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Summary. On May 13, 2002, Professor Ladyzhenskaya was awarded the degree of “Doctor
honoris causa” by the University of Bonn. The following is the text of the Laudatio in honor
of Professor Ladyzhenskaya read at this occasion.

1 The Beginning of a Mathematical Career

Olga Alexandrovna Ladyzhenskaya was born on March 7, 1922, in the town of
Kologriv in a family of old Russian nobility. Her father Alexander Ivanovich La-
dyzhenski was teaching mathematics at the local school. He transmitted his passion
for mathematics not only to his students but also to his daughter Olga who from early
childhood showed a strong talent for logical thinking. In 1939 she was admitted to the
Leningrad Teachers’Training College and from 1941 to 1943 she taught mathematics
to the senior classes at Kologriv Secondary School, the same school where her father
had worked. From 1943 to 1947 she then studied mathematics at the University of
Moscow. Among her teachers in Moscow were Kourosh, Stepanov, Petrovsky, and
Gelfand. In 1947 she graduated and was recommended for a postgraduate fellowship.
In the same year she married Andrei Alexevich Kiselev, specialist in the Theory of
Numbers in the city of Leningrad/St. Petersburg, and moved to St. Petersburg where
she became a postgraduate student of St. Petersburg University. Formally her scien-
tific supervisor was Sobolev, but in reality her advisor was Smirnov. She defended her
Ph.D. in the spring of 1949. In the same year already, she became assistant professor
of St. Petersburg University. In the spring of 1953, at Moscow University, she handed
in her thesis for the D. Sc. degree, comparable to the German “Habilitation”. Not
much later, in 1954, she was elected associate professor and in 1956 she became full
professor of St. Petersburg University. At the same time, from 1954 to 1961 she also
held a position as a Leading Scientific Researcher at Steklov Mathematical Institute
(Leningrad branch). Finally, in 1961, she was appointed head of the newly created
Laboratory of Mathematical Physics. Her mathematical successes soon brought her
wide recognition, both in the Soviet Union and abroad.

This is what we can read about Professor Ladyzhenskaya’s youth and the begin-
ning of her mathematical career in the account of A. D. Alexandrov, A. P. Oskolkov,
N. N. Ural’tseva, and L. D. Faddeev [1] on the occasion of her 60th birthday. We
get the impression of an uneventful youth passed in rural tranquility and economic
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security in the family of a state official and a mathematical gift that matured in a
creative free atmosphere.

However, the truth is very far from this, and it could only be told after communist
rule of Russia had ended. Those were difficult days for an intellectual, in particular,
for a descendent of the Russian noble class. In 1937 Professor Ladyzhenskaya’s
father was arrested by Stalin’s men. In fact, as Alexander Solschenizyn recalls in his
epic account of the “Gulag”, Alexander I. Ladyzhenski had been warned by a peasant
that his name was in “their” lists; but he stayed, he would not leave the students who
depended on him; see [31], p. 23-24. In a show trial he was convicted as an “enemy
of the Russian people” and sentenced to death. Olga Alexandrovna Ladyzhenskaya
was lucky enough to be allowed to finish high school - unlike her elder sister who
had to leave the university. In 1939 Olga Alexandrovna applied to enter prestigious
Leningrad University, but as the daughter of a “class enemy” she was not admitted.
When she finally was allowed to enter Moscow University in 1943, it was only
because state policy had changed in the difficult period of wartime. Although she
had completed her second thesis as early as 1951 she was not allowed to defend it
before 1953, after Stalin’s death.

There is only one explanation why in spite of such adversity Olga Alexandrovna
Ladyzhenskaya was able to rise to the top of renowned Steklov Institute and to be-
come the uncontested head of the Leningrad school of Partial Differential Equations,
and this is her work.

2 Work

Professor Ladyzhenskaya has written more than 250 mathematical papers; her work
covers the whole spectrum of partial differential equations, ranging from hyperbolic
equations to differential equations generated by symmetric functions of the eigen-
values of the Hessian, and discussing topics ranging from uniqueness to convergence
of Fourier series or finite-difference approximation of solutions. She developed the
functional analytic treatment of nonlinear stationary problems by Leray-Schauder
degree theory and pioneered the theory of attractors for dissipative equations.

She is author of six monographs, three of which have greatly influenced the
development of the field of partial differential equations throughout the second half
of the last century; in fact, her book on “Linear and quasilinear elliptic equations”
[21], that she wrote jointly with her former student Nina Ural’tseva, was one of the
first mathematical monographs I ever bought. I only regret that I did not buy her book
with Ural’tseva and Solonnikov [20] on parabolic equations at the same time. It has
been reprinted now, but only with a soft cover which may not be entirely appropriate
for a book on “hard” analysis.

In these books, starting from the work of DeGiorgi [6] and Nash [26], she and her
co-authors provide a regularity theory for elliptic and parabolic equations in diver-
gence form under the most general assumptions on the coefficients of the equations
and prove the exact dependence of the regularity of the solution on the regularity of
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the data, thereby giving a complete answer to Hilbert’s 19th problem for a large class
of equations.

With Ural’tseva [22], [23], using the work of Krylov and Safonov [28], she later
extended these results to equations in non-divergence form with bounded measurable
coefficients. Previously, as an important intermediate step towards a full existence and
regularity theory for such problems, in her book [21] she already derived closedness
in L2 for the corresponding elliptic operators in the case of continuous coefficients.
Remarkably, in two dimensions she only needed to assume uniform ellipticity and
boundedness of the coefficients, thus recovering a result of Bernstein [2].

But the problems closest to her heart, I believe, always have been the equations
of hydrodynamics, in particular, the Navier-Stokes equations, to which she has made
deep and lasting contributions, some of which are summarized in her third milestone
monograph on “The mathematical theory of viscous incompressible flow” [13].

I would like to recall some of these achievements here.

3 An Interpolation Inequality and Applications

Right at the beginning, on the second page of Chapter 1 of her book [13] we find the
inequality

∫
R2
|u|4dx ≤ 4

(∫
R2
|u|2dx

)(∫
R2
|∇u|2dx

)
(1)

for any smooth function u : R
2 → R of compact support. The beauty of this

inequality lies in its simplicity, and also the proof, taken from Ladyzhenskaya’s
paper [15] of 1959, is particularly instructive and elegant. We reproduce it here with
minor modifications.

Labelling space coordinates as x = (x1, x2), for any function u of compact
support for i = 1, 2 we obtain

u2(x1, x2) = 2
∫ xi

−∞
u
∂u

∂xi
dxi ≤ 2

∫ ∞

−∞
|u||∇u|dxi.

Hence by Fubini’s theorem and Hölder’s inequality we find
∫

R2
u4(x) dx =

∫ ∞

−∞

∫ ∞

−∞
u4(x1, x2) dx1 dx2

≤ 4
∫ ∞

−∞

∫ ∞

−∞

(∫ ∞

−∞
|u||∇u| dx1

)(∫ ∞

−∞
|u||∇u| dx2

)
dx1 dx2

= 4
(∫ ∞

−∞

∫ ∞

−∞
|u||∇u|) dx1 dx2

)2

= 4
(∫

R2
|u||∇u| dx

)2
≤ 4

(∫
R2
|u|2 dx

)(∫
R2
|∇u|2 dx

)
,
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as claimed. The constant may be improved from 4 to 2; what is important is that the
constant is independent of the size of the support of u.

Inequality (1) also appears as a special case of the interpolation inequalities that
were derived by Gagliardo [9], [10] and Nirenberg [27] in the late 50’s, that is,
around the same time as Ladyzhenskaya. Their motivation was functional analytic
and inspired by the study of linear elliptic equations, while Professor Ladyzhenskaya
arrived at inequality (1) by studying the (nonlinear) Navier Stokes system; see [13],
p. 203.

In fact, the analytic treatment of nonlinear equations often relies on inequalities
like (1). The particular estimate (1) also played a key role in an early paper of mine,
dealing with the heat flow of harmonic maps of surfaces [32]. It turned out that it
was precisely the inequality (1) which was needed to conclude the argument; but I
was not sure if such a “borderline” estimate could be valid. In search of help, in [20]
I first came across a very general statement of interpolation inequalities in Sobolev
spaces. After checking again and again all the values of n, p, q, etc., I could hardly
believe my good fortune that the desired estimate, indeed, should be true. Only when
I later saw the above argument in [13] was I really convinced that I had not made a
mistake.

To see how the estimate (1) may be applied in hydrodynamics we need to take a
look at the Navier-Stokes equations.

4 Navier-Stokes Equations

The mathematical problems in hydrodynamics received special attention recently,
when, in May 2000, the regularity problem for the Navier-Stokes equations was
named as one of the seven millenium prize problems of the Clay Institute. An award
of 1 million US Dollars is promised to whoever is able to show - in one version of this
problem - that for any given smooth initial velocity u0 = (u1

0, u
2
0, u

3
0) : R

3 → R
3,

periodic in each of the spatial variables and of vanishing divergence

divu0 =
3∑
i=1

∂ui0
∂xi

= 0,

there exists a global smooth velocity field u = (u1, u2, u3) : R
3 × [0,∞[→ R

3 and
an associated smooth pressure distribution p : R

3 × [0,∞[→ R, both also periodic
in the space variables, satisfying the Navier-Stokes equations

∂ui

∂t
+ u · ∇ui = ∆ui − ∂p

∂xi
, i = 1, ..., 3, (2)

on R
3 × [0,∞[ together with the divergence condition

divu = 0, (3)

and with initial data
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u = u0 at t = 0. (4)

Note that we have scaled the viscosity parameter ν usually present on the right
of (2) to unity.

Alternatively, the prize will be awarded to whoever presents an example of
smooth, divergence-free initial data u0 such that the problem (2),(3), and (4) does
not admit a smooth solution (u, p) on R

3 × [0,∞[, where one is allowed to add a
smooth forcing term on the right of (2), or for the answer - affirmative or negative
- to the corresponding regularity question in the non-periodic case but with suitable
decay conditions near spatial infinity; see the problem description by Fefferman [7]
for further details.

Professor Ladyzhenskaya probably would not have agreed with this formulation
of the problem. To her, I believe, as to many other people working in the field, rather
than existence and regularity the main problem is existence and uniqueness.

Uniqueness as a central issue already had played a key role in her diploma thesis
and again in her “habilitation” thesis in 1953. As she observed, for each of the
classical initial value problems one can investigate the question of well-posedness
on a whole scale of solution spaces. For the problem of determining the “correct”
solution space the issues of existence and uniqueness are in conflict with one another:
If one broadens the concept of solution by allowing also distribution solutions with
very “bad” regularity properties it may be easy to show existence while it may be
hard - if not impossible - to show uniqueness. Conversely, if one narrows the concept
of solution by allowing only solutions with “good” regularity properties, it may be
easy to prove uniqueness but it may be difficult to obtain the existence of a solution in
the restricted class. The question then becomes whether for some choice of solution
space both requirements can simultaneously be fulfilled.

For the Navier-Stokes system (2) - (4) the corresponding question was posed and
answered in the affirmative - at least in two space dimensions - in the celebrated
work of Kiselev-Ladyzhenskaya [12] from 1957. Estimates for the L4-norm of a
solution play a key role; in fact, uniqueness may be most easily obtained by using
Ladyzhenskaya’s inequality (1), as was later done by Lions-Prodi [25].

For convenience, let us look at the problem on the whole space. Our point of
departure is the classical energy identity for (sufficiently smooth) solutions of (2) -
(4), valid in any space dimension n.

As observed by Leray [24] and Hopf [11], when we multiply equation (2) with
the test function u and take account of condition (3), the nonlinear term and the
pressure term yield a term of divergence type

n∑
i=1

(
u · ∇ui +

∂p

∂xi

)
ui = u · ∇(

1
2
|u|2 + p) = div

(
u(p +

1
2
|u|2)

)

that vanishes after integration. From the remaining terms, upon integrating by parts,
we obtain the identity

1
2
d

dt

∫
Rn

|u|2 dx +
∫

Rn

|∇u|2 dx = 0 .
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After another integration in time there results the energy identity
∫

Rn

|u(t)|2 dx + 2
∫ t

0

∫
Rn

|∇u|2 dx dt =
∫

Rn

|u0|2 dx =: E(u0) (5)

valid for (sufficiently smooth) solutions of (2). By a Galerkin approximation, and
using similar arguments as leading to (5) above, we obtain a distribution solution
(u, p) to (2)-(4) satisfying (5) in a weak sense, that is, with left hand side not exceeding
the quantity E(u0) for any t. This is the class of Hopf solutions to (2)-(4).

Now suppose that n = 2. Let u and v be Hopf solutions on some time interval
[0, T ] for the same data u = v = u0 at t = 0, and set w = v − u. We intend to
show that w = 0, thus establishing existence and uniqueness within the Hopf class
of solutions. (For the following argument we need not worry about the pressure p.)
Taking the difference of equations (2) for v and u and multiplying by w, then similar
to our derivation of (5) above, upon integrating by parts we obtain the identity (in
the distribution sense on [0, T ] and with (a, b) =

∑
i a
ibi for a = (a1, a2), b =

(b1, b2) ∈ R
2 )

1
2
d

dt

∫
R2
|w|2 dx +

∫
R2
|∇w|2 dx = −

∫
R2

(w,w · ∇u) dx.

The remaining terms vanish because u and v, and therefore also w, are divergence-
free. By Hölder’s inequality we can estimate the term on the right

|
∫

R2
(w,w · ∇u) dx| ≤

(∫
R2
|∇u|2 dx

)1/2(∫
R2
|w|4 dx

)1/2
,

which yields the estimate

1
2
d

dt
||w||2L2 + ||∇w||2L2 ≤ |

∫
R2

(w,w · ∇u) dx| ≤ ||w||2L4 ||∇u||L2 . (6)

Observing that we are in n = 2 space dimensions, we may now use (1) to bound

||w||2L4 ≤ 2||w||L2 ||∇w||L2 .

With the familiar estimate 2|ab| ≤ a2 + b2 we proceed to estimate the right hand
side in (6) above

||w||2L4 ||∇u||L2 ≤ 2||w||L2 ||∇w||L2 ||∇u||L2 ≤ ||w||2L2 ||∇u||2L2 + ||∇w||2L2 .

From (6) then we conclude the differential inequality

d

dt
||w||2L2 ≤ 2||w||2L2 ||∇u||2L2 .

Recalling (5), we therefore obtain the uniform bound

||w(t)||2L2 ≤ ||w(0)||2L2 exp
(
2
∫ t

0
||∇u(s)||2L2 ds

)
≤ ||w(0)||2L2 exp(||u0||2L2)
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for any t ≤ T and therefore w = 0, as desired. The above formal argument may be
justified by mollifying the function w in time. Inequality (1) ensures that all integrals
are well-defined.

The solution class originally considered by Kiselev-Ladyzhenskaya was slightly
more narrow, involving also square integrable time and mixed second space-time
derivatives. This illustrates the rich variety of possible choices between the class
of Leray-Hopf solutions on the one extreme and smooth, classical solutions on the
other.

In fact, in two space dimensions, as was shown by Serrin [29], [30], for smooth
initial data u0 all these choices are equivalent as any Hopf solution is smooth and
smooth solutions are easily seen to be unique. The previously made distinction be-
tween the question of regularity and the question of uniqueness thus may seem
artificial.

However, there are parabolic equations with a structure not too much different
from that of the Navier-Stokes equations where this distinction is meaningful. For
example, in my result [32] that I already briefly mentioned in relation to inequality
(1) above, in 1985 I showed the existence of a unique solution to the heat flow of
harmonic maps of surfaces whose energy is monotonically decreasing and which is
regular away from finitely many points in space-time. Many people believed that the
solution would actually be smooth until Chang-Ding-Ye [5] in 1992 gave an example
where the solution indeed blows up from smooth data after a finite time.

It may be instructive to develop this example still a bit further. Freire [8] in 1995
showed that my solution is unique even in the class of distribution solutions with
monotonically decreasing energy. On the other hand, very recently Topping [33] and
Bertsch et al. [3] independently constructed examples where the heat flow admits
infinitely many distinct weak solutions that all satisfy a weak version of the energy
inequality similar to the Hopf solutions that we considered above.

Could something similar be the case for the Navier-Stokes system in three or more
space dimensions? We do not know the answer; the right notion of “solution” remains
a mystery. The class of smooth solutions may be too small. However, since it seems
to be physically impossible to observe, for instance, isolated (“point”) singularities
of a flow, there seems to be no reason to insist that solutions be smooth but in an
average sense.

On the other hand, the (weak) energy inequality alone may not be sufficient to
guarantee uniqueness of weak solutions. In fact, in 1969 Professor Ladyzhenskaya
gave an example showing nonuniqueness within the Hopf class of weak solutions
in 3 space dimensions, however, on a space-time domain QT ⊂ [0, T ] × R

3 which
is singular at the origin [16]. Further energy or entropy constraints, that derive,
for instance, from the second principle of thermodynamics, seem to be needed in
order to distinguish physically realistic weak solutions from non-physical, purely
mathematical ones.

A natural choice for a solution space thus could be the class of “suitable weak
solutions” constructed by Caffarelli-Kohn-Nirenberg [4]. These are Hopf solutions
satisfying, in addition, a local form of the energy inequality which implies a con-



8 M. Struwe

straint similar to the monotonicity of the energy required in Freire’s uniqueness
result for the harmonic map heat flow. Very recently, in joint work with Seregin [19],
Ladyzhenskaya has also contributed to the analysis of this class of solutions.

Professor Ladyzhenskaya considered hydrodynamics not only within the frame
defined by the Navier-Stokes equations, but she has also considered alternative mod-
els to explain the multiple phenomena that we observe in fluid mechanics and she
explored their mathematical properties. Likewise she developed new and mathemat-
ically extremely fruitful ideas about the nature of turbulence, that, in particular, led
her to consider the notion of attractor for infinite dimensional dynamical systems
[17]; see also her monograph [14].

Thus, we see that since the early 1950’s Professor Ladyzhenskaya continues
to work on the forefront of research on hydrodynamics, often providing the initial
stimulus also for the fruitful investigations of others. Her ideas and the questions she
raised remain relevant today, in particular, for the Navier-Stokes system.

5 Ladyzhenskaya and the Steklov Institute

With her impressive mathematical achievements, helped by her cultured and charm-
ing personality, Professor Ladyzhenskaya has attracted a large number of excellent
students to work with her at the Laboratory of Mathematical Physics of Steklov In-
stitute and at Leningrad University, among them L. Faddeev, K. Golovkin, A. Ivanov,
V. Rivkind, V. Solonnikov, and N. Ural’tseva. Much of this activity is documented in
Ladyzhenskaya’s account [18].

Professor Ladyzhenskaya already was famous for her work worldwide when, in
1981, she was elected corresponding member of the Russian Academy of Science,
and, in 1990, full member. She also is foreign member of numerous academies
abroad, among them the Leopoldina, the oldest German academy. Until 1998 she
was President of the Mathematical Society of St. Petersburg, thus a successor of
Leonhard Euler in this office.

The year 1989 brought about the end of communist rule and a turn towards
democracy and market economy in Russia. Russian mathematicians were allowed
to travel more freely; some of them were able to visit Western countries for the first
time. At the same time their economic situation deteriorated at the rate with which
their salaries decreased in value in comparison with market prizes for standard goods.

Thus we can easily sympathize with those scientists, among them many leading
Russian mathematicians, who accepted offers from abroad and left their country
to find more favorable working conditions and a secure future for their families
elsewhere. Professor Ladyzhenskaya, however, stayed and helped steer the Steklov
Institute through these years of economic change and foster the careers of her co-
workers there, thus remaining faithful to the legacy of her father.

She only retired officially from her position at Steklov Institute in 2000. To a
large extent she uses her new freedom to travel to make contacts for the benefit of her
students and for the better of the institution which has been her scientific home for
over 50 years. The University of Bonn stands out prominently among the institutions
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with whom she has built lasting relations which have proved highly valuable for both
sides.

I am grateful to be able to share this moment when these efforts and the mathe-
matical work on which this cooperation is founded will be recognized by awarding
the degree of a “Doctor honoris causa” to Professor Ladyzhenskaya.

Acknowledgement. I am indebted to Denis Labutin, Gregory Seregin, and the Math-
ematics Department of the University of Bonn for their help in providing background
information and gathering references for this survey.
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