12 1 Univariate Linear Regression Model

100

Varibble y: Expenditure

50

Variable x: Net Income

Figure 1.3. Sample and Population Regression Function

1.1.4 Example

In order to show how a DGP works, we implement the following experiment.
We generate three replicates of sample n = 10 of the following data generating
process: y; = 24 0.52; +u;. X is generated by a uniform distribution as follows
X ~UJ0,1].
Q XEGlinreg04.xpl

This code produces the values of X, which are the same for the three samples,
and the corresponding values of Y, which of course differ from one sample to
the other.

1.2 Estimators and Properties

If we have available a sample of n observations from the population represented
by (X,Y), (z1,v1), - ,(®n,yn), and we assume the Population Regression
Function is both linear in variables and parameters

yi=EY|X =) +u =a+ fri+u, i=1-,n, (1.25)

we can now face the task of estimating the unknown parameters a and . Un-
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fortunately, the sampling design and the linearity assumption in the PRF, are
not sufficient conditions to ensure that there exists a precise statistical rela-
tionship between the estimators and its true corresponding values (see section
1.2.6 for more details). In order to do so, we need to know some additional
features from the PRF. Since we do not them, we decide to establish some
assumptions, making clear that in any case, the statistical properties of the
estimators are going to depend crucially on the related assumptions. The basic
set of assumptions that comprises the classical linear regression model is as
follows:

(A.1) The explanatory variable, X, is fixed.
(A.2) For any n > 1,

1 & A
- Z(mi -5)2>0.
=1

(A.3)
1 A
lim — — 1) = 0.
Jim -~ zg;(az:Z ) =m>
(A.4) Zero mean disturbances: E(u) = 0.

(A.5) Homoscedasticity: Var(u;) = 0? < oo, is constant, for all 7.

(A.6) Nonautocorrelation: Cov(u;,u;) =01if i # j.

Finally, an additional assumption that is usually employed to easier the infer-
ence is

(A.7) The error term has a gaussian distribution, u; ~ N(0,0?)

For a more detailed explanation and comments on the different assumption
see Gujarati (1995). Assumption (A.1l) is quite strong, and it is in fact very
difficult to accept when dealing with economic data. However, most part of
statistical results obtained under this hypothesis hold as well for weaker such
as random X but independent of u (see Amemiya (1985) for the fixed design
case, against Newey and McFadden (1994) for the random design).
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1.2.1 Regression Parameters and their Estimation

In the univariate linear regression setting that was introduced in the previous
section the following parameters need to be estimated

e « - intercept term. It gives us the value of the conditional expectation of
Y given X =z, for z = 0.

e (3 - linear slope coefficient. It represents the sensitivity of E(Y|X = z)
to changes in z.

e 02 - Error term measure of dispersion. Large values of the variance mean
that the error term w is likely to vary in a large neighborhood around the
expected value. Smaller values of the standard deviation indicate that
the values of u will be concentrated around the expected value.

Regression Estimation

From a given population described as
y=3+25z+u (1.26)

X ~U[0,1] and u ~ N(0, 1), a random sample of n = 100 elements is generated.

Q XEGlinreg05.xpl

We show the scatter plot in Figure 1.4

Following the same reasoning as in the previous sections, the PRF is unknown
for the researcher, and he has only available the data, and some informa-
tion from the PRF. For example, he may know that the relationship between
E(Y|X = z) and « is linear, but he does not know which are the exact param-
eter values. In Figure 1.5 we represent the sample and several possible values
of the regression functions according to different values for a and /.

Q XEGlinreg06.xpl

In order to estimate a and , many estimation procedures are available. One
of the most famous criteria is the one that chooses a and 3 such that they
minimize the sum of the squared deviations of the regression values from their
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Figure 1.5. Sample of XY, Possible linear functions

real corresponding values. This is the so called least squares method. Applying
this procedure to the previous sample,

Q XEGlinreg0O7.xpl

in Figure 1.6, we show for the sake of comparison the least squares regression
curve together with the other sample regression curves.

We describe now in a more precise way how the Least Squares method is
implemented, and, under a Population Regression Function that incorporates
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Figure 1.6. Ordinary Least Squares Estimation

assumptions (A.1) to (A.6), which are its statistical properties.

1.2.2 Least Squares Method

We begin by establishing a formal estimation criteria. Let & and B be a possible
estimators (some function of the sample observations) of a and 3. Then, the
fitted value of the endogenous variable is:

z i=1,..n (1.27)

>

Z/i‘ =a+
The residual value between the real and the fitted value is given by
Gi=vyi—9y; i=1,..,n (1.28)

The least squares method minimizes the sum of squared deviations of regression

values (; = & + fBa;) from the observed values (y;), that is, the residual sum
of squares—RSS.

> (- 4 = min (1.29)
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This criterion function has two variables with respect to which we are willing

to minimize: & and f.

S(4, ) = Z(yi —o*z—ﬂa:,-)A. (1.30)

Then, we define as Ordinary Least Squares (OLS) estimators, denoted by &
and f, the values of o and /3 that solve the following optimization problem

R

(&, B) = argmin . :S(&, ) (1.31)

o,

In order to solve it, that is, to find the minimum values, the first conditions
make the first partial derivatives have to be equal to zero.

95(&, B) noL
—_— = -2 i — Q0 — PDT;) — 0
> ;(y B;)
(1.32)
ap i=1

To verify whether the solution is really a minimum, the matrix of second order
derivatives of (1.32), the Hessian matrix, must be positive definite. It is easy
to show that

n Dim Ti

H(é,B) =2 , (1.33)
Z?:l Li Z?:l ;vf

and this expression is positive definite if and only if, >°.(z; — Z)* > 0. But,
this is implied by assumption (A.2). Note that this requirement is not strong
at all. Without it, we might consider regression problems where no variation
at all is considered in the values of X. Then, condition (A.2) rules out this
degenerate case.

The first derivatives (equal to zero) lead to the so-called (least squares) normal
equations from which the estimated regression parameters can be computed by
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solving the equations.

n n
n&+62xi = Zyl (1.34)
i=1 i=1
n o n
@Zlﬂ, +BZ$,'2 = Zﬂfiy,’ (135)
i=1 i=1 i=1

Dividing the original equations by n, we get a simplified formula suitable for
the computation of regression parameters

a+pz =
1 — 1 —
(54534-552;.2712 = Ez;mlyl
1= 1=

For the estimated intercept &, we get:

joN

=j—fz (1.36)

For the estimated linear slope coefficient B, we get:

R 1 n 1 n
G -Bo)z+p=) x° = =) iy
nz:l ni:l
11— 1 &
B=> (@ —2) = = wyi—zy
nlil ni:l
BSx? = Sxy

5 Sxy _ X (e —2)(y:i = 9)
B = [SCI S P (1.37)
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The ordinary least squares estimator of the parameter o2 is based on the fol-
lowing idea: Since o is the expected value of u? and 4 is an estimate of u, our
initial estimator

—~2 1 "
== Zuf (1.38)
K3

would seem to be a natural estimator of o2, but due to the fact that E (3, 47) =
(n —2)0?, this implies

E (?2) = — 252 4 62, (1.39)

Therefore, the unbiased estimator of o2 is

52 = i (1.40)

n —

B

[\

Now, with this expression, we obtain that E(6?) = 0.

In the next section we will introduce an example of the least squares estimation
criterion.

1.2.3 Example

We can obtain a graphical representation of the least squares ordinary estima-
tion by using the following Quantlet

gl = grlinreg (x)

The regression line computed by the least squares method using the data gen-

erated in (1.49)
Q XEGlinreg08.xpl

is shown in Figure 1.7 jointly with the data set.
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Figure 1.7. Ordinary Least Squares Estimation

1.2.4 Goodness of Fit Measures

Once the regression line is estimated, it is useful to know how well the regression
line approximates the data from the sample. A measure that can describe the
quality of representation is called the coefficient of determination (either R-
Squared or R?). Its computation is based on a decomposition of the variance
of the values of the dependent variable Y.

The smaller is the sum of squared estimated residuals, the better is the quality
of the regression line. Since the Least Squares method minimizes the variance
of the estimated residuals it also maximizes the R-squared by construction.

> (wi—g)° = i — min. (1.41)

The sample variance of the values of Y is:

52— %—y)z (1.42)

The element Y. | (y; — 7)* is known as Total Sum of Squares (TSS), it is
the total variation of the values of Y from §. The deviation of the observed
values, y;, from the arithmetic mean, 7, can be decomposed into two parts:
The deviation of the observed values of Y from the estimated regression values
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and the deviation of the estimated regression values from the sample mean. i.
e.

Yi—y=Wi—v%i+vi—-y)=u+y—y, i=1-"-,n (1.43)

where @; = y; — ¥; is the error term in this estimate. Note also that considering
the properties of the OLS estimators it can be proved that § = g. Taking the
square of the residulas and summing over all the observations, we obtain the
Residual Sum of Squares, RSS = Y"1 | 43. As a goodness of fit criterion the
RSS is not satisfactory because the standard errors are very sensitive to the
unit in which Y is measured. In order to propose a criteria that is not sensitive
to the measurement units, let us decompose the sum of the squared deviations
of equation (1.43) as

n

= (- hi) + Z Wi — )" +2 > (i — 6 (i — v) (1.44)

i=1 i=1
Now, noting that by the properties of the OLS estimators we have that > | (y;—
Ui)(9; — ) = 0, expression (1.44) can be written as

TSS = ESS + RSS, (1.45)

where ESS = 31" (y; — §)?, is the so called Ezplained Sum of Squares. Now,
dividing both sides of equation (1.45) by n, we obtain

Sy —9)° _ S (i —9)° N S G —9)°

n n n

(1.46)
Z?:l diz Z?:l (:ljl - g)z

= +
n n

and then,

Syz = Saz + SYQ (1.47)
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The total variance of Y is equal to the sum of the sample variance of the
estimated residuals (the unexplained part of the sampling variance of ) and
the part of the sampling variance of Y that is explained by the regression
function (the sampling variance of the regression function).

The larger the portion of the sampling variance of the values of Y is explained
by the model, the better is the fit of the regression function.

The Coefficient of Determination

The coefficient of the determination is defined as the ratio between the sam-
pling variance of the values of Y explained by the regression function and the
sampling variance of values of Y. That is, it represents the proportion of the
sampling variance in the values of Y ”explained” by the estimated regression
function.

Z?:1 (;lj, - g)z _ SYQ
Do (i — g)z Sy”®

This expression is unit-free because both the numerator and denominator have
the same units. The higher the coefficient of determination is, the better the
regression function explains the observed values. Other expressions for the
coefficient are

R? =

(1.48)

_BESS _ | RSS _pYlL(wi-®)yi—§) _ L@ — )’
TSS TSS S (v —9)? S (i —9)?

One special feature of this coefficient is that the R-Squared can take values in
the following range: 0 < R% < 1. This is always true if the model includes
a constant term in the population regression function. A small value of R?
implies that a lot of the variation in the values of Y has not been explained by
the variation of the values of X.

1.2.5 Example

Ordinary Least Squares estimates of the parameters of interest are given by
executing the following quantlet
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{beta,bse,bstan,bpval}=linreg(x,y)

As an example, we use the original data source that was already shown in

Figure 1.4
Q XEGlinreg09.xpl

1.2.6 Properties of the OLS Estimates of «, 3 and o2

Once the econometric model has been both specified and estimated, we are now
interested in analyzing the relationship between the estimators (sample) and
their respective parameter values (population). This relationship is going to
be of great interest when trying to extend propositions based on econometric
models that have been estimated with a unique sample to the whole popula-
tion. One way to do so, is to obtain the sampling distribution of the different
estimators. A sampling distribution describes the behavior of the estimators in
repeated applications of the estimating formulae. A given sample yields a spe-
cific numerical estimate. Another sample from the same population will yield
another numerical estimate. A sampling distribution describes the results that
will be obtained for the estimators over the potentially infinite set of samples
that may be drawn from the population.

Properties of @ and B

We start by computing the finite sample distribution of the parameter vector
(a B)T. In order to do so, note that taking the expression for & in (1.36) and
[ in (1.37) we can write

(g>::§;<%-;?w>y“ (1.49)

where

o Iy — X
Y (@ — @)

If we substitute now the value of y; by the process that has generated it (equa-

(1.50)

Wi
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tion (1.22)) we obtain

<g> - <g> +iz”; (i ;m) i, (1.51)

Equations (1.49) and (1.51) show the first property of the OLS estimators of
«a and . They are linear with respect to the sampling values of the endoge-
nous variable yi1, -+ ,y,, and they also linear in the error terms wy,-- -, u,.
This property is crucial to show the finite sample distribution of the vector of
parameters (& B) since then, assuming the values of X are fixed (assump-
tion A.1), and independent gaussian errors (assumptions A.6 and A.7), linear
combinations of independent gaussian variables are themselves gaussian and
therefore (& () follow a bivariate gaussian distribution.

joN

o Var (&) Cov (ol, B)
~N (1.52)
B Cov (d, B) Var (3)

To fully characterize the whole sampling distribution we need to determine both
the mean vector, and the variance-covariance matrix of the OLS estimators.
Assumptions (A.1), (A.2) and (A.3) immediately imply that

E { (i ;jw> ui} - (i _f“’> BE(uw) =0, Vi (1.53)

and therefore by equation (1.51) we obtain

() )

That is, the OLS estimators of a and /3, under assumptions (A.1) to (A.7) are
unbiased. Now we calculate the variance-covariance matrix. In order to do
S0, let

=

Var (&) Cov (d,B) ) e A
cov(@,ﬁ) Var(B) :E{<B—ﬂ>(a—a ﬁ—ﬂ)} (1.55)
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. T
Then, if we substitute (d —a [- ﬁ) by its definition in equation (1.51),

the last expression will be equal to

n o n (% —fzwi)(% —E:wj) (% —a‘:wi)wj

— ZZE U;Uj (156)

i=1 j=1 wz(% — ZTwj) WiW;
Now, assumptions (A.1), (A.5) and (A.6) allow us to simplify expression (1.56)

and we obtain

n (- 7w;)? (= — Twy)w;

=’y ! (1.57)

i=1 \wi(+ — Tw;) w?.

Finally, substitute w; by its definition in equation (1.50) and we will obtain the
following expressions for the variance covariance matrix

~ ~ ~ _o _
Var (Oé) Cov (a; B) , % + Zyzl?wi_jp - Z?:1(f0i—f)2
=0
~ A ~ _ ‘,i 1
Cov (a, B) Var (ﬂ) ST (ei5)? ST
(1.58)

We can say that the OLS method produces BLUE (Best Linear Unbiased Es-
timator) in the following sense: the OLS estimators are the linear, unbiased
estimators which satisfy the Gauss-Markov Theorem. We now give the simplest
version of the Gauss-Markov Theorem, that is proved in Johnston and Dinardo

(1997), p. 36.

Gauss-Markov Theorem: Counsider the regression model (1.22). Under as-
sumptions (A.1) to (A.6) the OLS estimators of a and /8 are those who have
minimum variance among the set of all linear and unbiased estimators of the
parameters.

We remark that for the Gauss-Markov theorem to hold we do not need to
include assumption (A.7) on the distribution of the error term. Furthermore,
the properties of the OLS estimators mentioned above are established for finite
samples. That is, the estimator divergence between the estimator and the
parameter value is analyzed for a fixed sample size. Other properties of the
estimators that are also of interest are the asymptotic properties. In this case,
the behavior of the estimators with respect to their true parameter values are
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analyzed as the sample size increases. Among the asymptotic properties of the
estimators we will study the so called consistency property.

We will say that the OLS estimators, &, 3, are consistent if they converge
weakly in probability (see Serfling (1984) for a definition) to their respective
parameter values, a and . For weak convergence in probability, a sufficient

condition is
. a\  fa
nll)n;oE <B> = (B) (1.59)

) Var (&) 0
nh—)néo Var (B) - (0) (1.60)
Condition (1.59) is immediately verified since under conditions (A.1) to (A.6)

we have shown that both OLS estimators are unbiased in finite sample sizes.
Condition (1.60) is shown as follows:

Var (&) = o” <% + Zfl(+j_§;)z) - %2 (1 + n—! ijf(ﬂ?z - i‘)2>

then by the properties of the limits

and

2 1 n 2
lim Var (&) = lim 7 % lim (1 nnZzA P 2)

Assumption (A.3) ensures that

5 i T

lim = — | <0
oo <% dim (@i — $)2>
2

and since by assumption (A.5), o2 is constant and bounded, then lim,, =

0. This proves the first part of condition (1.60). The proof for 3 follows the
same lines.

Properties of o2

For the statistical properties of 62, we will just enumerate the different statis-
tical results that will be proved in a more general setting in Chapter 2, Section
2.4.2. of this monograph.
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Under assumptions (A.1) to (A.7), the finite sample distribution of this esti-
mator is given by

_962
(=207 2 (1.61)

o2
Then, by the properties of the x? distribution it is easy to show that
(n —2)62
Var <T =2(n — 2).

This result allows us to calculate the variance of o2 as

20t

Var(6?) = —

(1.62)

Note that to calculate this variance, the normality assumption, (A.7), plays a
crucial role. In fact, by assuming that u ~ N(0,0?), then E(u3) = 0, and the
fourth order moment is already known an related to o2. These two properties
are of great help to simplify the third and fourth order terms in equation (1.62).

Under assumptions (A.1) to (A.7) in Section 1.2 it is possible to show (see
Chapter 2, Section 2.4.2 for a proof)

Unbiasedness:

‘ iy 07 1 SN 1 o
E(5”) =E<E’:1 “) = —5BQ @)= —n-20" =0
i=1

n—2 n—2

Non-efficiency: The OLS estimator of o2 is not efficient because it does not

achieve the Cramer-Rao lower bound (this bound is %)

Consistency: The OLS estimator of o2

o?ie.

converges weakly in probability to

as n tends to infinity.

Asymptotic distribution:
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as n tends to infinity.

From the last result, note finally that although &2 is not efficient for
finite sample sizes, this estimator achieves asymptotically the Cramer-
Rao lower bound.

1.2.7 Examples

To illustrate the different statistical properties given in the previous section, we
develop three different simulations. The first Monte Carlo experiment analyzes
the finite sample distribution of both &, 8 and 2. The second study performs
a simulation to explain consistency, and finally the third study compares finite
sample and asymptotic distribution of the OLS estimator of 2.

Example 1

The following program illustrates the statistical properties of the OLS esti-
mators of @ and 5. We implement the following Monte Carlo experiment.
We have generated 500 replications of sample size n = 20 of the model y; =
1.54+2x; +u; ©=1,...,20. The values of X have been generated according
to a uniform distribution, X ~ U[0, 1], and the the values for the error term
have been generated following a normal distribution with zero mean and vari-
ance one, u ~ N(0,1). To fulfil assumption (A.1), the values of X are fixed for
the 500 different replications. For each sample (replication) we have estimated
the parameters o and 3 and their respective variances (note that o2 has been
replaced by 62). With the 500 values of the estimators of these parameters, we
generate four different histograms
Q XEGlinreglO.xpl

The result of this procedure is presented in the Figure 1.8. With a sample
size of n = 20, the histograms that contain the estimations of 3 and @& in the
different replications approximate a gaussian distribution. In the other hand,
the histograms for the variance estimates approximate a x? distribution, as
expected.

Example 2

This program analyzes by simulation the asymptotic behavior of both & and
B when the sample size increases. We generate observations using the model,
yi =2+ 0.5z; + u;, X ~ U[0,1], and u ~ N(0,10?). For 200 different sample
sizes, (n = 5,---,1000), we have generated 50 replications for each sample size.
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histogram of alpha

histogram of var(alpha)

Figure 1.8. Finite sample distribution

For each sample size we estimate 50 estimators of a, 3, then, we calculate E(f)
and E(&) conditioning on the sample size.
Q XEGlinregll.xpl

The code gives the output presented in Figure 1.9. As expected, when we

increase the sample size E(f) tends to £, in this case § = 0.5, and E(&) tends
to o = 2.

convergence of alpha convergence of beta

o
|,M' |

Figure 1.9. Consistency
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Example 3

In the model y; = 1.5+ 2z; +u;, X ~ UJ0, 1], and u ~ N(0, 16). We implement
the following Monte Carlo experiment. For two different sample sizes we have
generated 500 replications for each sample size. The first 500 replications have
a sample size n = 10, the second n = 1000. In both sample sizes we estimate
500 estimators of o2. Then, we calculate two histograms for the estimates of

(n=2)0” e for n = 10, the other for n = 1000.

o2 ’

Q XEGlinregl2.xpl

The output of the code is presented in Figure 1.10. As expected, the histogram
for n = 10 approximates a x? density, whereas for n = 1000, the approximated
density is the standard normal.

hist of var(u) n=10 hist of var(u) n=1000

HI]HH]I] 1m0

Figure 1.10. Distribution of 62

1.3 Inference

In the framework of a univariate linear regression model, one can be interested
in testing two different groups of hypotheses about 3, a and ¢2. In the first
group, the user has some prior knowledge about the value of 3, for example
he believes = [y, then he is interested in knowing whether this value, o,
is compatible with the sample data. In this case the null hypothesis will be
Hy : B = fp, and the alternative H; : [ # [p. This is what is called a two



