable us to study more general models, and to exploit the concept
of NAO.
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If asset 0 is riskless, then we have

v0
j = 1 + r, j ∈ {1, . . . , k} ,

and hence, using (1.6), for i = 0:

1
1 + r

=
k∑

j=1

βj .

Let us set πj = (1+r)βj . The πj are positive numbers such that
∑k

j=1 πj =
1. Therefore, they can be interpreted as probabilities on the different states
of the world. We have

Si =
1

1 + r

k∑
j=1

πjv
i
j i ∈ {1, . . . , d} .

We have thus constructed a probability measure under which the price Si of
the i-th asset is the expectation of its price at time 1, discounted using the
riskless rate.

If we construct a portfolio θ, we get:

(1 + r)
d∑

i=0

θiSi =
k∑

j=1

πj

d∑
i=0

θivi
j ,

where π is (as in Sect. 1.1) a probability measure that is neutral with
respect to risk: a riskless investment with initial value

∑d
i=0 θiSi yields

(1+ r)
∑d

i=0 θiSi, which is equal to the expectation (under π) of the value of
the portfolio at time 1.

The rate of return on asset i in state j is by definition equal to (vi
j−Si)/Si.

The expectation of the rate of return on i is, under probability measure π,
equal to the rate of return on the riskless asset:

k∑
j=1

πj

vi
j − Si

Si
= r .

Proposition 1.2.8. Under the assumption of NAO, if asset 0 is riskless,
then there exists a probability measure π on the states of the world, under
which the price at time 0 of asset i is equal to the expectation of its price at
time 1, discounted by the riskless rate:

Si =
1

1 + r

k∑
j=1

πjv
i
j . (1.7)
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Exercise 1.2.9. Let V θ be the vector with components (V θ)j =
d∑

i=0

vi
j θi,

and let S · θ denote the scalar product S · θ =
d∑

i=0

Si θi.

a. Let z ∈ Im V . Let θ be any vector satisfying z = V θ. Show that, under
the assumption of NAO, the mapping π : z → S · θ does not depend on the
choice of θ, and defines a positive linear functional on Im V .

b. Show that π can be extended to a positive linear functional π on Rk. To
do this, show that for all ẑ 6∈ Im V , there exists φ(ẑ) ∈ R such that

max {π(z′), z′ ≤ ẑ, z′ ∈ Im V } < φ(ẑ) < min {π(z′), z′ ≥ ẑ, z′ ∈ Im V } .

Next show that the mapping z + λẑ → π(z) + λφ(ẑ) is linear and positive,
and extends π to the space generated by Im V and ẑ.

c. Show, using the Riesz representation theorem, that π(z) = β · z with β ∈
Rk

++.
d. Thence deduce Theorem 1.2.7

Exercise 1.2.10. Suppose that there are constraints on portfolios, modeled
by a closed convex cone C: θ ∈ C. For example:

θi unconstrained for 0 ≤ i ≤ r
θi ≥ 0 for r + 1 ≤ i ≤ r + p
θi ≤ 0 for r + p + 1 ≤ i ≤ d.

Adapt the definition of NAO to the restriction to C.

1. Suppose that there are k ≥ 4 states of the world, and 4 assets. Asset 0
is riskless, and the rate of interest is r. The other assets are risky, and
their returns are given by a matrix V . Suppose that the constraints are

θ2 ≥ 0 and θ3 ≤ 0. Let Ṽ =

 . . . . . . V . . .
0 0 1 0
0 0 0 −1

.

Show that NAO with restrictions on portfolios can be expressed as
(i) Ṽ θ = 0 ⇒ S · θ = 0.
(ii) Ṽ θ ∈ Rk

+, Ṽ θ 6= 0 ⇒ S · θ > 0.
Hence deduce that there exists a probability measure π such that

S1 =
1

1 + r

k∑
j=1

v1
j πj , S2 ≥ 1

1 + r

k∑
j=1

v2
j πj and S3 ≤ 1

1 + r

k∑
j=1

v3
j πj .
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2. For θ ∈ C, write NC(θ) = {p ∈ Rd+1|pT (θ − θ) ≤ 0, ∀θ ∈ C}. Show,
by generalizing the proof of Theorem 1.2.7, that NAO restricted to C, is
equivalent to the existence of β ∈ Rk

++ such that −S + V T β ∈ NC(0).

3. Recover the results of 1.

Exercise 1.2.11.

1. Suppose that there are 2 states of the world, and 2 assets, one riskless
(the rate of interest is taken to be r) and the other a stock worth either
Su or Sd at time 1. Suppose that the risky asset has purchase price S0 and
selling price S′

0 ≤ S0. We use the notation θ = θ+ − θ− for the amount of
stock held, and θ0 for the amount of riskless asset held. The cost of this
portfolio is then θ0 + θ+S0 − θ−S′

0, and it pays{
(1 + r)θ0 + (θ+ − θ−)Su in the high state, after an up-move
(1 + r)θ0 + (θ+ − θ−)Sd in the low state, after a down-move

Show, using Farkas’ Lemma, that there is NAO if and only if there exists
at least one probability measure π such that

S′
0 ≤ Suπ

1 + r
+

Sd(1 − π)
1 + r

≤ S0 .

The reader can introduce the matrix:
(1 + r) Su −Su

(1 + r) Sd −Sd

0 1 0
0 0 1


2. Suppose that there are d assets, with an injective gains matrix V . Suppose

that the cost φ(θ), φ : Rd → R of a portfolio θ ∈ Rd is a sublinear
function, that is, one satisfying{

φ(θ1 + θ2) ≤ φ(θ1) + φ(θ1) ∀(θ1, θ2) ∈ R2d

φ(tθ) = tφ(θ) ∀ t ≥ 0 .

Notice that in particular, we have φ(0) = 0 and −φ(−θ) ≤ φ(θ). Let
U := {(z1, z2) ∈ Rk × R | ∃θ such that z1 ≤ −φ(θ) and z2 = V θ}. Show
that U is a convex cone.
We say that there is NAO if V θ = 0 ⇒ φ(θ) = 0, and V θ ∈ Rk

+, V θ 6=
0 ⇒ φ(θ) > 0. Show that under the assumption of NAO, U∩Rk+1

+ = {0} .
Show, by adapting the proof of Theorem 1.2.7, that NAO is equivalent
to the existence of a strictly positive β such that

−φ(−θ) ≤ βT V θ ≤ φ(θ).

Hence recover the results of the first question.
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1.2.2 Complete Markets

Definition and Characterization

Definition 1.2.12. A market is complete if, for any vector w of Rk, we can
find a portfolio θ such that V θ = w; that is to say, there exists θ such that

d∑
i=0

θi vi
j = wj , j ∈ {1, . . . , k} .

A market is complete if we can choose a portfolio at time 0 in such a way
as to attain any given vector of wealth at time 1.

Proposition 1.2.13. A market is complete if and only if the matrix V is of
rank k.

Proof. Matrix V has rank k if and only if the mapping associated with V is
surjective; the equation V θ = w then has at least one solution. ¤

Economic Interpretation of State Prices In a complete market, for any
j ∈ {1, . . . , k}, there exists a portfolio θj such that the payoff of θj satisfies
V θj = (δ1,j , . . . , δk,j)T , with δi,j = 0 when i 6= j, and δj,j = 1 (the asset is
then called an Arrow–Debreu asset). In an arbitrage-free market, the initial
value of θj is S · θj = βT V θj = βj . Therefore we can interpret βj as the
price to be paid at time 0 in order to have one euro at time 1 in state j and
nothing in the other states of the world. Hence the terminology “state price”.

Moreover, we note that if there exists β such that V T β = S, then, as the
mapping associated with matrix V T is injective, the vector β is unique.

The Risk-Neutral Probability Measure In a complete market, there
necessarily exists a riskless portfolio, that is a portfolio θ such that (V θ)j = a
for all j ∈ {1, . . . , k}. The initial value of this portfolio is taken to be V0. The
rate of return on the portfolio is (a − V0)/V0, and will be denoted by r.
Without loss of generality, we can assume asset 0 to be riskless, and we can
normalize its price so that it is 1 at time 0, its value at time 1 being 1 + r.
If there exists a probability measure π satisfying V T π = (1 + r)S, then it is
unique. We then call it the “risk-neutral measure”.

1.2.3 Valuation by Arbitrage in the Case of a Complete Market

Let z be a vector of Rk. Under the assumption of NAO, if there exists a
portfolio θ = (θ0, θ1, . . . , θd) taking the value z at time 1, i.e., such that

d∑
i=0

θi vi
j = zj ,
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then we say that z is replicable. The value of the portfolio at time 0 is
z0 =

∑d
i=0 θiSi, and this value does not depend on the hedging portfolio

chosen. Indeed, suppose that there exist two portfolios θ and θ̃ such that
V θ = V θ̃ and S · θ > S · θ̃. The portfolio θ̃ − θ is an arbitrage opportunity.
In the complete market framework, there always exists a hedging portfolio.

Proposition 1.2.14. In a complete and arbitrage-free market, the initial
value of the payoff z ∈ Rk, delivered at time 1, is given by

1
1 + r

k∑
j=1

πj zj =
k∑

j=1

βj zj .

Remark 1.2.15. The initial value of z is a linear function of z.

Proof. (of Proposition 1.2.14)
The value of any hedging portfolio is z0 =

∑d
i=0 θi Si. It is enough to

use (1.6) or (1.7) and write

z0 =
d∑

i=0

θi
k∑

j=1

βj vi
j = β · z =

1
1 + r

k∑
j=1

πjzj .

¤

Remark 1.2.16. The expression above has a two-fold advantage. It does not
depend on the portfolio, and it can be interpreted, as follows: the price at time
0 of the replicating portfolio (zj ; j = 1, . . . , k) is the discounted expectation
under π of its value at time 1.

In the case of an option on the i-th asset, we have zj = sup (vi
j − K, 0),

and hence we get the arbitrage price

1
1 + r

k∑
j=1

πj sup (vi
j − K, 0) .

1.2.4 Incomplete Markets: the Arbitrage Interval

Generally speaking, it is not possible to valuate a product by arbitrage in
an incomplete market. If z is not replicable, then we can define an arbitrage
interval . We associate with any portfolio θ, its corresponding initial value
θ · S.

We define the selling price of z as the smallest amount of wealth that can
be invested in a portfolio θ in such a way that the final value of this portfolio
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is greater than z. In the following, we suppose that there is a riskless asset.
The super-replication price is then

S(z) := inf{θ · S | (V θ)j ≥ zj ; ∀j} .

We define the purchase price of z as the maximal amount of money that
can be borrowed against z, i.e.,

S(z) := sup{θ · S | (V θ)j ≤ zj ; ∀j} .

First we note that S(z) is well-defined. Indeed, let us take θ̃ to be an ele-
ment of the non-empty set {θ | V θ ≥ z}. The set {θ |S ·θ ≤ S · θ̃ and V θ ≥ z}
is a compact set (from the NAO condition), on which the function S ·θ attains
its minimum.

Moreover, we can easily show that if S̄(z) 6= S(z) and if the price S(z) of
the contingent asset z satisfies S(z) ≥ S̄(z) or S(z) ≤ S(z), then an arbitrage
occurs if we use strategies that include this new asset. If S̄(z) 6= S(z) and if
the price S(z) of the contingent asset z satisfies S(z) < S(z) < S̄(z), then
there is NAO when we use strategies that include this new asset. Let us show
that, indeed, if a portfolio (θz, θ) satisfies θzz + V θ ≥ 0 and θzz + V θ 6= 0,
then θzS(z) + S · θ > 0.

• If θz = 0, it follows from NAO.

• If θz < 0, we have V θ
−θz

≥ z, so that S · θ
−θz

≥ S̄(z) > S(z), and hence
θzS(z) + S · θ > 0.

• If θz > 0, we have z ≥ V θ
−θz

, so that S · θ
−θz

≤ S(z) < S(z), and hence
θzS(z) + S · θ > 0.

In addition, we check that θzz+V θ = 0 implies θzS(z)+S ·θ = 0. Indeed,
as V θ

−θz
= z, so S(z) = S̄(z) = S(z) = S · θ

−θz
, and hence θzS(z) + S · θ = 0.

Therefore, there is NAO when we use strategies that include the new
asset.

Finally, S(z) is sublinear: it satisfies

S(z + z′) ≤ S(z) + S(z′) and S(az) = aS(z) ∀a ∈ R+ .

Moreover, −S(−z) = S(z).

Let us now show that

S(z) = max{βT z | β ≥ 0, V T β = S} .
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Indeed, for any θ such that V θ ≥ z, and any β ≥ 0 such that V T β = S, we
have S · θ = βT V θ ≥ βT z. Hence

min{S · θ | V θ ≥ z} ≥ max{βT z | β ≥ 0, V T β = S} .

In addition, if θ is a solution to min{V θ≥z} S ·θ, then there exists a Lagrange

multiplier3 β ≥ 0 such that S = V T β and β
T
(V θ − z) = 0. Hence

S(z) = S · θ = β
T
z ≤ max{βT z | β ≥ 0, V T β = S} .

The required equality follows.

If there is a riskless asset, we can normalize β, and hence

S(z) = max
{

Eπ(z)
1 + r

∣∣∣∣ V T π = (1 + r)S
}

.

The expression above represents the maximum of the expectation across all
the probability measures under which discounted prices are martingales. In
this way, we have generalized the results of Sect. 1.1.6.

Exercise 1.2.17. Arbitrage bounds in the presence of portfolio constraints.

We use the notation of Exercise 1.2.10, and restrict ourselves to portfolios
belonging to C. Let

S(z) := inf{θ · S | θ ∈ C, V θ ≥ z} .

(If there exists no θ ∈ C such that V θ ≥ z, we set S(z) := ∞).

1. Show that S(z) is well-defined and sublinear.

2. Show that S(z) = max{βT z | β ≥ 0, −S + V T β ∈ NC(0)}. (Recall that
if θ minimizes θ · S under the constraints θ ∈ C and V θ ≤ z, then there
exists β ≥ 0 and v ∈ NC(θ) such that S = βT V −v and βT (V θ− z) = 0).

Exercise 1.2.18. Arbitrage bounds in the case of transaction costs.

We use the assumptions and notation of Exercise 1.2.11. Suppose that
there is a riskless asset. In addition, for any z there exists θ such that V θ ≥ z,
and we define

S(z) := inf{φ(θ) |V θ ≥ z} .

1. Show that S(z) is well-defined, and sublinear.

2. Show that S(z) = max{βT z | β ≥ 0, φ(θ) ≥ βT V θ, ∀ θ}.
3. Calculate the purchase price for a call with strike K, where the rest of

the data is as in as in question 1 of Exercise 1.2.11. (First consider the
case S0 ≥ Su

1+r , and next the case S0 < Su

1+r ).

3 See annex.
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1.3 Optimal Consumption and Portfolio Choice in a
One-Agent Model

The two models introduced previously were purely financial. We now consider
a very simple economy, which has a single good for consumption, taken as
the numéraire, and a single economic agent. This agent has known resources
R0 > 0 a time 0, and his resources at time 1 given by Rj > 0 in state of the
world j.

In order to modify his future revenue, the agent can buy a portfolio of
assets at time 0, on condition that he does not run into debt. We assume that
the (d + 1) assets have the same characteristics as in the previous section.

The agent consumes: c0 is the amount of his consumption at time 0; cj

that of his consumption at time 1 in state of the world j.

The agent constructs a portfolio θ. The set of consumption–portfolio pairs
that are compatible with the agent’s revenue, is defined by the following
inequalities:

(i) R0 ≥ c0 +
d∑

i=0

θi Si

(ii) Rj ≥ cj −
d∑

i=0

θi vi
j , j ∈ {1, . . . , k} .

(1.8)

The first constraint states that money invested in the portfolio comes from
the portion of revenue that has not been consumed, and the second, that
consumption at time 1 is covered by his resources and by the portfolio.

The set of consumption strategies that are compatible with the agent’s
revenue is then:

B(S) :=
{
c ∈ Rk+1

+ ; ∃ θ ∈ Rd+1, satisfying (1.8)
}

.

The agent has “preferences” on Rk+1
+ , that is to say, a preorder (a reflex-

ive and transitive binary relation), written º, which is complete (any two
elements of Rk+1

+ can be compared). We say that u : Rk+1
+ → R is a utility

function that represents the preorder of preferences if u(c) ≥ u(c′) is equiv-
alent to c º c′. Historically, the concept of a utility function came before
that of a preorder of preferences. Utility functions have long been part of the
basis of economic theory ( “marginalist” theory). Later, much work sought to
give foundations to utility theory, by taking the preorders as a starting point.

We assume here that the investor’s preferences are represented by a func-
tion u from Rk+1

+ into R, which is strictly increasing with respect to each of its
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variables, strictly concave and differentiable. We suppose that the agent max-
imizes his utility under budgetary constraints (1.8). The derivative u′ is called

the marginal utility. We assume moreover that
∂u

∂ci
(c0, . . . , ci, . . . , ck) → ∞

when ci → 0. This condition means that the agent has a strong aversion to
consuming nothing at time 0 or at time 1 in one of the states of the world.

1.3.1 The Maximization Problem

Let u be a utility function. We say that c∗ ∈ B(S) is an optimal consumption
if

u(c∗) = max {u(c); c ∈ B(S)} .

Existence of an Optimal Consumption

Proposition 1.3.1. There is an optimal solution if and only is S satisfies
the NAO assumption. The optimal solution is strictly positive.

Proof. Suppose that there exists an optimal solution (c∗0, c
∗
1) financed by

θ∗, and an arbitrage θa. We then have S · θa ≤ 0 and V θa ≥ 0 where
at least one of the inequalities is strict. It is true that the consumption
(c∗0 − S · θa, c∗1 + V θa) ∈ B(S) (an associated portfolio is θ∗ + θa). Using
the property of an arbitrage strategy, c∗0 −S · θa ≥ c∗0, c∗1 + V θa ≥ c∗1 with at
least one strict inequality. As u(c) is strictly increasing, this contradicts the
optimality of (c∗0, c

∗
1).

Conversely, let us show that under the assumption of NAO, if V is in-
jective, then there exists an optimal solution. A more general result will be
proved in Chap. 6. Let us show that the set{

θ ∈ Rd+1; ∃ c ∈ Rk+1
+ , satisfying (1.8)

}
is bounded. Suppose that, on the contrary, there exists a sequence (cn, θn)
satisfying (1.8), and such that ‖θn‖ → ∞, and let θ̂ be a limit point of the
sequence θn

‖θn‖ . We have

S · θn

‖θn‖
+

c0n

‖θn‖
≤ R0

‖θn‖
,

cjn

‖θn‖
≤ Rj

‖θn‖
+

V θn

‖θn‖
,

for all n, and hence S · θ̂ ≤ 0 and V θ̂ ≥ 0. By the NAO assumption, V θ̂ = 0,
and θ̂ = 0, so contradicting the fact that ‖θ̂‖ = 1. We deduce that B(S) is
closed and bounded, and thus compact, and hence that an optimal solution
c∗ does exist. Let us now show that c∗ is strictly positive.
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As the function u is strictly increasing, the budget constraints (1.8) are
binding. Hence there exists θ∗ such that

c∗0 +
d∑

i=0

θi∗Si − R0 = 0

c∗j −
d∑

i=0

θi∗vi
j − Rj = 0, j ∈ {1, . . . , k} .

Let ε satisfy c∗0 +εS ·θ∗ > 0 and c∗j −ε(V θ∗)j > 0 for any j ∈ {1, . . . , k}. The
consumption (c0, c1, . . . , ck) where c0 = εS · θ∗ + c∗0 and cj = c∗j + ε(V θ∗)j

for any j ∈ {1, . . . , k} is in B(S) (an associated portfolio is (1 − ε)θ∗). As u
is concave,

u(c) − u(c∗) ≥ ε

S · θ∗ ∂u

∂c0
(c) −

k∑
j=1

(V θ∗)j
∂u

∂cj
(c)

 .

For ε small enough, if c∗0 = 0 or if c∗j = 0 for j ∈ {1, . . . , k}, the last expression
above is strictly positive: since if c∗0 = 0 (respectively c∗j = 0), S · θ∗ = R0 >

0 (respectively (V θ∗)j < 0), and when ε → 0, ∂u
∂c0

(c) → ∞ (respectively
∂u
∂cj

(c) → ∞). This contradicts the optimality of c∗. ¤

Remark 1.3.2. It is important to take note of the conditions under which this
proposition holds. In the first part of the proof, we used the fact that u is
strictly increasing with respect to all of its variables. In the second part,
we used the non-negativity of consumption. The following exercises provide
very simple counterexamples to the statement of the proposition when these
conditions are no longer satisfied.

Exercise 1.3.3.

1. Consider an economy in which there are two dates, 0 and 1. At time 1,
there are two possible states of the world. At time 0, an agent holding one
euro, can buy a portfolio made up of two assets whose payoffs are rep-
resented by the payment vectors [1, 0] and [0, 1] respectively, and whose
prices are S1 = 1, S2 = 0. Further assume that the agent consumes c0.
At time 1, in addition to the payment vector of his portfolio, the agent
receives [1, 2] and consumes (c1, c2). Suppose that the agent has utility
function

u(c0, c1, c2) = c0 + min{c1, c2} .

Show that the agent’s consumption–portfolio problem admits a solution
(notice that the maximum utility that the agent can achieve, is 2). Is
the solution unique? Show that the financial market admits an arbitrage.
Comment on these results.
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2. The data here is the same as that of the previous question, except that
the agent’s utility function is given by

u(c0, c1, c2) = −(c0 − 1)2 − (c1 − 1)2 − (c2 − 2)2 .

Show that the agent’s consumption–portfolio problem admits a solution.
Comment on the result.

3. We no longer assume the consumption to be positive. At time 0, an agent
holding one euro, can buy an asset, whose payment vector is [1, 1], and
whose price is S1 = 1. At time 1, in addition to the payment vector of his
portfolio, the agent receives [1, 2]. We assume that his utility function is

u(c0, c1, c2) = c0 + c1 + c2 .

Show that the financial market does not admit arbitrage, and that nev-
ertheless, the agent’s consumption–portfolio problem does not admit a
solution.

Asset Valuation Formula As c∗ is strictly positive, it follows from the
method of Lagrange multipliers, that a necessary and sufficient condition for
c∗ to be optimal, is for there to exist θ∗ ∈ Rd+1 and λ∗ ∈ Rk+1

+ such that
∂u

∂c0
(c∗) − λ∗

0 = 0

∂u

∂cj
(c∗) − λ∗

j = 0 , j ∈ {1, . . . , k} ,

(1.9.i)

λ∗
0S

i −
k∑

j=1

λ∗
jv

i
j = 0 , i ∈ {0, . . . , d} , (1.9.ii)


λ∗

0

(
c∗0 +

d∑
i=0

θi∗Si − R0

)
= 0

λ∗
j

(
cj

∗ −
d∑

i=0

θi∗vi
j − Rj

)
= 0 , j ∈ {1, . . . , k} .

(1.9.iii)

The assumption that u is strictly increasing, implies that its derivatives are
strictly positive. Hence, from (1.9.i ), we have λ∗ ∈ Rk+1

++ and we can write
expression (1.9.iii) as

c∗0 +
d∑

i=0

θi∗Si − R0 = 0

c∗j −
d∑

i=0

θi∗vi
j − Rj = 0, j ∈ {1, . . . , k} .

(1.9.iv)
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Defining βj as

βj =
λ∗

j

λ∗
0

=
∂u/∂cj

∂u/∂c0
(c∗) , (1.10)

the βj are strictly positive, and, using (1.9.ii), we obtain a formula for eval-
uating the price of the assets:

Si =
k∑

j=1

βj vi
j . (1.11)

The interest rate is given by the expression:

1 + r =
∂u/∂c0(c∗)

k∑
j=1

∂u/∂cj(c∗)

. (1.12)

Finally, eliminating θi∗ from the equations in (1.9.iv), we get

c∗0 +
k∑

j=1

βjc
∗
j = R0 +

k∑
j=1

βjRj .

The Complete Market Case In the case of a complete market with no
arbitrage, the optimization problem under constraints, defined by (1.8), takes
a simpler form. As the market is complete, there exists a unique β such that
S = V T β. Let us define the inequality

c0 +
k∑

j=1

βjcj ≤ R0 +
k∑

j=1

βjRj . (1.13)

This is the budgetary constraint placed on an agent who buys a consumption
of cj at a contingent price of βj .

If the market is complete

B(S) =
{
c ∈ Rk+1

+ satisfying (1.13)
}

.

Indeed, if c ∈ B(S), using (1.9.iv) to eliminate θ, we can show that c satisfies
(1.13).

Conversely, let c satisfy (1.13). If the market is complete, there exists θ
such that

cj −
d∑

i=0

θivi
j − Rj = 0 for all j ∈ {1, . . . , k} .
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Using (1.9.iv) and (1.13), we can show that (1.8) is satisfied, and hence that
c ∈ B(S).

Thus we are brought back to a maximization problem under a single
budgetary constraint c0 +

∑k
j=1 cjβj ≤

∑k
j=1 Rjβj + R0. Formula (1.10)

then follows trivially. We observe that the price in state j is proportional to
the marginal utility of consumption in state j.

As we showed previously, if there is a riskless asset, the βj can be in-
terpreted in terms of risk-neutral probabilities βj = πj

1+r . The risk-neutral
probability of state j is therefore proportional to the marginal utility of con-
sumption in state j. We note that by using risk-neutral probabilities, we can
write constraint (1.12), if asset 0 is riskless, as

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

The consumption at time 0, plus the value, discounted by the risk-free
return, of the expectation with respect to π of consumption at time 1, is
less than or equal to the revenue at time 0, plus the discounted expectation
of the revenue at time 1. This formulation of the constraint will be used in
continuous time, in Chaps. 4 and 8, as it allows us to transform a path-wise
constraint into a constraint on an expected value.

The Incomplete Market Case We suppose that there is a riskless asset.
We write P for the set of probability measures π satisfying V T π = (1 + r)S.
If c ∈ B(S) and π ∈ P, we have

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

We use the notation
V (π) = max u(c)

where the maximum is taken over the c that satisfy the constraint

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

Thus we obtain
u(c∗) ≤ minπ∈P V (π) .

As the corresponding necessary and sufficient first order conditions are
satisfied, it follows from (1.10) and (1.11) that u(c∗) = V (β(1 + r)) where β
is defined as in (1.10). Therefore we have:

u(c∗) = minπ∈PV (π) .

We refer to such a π as a “minimax” probability measure.
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1.3.2 An Equilibrium Model with a Representative Agent

We take as given the endowments (R0, . . . , Rk) of the agent, and the asset
prices S. A pair ((R0, . . . , Rk), S) is an equilibrium if the optimal solution to
the agent’s consumption–portfolio problem is ((R0, . . . , Rk), 0d+1). In other
words, at price S, the agent does not carry out any transactions. Let z be a
contingent claim, and let S(z) be its price. We say that the claim is valued at
equilibrium if, when it is introduced into the financial markets in equilibrium,
the optimal demand θz for the claim is zero. In other words, writing R for
the agent’s random endowments at time 1 and C for his consumption vector
at time 1, the optimal solution to the problem

max u(c0, c) under the constraints
c0 + θ · S + θzS(z) ≤ R0

C ≤ R + V θ + θzz

is given by (R0, . . . , Rk) and by the associated portfolio (0d+1, 0z).

Proposition 1.3.4. If ((R0, . . . , Rk), S) is an equilibrium, then the interest
rate and the asset prices are given by:

1 + r =
∂u/∂c0(R0, . . . , Rk)

k∑
j=1

∂u/∂cj(R0, . . . , Rk)

and

Si =
k∑

j=1

∂u/∂cj(R0, . . . , Rk)
∂u/∂c0(R0, . . . , Rk)

vi
j for all i = {1, . . . , d} .

The equilibrium price of a contingent claim z ∈ Rk is:

S(z) =
k∑

j=1

∂u/∂cj(R0, . . . , Rk)
∂u/∂c0(R0, . . . , Rk)

zj .

Proof. The first part of the proposition follows from (1.10) and (1.11) with
(c∗) = (R0, . . . , Rk). To prove the second part, we suppose that the agent’s
consumption–portfolio problem

max u(c0, c) under the constraints
c0 + θ · S + θzS(z) ≤ R0

C ≤ R + V θ + θzz

has for optimal solution ((R0, . . . , Rk), 0d+1, 0z). According to the Kuhn–
Tucker theorem, there exists λ̃ ∈ Rk+1

+ such that
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i) ∂u
∂c0

(R0, . . . , Rk) − λ̃0 = 0

ii) ∂u
∂cj

(R0, . . . , Rk) − λ̃j = 0 , j ∈ {1, . . . , k}

iii) λ̃0S
i =

∑k
j=1 λ̃jv

i
j , i ∈ {0, . . . , d}

iv) λ̃0S(z) =
∑k

j=1 λ̃jzj .

The equilibrium price of a contingent asset follows trivially from these for-
mulae. ¤

Exercise 1.3.5. Consider an economy with two dates 0 and 1. At time 1,
there are two states of the world. At time 0, an agent holding one euro
can buy a portfolio made up of two assets with respective payment vec-
tors [1, 1] and [2, 0]. Assume moreover that he consumes c0. At time 1,
in addition to the payment vector of his portfolio, the agent receives [1, 2]
and consumes (c1, c2). Suppose the agent has utility function u(c0, c1, c2) =
log(c0) + 1

2 (log(c1) + log(c2)). Suppose that the agent’s optimal strategy is
to buy nothing. What are the assets’ equilibrium prices? What is the risk-
neutral probability measure?

1.3.3 The Von Neumann–Morgenstern Model, Risk Aversion

First of all, we present the theory for decisions taken over one period. In the
interests of simplicity, we assume here that there is only a single consumption
good.

Let P be the set of probability measures on (R+,B(R+)). In particular,
if there are only a finite number of states, if state j occurs with probabil-
ity µj , and if consumption C at time 1 is a random variable taking values
cj , then the probability law µC of C with µC =

∑k
j=1 µjδcj

is an element of P.

We make the assumption that only the consequences of random events
(that is possible cash flows and their probabilities) are taken into account.
This assumption comes down to supposing that the agent’s preferences are
not expressed on the positive or zero random variables, but directly on P.
We use the notation º for the preorder of the agent’s preferences, which is
assumed to be complete. We say that u : P → R is a utility function that
represents the preorder of preferences if u(µ) ≥ u(µ′) is equivalent to µ º µ′.

We say that the utility is Von Neumann–Morgenstern if there exists v :
R+ → R such that

u(µ) =
∫ ∞

0

v(x)dµ(x) .

In the particular case µC =
∑k

j=1 µjδcj
, the VNM utility is written
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u(µC) =
k∑

j=1

µjv(cj) ,

so that our criterion is to maximize the expectation of the consumption’s
utility.

We do not discuss here the abundant literature that establishes axioms
on the preorder of preferences on P in such a way that it admits a VNM
representation.

We say that the agent is risk averse if

v(E(C)) ≥ E(v(C)), for all C .

Thus an investor prefers a future consumption E(C) with certainty, to
a consumption c1 with probability µ1, a consumption c2 with probability
µ2, . . . , a consumption ck with probability µk.

If the agent has a preorder on all finite probabilities, the presence of risk
aversion is equivalent to the concavity of v. Indeed, if v is concave, then
according to Jensen’s inequality4, we have v(E(C)) ≥ E(v(C)), for all C.
Conversely, we suppose that v(E(C)) ≥ E(v(C)) for all C. Let (x, y) ∈ R2

+.
We consider the random variable C worth x with probability α and y with
probability 1 − α. As

v(E(C)) = v(αx + (1 − α)y) ≥ E(v(C)) = αv(x) + (1 − α)v(y) ,

by letting α, x and y vary, we obtain the concavity of v.

We say that an investor is risk-neutral, if v is an affine function. Then

v(E(C)) = E(v(C)), for all C .

When an agent is risk averse, we define the risk premium ρ(C) linked to
the random consumption C: it is the amount the investor is prepared to give
up in order to obtain, with certainty, a consumption level equal to E(C). As
v is a continuous, strictly increasing and strictly concave function, for all C
there exists ρ(C) ≥ 0 such that

v(E(C) − ρ(C)) = E (v(C)) . (1.14)

The amount E(C)−ρ(C) is called the certainty equivalent of C, and ρ is called
the risk premium. When the investor is risk-neutral, E[v(C)] = v[E(C)], so
that ρ(C) = 0. We now assume that there are a finite number of states,
that consumption C at time 1 is a random variable taking values cj with
probability µj , and that v is of class C2. Using Taylor’s expansion, on the

4 See for example Chung [58].



1.3 Optimal Consumption and Portfolio Choice in a One-Agent Model 31

condition that the values cj taken by the consumption C are close enough to
E(C), we get

v(cj) ' v[E(C)] + [cj − E(C)]v′[E(C)] +
[cj − E(C)]2

2
v′′[E(C)] .

Taking expectations on both sides,

E[v(C)] =
k∑

j=1

µjv(cj) ' v[E(C)] + v′′[E(C)]
Var C

2
.

Expanding the first term of (1.13), using Taylor’s expansion once again,
we get

v[E(C) − ρ(C)] ' v[E(C)] − ρ(C)v′[E(C)]

and hence we can evaluate ρ(C):

ρ(C) ' − v′′[E(C)]
2v′[E(C)]

VarC .

The coefficient Ia(v, x) = −v′′(x)
v′(x

is called the absolute risk aversion

coefficient of v. Thus the certainty equivalent of C is approximately equal to

E(C)− Ia(v,E(C))
2

Var C, which as a first approximation justifies the choice
of a mean–variance criterion.

Exercise 1.3.6. We denote by N (µ, σ2) the normal distribution with mean
µ and variance σ2. Let C

law= N (µ, σ2) and v(c) = −e−βc, β > 0. Show that
Ia(v, x) = β for any x and that E(C) − ρ(C) = µ − β

2 σ2. (Here we can use

that fact that C
law= µ+σY , where Y

law= N (0, 1)). In this particular case, the
certainty equivalent of C is exactly equal to E(C) − α

2
Var C.

Exercise 1.3.7. Calculate the absolute risk aversion index in the following
cases: v(c) = cγ

γ with 0<γ<1, v(c) = ln c.

1.3.4 Optimal Choice in the VNM Model

We return to the two date model considered in Sect. 1.3.1, and assume that
at time 1, state j occurs with probability µ = (µj)k

j=1. We suppose here that
there is a riskless asset, and that the market is complete. The investor has
preferences on R×P. Let us look at the special case in which the preferences
can be represented by a utility function that is “additively separable” with
respect to time:
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u(c0, C) = v0(c0) + α E(v(C)) = v0(c0) + α
k∑

j=1

µj v(cj)

0 < α < 1

where α is a discount factor, and where v0 and v are strictly concave, strictly
increasing C2 functions satisfying

lim
x→0

v′
0(x) = ∞ , lim

x→0
v′(x) = ∞ ,

lim
x→∞

v′
0(x) = 0 , lim

x→∞
v′(x) = 0 .

Let I0 :]0,∞[ → ]0,∞[ (respectively I :]0,∞[ → ]0,∞[) be the inverse func-
tion of v0′ (respectively of v′). The functions I0 and I are continuous and
strictly decreasing. Denote the riskless rate by r.

In this special case, formulae (1.11) and (1.12) become:

1 + r = α

∑k
j=1 µjv

′(c∗j )
v′
0(c

∗
0)

= α
E(v′(C∗))

v′
0(c

∗
0)

(1.15)

Si = α

∑k
j=1 µjv

′(c∗j )v
i
j

v′
0(c

∗
0)

=
1

1 + r
E(V iv′(C∗)) (1.16)

where V i and C∗ are random variables taking the values vi
j and c∗j respec-

tively.

Let us show how to obtain the optimal solution in explicit form. Indeed,
the investor solves the following problem P:

max v0(c0) + α
k∑

j=1

µj v(cj) under the constraint

c0 +
k∑

j=1

cj

1 + r
πj ≤ R0 +

k∑
j=1

Rj

1 + r
πj .

Let λ be the Lagrange multiplier associated with the constraint. We have

v′
0(c

∗
0) = λ

αµjv
′(c∗j ) = λ

πj

1+r , ∀ j = 1, . . . , k ,
(1.17)

and hence
c∗0 = I0(λ)

c∗j = I

(
πjλ

µj(1 + r)α

)
, ∀ j = 1, . . . , k .

(1.18)
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The Lagrange multiplier λ is determined by the budget constraint, and sat-
isfies the following equation:

I0(λ) +
1

1 + r

k∑
j=1

πjI

(
λπj

µj(1 + r)α

)
= R0 +

1
1 + r

k∑
j=1

πjRj . (1.19)

As the function x → I0(x) + 1
1+r

k∑
j=1

πjI

(
πjx

µj(1 + r)α

)
is a decreasing func-

tion from ]0,∞[ into itself, equation (1.16) has a unique solution. Once the
Lagrange multiplier has been determined, we can deduce the optimal con-
sumption from (1.15), and then finally obtain the optimal portfolio using the
relation V θ∗ = C∗ − R.

Let us show that under the assumption that the agent is in equilibrium,
we can give an estimate of the risk-neutral probability.

Replacing c∗0 by R0 and C∗ by R, it follows from (1.14) that

λ = v
′
0(R0) = α(1 + r)E(v′(R))

and that

πj = µj
v′(Rj)

E(v′(R))
. (1.20)

This expression for the risk-neutral probability does not depend on future
consumption. Using Taylor’s expansion, we get:

v′(Rj) ' v′[E(R)] + [Rj − E(R)]v′′[E(R)] .

Taking expectations,
E[v′(R)] ' v′[E(R)] .

Hence
πj

µj
' 1 +

[Rj − E(R)]v′′[E(R)]
v′[E(R)]

= 1 + Ia(v,E(R))(E(R) − Rj) .

The greater the agent’s index of absolute aversion to risk for E(R) and
the greater the difference between the average value of his resources and his
resources in a given state j, the greater is the risk-neutral probability of state
j occurring.

If the investor had a neutral attitude to risk (v′ = cst), he would be
prepared to pay

αµj

v′
0(R0)

at time 0 in order to receive 1 euro tomorrow in the

state of the world j. If he is risk averse, he is prepared to pay
αµjv

′(Rj)
v′
0(R0)

today so as to receive 1 euro tomorrow in state of the world j.

To summarize, we have used two different approaches:
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• the assumption of no arbitrage opportunities enabled us to construct a
probability measure under which we are neutral with respect to risk,

• the introduction of a utility function and of exogenous (or subjective) prob-
abilities led us firstly to define the concept of risk aversion, secondly to
obtain valuation formula (1.16), and finally to exhibit a risk-neutral prob-
ability measure.

We remark on the fact that these two risk-neutral probability measures are
equivalent.

Exercise 1.3.8.

1. We assume that the market is complete and that v0(c) = v(c) = log(c).
Calculate I0, I and the optimal solution. Carry out the corresponding
calculations when v0(c) = 0 and v(c) = log(c), and similarly obtain I0, I
and the optimal solution for v0(c) = v(c) = cα, 0 < α < 1.

2. We consider an economy with two dates, 0 and 1. At time 1, there are
two states of the world. At time 0, an agent does not own anything
and can buy for a price [1, 1], a portfolio of two assets whose respective
payment vectors are [1,−1] and [2,−2]. At time 1, in addition to the
payment vector of his portfolio, the agent receives [1, 1] and consumes
(c1, c2). Suppose that the agent has a VNM utility function, that he
attributes the probabilities (1

2 , 1
2 ) to the two states of the world, and

that his utility index is u(c) = log c. Show that the agent’s consumption–
portfolio problem has a solution, and that nevertheless, the market admits
an arbitrage. Comment on these results.

Exercise 1.3.9. We consider an economy with two dates 0 and 1. There are
three states of the world at time 1. At time 0, an agent does not own any-
thing, and he can buy a portfolio of three assets that have respective payment
vectors [1, 1, 1], [3, 2, 1] and [1, 2, 6], and respective prices S1 = 1, S2 = 2 and
S3 = 3. He must not run into debt. The agent does not consume at time
0. At time 1, in addition to the payment vector of his portfolio, the agents
receives [1, 2, 1] in the different states, and consumes (c1, c2, c3).

1. Calculate the state prices and the interest rate. Show that the market
is complete. Calculate the risk-neutral probability. Show that the set of
consumptions that the agent can achieve at time 1 is given by

{c ∈ R3 | c1 + c2 + c3 ≤ 4} .

2. We assume that the agent attributes the probabilities (1
3 , 1

3 , 1
3 ) to the

different states of the world, and that he has a VNM utility function of
index u(x) = log(x). Calculate his optimal consumption and portfolio.
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How would the results change if the agent attributed the probabilities
( 1
2 , 1

4 , 1
4 ) to the different states of the world?

3. Suppose that the agent can only buy a portfolio that contains the two
first assets. Calculate the interest rate, and characterize the set of risk-
neutral probabilities. Find the set of its extrema. Show that the set of
consumptions that can be attributed to the agent at time 1 is

{c ∈ R3 | c2 ≤ 2,
1
2
(c1 + c3) ≤ 1} .

Calculate the optimal consumption and portfolio when the agent at-
tributes probabilities (1

3 , 1
3 , 1

3 ) to the states of the world, and has a VNM
utility function with index u(x) = log(x).

4. We suppose that the agent can, without running into debt, purchase a
portfolio made up of the three assets, and that in addition he can buy a
positive amount of asset 2.
Characterize the set of risk-neutral probabilities. Find the set of its ex-
trema. Calculate the agent’s optimal consumption and portfolio when he
affects the probabilities ( 1

3 , 1
3 , 1

3 ) to the states of the world, and has a
VNM utility function with index u(x) = log(x).

1.3.5 Equilibrium Models with Complete Financial Markets

The Representative Agent We now study a simple model in order to
illustrate the effect of introducing financial markets into an economy. This
model will be further developed in Chap. 6.

Consider an exchange economy with a single consumption good and m
economic agents. We suppose that there are (d + 1) assets, with the same
characteristics as in the previous sections. We assume the market to be com-
plete.

Agent h has an initial endowment of eh0 units of the good at time 0, and
knows that he will receive ehj units of the good at time 1 in state of the
world j. To modify his future resources, he can, at time 0, buy a portfolio of
securities θh = (θ0

h, . . . , θd
h) on condition that he does not run into debt.

Given a price S for the assets, we define the agent’s budget set as the
set of consumption plans which he can carry out with his initial wealth and
future income:

Bh(S) := {c ∈ Rk+1
+ | ∃θ ∈ Rd+1,

eh0 ≥ c0 + θ·S; ehj ≥ cj − (V θ)j , j ∈ {1, . . . , k}}.

As in Sect. 1.3.3, we suppose that agent h has preferences that are represented
by a VNM utility function of the form
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uh(c0, C) = vh0(c0) + α
k∑

j=1

µjvh1(cj) .

We suppose here that all the agents have the same discount factor α.

Definition 1.3.10. The collection {S, (ch, θh);h = 1, . . . ,m} is an equilib-
rium of the economy with financial markets if, given S

1. ch maximizes uh(ch0, Ch) under the constraint ch = (ch0, Ch) ∈ Bh(S),

2.
m∑

h=1

chj =
m∑

h=1

ehj := ej , j ∈ {1, . . . , k},

3.
m∑

h=1

θh = 0.

In other words, the market in the good clears (equality 2) and the security
market also clears (equality 3).

Remark 1.3.11. If v0
h and vh are strictly increasing, and if V is injective,

then equality 3 is implied by 1 and 2. Indeed, as the utility functions are
strictly increasing, at equilibrium the constraints are binding. Therefore we
have ehj = chj−(V θh)j for all h and j ∈ {1, . . . , k}. As

∑m
h=1 ehj =

∑m
h=1 chj

for j ∈ {1, . . . , k}, we have V
(∑m

h=1 θh

)
= 0, which implies

∑m
h=1 θh = 0.

We suppose now that an equilibrium exists. We can use the first order
necessary and sufficient conditions of the precious section. Hence for all h,

Si = α

k∑
j=1

µj
v′

h(chj)
v′

h0(ch0)
vi

j =
k∑

j=1

1
1 + r

µj
v′

h(chj)
E(v′

h(Ch))
vi

j , (1.19)

1
1 + r

= α

k∑
j=1

µj
v′

h(chj)
v′

h0(ch0)
. (1.20)

Under the assumption of complete markets, the equation S = V T β has a
unique solution. Under this assumption, the ratios

v′
h(chj)

v′
h0(ch0)

are therefore independent of h.

Let us then consider a fictitious agent, the “representative agent”, whose
utility is

u(c0, C) := v0(c0) + α
k∑

j=1

µjv(cj) ,

where
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v0(c):=max

{
m∑

h=1

vh0(ch)
v′

h0(ch0)
;

m∑
h=1

ch = c

}

v(c):=max

{
m∑

h=1

vh(ch)
v′

h0(ch0)
;

m∑
h=1

ch = c

}
.

Using the first order necessary and sufficient conditions of these new opti-
mization problems, we check that

u(e0, e) =
m∑

h=1

v0h(ch0)
v′

h0(ch0)
+ α

k∑
j=1

m∑
h=1

vh(chj)
v′

h0(ch0)
µj ,

where e is a random variable taking the value ej with probability µj . Using
the first order conditions and the implicit function theorem, we show that v0

and v are differentiable, that v′
0(e0) = 1 and that

v′(ej) =
v′

h(chj)
v′

h0(ch0)
j = 1, . . . , k .

Hence, (1.20) can be rewritten as

1
1 + r

= αE(v′(e)) (1.21)

Si =
1

1 + r

k∑
j=1

µj
v′(ej)

E(v′(e))
vi

j =
1

1 + r

[
E(V i) + Cov

(
v′(e)

E(v′(e))
, V i

)]
(1.22)

where V i is a random variable taking value vi
j .

The formula above plays a very important role in the financial literature,
as it shows that when there is a equilibrium, the price of an asset is only a
function of aggregate endowment (and not of each individual’s endowment).
In the next section, we will look at the relationship more closely.

Exercise 1.3.12. Consider an economy with two dates, two agents, two
states of the world, and one good in each state. Suppose that the agents
have utility functions v0h(c) = vh(c) = log(c), h = 1, 2 and assign probabil-
ities 1

2 to the states of the world. Assume that the agents have endowments
e01 = 1, e1 = (1, 3) and e02 = 2, e2 = (3, 1). Assume that the two assets are
traded at time 0: the riskless asset, and an asset that pays 1 in state 1 and 0
in state 2. Find the equilibrium of this economy.
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The Capital Asset Pricing Model (CAPM) Formula This model will
be developed in greater generality in Chap. 6.

We suppose that the agents have quadratic utility functions (i.e., v′h(c) =
−ahc + bh with ah > 0 for all h), and that at equilibrium the agents have
strictly positive consumption. In this particular case, we can easily check that
v′ is linear and decreasing, that is

v′(c) = −ac + b (with a > 0) .

Equation (1.22) then becomes

Si =
1

1 + r

[
E(V i) − a

E(v′(e))
Cov(e, V i)

]
. (1.23)

Formula (1.23) is called the CAPM (Capital Asset Pricing Model) for-
mula. As long as E(v′(e)) > 0, the price of asset i is therefore greater than
the discounted expectation of returns, if it is negatively correlated with e
(i.e., Cov(e, V i) ≤ 0): the asset provides a form of insurance.

If we introduce ρi = V i

Si , the return on asset i, and M , such that e = V M
(M is called the market portfolio), we can express (1.23) in the form

E(ρi) − (1 + r) =
a

E(v′(e))
Cov (ρi, e) =

aS · M
E(v′(e))

Cov(ρi, ρM ) ,

setting ρM = e
S·M (ρM is the return on the market portfolio). We then get,

in particular:

E(ρM ) − (1 + r) =
aS · M
E(v′(e))

Var ρM .

From this we deduce

E(ρi) − (1 + r) =
Cov (ρi, ρM )

Var ρM
{E(ρM ) − (1 + r)} . (1.24)

This formula, which links the excess return on an asset to the return on
the market portfolio, is called the beta formula, where the βi coefficient is
given by Cov(ρi, ρM )

Var ρM
. We note that βi is the coefficient of the regression of ρi

on ρM . In valuation models for financial assets (or in the CAPM: Capital
Asset Pricing Model), it is interpreted as a sensitivity factor to the risk of
asset i. We find that the risk premium for asset i, that is E(ρi) − (1 + r), is
a linear function of its β.

An Approximate CAPM Formula More generally, taking any utility
function for the representative agent, let us suppose that the ej are close to
E(e). We then obtain an approximation of the CAPM formula. Indeed,
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v′(ej)
E(v′(e))

' 1 + α[E(e) − ej ] ,

where α is the representative agent’s index of absolute aversion to the risk in
E(e). Formula (1.22) then becomes

Si ' E(V i)
1 + r

− α

1 + r
Cov (e, V i) . (1.25)

Notes

The financial literature in discrete time is extensive, and it would be quite
impossible to give a detailed bibliography here. We restrict ourselves to a
few books, which provide the basics: Huang and Litzenberger [195], (1988),
Pliska [297], (1997), Mel’nikov [267], (1999), the first part of Shiryaev [330],
(1999), Le Roy and Werner [248], (2001), Cvitanic and Zapatero [78], (2002)
and the first part of Föllmer and Schied [160], (2002).

The initial formulation and use of the NAO assumption are due to Ross
[312, 313], (1976, 1978). Varian [351], (1988) gives a summary of this approach
and Cochrane [61] develops its applications to asset pricing. For the proba-
bilistic aspects, see Bingham and Kiesel [33] (1998) and Björk [34] (1998).

For the axiomatic approach to the Von Neumann–Morgenstern utility, the
reader can consult Huang and Litzenberger [195], (1988), Kreps [240], (1990),
Le Roy and Werner [248], (2001), and Föllmer and Schied [160], (2002).

The problem of choosing an optimal consumption and portfolio in in-
complete markets, or in the presence of portfolio constraints, was originally
studied by He and Pearson [183], (1991). Different solution methods are pre-
sented in Pliska [297], (1997) and Mel’nikov [267], (1999).

The options literature goes back to Merton [269, 270], (1973). That too is
vast. We have only given the basic definitions here. The reader is referred to
Cox–Rubinstein [71], (1985). Wilmott’s books [361, 362], (1998, 2001) provide
a good introduction to the problem of valuation and hedging. A more detailed
study of our own and other references will be given in the chapter on exotic
options.

We will study the equilibria of financial markets more thoroughly in
Chap. 6.

For optimization in finite dimensions and duality properties, the reader
can refer to Rockafellar [308], (1970), Luenberger [256],(1969), Hiriart-Urruty
[190], (1996), and Florenzano and Le Van [157], (2000).
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ANNEX 1

Optimization under Constraints, the Kuhn–Tucker Theorem with
Linear Constraints

Let C be an open convex set in Rn.

We consider the following problem denoted Pαβ and formulated for α =
(α1, . . . , αp) ∈ Rp and β = (β1, . . . , βq) ∈ Rq, by:

max f(x), under the constraints
fi(x) ≤ αi, ∀i = 1, . . . , p,
gj(x) = βj , ∀j = 1, . . . , q,
x ∈ C

where the function f : C → R is concave and differentiable, and where the
functions fi : C → R, i = 1, . . . , p and gj j = 1, . . . , q are affine. We call
f the objective function. We write K for the admissible set

K = {x ∈ C | fi(x) ≤ αi, ∀i = 1, . . . , p, gj(x) = βj , ∀j = 1 . . . q} .

Theorem Let x̄ ∈ K. Then x̄ is a solution to Pαβ if and only if there exists
(λ̄, µ̄) ∈ Rp

+ × Rq such that

1. ∇f(x̄) =
∑p

i=1 λ̄i∇fi(x̄) +
∑q

j=1 µ̄j∇gj(x̄),

2. λ̄i(fi(x̄) − αi) = 0, ∀i = 1, . . . , p.

We call (λ̄, µ̄) the Lagrange multipliers or the Kuhn–Tucker mul-
tipliers


