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0.1 Processes with Fast Markov Modulations

0.1.1 Model Formulation

We consider here a two-scale system with the “slow” dynamics given by a one-
dimensional conditionally Gaussian processXε with the drift modulated by a
“fast” finite-state Markov process θε. When θε is in the state i the processXε

behaves like the Wiener process with drift λi. If θε is stationary, it is natural to
expect that the process Xε approximates in distribution the Wiener process
with drift obtained by averaging of λi with weights proportional to the time
spent by θε in corresponding states.
Combining techniques based on the bounds for the total variation distance

in terms of the Hellinger processes with methods of singular perturbations
we prove a strong limit theorem for the slow variable even in the case of
nonhomogeneous Markov modulations and establish a bound for the rate of
convergence in the total variation norm. Notice that the model specification
does not involve singular perturbed stochastic equations but they appear
immediately when we look for an intrinsic description of the slow variable
dynamics.
Let (Ω,G,G = (Gt), P ) be a stochastic basis with a one-dimensional

Wiener process w and a nonhomogeneous Markov process θε = (θεt )t≤T tak-
ing values in the finite set {1, 2, . . . ,K}. The small parameter ε takes values
in ]0, 1].
We shall consider the process Xε given by

dXε
t = λ

�Jε
t dt+ dwt, Xε

0 = 0, (0.1.1)

where λ := (λ1, . . . , λK)� is a fixed (column) vector and Jε = (J1,ε, . . . , JK,ε)�

is a vector with components J i,ε := I{θε=i}. In other words, (0.1.1) is just a
convenient abbreviation for

Xε
t =

∫ t

0

K∑
i=1

λiI{θε
s=i} ds+ wt. (0.1.2)

Let pε := (p1,ε, . . . , pK,ε)� := EJε
0 be the initial distribution of θ

ε. Notice
that in the theory of Markov processes it is convenient to represent distri-
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butions as row vectors; to make notations of our model consistent with the
further development we deviate here from this tradition.
We assume that the transition intensity matrices of θε have the form

Qε
t := ε−1Qt where Q = (Qt) is a continuous matrix function with the

following properties:
(1) for any t ∈ [0, T ] there is a unique probability distribution

πt = (π1
t , . . . , π

K
t )

�

satisfying the equation
Q�

tπt = 0, (0.1.3)

i.e. zero is a simple eigenvalue and π�
t is the corresponding left eigenvector of

the matrix Qt;
(2) π = (πt) is a continuous function;
(3) there exists κ > 0 such that for any t ∈ [0, T ]

Reλ(Qt) < −2κ (0.1.4)

where λ(Qt) runs the set of nonzero eigenvalues of Qt.
The above hypotheses need some comments. We recall that a transition

intensity matrix is a matrix with nonnegative elements except those in the
diagonal and the sum of the elements in each row is equal to zero (hence,
zero is always an eigenvalue). It is a well-known fact (see, e.g., [17]) that
all other eigenvalues of such a matrix have strictly negative real parts and
there are left eigenvectors which are probability distributions spanning the
eigenspace corresponding to the zero eigenvalue. Thus, the assumption (1) is,
actually, the requirement that zero is of multiplicity one while the properties
(2) and (3) follow from (1) and continuity of Qt. In a probabilistic language
the property (1) means that for any fixed t the matrix Qt can be viewed as
the transition intensity matrix of an irreducible homogeneous Markov process
and πt is its invariant distribution. In particular, if Q does not depend on t,
the process θε is ergodic.

0.1.2 Asymptotic Behavior of Distributions

Let P ε
T be the distribution of X

ε in the space C[0, T ] and RT be the distri-
bution of the process X = (Xt)t≤T given by

dXt = λ�πtdt+ dwt, X0 = 0, (0.1.5)

i.e. of the Wiener process with drift λ�πt.

Theorem 0.1.1 (a) lim
ε→0

Var (P ε
T −RT ) = 0.

(b) If Q = (Qt) is a continuously differentiable function then
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Var (P ε
T −RT ) ≤ C(1 + δλ)δλε1/2 (0.1.6)

where δλ := maxλi − minλi and C is a constant depending only on Q and
T .

(c) If Q does not depend on t and π = pε there is a simpler bound

Var (P ε
T −RT ) ≤ Cδ2λε1/2. (0.1.7)

Proof. Let Fε be the filtration generated by Xε and null sets and let Ĵε be
the Fε-optional projection of Jε, i.e. Fε-optional process such that

Ĵε
τ = E(J

ε
τ |Fε

τ )

for any Fε-stopping time τ .
Put

w̃t := Xε
t −

∫ t

0

λ�Ĵε
sds = wt +

∫ t

0

λ�Jε
sds−

∫ t

0

λ�Ĵε
sds. (0.1.8)

Then w̃ is an Fε-adapted Wiener process (this simple observation is known
as the innovation theorem) and Xε can be represented as a diffusion-type
process with

dXε
t = λ

�Ĵε
t dt+ dw̃t, Xε

0 = 0, (0.1.9)

(see, e.g., [66], Th. 7.12). According to [66], Th. 9.1, Ĵε satisfies the filtering
equation

dĴε
t = ε

−1Q�
t Ĵ

ε
t dt+ φ(Ĵ

ε
t )dw̃t, Ĵ0 = pε, (0.1.10)

where
φ(Ĵε

t ) := diag λ Ĵ
ε
t − Ĵε

t (Ĵ
ε
t λ) (0.1.11)

and diag λ is the diagonal matrix with λii := λi.
Let |.|1 be the absolute norm of a matrix (or a vector), that is, the sum

of the absolute values of its components. It is easily seen that

|φ(Ĵε
t )|1 =

K∑
i=1

J i,ε
t |λi − Jε

t λ| ≤
K∑

i=1

J i,ε
t δλ = δλ

and hence
|φ(Ĵε

t )|2 ≤ |φ(Ĵε
t )|21 ≤ δ2λ. (0.1.12)

Applying for the pair of measures P ε and R the upper bound in (A.3.3)
we get that

Var (P ε
T −RT ) ≤ 4

√
Ehε

T (0.1.13)

where the Hellinger process hε is given by

hε
t :=

1
8

∫ t

0

(λ�(Ĵε
s − πs))2ds. (0.1.14)
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For any a = (a1, . . . , aK) with
∑
ai = 0 we have

aλ =
∑
aiI{ai≥0}λi+

∑
aiI{ai<0}λi ≤ |a|/2(maxλi −minλi) = (1/2)|a|δλ.

Thus,
|λ�(Ĵε

s − πs)| ≤ (1/2)δλ|Ĵε
s − πs|1 ≤ (1/2)δλ|Ĵε

s − πs|
and we get by virtue of (0.1.14) that

Ehε
t ≤ 1

32
δ2λE

∫ t

0

|Ĵε
s − πs|2 ds. (0.1.15)

Put zε := Ĵε − π. It follows from (0.1.3) and (0.1.10) that

zε
t = z

ε
0 + ε

−1

∫ t

0

Q�
sz

ε
s ds+

∫ t

0

φ(Ĵε
s ) dw̃s − (πt − π0). (0.1.16)

Let us consider the subspace L := {x ∈ RK : x�1 = 0} where

1 := (1, . . . , 1)�.

Clearly, L is an invariant subspace for every operator Qt and the restriction
At of Qt to L has the same eigenvalues as Qt except zero. Thus, we can view
(0.1.16) as the operator equation in RK−1. If the function Qt is continuous
differentiable, (0.1.16) can be written as

dzε
t = ε

−1Atz
ε
t dt+ φ(Ĵ

ε
t )dw̃t + π̇tdt, zε

0 = p
ε − π0, (0.1.17)

and this we consider as a matrix equation in RK−1 (by choosing an orthonor-
mal basis in L). By the Cauchy formula we have

zε
t = Φ

ε(t, 0)zε
0 +

∫ t

0

Φε(t, s)φ(Ĵε
s ) dw̃s +

∫ t

0

Φε(t, s)π̇s ds (0.1.18)

where Φε(t, s) is the fundamental (or transition) matrix corresponding to
ε−1A, i.e. the solution of the equation

∂Φε(t, s)
∂t

= ε−1AtΦ
ε(t, s)dt, Φε(s, s) = I.

Using the exponential inequality

|Φε(t, s)| ≤ ce−κ(t−s)/ε (0.1.19)

(see Proposition A.2.3) and taking into account (0.1.12) we easily obtain the
following bounds:
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|Φε(t, 0)zε
0|2 ≤ c2|pε − π0|e−2κt/ε, (0.1.20)

E

∣∣∣∣
∫ t

0

Φε(t, s)φ(Ĵε
s ) dw̃s

∣∣∣∣
2

= E
∫ t

0

|Φε(t, s)|2|φ(Ĵε
s )|2 ds ≤ δ2λ

c2ε

2κ
, (0.1.21)

∣∣∣∣
∫ t

0

π̇sΦ
ε(t, s) ds

∣∣∣∣
2

≤ ‖π̇‖2
T

(∫ t

0

|Φε(t, s)| ds
)2

≤ ‖π̇‖2
T

c2ε2

κ2
(0.1.22)

where ‖π̇‖T := supt≤T |π̇t|.
From (0.1.18) and (0.1.20)–(0.1.22) we get that for some constant C∫ T

0

E|zε
s |2 ds ≤ C2(1 + δ2λ)ε (0.1.23)

and, in the homogeneous case with pε = π,∫ T

0

E|zε
s |2 ds ≤ C2δ2λε. (0.1.24)

Now the assertion (b) is evident in view of (0.1.13) and (0.1.15).
In the case of the assertion (a) where the function Q (and hence π) is

supposed to be only continuous the equation (0.1.16) cannot be written as
(0.1.17) and the usual Cauchy formula is not applicable. Nevertheless, we can
represent z as follows:

zε
t = Φ

ε(t, 0)zε
0 +

∫ t

0

Φε(t, s)φ(Ĵε
s ) dw̃s + rεt (0.1.25)

where

rεt := Φ
ε(t, 0)(πt − π0) +

∫ t

0

∂Φε(t, s)
∂s

(πt − πs) ds. (0.1.26)

Arguing as above we infer from (0.1.24) the bound∫ T

0

E|zε
s |2 ds ≤ C(ε+ ‖rε‖T )

and it remains to show that ‖rε‖T → 0 as ε → 0. But taking into account
the relation

∂Φε(t, s)
∂s

= −ε−1AsΦ
ε(t, s), Φε(t, t) = I,

(which follows from the semigroup property) and using the exponential in-
equality we obtain that

|rεt | ≤ ce−κt/ε|πt − π0|+ cε−1‖A‖T

∫ t

0

e−κ(t−s)/ε|πt − πs| ds.

The uniform convergence of rε to zero follows now from Lemma A.2.4. ✷
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Conclusion. The bounds of Theorem 0.1.1 hold by virtue of properties of the
equation (0.1.16) which is a singularly perturbed stochastic equation
because it can be written as

εdzε
t = Atz

ε
t dt+ σ(ε)G(z

ε)dw̃t + σ(ε)btdt (0.1.27)

with σ(ε) = o(1) as ε → 0. It is important to note that the matrix function
At admits the exponential bound (0.1.19). Another essential feature is that
the parameter σ(ε) := ε at the diffusion coefficient tends to zero faster than√
ε providing the convergence of trajectories to zero. Singularly perturbed

stochastic equations of this type and, especially, more general systems in-
volving also “slow” variables are the objects of principal interest of this book.
Some techniques developed in the sequel will be used in Section 6.2 where we
present a more deep analysis of our model and show that the bounds (0.1.6)
and (0.1.7) give the correct order of convergence in ε by calculating the limit
of ε−1/2Var (P ε

T −RT ).

0.2 The Liénard Oscillator Under Random Force

In this section we discuss briefly an important example of a two-scale stochas-
tic system, namely, the Liénard oscillator driven by random force. This classic
model arises in a mathematical description of the motion of a small particle in
a viscous media. On an intuitive level, it can be described by the second-order
equation

εẍ+ ẋ− h(x) = ẇ (0.2.1)

where ẇ is a white noise and ε is a small positive parameter. The standard
reduction transforms it to the system of two equations of the first order

ẋ = v, (0.2.2)
εv̇ = −v + h(x) + ẇ. (0.2.3)

The rigorous formulation can be given by the following system of stochastic
equations in the usual Ito sense where we exhibit explicitly the dependence
on ε:

dxε
t = v

ε
t dt, xε

0 = x
o, (0.2.4)

εdvε
t = −vε

tdt+ h(t, x
ε
t )dt+ dwt, vε

0 = v
o. (0.2.5)

Here w is a Wiener process and the initial condition can be random.
It is worth noting that this system is quite specific: the equation for the

position xε does not contain a diffusion term, while the equation for the
velocity vε does not involve a small parameter at diffusion. For h = 0 the
process vε is simply the Ornstein–Uhlenbeck process. Therefore, in general,
we cannot expect the convergence of vε. Nevertheless, it is easy to prove that
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under mild assumptions on h the position process xε converges uniformly on
any compact interval in probability to the process x (in the literature referred
to as the Smoluchowski–Kramers approximation) satisfying the stochastic
equation

dxt = h(t, xt)dt+ dwt, x0 = xo. (0.2.6)

We give here a bit more precise result of this kind assuming that the
processes xε, vε, and w are n-dimensional.

Proposition 0.2.1 Let T ∈ R+, p ∈ [1,∞[. Assume that xo, vo ∈ Lp(Ω)
and h satisfies on [0, T ] × Rn the global Lipschitz condition and the linear
growth condition. Then there exists a constant C (depending on p and T )
such that

lim
ε→0

(E||xε − x||pT )1/p ≤ C
√
ε| ln ε| (0.2.7)

where ||.||T is the norm in C[0, T ].

Proof. Put ∆ε
t := xε

t − xt. Using the Cauchy formula we “resolve” (0.2.5)
and obtain the representation

vs = e−s/εvo +
1
ε

∫ s

0

e−(s−u)/εh(u, xε
u)du+

1
ε

∫ s

0

e−(s−u)/εdwu. (0.2.8)

Substituting it into (0.2.4), we get from (0.2.4) and (0.2.6) that

∆ε
t = ε(1− e−t/ε)vo + ζε

t + ξ
ε
t + η

ε
t (0.2.9)

where

ζε
t :=

∫ t

0

(
1
ε

∫ s

0

e−(s−u)/ε(h(u, xε
u)− h(u, xu))du

)
ds,

ξεt :=
∫ t

0

(
1
ε

∫ s

0

e−(s−u)/εh(u, xu)du
)
ds−

∫ t

0

h(s, xs)ds,

ηε
t :=

1
ε

∫ t

0

(∫ s

0

e−(s−u)/εdwu

)
ds− wt.

By virtue of the Fubini theorems

ζε
t =

∫ t

0

(1− e−(t−u)/ε)(h(u, xε
u)− h(u, xu))du, (0.2.10)

ξεt =
∫ t

0

e−(t−u)/εh(u, xu)du, (0.2.11)

ηε
t = −

∫ t

0

e−(t−u)/εdwu. (0.2.12)

By assumption, there is a constant L such that
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|h(t, y1)− h(t, y2)| ≤ L|y1 − y2| ∀t ∈ [0, T ], y1, y2 ∈ Rn,

and
|h(t, y)| ≤ L(1 + |y|) ∀t ∈ [0, T ], y ∈ Rn.

Using this we deduce from (0.2.9)–(0.2.11) that for every t ≤ T

||∆ε||t ≤ ε|vo|+ L
∫ t

0

||∆ε||udu+ Lε(1 + ||x||T ) + ||ηε||T

and, hence, by the Gronwall–Bellman lemma

||∆ε||T ≤ (
ε|vo|+ εL(1 + ||x||T ) + ||ηε||T

)
eLT . (0.2.13)

This bound implies the result. Indeed, we assume that the initial conditions
are random variables belonging to Lp(Ω). Due to the linear growth and global
Lipschitz conditions ||x||T ∈ Lp(Ω) for all finite p. It remains to notice that
for some constant Cp we have

(E||ηε||pT )1/p ∼ Cp

√
ε| ln ε|, ε→ 0, (0.2.14)

see Chapter 1. ✷

Remark. Notice that the equation (0.2.5) for the fast variable does not con-
tain the small parameter at diffusion and, thus, the model looks different from
the basic one considered in this book. However, if we choose for analysis of
(0.2.1) the so-called Liénard coordinates by putting u = εẋ+x, the resulting
system will be

dut = h(xt)dt+ dwt, (0.2.15)
εdxt = (−xt + u)dt, (0.2.16)

with the diffusion coefficient of the fast variable equal to zero. The general
theory of Chapter 4 includes this case if h is Lipschitz.

Comment. It would be more consistent with the modern methodology to
start with the models (0.2.4), (0.2.5) each defined on its own probability space
and indexed (together with its Wiener process) by the parameter ε. The phys-
ically meaningful question is the convergence of the distribution of xε in the
space C[0, T ] to that of x. To do this, there is a powerful method to construct
a realization of processes on a single probability space and prove the conver-
gence of xε to x (as random variables with values in C[0, T ]) in probability.
We start, actually, from the point where this transfer has been done. Does
||xε − x||T converge to zero almost surely? The positive answer, in view of
the bound (0.2.13), seems obvious. But take care: (0.2.13) holds only a.s. and
the exceptional set may depend on ε. In fact, for the process ηε we cannot
ensure even the convergence ||ηε||T to zero a.s. because stochastic integrals
are defined up to P -null sets. To make this question mathematically correct
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(and admitting the positive answer) we should construct a good realization
of the whole family to ensure the continuity of paths ||∆ε||T and ||ηε||T for
ε > 0. For this simple model it is not difficult. For instance, integrating by
parts we get that for every ε > 0

ηε
t = wt − ε−1

∫ t

0

e−(t−s)/εwsds

almost surely for all t. The right-hand side of this formula can be used to
define the appropriate version of ηe.

0.3 Filtering of Nearly Observed Processes

The problem of nonlinear filtering consists in estimating a stochastic process
(a signal) that is not directly observed. A lot of studies are devoted to the
practically important case where the process is nearly observed. This is an
asymptotic setting in which computable asymptotic filters can be easily stud-
ied. The aim of this section is to provide a simple illustrative example where
the singular perturbed stochastic equations appear in a natural way.
Let us consider the model described by two processes x (unobservable

signal) and yε (observations), both, for simplicity, n-dimensional, given by

dxt = ftdt+ σtdw
x, x0 = x0, (0.3.1)

dyε
t = xtdt+ εdwy , yε

0 = y
0, (0.3.2)

where wx and wy are independent Wiener processes in Rn, and f and σ are
continuous processes of corresponding dimensions adapted to the filtration
generated by wx. The parameter ε ∈ ]0, 1] is small; it formalizes the fact that
noises in the signal and observations are of different scales and the signal-to-
noise ratio is large.
A filter is any process adapted with respect to the filtration of yε. Engi-

neers are looking often for filters which approximate x in some sense. Such
filters may not perform so well as but are easier to implement.
Let us consider the filter x̂ε admitting the following representation:

dx̂ε
t = f̂

ε
t dt− ε−1At(dyε

t − x̂ε
tdt), (0.3.3)

where the continuous vector-valued process f̂ε (assumed to be a function
of yε), the continuous function A with values in the set of n × n matrices,
and the initial condition can be viewed as filter parameters. We assume that
there is a constant κ > 0 such that for Reλ(At) < −2κ for all t. For the error
process ∆ε := x̂ε − x we get from (0.3.1)–(0.3.3) the equation

d∆ε
t = ε

−1At∆
ε
tdt+ (f̂

ε
t − ft)dt+Gtdw̃t, ∆ε

0 = x̂
ε
0 − x0, (0.3.4)
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where Gt := (AtA
�
t + σtσ

�
t )

1/2 and

w̃t := −
∫ t

0

G−1
s Asdw

y
s −

∫ t

0

G−1
s σsdw

x
s

is a Wiener process in Rn.
Let Φε(t, s) be the fundamental matrix defined by the linear equation

ε
∂Φε(t, s)
∂t

= AtΦ
ε(t, s), Φε(s, s) = I. (0.3.5)

Using the Cauchy formula we can write the solution of (0.3.4) as

∆ε
t = Φ

ε(t, 0)(x̂ε
0 − x0) +

∫ t

0

Φε(t, s)(f̂ε
s − fs)ds+ ξεt (0.3.6)

where

ξεt :=
∫ t

0

Φε(t, s)Gsdw̃s. (0.3.7)

The process ξεt is the solution of

εdξεt := Atξ
ε
t dt+ εGtdw̃t, ξε0 = 0. (0.3.8)

For us it is important to note that the asymptotic behavior of the approxi-
mate filter is determined by properties of solutions of a singularly perturbed
stochastic equation (with a small parameter at the diffusion term of order ε).
Using the exponential bound for |Φε(t, s)| (see Lemma A.2.2) we obtain

that

|∆ε
t | ≤ Ce−κt/ε|x̂ε

0 − x0|+ C
∫ t

0

e−κ(t−s)/ε|f̂ε
s − fs|ds+ |ξεt |. (0.3.9)

This implies the following less precise but simpler inequality which gives a
clear idea of the filter behavior:

|∆ε
t | ≤ Ce−κt/ε|x̂ε

0 − x0|+ Cεκ−1||f̂ε − f ||t + |ξεt | (0.3.10)

where ||.||t denotes the uniform norm on [0, t].
In the particular case of constant A and σ we have Φε(t, s) = e(t−s)A/ε,

the process ξε is Gaussian, and ε−1/2ξεt converges in distribution as ε→ 0 to
the centered Gaussian vector with covariance matrix

SA =
∫ ∞

0

erA(AA� + σσ�)erA�

dr. (0.3.11)

Assuming, e.g., that |x̂ε
0| is bounded and ε1/2||f̂ε−f ||t converges to zero in

probability as ε→ 0 we infer from (0.3.6) that ε−1/2(x̂ε
t−xt) is asymptotically

Gaussian with zero mean and covariance SA.
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In a more specific situation of scalar processes (n = 1) with the filter
parameter A = −γ > 0 we have SA := (γ2 + σ2)/(2γ). If σ > 0 is known
one can attain the smallest value of asymptotic variance SA = σ by choosing
γ = σ.
In the vector model with a known nondegenerated matrix σ it is reason-

able to choose A = −(σσ�)1/2 and get the limit covariance SA = (σσ�)1/2. To
justify such a choice we notice that for any symmetric negative definite ma-
trix B commuting with σσ� the difference SB − (σσ�)1/2 is positive definite
because, in this case,

SB = −1
2
B−1(B2 + (σσ�)) = (σσ�)1/2 − 1

2
B−1(B + (σσ�)1/2)2 (0.3.12)

and the last term is negative definite.
One can expect that the filter will exhibit a better performance also in a

non-asymptotic sense (i.e. for realistic values of the signal-to-noise ratio) if
f̂ε

t tracks ft. We return to this model in Sections 6.3 and 6.4.

0.4 Stochastic Approximation

The stochastic approximation theory, initially developed for discrete-time
models but now treated more and more often in a very general semimartingale
setting, deals with the problems of estimating a root of an unknown function
F on the basis of observations of a controlled random process θ = θγ . We
consider here a rather particular continuous-time white-noise model which,
nevertheless, covers several approximation procedures studied in the litera-
ture. Our aim is to show that, being rescaled, it comes into the framework
of the theory of singularly perturbed stochastic differential equations which
allows us to analyze stochastic approximation procedures in a systematic and
transparent way and get asymptotic expansions of estimators.
Let θ = θγ be given on [t0,∞[ by the SDE

dθt = γtF (θt)dt+ γtdwt, θt0 = θ0, (0.4.1)

where w is a Wiener process in Rn, the function F : Rn → Rn is contin-
uously differentiable, the “control” γ = (γt)t>0 is a nonnegative continuous
deterministic function, and the initial condition is posed at some point t0 > 0.
We assume that F satisfies the following hypotheses:

H.0.4.1 There is a unique root θ∗ of the equation

F (θ) = 0

and
(θ − θ∗)�F (θ) < 0 ∀ θ ∈ Rn \ {θ∗}. (0.4.2)
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H.0.4.2 The real parts of all eigenvalues of the matrix

A := F ′(θ∗)

are strictly negative: Reλ(A) < −2κ < 0.
Resembling the standard problems of optimal control, the model has spe-

cific features: it is not completely specified since F is unknown (but some
extra information on F may be available) and the class of controls is quite
restrictive. For these reasons, the traditional paradigm of stochastic approx-
imation does not formulate the optimal control problem by stipulating in a
precise way an objective function but uses instead the ideology and concepts
of mathematical statistics. There is a vast literature devoted to analysis, for
particular stochastic procedures γ, of the asymptotic behavior as T → ∞ of
θT or, more recently, of the average

θ̂T :=
1

T − t1

∫ T

t1

θsds, (0.4.3)

as statistical estimators of θ∗. For instance, the continuous-time version of
the classic Robbins–Monro procedure claims that θT is a strongly consistent
estimator of θ∗. Its precise formulation is as follows.

Proposition 0.4.1 Assume that H.0.4.1 holds and∫ ∞

t0

γu du =∞,
∫ ∞

t0

γ2
u du <∞. (0.4.4)

Then
lim

t→∞ θt = θ∗ a.s. and in L4. (0.4.5)

Proof. Put Ut := θt − θ∗. Then
dUt = F (θt)γtdt+ γtdwt, θt0 = θ0,

and, by the Ito formula,

|Ut|2 = |Ut0 |2 + 2
∫ t

t0

U�
sF (θs)γsds+ 2Mt +

∫ t

t0

γ2
sds (0.4.6)

where

Mt :=
∫ t

t0

U�
s γsdws.

Notice that U�
sF (θs) ≤ 0 by (0.4.2) and hence the first integral in the right-

hand side of (0.4.6) defines a decreasing process. Localizing the stochastic
integralM and taking the expectation, we get, with help of the Fatou lemma,
that
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E|Ut|2 ≤ E|Ut0 |2 +
∫ ∞

t0

γ2
sds.

It follows that

E〈M〉∞ =
∫ ∞

t0

E|Us|2γ2
sds ≤

(
E|Ut0 |2 +

∫ ∞

t0

γ2
sds

) ∫ ∞

t0

γ2
sds <∞

by the second relation in (0.4.4). The square integrable martingale M
bounded in L2 converges a.s. to a finite limit. Thus, the processes on the
right-hand side of (0.4.6) converge at infinity to finite limits (a.s.). The con-
tinuity of F and the relation H.0.4.2 imply that for every r ∈ ]0, 1[ there is
a constant cr > 0 such that

(θ − θ∗)F (θ) ≤ −cr
when r ≤ |θ − θ∗| ≤ 1/r. The divergence of the integral of γ implies that
on the set {lim |Ut| > 0} the first integral in (0.4.6) diverges to −∞. Hence,
Ut converges to zero a.s. At last, ||M ||t0,∞ ∈ L2 and the process |U |2, being
bounded by a square integrable random variable, converges to zero in L2. ✷

We consider here two stochastic approximation procedures and study
asymptotic expansions of the estimator (0.4.3). The first procedure, depend-
ing on a parameter ρ ∈ ]1/2, 1[, corresponds to the choice

γt := t−ρ (0.4.7)

and t1 = t1(T ) = Tr1(T ) with

r1(T ) :=
1

ln(γTT )
=

1
(1− ρ) lnT . (0.4.8)

The second one, with the characteristics marked by the superscript o, is given
by

γo
t := e

ln t
t ln3 t

(0.4.9)

with
ro1(T ) :=

1
ln2 T

(0.4.10)

where lnn denotes the n-times-iterated logarithm.

Theorem 0.4.2 Suppose that F ∈ C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the procedure given by (0.4.7), (0.4.8) we have

θ̂T = θ∗ + ξT
1
T 1/2

+ h
1

1− ρ
1
T ρ

+RT
1
T ρ

(0.4.11)

where h ∈ Rn, ξT is a centered Gaussian random vector with covariance
matrix converging to (A�A)−1, and RT → 0 in probability as T → ∞.
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Theorem 0.4.3 Suppose that F ∈ C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the procedure given by (0.4.9), (0.4.10) we have

θ̂oT = θ∗ + ξ
o
T

1
T 1/2

+ he
lnT
T

+Ro
T

lnT
T

(0.4.12)

where h ∈ Rn, ξoT is a centered Gaussian random vector with covariance
matrix converging to (A�A)−1, and Ro

T → 0 in probability as T → ∞.

Remark 1. The vector h in the above theorems depends only on F . In
the scalar case we have h = (1/4)A−2F ′′(θ∗). The explicit expression in the
general case can be found in Section 2.4.

Remark 2. An inspection of (0.4.11) makes plausible the idea that the third
term on its right-hand side is responsible for the bias of the estimator. Obvi-
ously, for sufficiently large T

max
ρ∈]1/2,1[

(1− ρ)T ρ =
1
e

T

lnT
.

Thus, the minimum over ρ ∈ ]1/2, 1[ of the third term on the right-hand side
of (0.4.11) coincides with the corresponding terms in (0.4.12). This observa-
tion explains our interest in the second procedure. Indeed, under a certain
auxiliary condition E|RT | and E|Ro

T | converge to zero, see Theorem 0.4.6
below.

We prove the above results in Chapter 2 providing here only the reduction
to the framework of singular perturbations.
First, let us consider the procedure with the function γt defined by (0.4.7).

A simple rescaling leads to a problem on the interval with a fixed right ex-
tremity. Indeed, put θ̃r := θrT . Then, by virtue of (0.4.1), on the interval
[t0/T, 1]

dθ̃r = γTTF (θ̃r)γrdr + γTT
1/2γrdw̃r , θ̃t0/T = θ0, (0.4.13)

where w̃r := T−1/2wrT is a Wiener process. Obviously,

θ̂T =
1

1− r1

∫ 1

r1

θ̃rdr.

Now we reparameterize the problem by introducing instead of the large pa-
rameter T the small parameter

ε :=
1
γTT

=
1

T 1−ρ
. (0.4.14)

Then
T = T (ε) =

1
ε1/(1−ρ)

. (0.4.15)
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Setting yε
r := θ̃rT (ε), we rewrite (0.4.13) as the singularly perturbed stochastic

equation

εdyε
r = F (y

ε
r)γrdr + βε1/2γrdw̃r , yt0/T (ε) = θ0, (0.4.16)

where
β := √

γT (ε) = ε(1/2)ρ/(1−ρ). (0.4.17)

With this new parameterization θ̂T becomes equal to

ŷε
1 :=

1
1− rε1

∫ 1

rε
1

yε
rdr (0.4.18)

where
rε1 = − 1

ln ε
. (0.4.19)

Theorem 0.4.3 has the following equivalent form:

Theorem 0.4.4 Suppose that F ∈ C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the model (0.4.14)–(0.4.19)

ŷε
1 = θ∗ + ξ

εε1/2β + h
1

1− ρβ
2 +Rεβ2 (0.4.20)

where h ∈ Rn, ξε is a centered Gaussian random vector with covariance
matrix converging to (A�A)−1, and Rε → 0 in probability as ε→ 0.

One can notice that the small parameters are involved in (0.4.16) in a very
simple, multiplicative, way. The only particular feature is that the starting
time depends on ε and the function γ has a singularity at zero which is
integrable. The coefficient 1/(1 − ρ) in (0.4.20) is equal to the integral of γ
over [rε1, 1] up to o(1).

Similarly, the rescaling of the model with γo defined in (0.4.9) results in
the stochastic equation on [t0/T, 1]

dθ̃r = γo
rTTF (θ̃r)dr + γ

o
rTT

1/2dw̃r , θ̃t0/T = θ0. (0.4.21)

For sufficiently large T we define the function ε = ε(T ) by putting

ε :=
1
γo

TT
=
1
e

ln3 T

lnT
. (0.4.22)

Let T (ε) be the inverse of the above function. We rewrite (0.4.21) as

εdyε
r = F (y

ε
r)γ

ε
rdr + βε

1/2γε
rdw̃r, yt0/T (ε) = θ0, (0.4.23)

where
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γε
r :=

1
r

ln(rT (ε))
lnT (ε)

ln3 T (ε)
ln3(rT (ε))

(0.4.24)

and
β :=

√
γo

T (ε) =
1√
εT (ε)

. (0.4.25)

Again θ̂T is equal to

ŷε
1 :=

1
1− rε1

∫ 1

rε
1

yε
rdr (0.4.26)

but now
rε1 =

1
ln2 T (ε)

. (0.4.27)

The corresponding equivalent version of Theorem 0.4.3 is

Theorem 0.4.5 Suppose that F ∈ C3 and H.0.4.1, H.0.4.2 are fulfilled.
Then for the model (0.4.22)–(0.4.27)

ŷε
1 = θ∗ + ξ

o,εε1/2β + hβ2 ln3 T (ε) +Ro,εβ2 ln3 T (ε) (0.4.28)

where h ∈ Rn, ξo,ε is a centered Gaussian random vector with covariance
matrix converging to (A�A)−1, and Ro,ε → 0 in probability as ε→ 0.

Of course, more systematic notations require the superscript o at T (ε), β,
etc, but we skip it for obvious reasons.
Remark. Clearly, the equations (0.4.16) and (0.4.23) are of the same struc-
ture. However, in the latter case the function γε

r has a singularity at zero
like 1/r which is not integrable and which yields in the term ln3 T (ε) after
integrating over the interval [rε1, 1].
To get a convergence of residual terms we add to our assumption the

following hypothesis on a “global” behavior of F :

H.0.4.3 There exists a bounded matrix-valued function A(y1, y2) such
that for all y1, y2

F (y1)− F (y2) = A(y1, y2)(y1 − y2) (0.4.29)

and
z�A(y1, y2)z ≤ −κ|z|2 ∀z ∈ Rn (0.4.30)

for some constant κ > 0.

Clearly,H.0.4.3 implies the Lipschitz and linear growth condition. In the
one-dimensional case this hypothesis holds if F ∈ C1 and F ′ ≤ −κ < 0.
Theorem 0.4.6 Suppose that F ∈ C3, the second derivative F ′′ is bounded
and satisfies the Lipschitz condition, and the conditions H.0.4.1–H.0.4.3
are fulfilled. Then E|Rε| = o(1) and E|Ro,ε| = o(1) as ε→ 0.
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As a corollary we obtain, under the assumptions of Theorem 0.4.6, that

Eθ̂T = θ∗ + h
1

1− ρ
1
T ρ

+
1
T ρ
o(1), (0.4.31)

Eθ̂oT = θ∗ + he
lnT
T

+
lnT
T
o(1) (0.4.32)

as T → ∞.


