
Chapter 3

Editorial Introduction

Paradoxically, some of the so-called “high-level” operators for image understanding
are actually concerned with apparently simple concepts. Their apparent simplicity
can be deceiving.  Consider, for example, the relationship “is to the left of”. This
is difficult to express in a computing language such as Java, C or Basic, although
it is easy to define it in Prolog. Other abstract relationships of this type are
“inside”, “next to”, “between”, etc., and can also be represented conveniently in
this language. When we are discussing natural products, abstract relationships
between symbolic objects become important, because they allow us to escape from
the confinements imposed by always working with precise numeric (e.g. geometric
position) data. People do this all the time in everyday conversation. For example,
we may note that a person has a mole on the left cheek. We do not necessarily
want to spend a long time discussing what a mole is, what it looks like, or exactly
where the limits of that person’s left cheek are. Suppose that somebody says “The
mole on Mary’s left cheek is getting bigger.” There are far more serious issues to
consider than being pre-occupied with irrelevancies that would only obscure the
sinister nature of this statement. There are no precise rules for identifying features
like moles, eyes on potatoes, bird-pecks on apples, etc., so we may need to devise
a vision system that can learn to do so. Anatomical features of an animal or plant
are also ill-defined, and hence are often difficult to recognise. In situations like
these, where precise terms cannot always be applied, we must resort to using
techniques borrowed from Fuzzy Logic, Artificial Intelligence or Pattern
Recognition
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If it’s green, we reject it.
If it’s too ripe, we reject it.
If it’s bruised, we reject it.

If it’s diseased, we reject it.
If it’s dirty, we reject it.

If it’s just right, we squash it.

Advertisement, McDonald’s Restaurants, 1992

3.1 Why We Need Intelligence

An introduction to the basic concepts and techniques of image processing is
provided in the previous chapter. That alone would be adequate for a book
describing engineering applications of Machine Vision but the inspection of natural
products requires the use of techniques that are more flexible and intelligent. In this
chapter, we shall therefore concentrate on additional methods needed to enhance
the basic picture manipulation and measurement functions just described. We shall
discuss computational techniques, borrowed from Pattern Recognition and
Artificial Intelligence, that are appropriate for inspecting highly variable products.
These two subjects, together with Computer Vision, all have an important
contribution to make to Machine Vision when it is applied to natural product
inspection. However, we must emphasise that, while we are happy to use
“borrowed” techniques, we do not accept the ethos of any of these science-based
subjects; our roots are very firmly established in engineering. In other words,
pragmatism and systems-related issues outweigh theoretical ones that have little or
no practical significance.

3.2 Pattern Recognition

Nowadays, Pattern Recognition is often mistakenly equated solely with the study
of Neural Networks. In fact, this provides a limited view, since Pattern Recognition
sometimes employs other types of decision-making and analysis procedures. For
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example, the Pattern Recognition methods that we describe for colour recognition
could not legitimately be termed Neural Networks. The simple (traditional) model
of a Pattern Recognition system is explained in Figure 3.1 and will be refined later.

3.2.1 Similarity and Distance

In Pattern Recognition, it is common practice to describe a pattern (e.g., an image,
or feature within an image, an acoustic signal, a medical patient, the state of an
engine, or machine tool) in terms of a fixed number of measurements, taken in
parallel (Figure 3.1). This might be appropriate as a way of representing texture,
colour, object shape, or some ill-defined feature in an image. Of course, we cannot
always conveniently and efficiently describe image features in this way. For this
reason, this approach is relatively uncommon in most existing industrial Machine
Vision systems. However, this data format is widely used in Pattern Recognition
systems for applications as widely varied as insurance-risk assessment, investment
planning, differential diagnosis in medicine, electro-encephalography, analysing
seismic events, speech recognition, fault detection in machine tools, biological
classification, etc. It can also be used to recognise varieties of seeds, colours of
fruit, shapes of leaves, etc.
Let us denote a set of N parallel measurements representing a pattern P by the N-
dimensional vector

XP = (XP,1, XP,2, XP,3, …, XP,N) (3.1)

(Since this a vector, rather than a set, the order in which the elements XP,1, XP,2,…
are written is critical.) It is reasonable to assume that, if two patterns, say P and Q
are subjectively similar, then their corresponding vectors XP and XQ will also be
similar. Of course, this presupposes that we have managed to find parameters that
adequately describe the salient features of the pattern P. The dissimilarity between
the vectors XP and XQ can be measured by one of the following distance metrics:

Euclidean distance

De(XP ,XQ) = √[∑(XP,i –XQ,i)
2] (3.2)
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(a)

(b)

Figure 3.1.  Traditional model of a Pattern Recognition system: (a) organisation of a system
employing error-correction learning: (b) measurement space. In this simple case N = 2 and
the machine decision (M) is computed by deciding whether a point falls above or below a
straight line.

Square distance
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Minkowski r-distance

Dr(XP ,XQ) = [∑(XP,i – XQ,i)
2]1/r (3.5)

The parameter r is a positive integer. It is of interest to note that the Minkowski r-
distance is able to model the other three metrics; it is identically equal to the
Manhatten distance when r = 1; the Euclidean distance when r = 2; and approaches
the Square distance as r tends to infinity.

There are three essential criteria for a distance metric that apply to all of the
above formulae and any linear combination of them:

D(A ,A) = 0 (3.6)

D(XP ,XQ) ≥ 0 (3.7)

D(A ,C) ≤ D(A ,B) + D(B ,C) (3.8)

Which of these four distance measurements is best? In many cases, it does not
matter which one we choose. Other factors, such as ease of implementation then
become more important. The Euclidean distance is the most familiar to us, as it is
the one that we can derive in two- or three-dimensional space, using a tape
measure. It also has certain theoretical advantages over the others, in some
situations [1]. The City Block distance is important when we drive or walk through
New York City, where the streets are laid out on a grid. This and the Square
distance were originally introduced into Pattern Recognition research in the 1960s,
principally to avoid the difficulties that then existed in calculating the Euclidean
distance. Nowadays, it is usually best to use the Euclidean distance to avoid the
theoretical dangers associated with the City Block and Square distances.1 Notice
that, in many situations, it is not necessary to perform the square-root operation
implicit in the Euclidean distance, De(X,Y).

3.2.2 Compactness Hypothesis

The so-called Compactness Hypothesis relates similarity between patterns P and Q
to the inverse of the distance between their corresponding vectors, XP and XQ [1].
Thus, in order to identify (classify) an unknown pattern X, we might reasonably
compare it to a set of stored vectors, S = {X1, X2, X3, …}, representing patterns
{P1, P2, P3, …}, which belong to classes {C1, C2, C3, …}. A vector X obtained
from a pattern that we wish to classify is then identified with the pattern class
associated with the closest neighbour in S. That is, we find i such that D(X,Xi) is a
minimum and then associate X with class Ci. Such a classifier is called a Maximum
Similarity or, more commonly, a Nearest Neighbour Classifier (Figure 3.2) [1].

                                                            
1 When the City Block, Square and Minkowski (r ≠ 2) distances are used within a Nearest
Neighbour Classifier, the decision surface is unstable.
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(This is not a Neural Network in the strict sense but could be implemented by one.)
The so-called Compound Classifier is closely related to the Nearest Neighbour
Classifier and makes decisions by measuring distances from a (small) set of stored
points. A wide variety of other methods for performing pattern classification,
including Neural Networks, has been devised (Figure 3.3) [2]. They differ in the
way that they combine the elements of the pattern vector. Conceptually, the
Nearest Neighbour and Compound Classifiers are among the simplest. They are
just as versatile as Neural Networks. Indeed, the Compound Classifier is more
natural for certain types of application (Figures 3.4 and 3.5) [1].

3.2.3 Pattern Recognition Models

In this section, we shall see that the traditional model for Pattern Recognition is not
always appropriate for the types of applications that interest us. Figure 3.5
illustrates various situations in which the original paradigm, expressed in Figure
3.1, is unsatisfactory.

Traditional Model
A classifier is simply a mathematical formula, for calculating a decision (M) given
a vector of parallel measurements: X = (X1, X2, …,XN). In most applications, we do
not know what function to use to compute M and we must derive an estimate by
self-adaptive learning, based on feedback (Figure 3.1). Traditionally, the
parameters of a classifier are adjusted if the decision (M) that it has just computed
in response to an input X = (X1, X2, …,XN) differs from that of an abstract entity,
called the Teacher. The Teacher is the ultimate authority that defines the correct
classification (T) about X and might typically be

•  a farmer showing the classifier a set of “ripe” and “unripe” items of fruit
for harvesting;

•  a human inspector watching a production line;
•  a committee of people examining a batch of randomly chosen products

from a manufacturing process;
•  an analyst performing a “post-mortem” on a set of products that have been

returned by customers;
•  a post-production test machine.

The sole function of the Teacher is to act as the expert authority, helping us design
a classifier by adjusting its internal parameters. Eventually, the Teacher must be
removed, since it (or he or she) is too expensive, too slow, or does not have the
capacity to be used all of the time. For example, an expert human inspector cannot
work reliably for more than a few hours of each day. Nearly all work on Neural
Networks and other self-adaptive classifiers has been based on this traditional
model of Pattern Recognition, in which the Teacher labels samples of at least two
pattern classes (Figure 3.5a).
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(a)

(b)

Figure 3.2.  Nearest Neighbour Classifier: (a) implementing the algorithm; (b) the pattern
represented by the vector X = (X1,X2) is identified with that class associated with the closest
stored point: X1, X2, X3, … (i.e., C2). All points in the shaded area are closer to X2 than they
are to any of the other stored points: X1
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(a)

(b)

(c)

Figure 3.3.  Neural Network: (a) impementation of the algorithm; (b) function of a single
isolated “neuron”; (c) decision surface consists of a number of straight lines (2d), planes
(3d) or hyperplanes (many dimensions). Notice that both the Nearest Neighbour Classifier
and Neural Networks produce piece-wise linear decision surfaces.
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(a)

(b)

Figure 3.4.  Compound Classifier: (a) internal organisation; (b) decision surface. In 3d, the
decision surface consists of a number of spheres, which may or may not overlap. In 2d, they
are circles and are hyperspheres in multi-dimensional space.
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(c) (d)

(e)

Figure 3.4 (continued)  (c) learning rule for the situation in which the pattern vector X is
outside all circles: the nearest circle is enlarged and is moved towards X (all other circles are
unchanged). Here, and in the two other situations illustrated, the changes made to the circles
are very small indeed; they have been greatly enlarged here for clarity; (d) learning rule for
the situation in which the pattern vector X is inside just one circle: that circle is reduced in
size and is moved away from X (all other circles are unchanged); (e) learning rule for the
situation in which the pattern vector X is inside more than one circle: all circles enclosing X
are reduced in size and are moved away from X (all other circles are unchanged).
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5.  Pattern recognition models: (a) traditional model; (b) one pattern class (“good”)
lies in a compact region, while the “faulty” class surrounds it. (Typically occurs when
homeostatic control breaks down. The Compound Classifier is better than Neural Networks
in this situation.); (c) there are many samples of the “good”, class and very few “faulty”
ones; (d) a closed boundary is used to detect anomalies; (e) in practice, a Compound
Classifier might be used, although the learning rules differ from those explained in Figure
3.4; (f) combining Pattern Recognition, Compound Classifier, in this case, and rule-based
decision methods.
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Learning on Single Class
To illustrate the shortcomings of the traditional model, we shall describe two
situations in which we should like to design a classifier but cannot obtain a
representative set of samples from more than one class.

First, consider an automated bakery. The manufacturing system never produces
large quantities of “bad” loaves. (We shall ignore the problem of nomenclature in
which bakers and production engineers never admit to making “bad” objects but
will confess that they occasionally make “unsaleable” items. This and other
euphemisms for “bad”, “defective”, or “faulty” are common-place and should not
distract us.) A baking line is an expensive facility and any significant downtime
leads to a large financial loss. As a result, the baker will immediately adjust the
system, so that it quickly returns to making “good” loaves again; very few “bad”
loaves are ever made. The reader might well question whether a sufficient number
of “bad” products could be made as part of a research project. For reasons of cost
this is most unlikely and is probably impossible in practice anyway. To understand
why, let us suppose that there are N individual control parameters on a baking line.
Then, a minimum of 2N settings must be made to the manufacturing system, which
may take several hours to settle after some controls are adjusted. (We need to set
each control high/low individually.) Some parameters cannot even be altered at all.
For example, the amount of moisture in a 10-tonne batch of flour cannot be altered
at the whim of an engineer. The effect is that we can obtain very large quantities of
the “good” class of products but almost none of the “bad” class, certainly not
enough to match the huge appetite of learning systems for training data (Figure
3.5c).

Second, consider the task of inspecting apples. We cannot order a farmer to
grow either “good” or “bad” fruit. Even if they could do so, farmers would not be
willing to grow diseased or malformed fruit deliberately. Most of the harvest
produce will be “good”. Once again, we cannot obtain a truly representative set of
“bad” apples. The situation is akin to that in medicine; there is a very large number
of ways that we can be ill and we are unwilling/unable to be ill to order!

In both of these cases, we can reasonably expect to receive a large set of
“good” produce to train a classifier but very few samples of “bad” ones. Pattern
Recognition techniques have been developed for this type of situation. They fall
into several categories: Unsupervised Learning, Probability Density Function
Estimation and Learning on a Single Class (Figure 3.5e) [2].

Hybrid Model
Human beings have the ability to combine self-adaptive learning with rule-based
reasoning. To demonstrate this, consider the problem of meeting a stranger, at a
pre-arranged point. Prior to the first meeting, the person we are about to meet is
described by a mutual acquaintance; recognition then relies on decision rules. At
the first meeting, we learn a lot about our new friend’s appearance and
mannerisms, so that on subsequent occasions, we recognise him/her, by recalling
this learned information. By then we may even have forgotten the initial
recognition rules, given by our mutual friend. In any case, those rules have been
augmented by learning.
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Figure 3.6. Combining Pattern Recognition and rule-based decision making. Notice the 2-
way data link between the decision-maker and the classifier. The classifier can provide 
inputs to the rule-based system and the latter can control the training of the pattern classifier. 

To understand how this can help us, let us consider the bakery and fruit-
inspection applications again. We might reasonably expect to receive a large set of 
“good” loaves or apples and a set of rules that human inspectors think that they 
employ to grade them. Introspection is often far from accurate as a means of 
deriving decision rules but it may well provide the best criteria we can obtain in 
practice. The existence of a large training set (i.e., a collection of physical objects, 
such as loaves or apples) suggests the use of a self-adaptive learning system, while 
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the rules just mentioned prompt us to contemplate using an Expert System (Figure
3.5f). With this in mind and for other reasons, a hybrid system is proposed for tasks
that present both types of data. Figure 3.6 shows how multi-variate classification
and rule-based reasoning might be combined. This has several interesting features:
it allows a rule-based system to control a self-adaptive learning process. The
former must possess meta-rules specifically for this purpose it allows an Expert
System to base its decisions upon sub-decisions derived from the classifier. The
Expert System can incorporate non-measurable application knowledge, specified in
symbolic terms, by a human being, with both image and non-image data, derived
mechanically from product samples. The hybrid system outlined in Figure 3.6
offers a possible solution to some of the problems caused by the special nature of
the data that we have available. For far too long, researchers have relied on the
traditional Pattern Recognition model (Figures 3.1 and 3.5a and b) without
seriously questioning whether it is appropriate. In conceptual terms, the hybrid
system has much to commend it. However, this is a speculative suggestion for
future work and programming such a system may prove to be problematical.

3.3 Rule-based Systems

The hybrid system just described involving both Pattern Recognition and Rule-
based decision-making sub-systems has an obvious appeal but it is simply an idea,
put forward to help us analyse images from complex highly variable scenes. It
remains untested. However, rule-based systems are already being used, for
example, in examining solder joints [3]. In this section, we shall examine their use
in a little more detail.

3.3.1 How Rules are Used

Many inspection applications involving natural products can be specified in terms
of simple rules. Grading and inspecting vegetables and fruit are prime examples of
this kind. Similar comments apply to many areas of food processing. For example,
loaves may be examined by applying rules that define what is an acceptable shape.
These may be expressed in terms of either two-dimensional slices, or three-
dimensional height maps. Ready-made deserts, such as trifles, are specified by a
series of rules, defining such parameters as the minimum/maximum amount of
fruit. Similarly, limits are placed on the amount of custard and number of bubbles
visible on the top surface. Pizzas are specified in a similar way, with limits being
expressed for the amount and the distribution of each type of topping. Food
products with an ill-defined form, such as croissants, cakes, meringues, and
biscuits (cookies). Dollops of cream, icing (frosting) and even adhesive (applied to
engineering components) can all be specified using a set of rules. In many
applications, it is not possible to use self-adaptive learning, so a set of simple
inspection rules specified by an experienced production engineer provides the best
approach.
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Many existing Machine Vision systems in engineering manufacturing
effectively employ naïve rule-based decision criteria. For example, a porcelain
plate may be judged to be “acceptable” if

Rule 1 It contains a single crack-like feature not more than 1 mm long.
Rule 2 The total length of all crack/spot- like features is less than 1.5 mm.
Rule 3 There are no more than 20 spot-like defects (i.e., length of each is

less than 0.1 mm).
Rule 4 There no more than 5 crack-like defects (i.e., length of each is more

than 0.1 mm).

As is evident here, individual rules are often quite trivial and may, for example,
simply define the maximum length, or width of an object or feature. Sometimes,
rules are contrived simply to avoid silly or dangerous situations that might arise as
a result of an accident, or human negligence. For example, we might use a simple
set of rules to detect a foreign object, such as a screwdriver, or a pair of spectacles,
that has inadvertently been left on a food processing line. Simple rules, based only
on length, colour and shape factor (ratio of the area to the square of perimeter), can
readily distinguish objects that bear some superficial resemblance to one another
and can therefore perform a useful “sanity check”. For example, the following rule
for recognising bananas, rejects cucumbers, courgettes, gherkins, carrots, lemons,
oranges, tomatoes, parsnips, etc.

An object is a banana if
i. it is yellow and
ii. it is curved and
iii. it is between 75 and 400mm long and
iv. it is between 15 and 60 mm wide.

A computer program, which implements this rule, is listed in the next section. As
evidence of the power of simple rule-based decision criteria, look around the room
where you are sitting and try to find something, other than a banana, that conforms
to this description. Rule-based criteria are used to define classes of fruit for the
purposes of the General Agreement on Tariffs and Trade2 (GATT) and to grade
both fruit and vegetables. At the moment, human inspectors are more widely used
for these inspection functions than vision systems. Rule-base criteria, based on size
and shape, can also distinguish the seeds of certain varieties of cereals. This
function is important, as there is a need for a machine that is able to check the
honesty of suppliers of rice, wheat, other types of grain and even bananas!

3.3.2 Combining Rules and Image Processing

The idea of integrating image processing operators with the Artificial Intelligence
language Prolog [4] was conceived in the mid-1980s and has since been

                                                            
2 A few years ago a popular UK national newspaper staged a campaign ridiculing the notion
of classifying bananas, in an attempt to discredit certain political views. The relevance to the
GATT was not mentioned!
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implemented in a number of ways (Figure 3.7). Early systems used external
hardware to implement the image processing functions, with Prolog running on a
standard desktop computer [5]. The most powerful system of this type developed
to date is called PIP (Prolog Image Processing) and combines image processing
operators written in C with LPA MacProlog [6]. (Both Prolog and the image
processing functions run on the same computer.) The latest system, called CIP
(Cyber Image Processing) [7], is still under development and incorporates CKI
Prolog, which was written by S. van Otterloo of the University of Utrecht,
Netherlands [8]. This is a “freeware” implementation of the language and is written
in Java. The image processing operators were written separately, also in Java, by
students at Cardiff University, Wales, UK [9]. Hence, CIP employs only one
computer language, whereas PIP uses two and is therefore more difficult to
maintain. PIP currently has a command repertoire consisting of about 275 primitive
image processing commands and CIP about 150.

Readers, who are familiar with Prolog, merely need to note that it is possible to
implement a system like PIP, or CIP, by building on a single predicate (ip/1 in
what follows), within the standard language. Readers who have not encountered
Prolog before are referred elsewhere for a more detailed description of this
fascinating language [4,10].

Sample programs are given below, in order to demonstrate how Prolog can
incorporate image processing operations.

Program 1: Move the Centroid to the Middle of the Picture.
In this example, we use the predicate ip/1 to send individual commands to the
image processor, from Prolog.

shift_to_image_centre :-
ip(enc), % Enhance contrast.
ip(thr), % Threshold at mid-grey
ip(cgr(X,Y)), % Locate the centroid, [X,Y]
ip(imm(X0,Y0)), % Locate the centre of the image, [X0,Y0]
X1 is X0 – X, % Prolog-style arithmetic
Y1 is Y0 – Y, % More Prolog-style arithmetic
ip(psh(X1,Y1)). % Shift so that centroid is at middle of

image

Program 2: Revised Version, Using the # Operator
This time, we use the operator #, instead of ip/1. This is really just a cosmetic
change but it can make both programming and subsequent reading of the program
easier.

:- op(900,#,fx). % # is prefix operator with precedence 900
# A :- ip(A). % Defines what # does.
% Revised version of shift_to_image_centre/0
shift_to_image_centre :-
# enc, % Enhance contrast
# thr, % Threshold at mid grey



104 B.G. Batchelor

(a)

A B C D

neg neg [0]. YES

thr (115,
134)

thr (115,
134)

[0]. YES

avg(A) avg [0,123]. A = 123
YES

cgr(X,Y) cgr [0,78,156]. X = 78
Y = 156
YES

(b)

(c)

Figure 3.7.  Using Prolog to control an image processor; (a) system block diagram; (b)
signals transmitted through the system when various commands are issued by the user (these
are PIP commands mnemonics); (c) CIP system architecture. MMB is a multi-function, low-
speed interface unit. CKI Prolog was written by S. van Otterloo, University of Utrecht.
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# cgr(X,Y), % Locate the centroid, [X,Y]
# imm(X0,Y0), % Locate the centre of the image, [X0,Y0]
X1 is X0 – X, % Prolog-style arithmetic
Y1 is Y0 – Y, % More Prolog-style arithmetic
# psh(X1,Y1). % Shift so centroid is at middle of image

Program3: Crack Detector
In this example, commonly-used functions are defined in a library, to avoid using
either ip/1 or the # operator.

% Standard library definitions – available to all programs

% The library contains clauses like these, for each image procesing  operator

lnb :- # lnb.
snb :- # snb.
wri(a) :- # wri(A).
rea(A) :- # rea(A).

% Operator: N•G satisfies a goal (G) N times - used in lieu of FOR loops:
:- op(1000, xfx, •). % • is  infix operator with precedence 1000

0•G :- !. % Terminates recursion. Stops when N = 0.

N•G :-
call(G), % Satisfy goal G (once)
M is N-1 % Arithmetic
M•G, !. % Now, satisfy the goal (N-1) more times
% End of the library
% Crack detector (Morphological Closing operator)
crk(N) :-
wri(a) and % Save image in archive area #1
N•lnb and % Brightest  neighbour; grey-scale dilation
N•snb and % Darkest  neighbour; grey-scale erosion
rea(a) and % Recover  image from archive area #1
sub. % Subtract images

This and the two preceding programs are simple linear sequences of image
processing operations; there is no back-tracking or recursion

Program 4:Finding a Banana
The following program uses back-tracking to search for an object called “banana”
that satisfies the rules given earlier. It fails, if no such object is found.

object(banana) :-
object(X), % Find object in given image. Call it X.
colour(X,yellow), % Colour of  X is yellow.
curved(X), % Object X is curved.
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length(X,L), % Measure the length of X.
L ≥ 75, L ≤ 400, % Check the length limits
width(X,W), % Measure the width of X
W ≥ 15, W ≤ 60. % Check the width limits

Colour recognition, implicit in the sub-goal colour (X,yellow) will be discussed
in Section 3.4.3. For completeness, we list the following program, which
determines whether or not an object in a binary image is curved.

curved(X) :-
isolate(X), % Isolate the object called X
blb, % Fill in the lakes, if there are any
((cvd, % Convex deficiency. Call this Image Z
big(2), % Find the second largest bay (B2)
cwp(A2));(A2 is 0)), % Measure its area (A2)
swi, % Switch images - revert to Image Z
big(1), % Find the largest bay (B1)
cwp(A1), % Measure its area (A1)
((cvd, % Find the convex deficiency of  B1
big(1), % Isolate its largest meta-bay (B3)
cwp(A3));(A3 is 0)), % Measure its area (A3)
A1 > 5*A2, % Area of B1 ≥ 5 times area of B2
A1 ≥ 10*A3. % Area of B1 ≥ 10 time area of B3.

This is a heuristic procedure and is explained in Figure 3.8. Notice that,
although this definition of “curved” may seem a little sloppy, it works most of the
time – that is what good heuristics do! It will, for example, succeed when it is
applied to the silhouette of a banana.

Program 5: Checking a Table Place Setting
This is a more sophisticated program. It examines a binary image, in order to verify
that it conforms to an English-like description of a formal table place setting
(Figure 3.9). It uses the relationships left/2, right/2, above/2 and below/2 to
compare the positions of objects in two-dimensional space.

describe_table_scene :-
loa(original_image), % Load the original image
retractall(cutlery_item_found(_,_,_,_)), % Forget all stored items
eab(identify_cutlery_item(_)), % Identify each item in turn
loa(original_image), % Reload the original image
acceptable_place_setting. % Check layout is satisfactory

% Find an object of type Q, positioned at [X,Y] with orientation Z.
identify_cutlery_item([Q, [X,Y,Z]]) :-

wri, % Save image to temporary file on disc
cvd, % Convex deficiency
kgr(100), % Discard blobs with areas < 100 pixels
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Figure 3.8.  Heuristic procedure implemented by the predicate curved/1listed in the text.

Figure 3.9. Ideal table place setting. Such a scene can be described, in English, using a set
of statements of the following form: “There is a knife to the right of the mat.”; “A dinner
fork can be found on the left of the mat.”, etc. These can be used to program a vision system,
which then checks that a real place setting is well laid.
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ske, % Skeletonise the blob
cnw, min, thr(1,1), % Identify the skeleton limb ends
cbl(B), % Count them
rea, % Recover image from temporary file
cwp(C), % Count white points (i.e., find area)
lmi(X,Y,Z), % Centroid, and orientation of principal axis
cutlery_item(Q,[C,A,B]), % Identify the type of object found (Q)
tell_user(Q,A,B,C), % Tell the user what we have found
assert(cutlery_item_found(Q,X,Y,Z)).

% Remember what we have found
/*                                                                                                                             
How to identify objects. The following arguments are used:
cutlery_item(Object_type, [Area, No_of_limb_ends, No_of_bays])
                                                                                                                             */
cutlery_item(mat,[A,_,_]) :-  A ≥ 5000, !. % Object is a mat
cutlery_item(knife,[_,0,_])  :- !. % Object is a knife.
cutlery_item(fork,[_,_,4])  :- !. % Object is a fork.

cutlery_item(spoon,[_,2,_])  :- !. % Object is a spoon.
cutlery_item('not known',_). % Not of known type

% Defining spatial relationships between two objects, A and B
left(A,B) :-
location(A,Xa,Ya), % Centroid of object A is at [Xa,Ya]
location(B,Xb,Yb), % Centroid of object B is at [Xb,Yb]
Xa < Xb, % Check that Xa < Xb
about_same(Ya, Yb) % Are Ya and Yb about the same?

right(A,B) :- left(B,A). % right/2 is the inverse of left/2

above(A,B) :-
location(A,Xa,Ya), % Centroid of object A is at [Xa,Ya]
location(B,Xb,Yb), % Centroid of object B is at [Xb,Yb]
Ya < Yb, % Check that Ya < Yb
about_same(Xa, Xb),
message(['I have found a ',A, ' above a ', B]).

below(A,B) :- above(B,A).

% Finding the position (X,Y) of an item of type A.
location(A,X,Y) :- cutlery_item_found(A,X,Y,_).

% An arbitrary, very naïve, way of checking that A and B are similar
about_same(A,B) :- abs(A-B) < 25.
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/*                                                                                                                             
The following rule specifies what constitutes an acceptable table place
setting. It can easily be reformulated to accept English-language
descriptions, using Definite Clause Grammars (DCGs).  These form an
integral part of Prolog [10].
                                                                                                                            */
acceptable_place_setting :-
left(fork,mat), % There is a fork to the left of a mat
right(knife, mat), % There is a knife to the right of a

mat.
left(knife,knife),
left(knife, spoon),
above(fork,mat),
below(fork,spoon), % There is a fork to the left of a

spoon
message('The table place setting is acceptable.').

% What to do when we cannot prove that table place setting is acceptable

acceptable_place_setting :- 
message('This is not an acceptable table place setting').

Why Prolog?
The reader may well wonder why Prolog, rather than a conventional language,
such as C or Java, is used to control the image processing engine. In the short space
available here, it is impossible to do full justice to this question. The reader is
therefore referred elsewhere for a more complete discussion [5,11].

A hint of the expressional power of Prolog is seen in the last two examples. In
Program 4, we employed heuristic definitions for curved/2 and colour/2 (yet to be
described in detail) while in Program 5, we defined the “sloppy” spatial
relationships: left/2, right/2, above/2 and below/2. It is difficult to envisage how
this could be done in a conventional computer language. Prolog’s expressional
power arises because it is a Declarative Language and is therefore able to
manipulate abstract symbols (words) without explaining what they mean. For
example, the relationship left(A,B) may refer to objects A and B in physical space,
or in “political space”.3 Since we do not need to specify the nature of A and B, the
definition given above for left/2 will suffice for both. When programming in
Prolog, we simply describe (a little bit of) the world. We then ask questions about
it and rely on Prolog’s built-in search engine to hunt for a solution. Conventional
languages are said to be imperative, since programs consist of a series of
commands. Implementing a search algorithm in a language such as C is tedious;

                                                            
3 Consider the following: Hitler ? Stalin If we are considering physical objects (words),
left(Hitler,Stalin) is true, while it is clearly false, if political objects are compared. Our
Prolog program can accommodate either.
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especially when we do not know in advance precisely what kind of object we shall
be looking for.

We conclude this section by considering a task, in which declarative
programming excels. Suppose that a certain man (A) wishes to find a wife (B) for
himself. The Prolog programming paradigm requires that A first specifies his
“requirements” as illustrated in Table 3.1.

Writing a Prolog program to find a wife is very straightforward, as is evident
from the program segment below. (To conserve space, only the top level is
specified. The lower levels are also programmed easily.)

marriage_partner(A,B) :-
male(A), % This rule applies to men. A similar

% rule should be added for women.
person(B), % Find a person called B
female(B), % Check that B is a female
age(B,C), C ≥ 38, C ≤ 42 , % Find how old B is and check limits
height(B,D), D ≥ 1500, D ≤ 1750, % Find height and check limits
hair_colour(B,blonde), % Check that B is blonde
religion(B,protestant_christian), % Check B is Protestant Christian
personality(B, [kind, generous, loyal, truthful]), % Check all are true
hobbies(B, [swimming, theatre, antiques]). %  Check one or more is true

Table 3.1  Example of prolog programming paradigm requirements.

Feature Value

Sex Female

Age 38 – 42

Height 1500 – 1750

Race Caucasian

Hair colour Blonde

Religion Protestant Christian

Personality (all must be true) [Kind, generous, loyal, truthful]

Hobbies/interests (at least
one must be true)

Swimming, theatre, antiques]

Note that we are combining data relating to “natural products” (people) that is
derivable from images (e.g., height, hair colour), with non-image data (e.g.,
religion and personality).

It should be clear by now that Prolog with embedded image processing
operators is well suited to tasks such as grading and sorting fruit, vegetables and
decorative plants. There is another good reason for using Prolog: it is able to
manipulate natural language [10]. Combined with a speech recognition system, this
provides a powerful user-interface facility, for hands-free supervision of a robot
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vision system [5]. Natural language programming, albeit in a simple form, is also
feasible. The level of complexity that we can reasonably expect to accommodate is
roughly commensurate with that needed to program a visually guided robot to lay
the table, or place tools in a tool-box More significant industrial applications are
found in packing natural objects, stacking irregular packages, etc.

3.4 Colour Recognition

We turn our attention now to colour recognition, which we have already mentioned
and used. Our goal in this section is to explain how colours can be recognised
automatically, so that a person can then employ symbolic colour labels to program
a vision system. He/she may then refer either to “standard” colours (e.g., yellow,
turquoise, blue, etc.), or to application-specific colours (“tuna-can red”,
“margarine-tub red”, “butter”, “banana yellow”, etc.). As we proceed, we shall
apply the concepts and methods of Pattern Recognition that we introduced earlier.

3.4.1 RGB Representation

A colour video camera measures the so-called RGB components of the light falling
at each point in its retina. It does this by placing monochrome photosensors behind
three differently coloured filters. These selectively attenuate different parts of the
spectrum, to give what are called the R, G, B colour channels. These have
traditionally been associated with detecting “red”, “green” and “blue”, although
this idea must not be carried too far. A camera that outputs an HSI video signal
(measuring Hue Saturation and Intensity) uses an RGB sensor and performs the
RGB-HSI transformation within its internal electronics.

Let [r(i,j),g(i,j),b(i,j)] denote the measured RGB values at the point (i,j) in a
colour image. The set of colours in the image can be represented by S3 where

S3 = {[r(i,j), g(i,j), b(i,j)]/ 1 ≤  i, j ≤ {N} (3.9)

By mapping the image into this particular three-dimensional measurement space
(called RGB-space, with axes r, g and b), we forsake all knowledge of the position
of each colour vector. However, by extending this, we can preserve this
information. The set of points

S5 = {[r(i,j), g(i,j), b(i,j), i,j]/ 1 ≤ i, j ≤ {N} (3.10)

lies in a 5-dimensional space and preserves  both position and colour information.
For most purposes, S5 is too cumbersome to be useful in practice. The
representation embodied in S3 is normally preferred, when we want to recognise
colours independently of where they lie within an image.

We can combine the output of a colour recogniser with the position co-
ordinates, (i,j), to obtain essentially the same information as is implicit in S5. The
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following is a hybrid representation which combines symbolic colour labelling (not
“raw” RGB values) with geometric position (i,j) within an image.

Shybrid  = {[colour_name, i, j]/ 1 ≤  i, j ≤ {N} (3.11)

This representation is more economical than S5 yet contains more information than
S3. Moreover, Shybrid can be stored and processed as a monochrome image, in which
“intensity” (i.e., an integer) represents symbolic colour names (Figure 3.10).

It is often convenient to display such an image in pseudo-colour, since similar
values of the integers defining the values of colour_name may represent quite
different physical colours.

Figure 3.10.  System for recognising colours under the control of an intelligent processor

3.4.2 Pattern Recognition

The representation implicit in S3 (Equation (3.9)) allows us to apply conventional
Pattern Recognition analysis to identify colours. We would like to find some
convenient way to divide RGB-space into distinct regions, each of which contains
all of the points associated with a given colour label, as defined by a person (p).
(We might associate person p with the teacher in Figure 3.1.) We could use the
Compound Classifier; in which case, the co-ordinate axes in Figure 3.4b are
[r(i,j),g(i,j),b(i,j)]. The Nearest Neighbour Classifier, or Neural Networks, might be
used instead.

3.4.3 Programmable Colour Filter

Another approach to colour recognition is explained in Figure 3.10. This derives
the form of representation implicit in Shybrid  (Equation (3.4)). The look-up table
(LUT) receives the digitised (r,g,b) inputs from the camera and generates a
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symbolic colour label (an integer, equivalent to colour_name), representing
familiar names for colours. The fact that the LUT output is a number does not
imply that approximately equal LUT outputs are necessarily mapped to
subjectively similar colours. For example, we might arbitrarily associate names and
LUT outputs as follows:

“turquoise” with LUT output 136
“sulphur yellow” with LUT output 137
“blood red” with LUT output 138
“sky-blue” with LUT output 154
All other colours are mapped to LUT output 0, signifying “colour not
recognised”.

Furthermore, notice that only a few of the possible output states from the LUT may
actually be used. The diagram shown in Figure 3.10 describes a low-cost, high-
speed colour-recognition technique that can be implemented easily in either
special-purpose hardware or software. The procedure for calculating the contents
of the look-up table is described in [12].

3.4.4 Colour Triangle

A graphical representation for recognising colours will now be described. This
allows us to map the variability of natural products into two-dimenional space, in a
convenient and meaningful way. It also allows us to classify colours in a
straightforward manner. Consider Figure 3.11, which shows the RGB space as
containing a cube.

Figure 3.11.  RGB space and the Colour Triangle.

The vector (r,g,b) is constrained to lie within this cube, since each channel
produces an output, within a finite range: [0,W ]. It has been found from
observation that the subjective impression of colour experienced by a human being
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can be predicted with reasonable accuracy by noting the orientation of the vector
(r,g,b) within this space. (There are many factors affecting the judgement in
practice, but this is a reasonable approximation for many purposes.) Two angles
are needed to define the orientation of the (r,g,b) vector. Another possibility is to
note where this vector intersects that plane which goes through the points (W,0,0),
(0,W ,0) and (0,0,W ) in RGB space. This plane intersects the cube to form a
triangle: the so-called Colour Triangle or Maxwell Triangle. Now, consider a
polychrome image, such as the logo used by Apple Computer, Inc. This is a good
example for our purposes, as it is composed of a number of well-separated block
colours. When this is mapped into the Colour Triangle, a number of clusters are
created (Figure 3.12). There are just a few points lying between these clusters and
these are due to pixels that straddle the boundary between neighbouring colour
bands. However, most points lie very close to the centre of one of the clusters.
(Camera noise causes regions of constant colour to be mapped into clusters of
finite size.) On the other hand, when a food product (e.g., a pizza, or quiche) or a
natural product (e.g., apples) are mapped into the Colour Triangle, the clusters are
much more diffuse and tend to merge into one another with no clear gap existing
between them (Figure 3.12c – h).  Blending of colours into each other is, of course,
characteristic of natural products and this is manifest in the Colour Triangle by
indistinct clusters.

The Compound Classifier, this time working in two-dimensional space can be
used for colour recognition. This time, the inputs to the classifier (U and V) are
those defining points in the Colour Triangle (Figure 3.13). This method of making
decisions about the colours present in an image is unable to distinguish between
bright and dark regions and, for this reason, its output is noisy in regions of low
intensity. Of course, these can be eliminated by simple masking.

The heuristic techniques that have just been described do not provide a perfect
solution to the task of recognising colours. If they are used intelligently and
without unduly high expectations, they provide a useful analysis tool. To be most
effective, they should be combined with other image descriptors, possibly in a rule-
based system.

3.5 Methods and Applications

Automated Visual Inspection presents a wide variety of problems, requiring an
equally diverse range of algorithmic and heuristic techniques for image processing
and analysis. So far in this chapter, we have described just three of them: i. pattern
classification by sub-dividing a multi-dimensional measurement space; ii. rule-
based decision-making and iii. colour recognition. Of these, i and ii have never
found wide application for inspecting close-tolerance engineering artefacts. It is the
lack of a precise specification and the inherent variability of natural products that
require their use now. Over the last 25 years, Machine Vision systems have been
successfully applied in manufacturing industry and we might think that the same
ideas  can be applied to  natural objects  as  well.  In  some  cases they can, while in
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(a) (b)

(c) (d)

Figure 3.12. Mapping artificial and natural images into the Colour Triangle: (a) colour
separations for the logo used by Apple Computer Inc.; (b) clearly identifiable clusters are
generated from this logo; (c) baked quiche (this is the intensity component of the original,
which is an RGB colour image); (d) mapping the colour image of the quiche into the Colour
Triangle. Notice that the compact upper-most cluster is produced by the background and that
no well-defined clusters are attributable to the quiche itself.
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(d) (e)

(g) (h)

Figure 3.12 (continued)  Mapping artificial and natural images into the Colour Triangle: (e)
apples and leaves (R component); (f) apples and leaves (G component); (g) apples and
leaves (B component); (h) Colour Triangle produced by the “Apples and leaves” image.
Again, there are no well-defined clusters.

Figure 3.13.  Three Compound Classifiers, working in parallel, for colour recognition in 2-
dimensional space. The variables U and V are explained in Figure 3.11.
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others they require some adjustment. The purpose of this section is to explain and
illustrate this point, by presenting a series of brief case studies. We shall emphasise
the differences that exist between inspection methods for engineering artefacts and
highly variable objects, rather that the applications per se. The lesson is that tried
and trusted procedures do not necessarily work well on highly variable objects.
Some of our examples are contrived using human artefacts: a child’s toy, a pair of
scissors, a coil of wire. We shall use the terminology of the PIP image processing
system to define image algorithms and heuristics.

3.5.1 Human Artefacts

Child’s Toy
The child’s toy illustrated in Figure 3.14 presents unexpected problems for a
visually guided robot. Our task is to design an image processing procedure that can
guide a robot, so that it can place each shape appropriately in the template. Both
position and orientation have to be determined. Finding the position is easy; in
each case, the centroid can be used. However, several of the established techniques
for finding orientation are unable to accommodate such a wide variety of shapes.
Among the popular techniques that fail to calculate a reliable value for the
orientation are:

(a) (b)

(c)

Figure 3.14.  Child’s toy: (a) template; (b) shapes (c) plot of the distance (r(θ)) from the
centroid, vesus angle (θ, vertical axis).
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•  Hough and Radon transforms (fails on the 4-point star).
•  Principal axis (axis of minimum second moment) (fails on the cross, star,

hexagon and triangle). Since mathematical moments do not measure
orientation directly, some combination of measures of this kind has to be
used.

•  Edge-follower operator for detecting sharp corners, fails on the star.
•  Convex deficiency, fails on the rectangle, semi-circle, hexagon, triangle.
•  Distance of the furthest edge point from the centroid, fails on the semi-

circle. (It also fails to distinguish the star, or cross, from their respective
convex hulls.)

The task is made easier if the type of shape is identified first. Then, an
appropriate technique for calculating orientation can be applied. Several techniques
do work but with varying degrees of success:

•  Fourier coefficents of the function r(θ), where r is the radius (measured
from the centroid) at angle θ. (This technique will not work if the shape is
more complex (e.g., crab-like) and produces a multi-value function for
r(θ).)

•  Fourier coefficents of the function r(d), where d is the distance measured
around the edge from some convenient starting point (e.g., right-most
pixel). (r(d) is always a single-valued function but distances around the
edge cannot be measured very accurately.)

•  Correlation of image arrays (three degrees of freedom) always produces a
satisfactory result but the calculation is slow. The execution time can be
reduced to that of a one-dimensional correlation procedure, if the position
is fixed first, by using the centroid.

•  Correlation of the function r(θ) (Figure 3.14c.) Again, this will not work
for complex shapes. This procedure does produce satisfactory results for
recognising or placing shapes like those produced by ivy leaves (Figure
3.19i)).

•  Combinations of mathematical moments. It is possible to define a set of
moments that are insensitive to rotation, translation and scale changes [13].
These can be used to recognise the shape first, before selecting an
appropriate orientation algorithm.

Articulated Assemblies: Scissors
Of course, we expect variable objects to display significant changes of geometry
but they can have a variable topology, as well. For example, a pair of scissors open
by even a very small amount may have a different Euler number (a measure that is
sensitive to its topology) from that of the scissors in the closed state (Figure 3.15a
and b). This means that we have to be very careful when designing image analysis
algorithms. For example, we might wish to build a visually guided robot to pick up
the scissors, which could be closed, slightly open or wide open. It so happens that
the two largest lakes in any of the silhouettes produced by the particular pair of
scissors shown in Figure 3.15d correspond to the two finger holes. However, this is
not necessarily the case for all types of scissors. If we decide that we can use the
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finger holes to pick up the scissors, it is a simple matter to calculate their centroids,
as possible places to position the robot’s fingers.

Trying to define a general procedure that can pick up any pair of scissors is
quite difficult, as not all have closed finger holes, while some have three, or more.
Closely related objects, such as shears and pliers, may have no finger holes of any
sort. Here, we have two high-tolerance components, with a simple hinge
connection between them. The result of this combination is an object that taxes us
severely. More complex assemblies of levers are, of course, common-place in a
variety of instruments, automobiles, etc. Manipulating these is even more difficult.
However, the worst situation of all is found in handling objects with long pendant
tubes, ropes, strings wires or cables. Plants fall in the same category. How do we
cope with this huge variety? The answer is that there is no single solution that is
appropriate for all situations; even our marvellous eye-brain complex finds
unravelling a ball of string very difficult. In the simpler cases, a rule-based
methodology is likely to suffice and, in most cases, would be our preferred
solution. The trick is to sub-divide the overall task, so that each sub-problem can
be tackled separately, probably using methods that are already familiar to Machine
Vision practitioners. A system like CIP, or PIP, is well suited to a divide-and-
conquer approach. (Each Prolog clause deals with a separate case.) However, we
have to accept that some problems remain far beyond the ability of systems like
this and, at the moment, have no known solution.

a b

c d

Figure 3.15.  Scissors: (a) fully closed (Euler number  is –2); (b) nearly closed (Euler number
is –1); (c) open wide (Euler number  is –2) (d) centroid and the principal axis, centroids of
four bays and two lakes.
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Flexible Objects
We have already pointed out the difficulties of working with flexible objects.
Relatively simple situations like the coil shown in Figure 3.16 can be solved by
interpreting images from several cameras. Our task is to design a vision algorithm
that can locate and orientate the ends of the wires. Simple image filtering (grey-
scale morphology), thesholding and skeletonisation yields a binary image that can
be analysed in a straightforward way. The skeleton limb-ends are located first.
Then, the ends of the skeleton limbs are eroded back a short distance, and the ends
of the shortened limbs are found.  This process yields two points: one at the end of
each wire and another close to the end. These allow us to estimate the orientation
close to the tip of the wire. However, notice that this yields only the orientation in
two-dimensional space (e.g., the horizontal plane for Figure 3.16). At least one
more view, this time from the side, is needed to locate and orientate the end of each
wire in a vertical plane.

(a) (b)

Figure 3.16.  Coil with two flying leads: (a) binary image (the original image was processed,
by grey-scale morphological filtering and thresholding, to improve visibility of the wires);
(b) ends of the wires (crosses) and tangents at the ends of the wires

More than one side-ways view of the coil is needed if there is any likelihood
that the body of the coil will obscure the views of the tips of the wires. In this
example, a rule-based (Prolog) system is needed to cope with all of the different
situations that can occur as a result of the uncertain orientation of the coil (in the
horizontal plane) and bending of the wires.

A more sophisticated approach might be needed sometimes, if for example, the
wires become tangled. We can probably cope with minor entanglement, by using
simple physical adjustment of the wires, prior to the process that we have just
described. A robot could be used to make a slight adjustment to the flying wires,
by simply inserting a finger and pulling gently. Guiding the robot as it performs
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this initial manipulation is another role for a vision system. An important part of
this process is knowing when to give up. By now, the reader will be aware of the
high level of machine “intelligence” needed to perform even simple manipulation
on objects, like this coil, that have floating tubes, strings or wires.

3.5.2 Plants

There are many applications involving either whole plants, or parts of plants, that
we might discuss here, for example: grading decorative house plants, harvesting
fruit, trimming rhubarb, inspecting rice plants for infestation by parasitic insects,
replanting seedlings, selective application of weed-killer, separating seeds from
husks, “assaying” a ship-load of wheat (to ensure that it is of the correct variety),
etc. We have selected just three tasks that illustrate the fact that a high level of
intelligence is needed. We must not always expect established techniques, which
have long been standard in industrial vision systems, to work reliably.

Leaves
To the human eye, the leaves of some plants, such as certain species of ivy, oak,
and maple, appear to have very characteristic shapes. On casual observation,
mature leaves of a given species often look so much alike that we not aware of the
high level of variation that actually exists. This says more about our ability to
perform Pattern Recognition than it does about the constancy of leaf shape. As we
shall see, when we analyse leaf shape objectively, we become much more aware of
the high level of variability.

Figure 3.18 shows the silhouettes of five ivy leaves, taken from the same plant.
(The stems were removed manually, to make the image analysis a little easier.
However, similar results could have been achieved using morphology.) In the first
instance, we chose to analyse their shapes using so-called Concavity Trees (CTs)
[14]. This method of representing shape has some attractive theoretical properties
and CTs have been studied for applications such as identifying leather shoe
components [5]. We might imagine that a technique that is suitable for matching
shapes such as that shown in Figure 3.17 might also be appropriate for doing the
same for leaves.

Figure 3.17.  Metal castings  and  a shoe component are suitable for concavity trees analysis.
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(a)

(b)

Figure 3.18.  Ivy leaves analysed using concavity trees: (a) five leaf silhouettes; (b)
concanvity trees. Numbers indicate the areas of the convex hulls for each shape. Minor
branches (e.g., corresponding to small shapes) have been removed, for clarity.
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At first sight, CTs seem to provide a very natural way to represent shapes of
leaves such as ivy, since they allow us to combine global and local information in a
systematic way. However, the CTs generated from ivy leaves are highly variable,
reflecting differences of leaf shape that would probably elude a casual glance. In
view of this, it is not possible to use CTs in a simple way, to compare the shapes of
leaves. We could not, for example, compare two shapes by simply overlaying their
CTs. A much more sophisticated tree-matching process is needed. It would be too
much of a distraction to describe such a procedure here.

Other methods of analysis are needed, if we are to perform shape matching on
highly variable objects like ivy leaves. Heuristic, rather than algorithmic,
techniques for shape analysis are probably more appropriate for situations like this.
Consider Figure 3.19, which shows various methods that might be used for
determining the orientation and position of a leaf. Both are needed as a prelude for
certain methods for shape matching. Figure 3.19(a) shows that the principal axis
cannot be used to normalise the orientation reliably, while Figure 3.19(b) suggests
that the centroid of the leaf silhouette and the centroid of the small bay at the top
provide a  better reference axis for this purpose. However, in some leaves, this bay
is shallow and ill defined (Leaf 2 in Figure 3.18(a)). Another possibility is
provided by the line joining the centroid to the edge point that is furthest from the
centroid (Figure 3.19(c)). Which of these is more reliable needs to be evaluated by
detailed study of a carefully selected sample of leaves.

Figures 3.19(d) – (f) illustrate three methods for finding reference points that
might be used to control the warping of a “rubber template”, as part of a shape-
matching routine. It is common practice to use the centroid as a means of
determining position but other methods might be more appropriate. For example,
the centre of the circumcircle (Figure 3.19(g)), or the centroid of the convex hull
(Figure 3.19(h)) provide possible alternatives.

Figure 3.19(i) shows a plot of radius (r(θ)), measured from the centroid, against
angle (θ) for three ivy leaves.4 Simple (1-dimensional) correlation of these graphs
could be used for shape matching. Since r(θ) is a periodic function of θ, it is also
possible to apply Fourier analysis techniques. The Fourier coefficients could be
used to provide a set of inputs to a pattern classifier of the type discussed earlier in
this chapter. A set of low-order Moments could be used for this purpose instead.

The conclusion we are forced to make is that shape matching of natural objects
is far from straightforward. Even though similar functions have long been standard
in manufacturing of engineering products, the high level of variability makes the
established methods unreliable. Moreover, greater intelligence in shape-matching
procedures is needed. It is important to appreciate that the greater uncertainty about
which technique is best suited to a given application makes testing and evaluating
the various options more difficult and therefore more time-consuming. It is
imperative, therefore, that we have a properly organised set of image analysis tools
for this type of task.

                                                            
4  For ivy leaves, r(θ) happens to be a single-valued function of θ. If this is not the case, it
may be necessary to use the function r(d) instead, where d is the distance measured around
the edge. The latter can be estimated from the chain code.



124 B.G. Batchelor

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.19. Ivy leaves: (a) principal axis; (b) line joining the object centroid and the
centroid of the third largest bay; (c) line joining the object centroid to the furthest edge
point; (d) tips of the protuberances; (e) centroids of the major bays; (f) points of high
curvature; (g) circumcircle; (h) centroid of the convex hull; (i) polar plot (r(θ)) versus θ)

Micropropagation
The technique known as micropropagation is used in horticulture is to “copy” a
tiny living plant by vegetative reproduction, to create a large number of genetically
identical plants. A plantlet is dissected, as appropriate, and the small parts are then
replanted in some nutrient material, such as agar jelly. Automation of the process is
of considerable economic importance, as manual handling of the plants is prone to
causing physical damage and infection by micro-organisms shed by the operator.
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Of course, building a visually guided robot for such a task requires considerable
skills in mechanical system design, automatic control and vision systems
engineering. Our sole concern here is the last of these. A plant such as that shown
in Figure 3.20 has an “open” structure that is fairly easy to analyse. The specific
task is locate the axial buds, located where the leaf stalks meet the main stem.
There are thus two sub-tasks:

•  locating the bifurcation points;
•  identifying the main stem.

(a) (b)

(c) (d)

Figure 3.20.  Locating axial buds for micropropagation of a small open-structure plant; (a)
original image; (b) best result obtained by thresholding (notice that the stems are “broken”);
(c) crack detector applied to the original image; (d) after thresholding c and removal of noise
from the binary image and then skeletonisaton, it is possible to locate the bifurcations
(locations of the axial buds).
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The Y-shaped junctions can be located using either (grey-scale or binary)
morphology, or by skeletonising the silhouette and then locating joints on it.

A plant with slightly denser foliage will produce some situations in which the
bifurcation points are obscured by leaves. In this case, it may be necessary to
combine the results of processing images derived from two or more cameras. This
is fairly straightforward if the leaf density is not too high. As the foliage becomes
thicker, the task becomes more and more difficult. Eventually, it becomes too
complex to analyse properly and a “brute force” method is needed, in which we
deliberately sacrifice part of the plant in order to dissect the rest of it.

Pruning
Pruning a dense rose bush can be very difficult, since it requires careful planning
beforehand and continued reassessment of the situation as the process continues.
There are certain practical issues relating to this task that must be solved first:
lighting, eliminating ambient light, protecting the optical sub-system, placing the
camera(s) to obtain a good view of each part of the plant. Each of these is far from
trivial; it is difficult obtain a good overall view and close-up views of each leaf,
stem and stalk. However, these technicalities are distracting us from the main
thesis of this chapter, which is that designing inspection procedures for natural
products sometimes requires a fundamentally different approach from that adopted
for industrial installations. The main feature here is the high level of intelligence
needed. In fact, the close integration of vision and intelligent planning needed for
this application is already available in PIP, which employs Prolog to implement the
top-level controller. However, a very severe difficulty lies in formulating the rules
needed to guide a pruning robot.  Moreover, tasks such as this are likely to require
the discrimination of subtle conditions in the plant (colour and structural changes),
due to wilting, infection, frost damage, etc. There are numerous sub-problems, all
of which make this a very much more difficult process than micropropagation.

3.5.3 Semi-processed Natural Materials

Chicken-meat Butterflies
“Butterfly” is the name given to a piece of chicken meat that is obtained by cutting
symmetrically around the breastbone. Figure 3.21 shows x-ray images derived
from two chicken butterflies and the smoothed intensity contours (isophotes) for
one of them. Careful examination of Figures 3.21(a) and (b) will reveal one bone in
each sample. Notice that the intensity varies considerably over the area covered by
the butterfly and this may obscure the images of any bones (Figure 3.21(d)). This
arises because the thickness of the meat changes.5 It would help a great deal, if we
could reduce this intensity variation, before applying an appropriate image filter.
The crack detector, also called morphological grey-scale closing, is one
possibility. Fitting a suitable model to the image of a butterfly might help us in two
ways:

                                                            
5 This fact can be used to measure the thickness of the meat, assuming that it is
homogenous.
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i to compensate for those intensity changes that are predictable, knowing
that chickens have a similar anatomy;

ii. to enable us to anticipate where and what type of bones might occur. (For
example, wing bones are not found embedded in breast meat.)

If all chickens were identical, a fixed reference butterfly image could be
produced, which could then be subtracted from each sample image. Unfortunately,
chickens do not oblige us by growing to an identical size, so it is impossible to
create such a reference image (Figure 3.21(e)). However, it might be possible to
modify the reference image, by warping and rescaling its intensity locally, so that it
fits the sample image better. To guide the model fitting, we need to define a
number of “anchor points”, so that we can correlate the reference and sample
images. We shall therefore explore some of the possibilities for doing this.

Simply thresholding the butterfly image creates a number of “islands” (Figure
3.21(c)). It may be a good idea to smooth their edges, by applying a low-pass
(blurring) filter first. We can then find the centroids of these islands. By carefully
choosing which islands we analyse in this way, we can obtain a number of anchor
points (Figure 3.22). The centroid of the silhouette and the centroid of its largest
bay provide two more such points. In Figure 3.22(b) – (d), we see that this process
works, even when the butterfly is not symmetrical. Other possibilities exist for
finding anchor points. For example, it is possible to fit a standard mathematical
shape, such as a cardioid, to the outer edge of the butterfly, or defined intensity
contours (Figure 3.22(e)).

(a) (b)

Figure 3.21. Chicken-meat “butterflies”: (a) unprocessed x-ray image; (b) another
unprocessed image.
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(c) (d)

(e) (f)

(g) (h)

Figure 3.21 (continued)  Chicken-meat “butterflies”: (c) intensity contours for a; (d) vertical
intensity profile for a; (e) images a and b registered (without rescaling) and subtracted; (f)
horizontal intensity profile for e; (g) vertical intensity profile through the centre of e; (h)
crack detector algorithm applied to e.
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The parameters of the cardioid could then be used to control the model-fitting
procedure. Other techniques that we have already met might also be considered,
although the principal axis is unreliable, if the butterfly is not approximately
symmetrical (Figure 3.22(f)).

(a) (b)

(c) (d)

(e) (f)

Figure 3.22.  Chicken-meat “butterflies; (a) original image; (b) centroids of the outline, the
largest bay and of the two largest “islands” created by thresholding at 75% of maximum
density; (c) same calculations applied to another “butterfly”;. (d) same calculations applied
to a third “butterfly”; (e) cardioid fitted to the outline of a [Kindly provided by Dr Paul
Rosin.]; f. principal axis line  joining the centroid to the centroid of the largest bay.

Fish Fillets
Many of the points just described are also appropriate for processing images of fish
fillets. However, the examples shown in Figure 3.23  have no axis of symmetry, or
large concavity, that we were able to use on chicken butterflies. Hence some of the
methods that we devised for butterflies are unsuitable for fish fillets, although new
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possibilities might arise The point to note is that each application involving natural
products has to be considered on its merits, so that a suitable analysis procedure
can be devised to take account of its characteristic features. Moreover, what may
seem like similar applications might, in fact, require quite different types of
solution; both the designer and the machine he/she is building must be intelligent.

(a) (b) (c)

(d) (e)

Figure 3.23.  Fish fillets: (a) original x-ray image; (b) intensity profile; (c) smoothed
isophotes (intensity contours); (d) high-pass filter (notice how little internal detail there is
(e) principal axis.
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3.5.4 Food Products

Cake Decoration Patterns
Figure 3.24 shows four decoration patterns generated by the same production
machinery, making cakes in the form of a continuous strip. Patterns like these are
created  using one, or more, oscillating nozzles, extruding icing (frosting) onto the
cake, which moves at constant speed. Among other patterns, cycloids, sinusoids
and zig-zag curves can be created in this way. Although the nozzle-cake motion
can be described precisely in mathematical terms, the patterns actually deposited
on the cake surface are somewhat uneven. The reason is that the icing does not
always flow smoothly through the nozzle. In addition, the cake surface undulates
and does not provide uniform adhesion for the emerging stream of icing. The result
is a pattern that follows a well-defined path but which is of uneven thickness and
may actually be broken in places. Inspecting the decorated cake surface is
important, because customers judge the cake, in part, by its appearance. This is an
ideal application for a simple heuristic learning procedure, based on morphology
and statistics such as zero-crossing frequency (Figure 3.25).  Notice, however, that
no single morphology operator yields sufficient information for a comprehensive
test of cake decoration quality; several such filters would be needed in practice.

However, as always in Machine Vision, we need to consider the application
requirements, in order to optimise the design of the inspection system. In this
particular case, the nature of the manufacturing process and the types of fault it
produces are  significant. There are short-term glitches, when a very short section
of cake deviates from the norm. These are unimportant and might actually be
regarded as desirable, as a certain element of variation gives a “home made”
appearance to the cakes. Small changes in the appearance of the decoration pattern
should therefore be ignored. However, once the baking system starts to produce
“bad” cake, it will go on doing so. Our inspection system is therefore concerned
solely with long-term changes. We usually think of an inspection system as using
the same algorithm, which may be quite complex, operating on every image.
However, the nature of this particular application allows a different kind of
inspection procedure to be used. Let us consider the continuous strip of cake as
being represented by a succession of non-overlapping images,  (I1, I2, I3, …). Then,
we might apply a set of “mini-algorithms” [A1, A2, …, AN] to images [I1, I2, …, IN]
respectively and combine their results afterwards. Typically, each mini-algorithm
will use different morphology and measurement processes. The results is a set of
measurements: X1, X2, …, X N , which might be used as inputs to a Pattern
Recognition system  such as a Compound Classifier. The output of this is a
decision that the cake decoration is either “good” or ‘faulty”. Images IN+1, IN+2, …,
I2N are then treated in the same way, and as are succeeding groups of N images. It
is worth making several more points here:

•  The process just described fits very well onto the Concurrent Processor,
which is a highly cost-effective way of inspecting objects/materials on a
conveyor belt [15].

•  A fast implementation of the morphology operators might be accomplished
using the SKIPSM technique, developed by F. M. Waltz [11].
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Figure 3.24.  Cake decoration patterns

(a) (b)

(c) (d)

Figure 3.25. Cake decoration patterns analysed using binary morphology operators with
linear structuring elements (small squares). For the purposes of illustration, the result of the
processing (white regions) has been superimposed onto the binary image.
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•  The structuring elements used by the morphology operators might be
generated. However, carefully matching the structuring element with the
decoration pattern will usually result in a more efficient design.

A more complete discussion of this topic may be found in [16].

Loaf Shape
The shape of a loaf is an important criterion that affects customer choice, although
nobody knows exactly what customers want. While it is extremely difficult to
specify precisely what a “good” loaf is, it is possible to define some of the faults
that are obviously unacceptable. Of course, it should not be assumed that a loaf is
necessarily acceptable if we fail to show that it is unacceptable. However, we shall
ignore such niceties and shall concentrate on examining loaf shape, in order to
identify malformed loaves. There are two distinct approaches that we can take:

a. Analyse the shapes of individual slices and combine them to form a
judgement about the whole loaf. The loaf is represented as a set of two-
dimensional images, like that shown in Figure 3.26(a).

b. Analyse the shape of the whole loaf. The loaf is represented by a depth or
range map [12].

Figure 3.26 shows the silhouette of a single slice of bread, taken from a loaf that is
baked in a tin with no lid.

The top of such a loaf should form a nicely rounded dome. The sides should be
straight and parallel, with no major indentations. The overspill (e.g., where the
dough has bulged over the rim of the baking tin) should not be too small or too
large (this is quantified in practice, of course). Figure 3.26 also illustrates several
ways of analysing the shape of this slice. Figure 3.26(b) shows the negated Hough
transform of the outer edge contour, while Figure 3.26(c) demonstrates that, if we
locate the major peaks and invert the Hough transform, we can locate the sides and
base of the slice. It is a straightforward matter then to test whether the sides are
vertical and parallel, and have no major bulges (impossible for a tin loaf) or
indentations. These same lines can be used to isolate the overspill. (Figure 3.26(d)).
The top of the slice can be examined, to measure its radius of curvature. (Figure
3.26(e)).

This requires that we identify three well-spaced points on the top, to provide
data for a circle-fitting routine based on simple geometry. The same principle can
be used to examine the overspill, by finding the radius of curvature on both sides of
the loaf (Figure 3.26(f). The radius (r(θ)), measured from the centroid, as a
function of angular position (θ) is plotted in Figure 3.26(g), and can be used to
identify the type of slice, by cross-correlation with a standard shape. (This is the
same representation of shape that we employed earlier for identifying ivy leaves.)
Figures 3.26(h) and (i) show the binary bread-slice image grey-weighted in two
different ways. The histograms of these two images provide useful shape
descriptions that are independent of orientation and could therefore be used as part
of a shape recognition procedure.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26.  Slice of bread 2d shape analysis: (a) original (binary) image; (b) Hough
transform (negative); (c) inverse transform applied to the three principal spots; (d) overspill;
(e) fitting a circle to the top; (f) fitting circles to the overspill regions.
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(g) (h)

(i)

Figure 3.26 (continued)  Slice of bread 2d shape analysis: (g) plot of distance (r(θ)) from the
centroid, versus angle (θ, vertical axis); h. grey-weighting according to distance from the
centroid (the histogram of this image provides a useful way of describing shape that is
independent of orientation); i. grey-weighting according to the grass-fire transform (this is
another useful rotation-independent representation of shape).

The analysis described so far is based on a single slice of bread, In order to
inspect the whole loaf, we could repeat measurements like those outlined above,
for each slice and then relate them together. Two other ways of representing three-
dimensional shape are illustrated in Figure 3.27 and require the use of specialised
illumination-optical systems. The range map of a croissant shown in Figure 3.27(a)
was obtained using structured lighting [16]. In this method of obtaining three-
dimensional shape information, light from a diode laser is expanded by a
cylindrical lens to form a fan-shaped beam. This is projected vertically downwards
onto the top of the object. A video camera views the resulting light stripe from an
angle of about 45˚. This yields height data for just one vertical cross-section
through the object, for each video frame. To build up a complete 3-D profile of an
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object, it is moved slowly past the camera. (In practice, it is possible to map only
the top surface of a loaf with a single camera. Hence, in order to obtain profiles of
the sides as well, this arrangement is triplicated.) In a range map, the height of the
object surface is represented by the intensity in a monochrome image and isophotes
(contours of equal brightness) correspond to height contours (Figure 3.27(b)). The
pattern in Figure 3.27(c) is the result of simultaneously projecting a number of
parallel light stripes onto the top surface of a loaf and applying some simple image
processing, to create a binary image.

(a) (b)

(c) (d)

Figure 3.27.  3-D height profiling of a croissant and loaf.
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We therefore appear to have three distinct methods for representing 3-D shape
visually. In fact, these are very similar in terms of the data that they produce and,
as a result, we can employ the same decision-making procedure to complete the
analysis of 3-D loaf shape. In Figure 3.26, the slicing is achieved by physically
cutting the loaf in a series of parallel, vertical planes. In Figure 3.27(a), horizontal
“slicing” is performed computationally, by thresholding the range map. In Figure
3.27(c), vertical “slicing” is achieved optically. We therefore conclude this section
with a brief discussion of methods for making decisions based on a series of binary
contours, which may or may not be closed.

Let Xj = (X1,j, X2,j, X3,j, …, XN,j) denote a series of measurements derived from
the jth slice of a loaf, where j = [1, 2 , 3, …, M]. The  Xi,j could be any convenient
measurements, perhaps of the type that we have already discussed when referring
to Figure 3.26. For our present purposes, it is the procedure that we use for
combining them that is of prime importance. We begin by building a device (or
writing a program segment) that makes a decision Yj  ∈   {good, faulty}, based on
just one slice. This might perform a series of checks of the form:

Li,j ≤ Xi,j ≤ Hi,j (3.12)

where Li,j and Hi,j are parameters obtained by learning. They may simply be
extimates of the minimum and maximum values observed for the variable Xi,j,
taken over a set of training data. Alternatively, they could be limits based on
statistical measures of variable spread (i.e., mean and standard deviation). We
might compute the sub-decision Yj as follows

Y
good L X H i N

faulty
j i j i j i j=

∈ [ ]




, ? ? , , ,

,
, , ,if for all

otherwise

1 2 3K
(3.13)

It now remains to combine the sub-decisions (Y1, Y2, … , YM). This can be done
in a variety of ways, depending upon the application requirements. We might apply
a strict rule demanding that all of the Yj  = good, or a more tolerant rule that no
more than P (P <  N/2) of the Yj  = faulty. Clearly, there are many variations of this
basic decision-making procedure that we can apply. For example, we could make
Equation (3.13) less severe, by requiring that say  only Q out of N  (Q < N) tests
must be passed before we make  Yj  = good. Which rule we choose in practice is
best left to human instinct and whatever appropriate experimentation the vision
engineer can devise.

The idea of making up ad hoc rules like this, specially to suit a given
application, is an anathema to people for whom mathematical rigour is essential for
their peace of mind. However, to a vision engineer working with highly variable
objects, the freedom to adopt heuristic procedures is essential. The results may not
be optimal but, in a situation like this, it may be impossible to do any better, or
even prove that we could ever do so.

Loaf shape analysis has been reported in more detail elsewhere [17], as has the
vexed subject of texture analysis of the bread matrix [18]. Much research work
remains to be done.
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3.6 Concluding Remarks

The important lessons of this chapter may be summarised as:

•  Many of the techniques that were originally devised for inspecting
engineering artefacts can be used for natural products but may well require
considerable modification.

•  In view of the far greater level of variation that exists in natural products,
the image analysis procedures need to be selected very carefully indeed,
taking into account the characteristic features of the application. The need
for a good experimental image processing “tool box” is of even greater
importance than hitherto [19].

•  Seemingly similar applications, may, in fact, require quite different
methods of solution.

•  The designer of the vision system needs to apply a high level of
intelligence; he/she cannot simply mindlessly “turn the handle” to design
an inspection system for natural products. He/she needs to be alert to the
great variation in size, shape, colour and texture that exists.

•  An inspection system for natural products is likely to require a far higher
level of (artificial) intelligence than industrial systems employed so far.

•  The specific technologies that are of prime importance for inspecting
natural products are:

- pattern classification and self-adaptive learning;
- rule-based decision-making;
- colour recognition;
- artificial Intelligence programming techniques (Prolog);
- intelligent model fitting.

•  The standard Pattern Recognition model requires some modification to take
account of the fundamental difficulty of obtaining a fully representative
sample of data from the “faulty” class. This may involve learning on a
single class, or a hybrid combination of rule-based and traditional
(hyperspace) decision-making methods.

•  We may need to adopt ad hoc rules and may have to accept that we can do
no better than achieve a sufficient solution. The concept of optimal is one
that we may have to forsake at an early stage in the process of designing a
vision system.

•  Many applications in engineering manufacture present similar problems to
those encountered with natural products. Whenever, fluid, or semi-fluid,
materials are sprayed, or extruded, onto a substrate, they flow into shapes
that are impossible to predict exactly. The resulting “dollops” are likely to
require treatment as if they arose naturally and to require intelligent
inspection procedures.

Finally, it must be made clear that all of the principles required for applying
Machine Vision to engineering artefacts also apply to natural products as well.
These have been expressed in the form of a set of “Proverbs” [13]. The points
made above add to that list; they do not, in any way, diminish the importance of
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applying sound Systems Engineering principles. Machine Vision applied to the
inspection of natural products must not, under any circumstances, be reduced to an
abstract intellectual exercise. Machine Vision is not a scientific discipline – it is
engineering.
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