
Preface

I wish that algebra would be the Cinderella of our story. In the math-
ematics program in schools, geometry has often been the favorite daugh-
ter. The amount of geometric knowledge studied in schools is approx-
imately equal to the level achieved in ancient Greece and summarized
by Euclid in his Elements (third century B.C.). For a long time, geom-
etry was taught according to Euclid; simplified variants have recently
appeared. In spite of all the changes introduced in geometry cours-
es, geometry retains the influence of Euclid and the inclination of the
grandiose scientific revolution that occurred in Greece. More than once
I have met a person who said, “I didn’t choose math as my profession,
but I’ll never forget the beauty of the elegant edifice built in geometry
with its strict deduction of more and more complicated propositions, all
beginning from the very simplest, most obvious statements!”

Unfortunately, I have never heard a similar assessment concerning al-
gebra. Algebra courses in schools comprise a strange mixture of useful
rules, logical judgments, and exercises in using aids such as tables of log-
arithms and pocket calculators. Such a course is closer in spirit to the
brand of mathematics developed in ancient Egypt and Babylon than to
the line of development that appeared in ancient Greece and then con-
tinued from the Renaissance in western Europe. Nevertheless, algebra
is just as fundamental, just as deep, and just as beautiful as geometry.
Moreover, from the standpoint of the modern division of mathemat-
ics into branches, the algebra courses in schools include elements from
several branches: algebra, number theory, combinatorics, and a bit of
probability theory.

The task of this book is to show algebra as a branch of mathematics
based on materials closely bordering the course in schools. The book
does not claim to be a textbook, although it is addressed to students and
teachers. The development presumes a rather small base of knowledge:
operations with integers and fractions, square roots, opening parenthe-
ses and other operations on expressions involving letter symbols, the
properties of inequalities. All these skills are learned by the 9th grade.
The complexity of the mathematical considerations increases somewhat
as we move through the book. To help the reader grasp the material,
simple problems are given to be solved.

The material is grouped into three basic themes—Numbers, Poly-
nomials, and Sets—each of which is developed in several chapters that
alternate with the chapters devoted to the other themes.

Certain matters related to the basic text, although they do not use
more ideas than are already present, are more complicated and require
that the reader keep more facts and definitions in mind. These matters
are placed in supplements to the chapters and are not used in subsequent
chapters.
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For the proofs of assertions given in the book, I chose not the shortest
but the most “understandable.” They are understandable in the sense
that they connect the assertion to be proved with a larger number of con-
cepts and other assertions; they thus clarify the position of the assertion
to be proved within the structure of the presented area of mathemat-
ics. A shorter proof often appears later, sometimes as a problem to be
solved.

At the first acquaintance with mathematics, the history of its devel-
opment usually retreats into second place. Sometimes it even seems
that mathematics was born in the form of a perfected textbook. In fact,
mathematics has arisen as the result of the work of uncounted scholars
throughout many milleniums. To give some attention to that aspect of
mathematics, the dates of the lives of the mathematicians (and physi-
cists) mentioned in the text are listed at the end of the book.

There are quite many formulas. For convenience in referring to them,
they are numbered. If I only give the formula number when referring to
it, then the formula is in the current chapter. For example, if “multiply-
ing equality (16), we obtain . . . ” is said in Chap. 2, then the formula
with the number (16) in Chap. 2 is meant. If a formula in a different
chapter is intended, then the number of the chapter is also given, for
example, “using formula (12) in Chap. 1.” To help find the necessary
chapter, the chapter numbers are printed at the top of every left-hand
page. Theorems and lemmas are numbered in order throughout the
entire book.

The Foundation for Mathematical Education and Enlightenment and
especially S. I. Komarov and V. M. Imaikin helped me greatly in prepar-
ing the manuscript. S. P. Demushkin took upon himself the labor of
reading the manuscript and made many important comments. I convey
my heartfelt gratitude to all of them.

I. R. Shafarevich Moscow, 2000

Added to the English edition:

Finally, I express my cordial gratitude to Bill Everett, who translated
this book into English. As far as I can judge, this is beautiful English.
However, I am not an expert in this. But certainly, he greatly improved
the text as he showed me several mistakes and urged me by his questions
to clarify the exposition in some places.

I. R. S. Moscow, 2002
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Prime Numbers

Topic: Numbers

11. The Number of Prime Numbers is Infinite

In this chapter, we return to a question examined in Chap. 1. It
was shown there that a natural number has a unique decomposition
into prime factors. From the standpoint of the operation of multiplying,
therefore, prime numbers are the simplest elements from which we can
obtain all natural numbers, similar to how we obtain them all from
the number 1 using the operation of adding. From this standpoint,
the interest in the collection of prime numbers is understandable. Four
prime numbers are found in the first decade of natural numbers: 2, 3,
5, 7. Further, we can find prime numbers, in turn dividing each number
by all previously found smaller primes to determine if it is prime. We
thus find 25 prime numbers in the first century:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

How far does this sequence continue?

This question already arose in antiquity. We find the answer to this
question in Euclid. It is formulated in Theorem 24.

Theorem 24. The number of prime numbers is infinite.

We present several proofs of this theorem. The first proof is the one
contained in Euclid’s Elements. Suppose we have found n primes in all:
p1, p2, . . . , pn. We consider the number N = p1p2 · · · pn + 1. As we saw
in Sec. 2, each number has at least one prime divisor. In particular, N
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has a prime divisor. But it cannot be one of the numbers p1, . . . , pn.
Indeed, suppose it were pi. Then N − p1 · · · pn must be divisible by pi,
and because N − p1 · · · pn = 1, this is impossible. Therefore, the prime
divisor of N is different from pi, i = 1, . . . , n. This means that for each
n prime numbers, there follows one more prime number. This proves
the theorem. �
Second proof. It was proved in Sec. 9 (see formula (25)) that the

number of numbers less than a given number N and relatively prime to
it is given by the formula

N

(
1−

1

p1

)(
1−

1

p2

)
· · ·

(
1−

1

pn

)
, (1)

where p1, . . . , pn are all the prime divisors of the number N .
Again suppose we have found n prime numbers p1, . . . , pn. We set

N = p1 · · · pn. Substituting this expression in formula (1), we obtain the
simple factor pi − 1 from each factor pi(1 − 1/pi), and we thus obtain
the expression (p1 − 1)(p2 − 1) · · · (pn − 1) for the whole of formula (1).
Because we know that there exists a prime number greater than 2 (for
example, 3), this expression must be a number greater than 1. Therefore,
there exists a number a less than N and relatively prime to it that is
different from 1. But a has at least one prime divisor that cannot be
contained among the numbers p1, . . . , pn, because a is relatively prime
to N . We have obtained one more prime number, and this proves the
theorem. �

The endless sequence of prime numbers is rather sparsely distributed
among the natural numbers. For example, there is a “gap” in it however
large you want, that is, we can find any given number of consecutive
numbers (sufficiently far out) that are not prime. For example, the n

numbers

(n+ 1)! + 2, (n+ 1)! + 3, . . . , (n+ 1)! + n+ 1

are obviously not prime: the first is divisible by 2, the second is divisible
by 3, and the last is divisible by n+ 1. For some time, people tried to
find a formula expressing prime numbers. Euler found the remarkable
polynomial x2+ x+41, which has a prime value for 40 values of x from
0 to 39. It is obvious, however, that for x = 40, it takes the nonprime
value 412. It is easy to verify that there cannot exist a polynomial f(x)
that would yield prime values for all integer values x = 0, 1, 2, . . . (not
to speak of it yielding all prime numbers). We demonstrate this with
the example of a second-degree polynomial ax2+ bx+ c with the integer
coefficients a, b, c.
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We suppose that the value c, which the polynomial yields for x = 0, is
prime. Then for an arbitrary positive integer k, we take x = kc and find
that the polynomial yields the value ak2c2 + bkc+ c, which is obviously
divisible by c. This value is either not prime or is exactly c. You can
easily verify that for given a and b, there is at least one positive integer k
for which ak2c2+ bkc+ c is equal to c. Therefore, all such values except
possibly two are not prime.

Furthermore, there does not exist a polynomial f(x) of arbitrary
degree with integer coefficients such that all its values for integer x
are prime numbers, beginning from some boundary. Indeed, sup-
pose that the values of the polynomial f(x) = a0 + a1x + · · · + anx

n

are prime for all integers x ≥ m, where m is some natural num-
ber. We set x = y + m, f(y + m) = g(y). The polynomial g(y) =
a0 + a1(y +m) + · · · + an(y +m)n = bo + b1y + · · · + bny

n is obtained
by opening parentheses and combining like terms. Therefore, its coef-
ficients bi are again integers, but it already yields prime values for all
y ≥ 0. In particular, g(0) = b0 = p is a prime number. Then for any
integer k, the value g(kp) = p + b1kp + · · · + bn(kp)

n is divisible by p.
They can coincide with p only if p+ b1kp+ · · ·+ bn(kp)

n = p, that is,

b1 + b2kp+ · · ·+ bn(kp)
n−1 = 0.

This is a polynomial of degree n− 1 in k. According to Theorem 14, it
has at most n− 1 roots. For all other values of k, the number g(kp) is
divisible by p and is different from p, that is, it is not prime.

It can be proved that for any number k of unknowns, there cannot
exist a polynomial in k unknowns with integer coefficients such that all
its values for all natural values of the unknowns are prime numbers.
Nevertheless, it turns out that there exists a 25th-degree polynomial in
26 unknowns that has the following property: if we select the values it
yields for nonnegative integer values of the unknowns such that the val-
ues themselves are positive, then their set coincides with the set of prime
numbers. Because 26 is equal to the number of letters in the English al-
phabet, the unknowns can be denoted by those letters: a, b, c, . . . , x, y, z.
Then the polynomial has the form
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F (a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p, q, r, s, t, u, v, w, x, y, z) =

= (k + 2)
{
1−

[
wz + h+ j − q

]2
−
[
(gk + 2g + k + 1)(h + j) + h

]2
−
[
2n+ p+ q + z − e

]2
−
[
16(k + 1)2(k + 2)(n+ 1)2 + 1− f2

]2
−
[
e3(t+ 2)(a+ 1)2 + 1− o2

]2
−
[
(a2 − 1)y2 + 1− x2

]2
−
[
16r2y4(a2 − 1) + 1− u2

]2
−
[(
a+ u2(u2 − a2)− 1

)
(n+ 4dy)2 + 1− (x− cu)2

]2
−
[
n+ l + v − y

]2
−
[
(a− 1)l2 + 1−m2

]2
−
[
ai+ k + 1− l − i

]2
−
[
p+ l(a− n− 1) + b(2an+ 2a− n2 − 2n− 2)−m2

]
−
[
q + y(a− p− 1) + s(2ap+ 2a− p2 − 2p− 2)− x

]2
−
[
z + pl(a− p) + t(2ap− p2 − 1)− pm

]2}
.

This polynomial is written here only to make the reader’s eyes pop. The
number of variables in it is very large. It can be proved that it also
yields negative values −m, where m is not prime. Therefore, it does not
give us a representation of the sequence of prime numbers.

Long efforts inclined the majority of mathematicians to the conviction
that more or less simple formulas describing the sequence of prime num-
bers do not exist. “Explicit formulas” describing prime numbers exist,
but they use objects about which we know less than about prime num-
bers. The mathematicians’ attention therefore focused on characteristics
of prime numbers “collectively” and not “individually.” We clarify this
posing of the question in the next section.

Problems:

1. Prove that number of prime numbers of the form 3s + 2 is infinite.
2. Prove that number of prime numbers of the form 4s + 3 is infinite.
3. Prove that any two numbers 22

n

+ 1 and 22
m

+ 1, where n �= m, are relatively
prime. From this, once more deduce the infiniteness of the number of prime
numbers. Hint: Suppose that p is a common divisor of two such numbers and
find the remainder from dividing 22

n

and 22
m

by p.
4. Let f(x) be a polynomial with integer coefficients. Prove that among the prime
divisors of its values f(1), f(2), . . . , there exist an infinite number of different
ones. (If the problem is not solved quickly, solve it first for first-degree polyno-
mials f(x), then second-degree.)

5. Let pn denote the nth prime in ascending order. Prove that pn+1 < pnn + 1.

6. In the notation in Problem 5, prove that pn < 22
n

. Deduce the close inequality
pn+1 ≤ 22

n

+ 1 from the result of Problem 3.
7. In the notation in Problem 5, prove that pn+1 < p1p2 · · · pn.
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12. Euler’s Proof That the Number of Prime
Numbers is Infinite

We give yet another proof, belonging to Euler, of the infiniteness of the
number of prime numbers, which elucidates certain general properties
of this sequence.

We begin with the “prehistory,” that is, with certain simple facts that
were known before Euler began to study the question of prime numbers.
The matter concerns the magnitude of the sums

1, 1 +
1

2
, 1 +

1

2
+

1

3
, . . . , 1 +

1

2
+ · · · +

1

n
, . . . .

In the notation in Sec. 6, these are the sums (Sa)n, where a is the
sequence of inverse natural numbers 1, 1/2, 1/3, . . . . Because the sums
of the mth power of the natural numbers from 1 to n is denoted by
Sm(n) in our notation (see formula (29) in Chap. 2), our sums here are
naturally denoted by S−1(n).

We come upon a concept here that we meet often in what follows. We
therefore discuss it in more detail. It generally relates to properties of an
infinite sequence of positive numbers s1, s2, . . . , sn, . . . (for us, it arose
as the sequence of sums of another sequence, but this is not important
now). One type of sequence is called an bounded sequence. This means
that there exists a single number C for the whole sequence such that
sn < C for all n = 1, 2, 3, . . . . If the sequence does not have this property,
then it is said to be unbounded. This means that no number C has that
property, that is, for any number C, an index n can be found such that
sn ≥ C. Finally, it can happen that for any number C, an index n can
be found such that all sm ≥ C for all m = n, n+ 1, . . . . In other words,
the number sn becomes however large we want for sufficiently large n. In
this case, the sequence is said to increase without limit. For example, the
sequence 1, 1, 1, 2, 1, 3, . . . , in which the odd positions contain 1 and the
even positions contain the sequence of natural numbers, is unbounded
but does not increase without limit, because we can still find the number
1 no matter how far out we go.

If a sequence a = a1, a2, . . . , an, . . . of positive numbers is given and
s = Sa, then sn+1 > sn (because sn+1 = sn + an+1, an+1 > 0), and,
more generally, sm > sn for all m > n. Therefore, such a sequence
increases without limit if it is not bounded. For example, if all ai = 1,
then sn = n, and the sequence s1, s2, . . . is unbounded. But it might be
bounded in other cases. An example is illustrated in Fig. 21, where we
first divide the segment from 0 to 1 in half and set a1 = 1/2, then divide
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0 1

s1 s2 s3 s4

0 1

a4 a3 a2 a1

Fig. 21

the segment from 0 to 1/2 in half and set a2 = 1/4, and so on. Thus,
an = 1/2n. The result of adding these numbers is shown in Fig. 21: we
can see that their sums sn always stay inside our segment because s2 is
the middle of the segment from s1 to 1, s3 is the middle of the segment
from s2 to 1, and so on. That is, sn < 1. This is easily verified by
calculating. If an = 1/2n, then

(Sa)n =
1

2
+

1

4
+ · · · +

1

2n
=

1

2

(
1 +

1

2
+ · · ·+

1

2n

)
,

and by formula (12) in Chap. 1,

(Sa)n =
1

2

1/2n − 1

1/2 − 1
= 1−

1

2n
.

It follows that (Sa)n < 1 for any n.
We show that the first case holds for the sequence 1, 1/2, 1/3, . . . .

Although the terms of the sequence decrease, they do not decrease suf-
ficiently rapidly, and their sum (i.e., S−1(n)) increases without limit.

Lemma 8. For sufficiently large n, the sum S−1(n) is greater than
any fixed number given in advance.

Let the number k be given. We show that for some n (and this means
for all indices following it also), S−1(n) > k. We take n such that n = 2m

for some m. We subdivide the sum

S−1(n) = 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)

+ · · ·+

(
1

2m−1 + 1
+ · · · +

1

2m

)
into subtotals enclosed in parentheses as shown in the formula. Each set
of parentheses encloses a sum of the general form

1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+

1

2k
,
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and there are m sets of parentheses. Within each set of parentheses,
we replace each term with the least term, that is, the last. Because
the number of terms in each set of parentheses is equal to 2k − 2k−1 =
2k−1, we find that the sum in the kth set of parentheses is greater than
2k−1/2k = 1/2. As a result, we obtain S−1(n) > 1+m/2. This inequality
holds for any n if n = 2m. It remains for us to set 1 +m/2 = k, that is,
m = 2k − 1. Then we take n = 22k−1; it follows that S−1(n) > k. �

We now turn to Euler’s proof. His idea is connected with the method
for calculating the sums of powers of divisors of a natural number de-
scribed in Sec. 3 (see formula (13) in Chap. 1). The sum of the kth
powers of all divisors (including 1 and n) of the natural number n is
denoted by σk(n). According to formula (13) in Chap. 1,

σk(n) =
p
k(α1+1)−1
1

pk1 − 1

p
k(α2+1)−1
2

pk2 − 1
· · ·

p
k(αr+1)−1
r

pkr − 1
(2)

for the number n with the canonical decomposition n = pα11 · · · p
αr
r . For-

mula (2) was already known from the time of antiquity, but it was tacitly
assumed that k is a positive number in it. It finally fell into Euler’s cir-
cle of interests, and he posed the question “what if k is an integer, but
negative.” The answer, of course, is that there is no difference; the de-
duction of formula (2) is perfectly formal and works equally for negative
just as for positive numbers k. In particular, it holds for k = −1. Re-
taining the previous notation, we write the sum of the (−1)th powers
(i.e., the inverse values) of the divisors of a given number n as σ−1(n).
Formula (2) then yields

σ−1(n) =
1− 1/pα1+11

1− 1/p1
· · ·

1− 1/pαr+1r

1− 1/pr

(we change the order of the terms in the numerator and denominator
of each fraction). Hence (because all expressions in the numerators are
less than 1),

σ−1(n) <
1

(1− 1/p1)(1 − 1/p2) · · · (1− 1/pr)
. (3)

We now replace n with n! in this formula (p1, . . . , pr are now the prime
divisors of n!, that is, simply speaking, all the prime numbers not ex-
ceeding n). Among the divisors of n!, we must certainly have 1, 2, . . . , n.
We must therefore find the terms 1, 1/2, 1/3, . . . , 1/n included in the
sum σ−1(n!), and the sum of these terms is equal to S−1(n). According
to Lemma 8, for sufficiently large n, the sum S−1(n) is already greater
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than any fixed number k given in advance. Because the other terms in
σ−1(n!) are also positive, this assertion is still more applicable to the
full sum. If the number of prime numbers were finite and if p1, . . . , pr
were the complete list of them, then we would have

1

(1− 1/p1)(1− 1/p2) · · · (1− 1/pr)
> k,

where k is any number. This, of course, is a contradiction. �
In giving this proof, it is valuable that the proposition that the num-

ber of prime numbers is finite not only leads to a contradiction but also
yields a certain quantitative characteristic of the sequence of prime num-
bers. Namely, rephrasing the result obtained, we can now state that if
p1, p2, . . . , pn, . . . is the infinite sequence of all prime numbers, then the
expression

1

(1− 1/p1)(1 − 1/p2) · · · (1− 1/pr)

for a sufficiently large n becomes greater than any number given in
advance. Finally, this is equivalent to the fact that the denominator of
this fraction for sufficiently large n becomes less than any number given
in advance. We have proved Theorem 25.

Theorem 25. If p1, p2, . . . , pn, . . . is the sequence of all prime num-
bers, then the product (1− 1/p1)(1− 1/p2) · · · (1− 1/pn) for sufficiently
large n becomes less than any positive number given in advance.

This is a first approximation to our goal. We now try to give the
result obtained a more customary form.

Theorem 26. If p1, p2, . . . , pn, . . . is the sequence of all prime num-
bers, then the sequence of sums 1/p1+1/p2+· · ·+1/pn increases without
limit.

The deduction of Theorem 26 from Theorem 25 is purely formal.
It does not depend on p1, p2, . . . , pn, . . . being the sequence of prime
numbers; it could be any sequence of natural numbers for which the
conclusion in Theorem 25 holds.

Lemma 9. The inequality

1−
1

n
≥

1

41/n
(4)

holds for any natural number n > 1.
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Because both sides of inequality (4) are positive, we raise them to the
power n and obtain the equivalent inequality(

1−
1

n

)n
≥

1

4
, (5)

which we prove. Expanding the left-hand side of inequality (5) in accor-
dance with the binomial formula, we obtain(

1−
1

n

)n
= 1− n

1

n
+

n(n− 1)

2!

1

n2
−

−
n(n− 1)(n− 2)

3!

1

n3
+ · · ·+ (−1)n

1

nn
. (6)

The absolute value of the terms in the right-hand side of equality (6)
form the sequence Ckn/n

k. We examined such a sequence of numbers in
connection with the Bernoulli scheme in Sec. 10 (formula (7) in Chap. 3).
More precisely, if we set p = 1/(n+1) and q = 1−1/(n+1) = n/(n+1) in
those formulas, then we obtain p+ q = 1 and pkqn−k = (n+ 1)−nnn−k,
that is, the numbers we obtain differ from those in formula (6) only
in the factor

(
n/(n + 1)

)n
that is common to all. In our case, the

expression (n + 1)p − 1 is equal to zero. We proved in Sec. 10 that if
k > (n + 1)p − 1 (if k > 0 in our case), then the (k+1)th term is less
than the kth. This means that all numbers in the sequence Ckn/n

k for
k = 1, 2, . . . , n decrease monotonically. (We here refer to Chap. 3 to
show how the questions we consider are connected with each other. It
would be easy to write the ratio of the (k+1)th term to the kth term
directly and verify that it is less than one.)

We see that the first two terms in the right-hand side of formula (6)
cancel. The second two terms (after a reduction that you can easily
perform) yield 1/3 − 1/(3n2). This number is not less than 1/4 for
n ≥ 2 (verify this!). And the remaining terms group into pairs in which
the first term is positive and the second term is negative. But as we saw,
the absolute value of the second term in each pair is less than the first.
Therefore, each pair yields a positive contribution to sum (6). If n is odd,
then the number of terms in the right-hand side of formula (6) is even (it
is equal to n+ 1), and the sum exactly subdivides into (n+ 1)/2 pairs.
And if n is even, then one positive term 1/nn remains after pairing the
terms. In either case, the right-hand side thus consists of a term that
is not less than 1/4 plus some additional positive terms. This proves
inequality (5) and consequently proves the lemma. �

Theorem 26 is now almost obvious. For any pi, we have
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1−
1

pi
≥

1

41/pi

according to the lemma. Multiplying these inequalities for i = 1, . . . , n,
we obtain(

1−
1

p1

)(
1−

1

p2

)
· · ·

(
1−

1

pn

)
≥

1

41/p1+1/p2+···+1/pn
.

If the sum 1/p1 + · · · + 1/pn did not exceed a certain value k for all n,
then it would follow that(

1−
1

p1

)(
1−

1

p2

)
· · ·

(
1−

1

pn

)
≥

1

4k
.

This contradicts Theorem 25. �
According to Theorem 26, the sum 1/p1 + 1/p2 + · · · + 1/pn will be

greater than any previously specified number C if we take all prime
numbers less than a certain number N whose choice depends on the
number C. However, calculations show that the sequence of sums 1/p1+
1/p2 + · · ·+ 1/pn grows exceptionally slowly, that is, N must be chosen
very large for the sum to be greater than even a fairly small number
C. For example, the first term yields the value 1/2. The sum of three
terms, corresponding to the prime numbers 2, 3, and 5, is already equal
to 31/30, that is, already greater than 1. But the sum first becomes
greater than 2 only when we add the values 1/p for all prime numbers
not exceeding 277. However, for N = 10000, that is, when we include
1/p for all prime numbers p < 10 000, we obtain a value less than 3.
For N = 107 (that is, ten million), this sum is still less than 3, and
for the enormous value N = 1018 (a million trillion), it is less than 4.
Nevertheless, Theorem 26 confirms that the sum becomes greater than
any, even extremely large, given number C, but then the numberN must
be chosen to be simply humongous! This is a curious example showing
that numerical experiments can suggest a totally wrong answer—and
the situation is obviously the same with a physical experiment.

In connection with Theorem 26, we come upon a new type of question.
If N is a subset of a finite set S, then we can say how much less than S N

is by comparing the numbers of their elements, for example, calculating
the ratio n(N)/n(S). But now we have two infinite subsets: the set of
natural numbers and the set of prime numbers contained within it. How
to compare them? Theorem 26 offers one possibility of comparison, not
very simple at first glance. It can be applied to any sequence of natural
numbers a = a1, a2, . . . , an, . . . . According to Lemma 8, the sums of the
inverse values for the sequence of all natural numbers (that is, the sums
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S−1(n)) increase without limit. We can consider a sequence a “densely”
distributed among the natural numbers if the same property is preserved
for it, that is, the sums

1

a1
,

1

a1
+

1

a2
, . . . ,

1

a1
+

1

a2
+ · · · +

1

an
, . . .

increase without limit. This means that sufficiently many natural num-
bers are retained in the sequence a for the sums of the inverses of its
terms to be not much less than the sums S−1(n) of the inverses of all
natural numbers. But if the sums of the inverse values of a sequence a

remain bounded, then we can consider it “sparsely” distributed in the
ranks of the natural numbers. Theorem 26 confirms that the sequence
of prime numbers is “dense.” The most extreme “sparse” case is where
the sequence a consists of only a finite number of terms.

But there do exist intermediate cases. For example, the sequence of
squares: 1, 4, 9, . . . , n2, . . . . The corresponding sums 1+1/4+1/9+ · · ·+
1/n2 are naturally denoted by S−2(n). We prove that it is bounded,
irrespective of n. For this, we use the same approach used to prove
Lemma 8. Let m be such that 2m ≥ n. Then S−2(n) ≤ S−2(2

m). We
subdivide the sum S−2(2

m) = 1 + 1/22 + 1/32 + · · ·+ 1/22m into parts:

(1) +

(
1

22

)
+

(
1

32
+

1

42

)
+ · · · +

(
1

(2m−1 + 1)2
+ · · · +

1

22m

)
.

Each part
1

(2k−1 + 1)2
+ · · ·+

1

22k

again contains 2k−1 terms, and the first term here is the largest. There-
fore, each such part does not exceed 2k−1/(2k−1+1)2 < 2k−1/(2k−1)2 =
1/2k−1. Hence,

S−2(2
m) ≤ 1+1+

1

2
+

1

22
+· · ·+

1

2m−1
= 1+

1− 1/2m

1− 1/2
≤ 1+

1

1− 1/2
= 3,

that is, S−2(n) does not exceed 3.
Theorem 26 thus shows that the prime numbers, for example, are

more densely distributed among the natural numbers than the squares.

Problems:

1. Prove that for any k > 1 and all natural numbers n, the sums S−k(n) = 1/1
k +

1/2k + · · ·+ 1/nk are bounded.
2. Let the sequence a be an arithmetic progression: a0 = p, a1 = p + q, a2 =

p+ 2q, . . . , an = p+ nq, . . . for some natural numbers p and q. Prove that the
sums 1/a1, 1/a1+1/a2, . . . , 1/a1+1/a2+ · · ·+1/an, . . . increase without limit.
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3. Let the sequence a be a geometric progression: a0 = c, a1 = cq, a2 = cq2, . . . ,
an = cqn, . . . , where c and q are some natural numbers. Is it “dense” or “sparse”
in the sequence of natural numbers?

4. Let p1, . . . , pn, . . . be the sequence of all prime numbers. Prove that the expres-
sion

1(
1−

1

p21

)(
1−

1

p22

)
· · ·

(
1−

1

p2n

)

is bounded for all n.

13. Distribution of Prime Numbers

In this section, we again attempt to estimate how much the sequence
of prime numbers differs from the entire sequence of natural numbers.
For this, we replace the more elaborate method of comparing “dense”
and “sparse” sequences, which arose by itself from Euler’s proof in the
preceding section, with a more naive method that first comes to mind.
Namely, we try to answer the naive question “what portion of the natural
numbers consists of prime numbers” by determining how many prime
numbers there are that are less than 10, how many less than 100, how
many less than 1000, and so on. For any natural number n, the number
of prime numbers not exceeding n is denoted by π(n): π(1) = 0, π(2) =
1, π(4) = 2, . . . . What can we say about the ratio π(n)/n when n

increases without limit?
We first consider what a table can tell us. Any assertion or ques-

tion about natural numbers can be checked for all natural numbers not
exceeding a certain limit N . Such a situation plays a role in number
theory (the study of the properties of natural numbers) that is played
by the possibility of an actual experiment in physics. In particular, we
can calculate the value of π(n) for n = 10k, k = 1, 2, . . . , 10. We obtain
the table on the next page.

We see that the ratio n/π(n) constantly increases, and this means that
π(n)/n constantly decreases. That is, the portion of natural numbers
that are prime numbers comes closer and closer to zero as n increases.
According to the table, we can say that “prime numbers comprise a
zero portion of all natural numbers.” Euler thus formulated it, although
his considerations did not include a complete proof. We formulate this
assertion precisely and then prove it.

Theorem 27. For sufficiently large n, the ratio π(n)/n is less than
any positive number given in advance.
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n π(n)
n

π(n)

10 4 2.5
100 25 4.0

1 000 168 6.0
10 000 1 229 8.1

100 000 9 592 10.4
1 000 000 78 498 12.7

10 000 000 664 579 15.0
100 000 000 5 761 455 17.4

1 000 000 000 50 847 534 19.7
10 000 000 000 455 059 512 22.0

To prove the theorem, we must somehow estimate the value of the
expression π(n). For actual calculation of its value, we begin with the
prime number 2 and cross out all other numbers divisible by 2 and not
exceeding n. We then take the first remaining number—in this case,
3—and cross out all other numbers divisible by 3 and not exceeding
n. We repeat this process until all numbers not exceeding n have been
crossed out or used. The numbers not crossed out (2, 3, and so on) are
all the prime numbers not exceeding n. This approach was already used
in antiquity and is called the sieve of Eratosthenes.

We apply this approach to our problem. Suppose we have already
found r prime numbers: p1, p2, . . . , pr. Then the next prime numbers
not exceeding n are contained among the numbers not exceeding n that
are “not crossed out,” that is, among those numbers m ≤ n that are
not divisible by one of the numbers p1, p2, . . . , pr. But we investigated
the number of numbers not exceeding n and not divisible by one of
the prime numbers p1, p2, . . . , pr in Chap. 3—it is given by formula (25)
in Sec. 9. The expression in that formula can be replaced with the
simpler expression n(1−1/p1) · · · (1−1/pn), as was proved there, and the
resulting error does not exceed 2r (formula (28) in Chap. 3). Therefore,
the number s of numbers m ≤ n not divisible by one of the prime
numbers p1, p2, . . . , pr satisfies the inequality

s ≤ n

(
1−

1

p1

)
· · ·

(
1−

1

pr

)
+ 2r. (7)

All the π(n) prime numbers not exceeding n are included either among
the r prime numbers p1, p2, . . . , pr or among the s numbers covered by
inequality (7). Hence, π(n) ≤ s+ r, and this means that
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π(n) ≤ n

(
1−

1

p1

)
· · ·

(
1−

1

pr

)
+ 2r + r. (8)

That inequality (8) contains the product (1− 1/p1) · · · (1 − 1/pr) is re-
markable, and Theorem 25 already gives us information about its mag-
nitude.

We can now turn directly to the proof of Theorem 27. Let an arbi-
trarily small positive number ε be given. We must find a number N such
that π(n)/n < ε for all n > N . In inequality (8), we replace r with the
larger value 2r (see Problem 6 in Sec. 2) to obtain the simpler inequality

π(n) ≤ n

(
1−

1

p1

)
· · ·

(
1−

1

pr

)
+ 2r+1. (9)

There are two terms in the right-hand side of inequality (9), and we
choose N such that each term does not exceed εn/2 for n ≥ N . It
then follows from inequality (9) that π(n) < εn and hence π(n)/n <

ε. But we recall that the number r has so far been arbitrary in our
considerations. We first choose r such that the first term does not exceed
εn/2 and then choose N such that the second term does not exceed εn/2.
The first choice is possible by virtue of Theorem 25. It states that for
sufficiently large r, the product (1− 1/p1) · · · (1− 1/pr) is less than any
positive number given in advance. We can take ε/2 for such a positive
number. Then the first term in inequality (9) does not exceed εn/2.
The matter is even simpler for the second term. Now, we have already
chosen r. We choose N such that 2r+1 < εN/2. For this, we must choose
N > 2r+2/ε. Then 2r+1 < εN/2 ≤ εn/2 for any n ≥ N . Theorem 27 is
proved. �

We note that if we take an arithmetic progression am+b, even with a
very large difference a, that is, appearing very rarely, then the number
of terms in this progression not exceeding n coincides with the number
of integers m for which am ≤ n−b, that is,

[
(n−b)/a

]
. In Sec. 9, we saw

that
[
(n− b)/a

]
differs from (n − b)/a by not more than 1. Therefore,

the number of terms in the progression not exceeding n is not less than
(n− b)/a− 1. Its ratio to n is not less than

1

n

(
n− b

a
− 1

)
=

1

a
−

1

n

b

a
−

1

n
.

As n increases, this number approaches 1/a and does not become ar-
bitrarily small. Therefore, Theorem 27 would not be true if we took
any arithmetic progression for the sequence. This shows that the prime
numbers are distributed more sparsely than any arithmetic progression.
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Problems:

1. Let pn denote the nth prime number. Prove that for any arbitrarily large positive
number C, the inequality pn > Cn holds for sufficiently large n. Hint: Use the
fact that π(pn) = n.

2. Consider the natural numbers with the property that their representation in
the decimal system does not contain a specified digit (for instance, 0). Let
q1, q2, . . . , qn, . . . be these numbers written in ascending order, and let π1(n)
denote the number of such numbers not exceeding n. Prove that for sufficiently
large n, the ratio π1(n)/n is less than any positive number given in advance.
Prove that the sums

1

q1
,

1

q1
+
1

q2
, . . . ,

1

q1
+ · · ·+

1

qn
, . . .

are bounded. Hint: Do not try to copy the proof of Theorem 27. Subdivide
the sum into parts with the denominator ranging from 10k to 10k+1. Find the
number of numbers qi in such an interval. The answer depends on the digit
chosen for exclusion: r = 0 or r �= 0.

Supplement: The Chebyshev Inequality for π(n)

We place this material in a supplement first for a formal reason: we
must use logarithms here, and the rest of the text does not assume
familiarity with them. We recall that the logarithm of a number x to
the base a is a number y such that

ay = x.

This is written as
y = loga x.

Always in what follows, we assume that a > 1, and we consider posi-
tive numbers x. The basic properties of logarithms follow directly from
the definition:

loga(xy) = loga x+ loga y, loga c
n = n loga c, loga a = 1.

We have loga x > 0 if and only if x > 1. The logarithm function is
monotonic, that is, loga x ≤ loga y if and only if x ≤ y.

If the base of the logarithm is not shown here, then we assume that
it is 2: log x means log2 x.

The second reason for segregating the following considerations in a
supplement consists in the following. In the other parts of the book, the
logic of the arguments is clear, why we go along namely that path (so
I hope, at least). We here encounter a case, not rare in mathematical
research, where some new thought seems to fall out the blue sky, as it
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were, and even the author is often unable to explain where it came from.
About such situations, Euler said, “It sometimes seems to me that my
pencil is smarter than I.” Understandably, it is the result of uncounted
trials, much cogitation, and the working of the subconscious mind.

We continue to study the question of the ratio π(n)/n as n increases
without limit. We once more examine the table on page 129, which
shows the values of π(n) for n = 10k, k = 1, 2, . . . , 10. We focus on the
last column of the table, which gives the ratios n/π(n) for certain values
of n. We notice that when passing from n = 10k to n = 10k+1, that is,
when dropping down one line in the table, the values n/π(n) change by
almost the same amount. Namely, the first number is equal to 2.5; the
second differs from it by 1.5; and the differences are equal to 2, 2.1, 2.3,
2.3, 2.3, 2.4, 2.3, and 2.3. We see that all these numbers are very close
to one value: 2.3. Not trying to solve the riddle of why this value for
the time being, we propose that even further beyond the bounds of our
table, the number n/π(n) when passing from n = 10k to n = 10k+1 will
increase by an amount even closer to a certain fixed constant α. This
would mean that n/π(n) for n = 10k would be very close to αk. But if
n = 10k, then k = log10 n by definition. Then it is natural to propose
that for other values of n, the value of n/π(n) is very close to α log10 n.
This means that π(n) is very close to cn/ log10 n, where c = α−1.

Many mathematicians were fascinated by the secret of the distribution
of prime numbers and tried to discover it based on tables. In particular,
Gauss was interested in this question almost in childhood. His interest in
mathematics evidently began with a childhood interest in numbers and
constructing tables. In general, great mathematicians were virtuosos of
calculation and were able to perform enormous calculations, sometimes
mentally. (Euler even struggled with insomnia in this way!) When
Gauss was 14 years old, he constructed a table of prime numbers (true,
less comprehensive than our table on page 129) and came to the same
proposition we just formulated. It was later considered by many math-
ematicians. But the first result was proved more than half a century
later, by Chebyshev in 1850.

Theorem 28. There exist constants c and C such that for all n > 1

c
n

log n
≤ π(n) ≤ C

n

log n
. (10)

We present a proof that is a result of simplications of Chebyshev’s
original proof subsequently given by many mathematicians. The prin-
cipal idea of the proof is unchanged. Before turning to the proof, we
make a few remarks concerning the formulation of the theorem. What is
the base of the logarithm considered here? Answer: any base. It follows
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immediately from the definition of a logarithm that logb x = logb a loga x
(we need only replace a with blogb a in the relation aloga x = x, and we
obtain blogb a loga x = x, which shows that logb x = logb a loga x). There-
fore, if inequality (10) is proved for loga n, then it also holds for logb n
with c replaced with c/ logb a and C replaced with C/ logb a.

Inequality (10) indeed expresses the thought suggested by the table
that π(n) is “close” to cn/ log n for some constant c. Why are there two
constants in the theorem (c and C) when there was only one constant c
in our hypothetical considerations? Is it impossible to replace the two
constants in the theorem with one in some sense? We consider these
questions after proving the theorem.

The secret key to the proof of the Chebyshev theorem is properties
of the binomial coefficients Ckn: primarily the fact that they are integers
and some properties of their divisibility by prime numbers. We list the
properties that we need in the proof.

First is the assertion (proved in Sec. 6) that the sum of all binomial
coefficients Ckn for k = 0, 1, . . . , n is equal to 2n. Because the sum of
positive terms is not less than each term, we obtain

Ckn ≤ 2n. (11)

Large binomial coefficients will be especially useful for us. We saw in
Chap. 2 that for even n = 2m, the coeeficient Cm2m is larger than the
others. For odd n = 2m + 1, there are two equal coefficients Cm2m+1
and Cm+12m+1 that are larger than the others. We pay special attention to
them. In particular,

Cn2n =
2n(2n− 1) · · · (n+ 1)

1 · 2 · · · n
. (12)

If we group the factors of the numerator with the factors of the denom-
inator in reverse order, then we obtain

Cn2n =
2n

n

2n− 1

n− 1
· · ·

n+ 1

1
.

Obviously, each factor in this formula is not less than 2; therefore,

Cn2n ≥ 2n. (13)

We now consider properties of the divisibility of binomial coefficients
by prime numbers. In expression (12), the factors in the numerator are
obviously divisible by all prime numbers not exceeding 2n and greater
than n. Such prime numbers cannot divide the factors of the denomina-
tor. Therefore, they do not cancel and are divisors of Cn2n. The number
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of prime numbers distributed between 2n and n is equal to π(2n)−π(n),
and all of them are greater than n. Therefore,

Cn2n ≥ nπ(2n)−π(n). (14)

An analogous assertion holds, of course, for the “middle” coefficients
Cn2n+1 = Cn+12n+1 with an odd lower index. Writing them in the form

Cn2n+1 =
(2n+ 1) · · · (n+ 2)

1 · 2 · · · n
,

we see that π(2n+1)−π(n+1) prime numbers not exceeding 2n+1 and
greater than n + 1 divide the numerator and cannot be canceled with
the denominator. Because they are greater than n+ 1, we have

Cn2n+1 > (n+ 1)π(2n+1)−π(n+1). (15)

A remarkable connection between binomial coefficients and prime
numbers is already revealed in inequalities (14) and (15).

Finally, we introduce the last property of binomial coefficients needed
for the proof. Although it is entirely simple, in contrast to the previous
properties, it is not entirely obvious.

Lemma 10. For any binomial coefficient Ckn, the power of a prime
number dividing it does not exceed n.

We stress that we are speaking not of the degree but of the power
itself. That is, we assert that if pr divides Ckn, where p is a prime
number, then pr ≤ n. For example, C29 = 9 · 4 is divisible by 9 and by
4, and both numbers do not exceed 9.

We write the binomial coefficient in the form

Ckn =
n(n− 1) · · · (n− k + 1)

1 · 2 · · · k
. (16)

The prime number p we are considering must divide the numerator of
this fraction. We letm denote the factor containing the maximum power
of p (or one of them if there are several) and let pr denote that maximum
power. It is obvious that n ≥ m ≥ n−k+1 for k ≥ 1. We set n−m = a

and m− (n− k+ 1) = b. Then a+ b = k− 1, and Ckn can be written as

Ckn =
(m+ a)(m+ a− 1) · · · (m+ 1)m(m− 1) · · · (m− b)

k!
. (17)

The factor m is now fundamental for us, and we write the product in
the numerator with a factors to the left of it and b factors to the right.
We transform the denominator analogously:
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k! = (1 · 2 · · · a)(a+ 1) · · · (a+ b)(a+ b+ 1).

Because (a + 1)(a + 2) · · · (a + b) as a product of b consecutive natural
numbers is divisible by b!, this product can be written as a!b!l, where l

is an integer.
We can now write Ckn in the convenient form

Ckn =
m+ a

a

m+ a− 1

a− 1
· · ·

m+ 1

1

m− 1

1
· · ·

m− b

b

m

l
, (18)

where we move the factor m/l to the end.
We note that in each of the factors (m + i)/i or (m − j)/j, where

i = 1, . . . , a and j = 1, . . . , b, the power of p in the numerator completely
cancels with the denominator; therefore, after canceling the common
factor in the numerator and denominator, only the denominator can be
divisible by p (although it can also be relatively prime to p). Indeed, we
consider the fraction (m + i)/i as an example (the fraction (m − j)/j
is treated in exactly the same way). Let i by exactly divided by ps,
that is, i = psu, where u is relatively prime to p. If s < r, then m + i

is also exactly divisible by ps: setting m = prv (we recall that m is
divisible by pr), we obtain m + i = ps(u + pr−sv). And if s ≥ r, then
in exactly the same way, m + i is divisible by pr. Recalling the choice
of m (it is divisible by the largest power of p among all numbers from n

to n− k + 1, and this power is pr), we conclude that a larger power of
p than the rth power cannot divide m+ i. Therefore, pr cancels in the
numerator and denominator, and a number remains in the numerator
that is not divisible by p. As a result, we see that of all the factors in
expression (18), p can be retained only in the numerator of the last one,
that is, in m. But the power of p dividing m is pr, and this means that
product (18) cannot be divided by a larger power of p than pr. Because
pr divides m and m ≤ n, we have pr ≤ n. The lemma is proved. �

We consider what this tells us about the canonical decomposition
Ckn = pα11 · · · p

αm
m . First, the prime numbers p1, . . . , pm can appear only

from the numerator of expression (16), which means that all pi ≤ n and
the number of them m is therefore less than π(n). According to the
lemma, pαii ≤ n for i = 1, . . . ,m. As a result, we obtain

Ckn ≤ nπ(n). (19)

We can now begin the actual proof of the Chebyshev theorem, that is,
inequality (10). We note that it is sufficient for us to prove the satisfac-
tion of the inequality just for all n beginning from some fixed boundary
n0. For all n < n0, satisfaction of the inequality can be achieved by
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decreasing the constant c and increasing the constant C. If you want to
obtain the explicit value of these constants most economically, then you
can verify that inequality (10) is satisfied for n ≤ n0 by constructing a
table of prime numbers (in our considerations here, n0 turns out to be
not very large).

We begin by combining inequalities (13) and (20) for the binomial
coefficient Cn2n. We obtain 2n ≤ Cn2n ≤ (2n)π(2n) and consequently

2n ≤ (2n)π(2n). (20)

Taking the logarithm to the base 2 of both sides (we recall that we write
log2 x = log x) and using the monotonicity of logarithms, we obtain
n ≤ π(2n) log 2n, which means

π(2n) ≥
n

log 2n
=

1

2

2n

log 2n
,

that is, the left inequality in (10) with the constant c = 1/2. But so far,
it is proved only for even values n. For odd values of the form 2n + 1,
we use the monotonicity of logarithms and the function π(n). It follows
that

π(2n+ 1) log(2n+ 1) ≥ π(2n) log 2n.

Substituting the inequality obtained for π(2n) in this expression, we see
that

π(2n+ 1) ≥
n

log 2n

log 2n

log(2n+ 1)
=

n

log(2n+ 1)
.

Because always n ≥ (2n+ 1)/3, it follows that

π(2n+ 1) ≥
1

3

2n+ 1

log(2n+ 1)
.

The left inequality in (10) is thus proved for odd n and c = 1/3. This
means that the left inequality in (10) holds for all n and c = 1/3.

We turn to the proof of the right inequality in (10). We prove it by
induction on n. First let n be even. Instead of n, we write 2n. We
combine inequality (11) for the coefficient Cn2n (that is, we replace n

with 2n and k with n) with inequality (14). As a result, we obtain

nπ(2n)−π(n) ≤ 22n.

Passing to logarithms, we have

π(2n)− π(n) ≤
2n

log n
,

π(2n) ≤ π(n) +
2n

log n
.

(21)
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In accordance with the induction assumption, we can consider the in-
equality we need already proved: π(n) ≤ Cn/ log n with a constant C,
whose value we later determine more precisely. Substituting in formu-
la (21), we obtain

π(2n) ≤ C
n

logn
+

2n

logn
=

(C + 2)n

log n
.

But we wanted to prove the inequality π(2n) ≤ C · 2n/ log 2n. For this,
it remains to select a constant C such that the inequality

(C + 2)n

log n
≤

2Cn

log 2n
(22)

is satisfied for all n beginning from some point.
This is already a simple school exercise, not connected with the prop-

erties of prime numbers. We cancel n on both sides of the inequality,
and noting that log 2n = log 2+ log n = 1+ log n, we let x denote logn.
Then inequality (22) becomes

C + 2

x
≤

2C

1 + x
.

Multiplying both sides by x(1 + x) (because x > 0) and combining like
terms, we write it in the form

(C − 2)x ≥ C + 2.

Obviously, we must choose C such that C − 2 > 0. Taking C = 3,
for example, we find that the inequality is satisfied for C = 3 and all
x ≥ 5. Because x denotes logn, this means that the needed inequality
is satisfied for n ≥ 25 = 32, 2n ≥ 64.

It only remains to consider the case with an odd value having the form
2n + 1. For this, we combine inequality (11) (replacing n with 2n + 1
and k with n) with inequality (15). We obtain the inequality

22n+1 ≥ (n+ 1)π(2n+1)−π(n+1).

Taking the logarithms, we obtain the inequality

2n+ 1 ≥
(
π(2n+ 1)− π(n+ 1)

)
log(n+ 1).

From this, we use the induction assumption about π(n+1) as previously
to obtain

π(2n+ 1) ≤ C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
.
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The needed inequality π(2n+1) ≤ C(2n+1)/ log(2n+1) will be proved
if we verify that

C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
≤ C

2n+ 1

log(2n+ 1)
(23)

for an appropriate choice of the constant C and for all n beginning
from some point. This is again a school exercise, although slightly more
complicated than the previous one. To make it easier to compare the
two sides, we replace 2n + 1 in the left-hand side with the larger value
2(n+ 1):

C
n+ 1

log(n+ 1)
+

2n+ 1

log(n+ 1)
≤

(C + 2)(n+ 1)

log(n+ 1)
. (24)

To transform the right-hand side, we note that 2n+1 ≥ (3/2)(n+1)
for n ≥ 1 and that log(2n+1) ≤ log(2n+2) = 1+log(n+1). Therefore,

2n+ 1

log(2n+ 1)
≥

(3/2)(n + 1)

1 + log(n+ 1)
. (25)

Combining inequalities (24) and (25), we see that inequality (23) will be
proved if we prove that

(C + 2)(n+ 1)

log(n+ 1)
≤

(3/2)C(n + 1)

1 + log(n+ 1)
.

We cancel n + 1 in both sides and set log(n + 1) = x. We obtain the
inequality

C + 2

x
≤

(3/2)C

1 + x
,

which is solved in exactly the same way as the previously analyzed case.
We must multiply both sides by x(1 + x) and combine like terms. We
obtain the inequality (C + 2)x+ C + 2 ≤ (3/2)Cx or(

1

2
C − 2

)
x ≥ C + 2.

Setting C = 6, we see that the inequality holds for x ≥ 8, that is,
n+1 ≥ 28, 2n+1 ≥ 511. The right inequality in (10) is thus proved for
the constant C = 6 and all values of n beginning with 511. The theorem
is proved. �

We note that Theorem 27 is a very simple consequence of the theo-
rem just proved. Indeed, if π(n) ≤ Cn/ logn, then π(n)/n ≤ C/ log n.
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And because logarithms change monotonically and increase without lim-
it (log 2k = k), π(n)/n becomes less than any positive number. On the
other hand, the proof of the Chebyshev theorem is based on completely
different ideas than those used to prove Theorem 27.

In conclusion, we return once more to the propositions that can be
made from examining the table on page 129. From it, we guessed that
n/π(n) is close to C log10 n with some definite constant C: the first two
digits in the decimal representation of C−1 have the form 2.3. Hence,
we can conclude that π(n) is close to C−1n/ log10 n. This expression can
be given the simpler form n/ loge n if a new logarithm base e is chosen
such that C log10 n = loge n. But as was mentioned previously, always
logb x = logb a loga x, and our relation is therefore satisfied if C = loge 10.
Substituting the value x = b in the relation logb x = logb a loga x, we
obtain logb a loga b = 1, and the relation C = loge 10 that interests us
can be rewritten as C−1 = log10 e.

Fourteen-year-old Gauss certainly paid attention to these relations
and guessed what the number e is for which log10 e is close to (2.3)−1.
Such a number was well known by that time specifically because loga-
rithms to such a base have many useful properties (e is its conventionally
accepted symbol). Logarithms to the base e are called natural logarithms
and are denoted by ln: loge x = lnx. Here, we are compelled to assume
that the reader is familiar with natural logarithms.

The natural proposition following from studying the table is thus that
π(n) becomes ever closer to n/ lnn. The proved Chebyshev theorem (if
natural logarithms are used) confirms the existence of two constants c

and C such that cn/ lnn ≤ π(n) ≤ Cn/ lnn beginning from some n.
That hypothetical sharpening, which can be obtained from the table,
asserts that the inequality cn/ lnn ≤ π(n) ≤ Cn/ lnn is satisfied begin-
ning with some n whatever constants c < 1 and C > 1 we might choose.
This assertion is called the asymptotic law of the distribution of prime
numbers. It was stated by Gauss and other mathematicians at the end
of the 18th and beginning of the 19th century. After the proof of the
Chebyshev theorem in 1850, the matter seemed to be only determining
the constants c and C more precisely and bringing them closer together.
However, the asymptotic law of the distribution of prime numbers was
proved only half a century later, at the very end of the 19th century, on
the basis of completely new ideas proposed by Riemann.

Problems:

1. Prove that pn > an log n for some constant a > 0. Hint: Use the fact that
π(pn) = n.

2. Prove that log n <
√
n beginning from some point (determine it). Hint: Reduce

the problem to proving that the inequality 2x > x2 holds for real x beginning
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from some point. Let n ≤ x ≤ n+1, where n is an integer. Reduce it to proving
the inequality 2n ≥ (n+ 1)2 and use induction.

3. Prove that pn < Cn2 for some constant C. Hint: Apply the inequality in the
preceding problem, and use the fact that n = π(pn).

4. Prove that pn < An log n for some constant A.
5. Prove that the degree a of the highest power pa that divides n! is equal to

[
n

p

]
+

[
n

p2

]
+ · · ·+

[
n

pk

]
.

Here, [r/s] denotes the integer quotient of r divided by s, the sum includes all
k for which pk ≤ n, p denotes an arbitrary prime number, and n denotes an
arbitrary natural number.

6. Using the result of Problem 5, give a different proof of Lemma 10 in the supple-
ment.

7. Prove that if p1, . . . , pr are prime numbers included between m and 2m+1, then
their product does not exceed 22m.

8. Determine the constants c and C for which inequality (10) is satisfied for all n.
9. Try to find the largest possible c and the smallest possible C for which inequali-
ty (10) is satisfied for all n beginning from some point. (Chebyshev himself used
a very ingenious sharpening of his arguments to prove that it is possible to set
c = 0.694 and C = 1.594.)


