
4 Hypothesis Testing

4.1 Hypothesis Testing

For two given general sources X = {Xn}∞n=1 and X = {Xn}∞n=1 we consider
the hypothesis testing problem with the null hypothesis X and the alternative
hypothesis X. This problem is also called the hypothesis testing X against X
for simplicity. Here, both Xn and X

n
are supposed to be Xn-valued random

variables, where X denotes a source alphabet. In ordinary hypothesis testing
problems we choose a subset An ⊂ Xn as an acceptance region. If x, an
output from one of the two sources, belongs to An, then we judge that the null
hypothesis X = {Xn}∞n=1 is true. Otherwise, we judge that the alternative
hypothesis X = {Xn}∞n=1 is true. We define the error probability of the first
kind and the error probability of the second kind by

µn ≡ Pr {Xn /∈ An} ,

and

λn ≡ Pr{Xn ∈ An},

respectively. From the definitions above, µn is the probability that we mis-
judge the alternative hypothesis X true when the null hypothesis X is actually
true and λn the probability that we misjudge X true when X is actually true.
The complement Cn ≡ Xn −An is called the critical region of the hypothesis
testing. Throughout this chapter suppose that alphabet X is arbitrary (X
can be countably infinite or abstract) unless stated otherwise.

The hypothesis testing is formulated as the problem of choosing an ac-
ceptance region An that makes the error probability of the second kind λn as
small as possible subject to the constraint that the error probability of the
first kind µn is upper bounded by a given constant. The following two simple,
but powerful, lemmas are useful in order to obtain fundamental results on
the hypothesis testing:

Lemma 4.1.1. Define

An =
{
x ∈ Xn | 1

n
log

PXn(x)
PX

n(x)
≥ t

}
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for an arbitrary real number ∗ t. Then, it holds that Pr{Xn ∈ An} ≤ e−nt.

Proof. Since it follows that

1 ≥ Pr {Xn ∈ An} =
∑

x∈An

PXn(x)

≥
∑

x∈An

PX
n(x)ent

= Pr{Xn ∈ An}ent,

we have Pr{Xn ∈ An} ≤ e−nt. �

Lemma 4.1.2. For any real number t and An ⊂ Xn, it holds that

Pr {Xn /∈ An} + ent Pr{Xn ∈ An} ≥ Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ t

}
.

Remark 4.1.1. Lemma 4.1.2 can also be established as a consequence of
Neyman-Pearson lemma [74]. However, there is no essential difference be-
tween the claims of Lemma 4.1.2 and Neyman-Pearson lemma if we consider
the asymptotic situation with n being sufficiently large. �

Proof of Lemma 4.1.2.
Set

Sn =
{
x ∈ Xn | 1

n
log

PXn(x)
PX

n(x)
≤ t

}
.

Then, it follows that

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ t

}
= Pr {Xn ∈ Sn}

= Pr {Xn ∈ Sn ∩ Ac
n} + Pr {Xn ∈ Sn ∩ An}

≤ Pr {Xn /∈ An} + Pr {Xn ∈ Sn ∩ An} .

By noticing that x ∈ Sn implies PXn(x) ≤ PX
n(x)ent, we have

Pr {Xn ∈ Sn ∩ An} =
∑

x∈Sn∩An

PXn(x)

≤
∑

x∈Sn∩An

PX
n(x)ent

∗ In the case where the source alphabet X is abstract in general, it is understood
that gn(x) ≡ PXn (x)

P
X

n (x)
(x ∈ Xn) denotes the Radon-Nikodym derivative between

probability measures on Xn with values on a singular set assumed conventionally
to be +∞. Then, PXn (Xn)

P
X

n (Xn)
is defined to be gn(Xn), which is obviously a random

variable.
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≤
∑

x∈An

PX
n(x)ent

= ent Pr{Xn ∈ An},
which completes the proof of the lemma. �

Now, we give definitions required for formulation of the hypothesis testing
with the null hypothesis X = {Xn}∞n=1 and the alternative hypothesis X =
{Xn}∞n=1. In order to define the hypothesis testing problems we need to fix
a constraint that µn, the error probability of the first kind, must satisfy. We
first consider the constraint that µn satisfies µn → 0 as n → ∞. Since subject
to this constraint the error probability of the second kind λn can usually be
written as

λn � e−nR (R > 0),

i.e., λn goes to zero of exponential order of block length n, it is fundamental
to consider how we can make the exponent R large. The following definitions
formulate such a situation.

Definition 4.1.1.

Rate R is achievable def⇐⇒ There exists an acceptance region An satisfying

lim
n→∞

µn = 0 and lim inf
n→∞

1
n

log
1
λn

≥ R.

Definition 4.1.2 (Supremum achievable error probability exponent).

B(X||X) = sup {R | R is achievable} .

In the hypothesis testing problems the random variable
1
n

log
PXn(Xn)
PX

n(Xn)
plays a crucial role. We call this the divergence density rate or the likelihood-
ratio density rate and its probability distribution the divergence-spectrum (or,
more generally, the information-spectrum).

Here, we define:

Definition 4.1.3.

D(X||X) = p- lim inf
n→∞

1
n

log
PXn(Xn)
PX

n(Xn)

and call D(X||X) the spectral inf-divergence rate of X with respect to X.
Then, the spectral inf-divergence rate turns out to be nonnegative from

its definition and Lemma 3.2.1, using Xn and X
n

instead of Un and Vn,
respectively. That is, it holds that

D(X||X) ≥ 0.

We have the following fundamental theorem on B(X||X).
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Theorem 4.1.1 (Verdú [90]).

B(X||X) = D(X||X).

Proof.
1) Direct part:

Define R = D(X||X)− γ for an arbitrary γ > 0 and consider the hypoth-
esis testing with the acceptance region

An =
{
x ∈ Xn | 1

n
log

PXn(x)
PX

n(x)
≥ R

}
.

Then, the definition of D(X||X) tells us that

µn = Pr {Xn /∈ An} → 0 as n → ∞.

On the other hand, Lemma 4.1.1 with t = R implies that

Pr{Xn ∈ An} ≤ e−nR,

i.e., λn ≤ e−nR. Accordingly, we obtain

lim inf
n→∞

1
n

log
1
λn

≥ R.

This establishes that R = D(X||X) − γ is achievable for any γ > 0, which
means B(X||X) ≥ D(X||X).

2) Converse part:
Suppose that R is achievable. Then, there exists an acceptance region

An satisfying lim
n→∞

µn = 0 and lim inf
n→∞

1
n

log
1
λn

≥ R. Hence, for any γ > 0 it

follows that
1
n

log
1
λn

≥ R − γ (∀n ≥ n0),

which leads to

λn ≤ e−n(R−γ) (∀n ≥ n0).

On the other hand, Lemma 4.1.2 with t = R − 2γ implies that

µn + en(R−2γ)λn ≥ Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
.

Therefore, for all n ≥ n0 we have

µn + e−nγ ≥ Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
.

Since lim
n→∞

(µn + e−nγ) = 0, it follows that

lim
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
= 0.
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Thus, we obtain

D(X||X) ≥ R − 2γ.

Since γ > 0 is arbitrary, D(X||X) ≥ R follows. Hence, B(X||X) ≤ D(X||X)
is established. �

Here, as an application of Theorem 4.1.1, we consider the case that X
and X are the stationary memoryless sources subject to probability distribu-
tions PX and PX , respectively. By Khintchin’s theorem (Theorem 1.3.2) the

divergence-spectrum of
1
n

log
PXn(Xn)
PX

n(Xn)
converges to the one-point spectrum

with a peak of probability one at D(X||X) as n → ∞. This fact implies

D(X||X) = D(X||X),

where D(X||X) denotes the divergence between X and X. As a consequence,
we obtain the following well-known result (see also Theorem 4.3.2 below):

Corollary 4.1.1.

B(X||X) = D(X||X). (4.1.1)

The combination of this corollary with Corollary 4.2.1 in the following section
is called Stein’s lemma.

Example 4.1.1 (Hypothesis testing for the mixed source). Suppose
that the null hypothesis X = {Xn}∞n=1 is the mixed source with probability
distribution

PXn(x) = α1PXn
1
(x) + α2PXn

2
(x) (α1 > 0, α2 > 0, α1 + α2 = 1)

and the alternative hypothesis X = {Xn} is not the mixed source. Setting
X1 = {Xn

1 }∞n=1 and X2 = {Xn
2 }∞n=1, we obtain the formula

B(X||X) = D(X||X) = min(D(X1||X), D(X2||X)) (4.1.2)

(this formula can be verified by using the argument given in the proofs of
Lemma 1.4.1 and Lemma 3.3.1). In particular, if X1, X2 and X are the sta-
tionary memoryless sources subject to PX1 , PX2 and PX , respectively, then

the divergence-spectrum of
1
n

log
PXn(Xn)
PX

n(Xn)
converges to the two-point spec-

trum with two peaks of probabilities α1 and α2 at D(X1||X) and D(X2||X),
respectively, as n → ∞. Therefore, B(X||X) is given by

B(X||X) = min(D(X1||X), D(X2||X)) (4.1.3)

(see also Remark 4.4.3). �
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Example 4.1.2 (Hypothesis testing for a nonstationary memory-
less source). Let us consider the case that both X = {Xn}∞n=1 and
X = {Xn}∞n=1 are memoryless sources without stationarity under the as-
sumption that X is a finite source alphabet. Letting Xn = (X1, X2, · · · , Xn)
and X

n
= (X1, X2, · · · , Xn) be the two memoryless sources, Theorem 4.1.1

and Chebyshev’s inequality yield the formula

B(X||X) = D(X||X) = lim inf
n→∞

1
n

n∑
i=1

D(Xi||Xi).

For example, if

PXi
=

{
PX1 (i is odd),
PX2 (i is even),

PXi
=

{
PX1

(i is odd),
PX2

(i is even),

then it is easy to see that

B(X||X) = D(X||X)

=
1
2
D(X1||X1) +

1
2
D(X2||X2).

In addition, for the set J defined by (3.2.23) in Remark 3.2.3 in §3.2, if

PXi
=

{
PX1 for i ∈ J,
PX2 for i �∈ J,

PXi
=

{
PX1

for i ∈ J,

PX2
for i �∈ J,

then we have

B(X||X) = min
1
3≤λ≤ 2

3

(λD(X1||X1) + (1 − λ)D(X2||X2))

=
2
3

min(D(X1||X1), D(X2||X2))

+
1
3

max(D(X1||X1), D(X2||X2)).

We can generalize the mixed source considered in Example 4.1.1 in the
following way. For arbitrarily given infinitely many general sources Xi =
{Xn

i }
∞
n=1 (i = 1, 2, · · ·), we call the source X = {Xn}∞n=1 defined by

PXn(x) =
∞∑

i=1

αiPXn
i
(x) (∀n = 1, 2, · · · ;∀x ∈ Xn) (4.1.4)

the mixed source of the source family {Xi}∞i=1, where αi (i = 1, 2, · · ·) are
constants satisfying
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∞∑
i=1

αi = 1 (αi ≥ 0 : ∀i = 1, 2, · · ·).

We have the following lemma characterizing the spectral inf-divergence rate
of such a mixed source X with respect to an arbitrarily given general source
X = {Xn}∞n=1.

Lemma 4.1.3. For the mixed source X defined in (4.1.4),

D(X||X) = inf
i≥1:αi>0

D(Xi||X). (4.1.5)

Proof. We have only to calculate the information-spectrum similarly to the
proofs of Lemma 1.4.3 (§1.4) and Lemma 3.3.2 (§3.3). �

Theorem 4.1.1 and Lemma 4.1.3 immediately yield the following theorem.

Theorem 4.1.2. For the mixed source defined in (4.1.4),

B(X||X) = inf
i≥1:αi>0

D(Xi||X). (4.1.6)

If we consider a special case that all of X = {Xn}∞n=1 and Xi = {Xn
i }

∞
n=1

(i = 1, 2, · · ·) are stationary memoryless sources, we obtain the following
corollary from Theorem 4.1.2.

Corollary 4.1.2. Let X be an arbitrary (not necessarily countable) source
alphabet. If X = {Xn}∞n=1 and Xi = {Xn

i }
∞
n=1 are the stationary memo-

ryless sources subject to probability distributions PX and PXi
(i = 1, 2, · · ·),

respectively, then

B(X||X) = inf
i≥1:αi>0

D(Xi||X) (4.1.7)

for the mixed source X = {Xn}∞n=1 defined in (4.1.4), where D(Xi||X) de-
notes the divergence.

Next, let us consider a mixed source with a more general way of mixing
(see §1.4 in Chapter 1). Let Φ be an arbitrary set (probability space) and
assign a general source Xθ = {Xn

θ }∞n=1 to each θ ∈ Φ. Here, we assume
that, denoting a source alphabet by X , PXn

θ
(A), the probability of A, is

a measurable function of θ for all n = 1, 2, · · · and for all measurable sets
A ⊂ Xn. If we fix an arbitrary probability measure w on Φ, we have a source
X = {Xn}∞n=1 subject to the probability distribution

PXn(A) =
∫

Φ

PXn
θ
(A)dw(θ) (∀n = 1, 2, · · ·). (4.1.8)

This source is called the mixed source of the source family {Xθ}θ∈Φ. Fur-
thermore, letting X = {Xn}∞n=1 be another general source, we define the
following two functions of R instead of the spectral inf-divergence rate:
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K(R|X||X) ≡ lim inf
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}
, (4.1.9)

K(R|X||X) ≡ lim sup
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}
, (4.1.10)

each of which is determined from the divergence-spectrum itself. We attempt
to characterize these two functions by using w(·). However, since such char-
acterization is difficult for general sources Xθ (θ ∈ Φ) and X, we assume
that X is a finite source alphabet and X and Xθ (θ ∈ Φ) are the stationary
memoryless sources subject to probability distributions PX and PXθ

(θ ∈ Φ),
respectively (we use the notations X = {X} and Xθ = {Xθ} for simplicity).
Then, we have the following lemma. This lemma corresponds to Lemma 1.4.4
in §1.4 and Lemma 3.3.3 in §3.3.

Lemma 4.1.4. Let X be a finite source alphabet. If each Xθ = {Xθ} is
stationary and memoryless and so is X = {X}, we have∫

{θ|D(Xθ||X)<R}
dw(θ) ≤ K(R|X||X)

≤ K(R|X||X) ≤
∫
{θ|D(Xθ||X)≤R}

dw(θ) (∀R ≥ 0)

(4.1.11)

for the mixed source X defined in (4.1.8), where D(Xθ||X) denotes the di-
vergence and the inequalities in (4.1.11) hold with equality except for at most
countably infinite R.

Proof. We can prove the lemma by calculating the information-spectrum sim-
ilarly to the proofs of Lemma 1.4.4 (§1.4) and Lemma 3.3.3 (§3.3). �

Theorem 4.1.1 and Lemma 4.1.4 immediately yield the following theorem.

Theorem 4.1.3. For the mixed source X defined in Lemma 4.1.4,

B(X||X) = w-ess.inf D(Xθ||X). (4.1.12)

Proof. We can prove the theorem similarly to the proof of Theorem 1.4.3
(§1.4) with using Lemma 4.1.4. �

Example 4.1.3. Let {PXθ
} be a family of probability distributions with

parameter θ over a finite source alphabet X . For each θ denote by Xθ the
stationary memoryless source subject to a probability distribution PXθ

. Then,
x = (x1, · · · , xn) ∈ Xn is generated with probability

Pθ(x) ≡
n∏

i=1

PXθ
(xi).
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Now, let w(θ) be an arbitrary probability measure and denote by X =
{Xn}∞n=1 the mixed source obtained by mixing Xθ with respect to the prob-
ability density w(θ). Then, the probability distribution of Xn is given by

PXn(x) =
∫

Pθ(x)dw(θ) (∀n = 1, 2, · · · ;∀x ∈ Xn).

Suppose that X = {Xn}∞n=1 is a stationary memoryless source subject to
a probability distribution PX . Then, Lemma 4.1.4 guarantees that, in the
limit of n → ∞, the divergence-spectrum of the mixed source X against
the source X is distributed along the horizontal axis D(Xθ||X) with the
probability density w(θ) (Fig. 4.1). Then, the divergence rate of (X,X) (see

D(Xθ||X)

w(θ)

Fig. 4.1.

Remark 4.3.3 in §4.3) is computed as

D(X||X) ≡ lim
n→∞

1
n

D(Xn||Xn
) =

∫
D(Xθ||X)dw(θ). (4.1.13)

In particular, the divergence-spectrum of Example 4.1.1 becomes the two-
point spectrum with the two peaks of probabilities α1 and α2 at D(X1||X)
and D(X2||X), respectively. �

We conclude this section by mentioning the hypothesis testing with a com-
pound source as the null hypothesis which is deeply related to the hypothesis
testing with a mixed source as the null hypothesis (called the mixed hypothesis
testing) described above. First, suppose that infinitely many null hypotheses
Xi = {Xn

i }
∞
n=1 (i = 1, 2, · · ·) and an alternative hypothesis X = {Xn}∞n=1

are given. If we define an acceptance region An ⊂ Xn, the error probability
of the first kind is determined by

µ(i)
n ≡ Pr {Xn

i /∈ An} (i = 1, 2, · · ·) (4.1.14)

for each null hypothesis Xi = {Xn
i }

∞
n=1 and the error probability of the

second kind is determined by
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λn ≡ Pr{Xn ∈ An}. (4.1.15)

Here, note that the acceptance region An ⊂ Xn above does not depend on the
suffices i = 1, 2, · · · of the null hypotheses Xi = {Xn

i }
∞
n=1. Such a situation

happens when one of the null hypotheses Xi = {Xn
i }

∞
n=1 (i = 1, 2, · · ·) surely

occurs but a hypothesis tester does not know which one occurs. We call such
hypothesis testing the compound hypothesis testing {Xi}∞i=1 against X. In
the compound hypothesis testing we want to keep the error probability of
the first kind small for any null hypothesis that can occur. We attempt to
make the error probability of the second kind as small as possible under such
a requirement. We give the following definitions.

Definition 4.1.4.

Rate R is achievable def⇐⇒ There exists an acceptance region An ⊂ Xn

satisfying lim
n→∞

µ(i)
n = 0 (∀i = 1, 2, · · ·) and

lim inf
n→∞

1
n

log
1
λn

≥ R.

Definition 4.1.5. (Supremum achievable error probability exponent
in the compound hypothesis testing)

B({Xi}∞i=1 ||X) = sup {R | R is achievable} .

Then, we obtain the following theorem describing a relationship between the
supremum achievable error probability exponents of the mixed hypothesis
testing and the compound hypothesis testing. The theorem corresponds to
Theorem 3.3.5 in Chapter 3 treating channel coding.

Theorem 4.1.4. Suppose that countably infinite null hypotheses Xi = {Xn
i }

∞
n=1

(i = 1, 2, · · ·) and an alternative hypothesis X = {Xn}∞n=1 are given. Then,
the supremum achievable error probability exponent B({Xi}∞i=1 ||X) in the
compound hypothesis testing is equal to B(X||X) ≡ B({αi,Xi}∞i=1 ||X), the
supremum achievable error probability exponent in the mixed hypothesis test-
ing with the mixed source X defined by (4.1.4). That is, we have

B({αi,Xi}∞i=1 ||X) = B({Xi}∞i=1 ||X), (4.1.16)

where we assume that αi > 0 for all i = 1, 2, · · ·.

Proof. Let µ
(i)
n (i = 1, 2, · · ·) and µn be the error probability of the first kind

for the null hypotheses Xi (i = 1, 2, · · ·) and the mixed null hypothesis X
with the same acceptance region An. From (4.1.4), we have

µn =
∞∑

i=1

αiµ
(i)
n .
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Then, we can prove this theorem similarly to the proof of Theorem 3.3.5 in
Chapter 3. �

The combination of Corollary 4.1.2 with Theorem 4.1.4 immediately yields
the following corollary on the compound hypothesis testing.

Corollary 4.1.3. Let X be an arbitrary (not necessarily countable) source
alphabet. If X = {Xn}∞n=1 and Xi = {Xn

i }
∞
n=1 (i = 1, 2, · · ·) are stationary

memoryless sources subject to PX and PXi
(i = 1, 2, · · ·), respectively, then

we have

B({Xi}∞i=1 ||X) = inf
i≥1

D(Xi||X) (4.1.17)

for the compound hypothesis testing {Xi}∞i=1 against X, where D(Xi||X) de-
notes the divergence. �

4.2 ε-Hypothesis Testing

In the hypothesis testing described in the preceding section, the error prob-
ability of the first kind is required to satisfy

µn ≡ Pr {Xn /∈ An} → 0 as n → ∞.

On the other hand, we can consider another requirement that the error prob-
ability of the first kind satisfies only

lim sup
n→∞

µn ≤ ε

for an arbitrary constant 0 ≤ ε < 1. The exponent of the error probability of
the second kind is expected to be large under this weakened requirement on
the error probability of the first kind. This section is devoted to analysis of
this problem. We first give definitions required for the analysis.

Definition 4.2.1.

Rate R is ε-achievable def⇐⇒ There exists an acceptance region An

satisfying lim sup
n→∞

µn ≤ ε and

lim inf
n→∞

1
n

log
1
λn

≥ R.

Definition 4.2.2 (Supremum ε-achievable error probability expo-
nent).

Bf (ε|X||X) = sup {R | R is ε-achievable} .
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We define a function K(R) by

K(R) = lim sup
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}
(4.2.1)

(see Fig. 4.2). This function is nothing but K(R|X||X) defined in §4.1. Then,
we obtain the following theorem.

Theorem 4.2.1 (Chen [14]).

Bf (ε|X||X) = sup {R | K(R) ≤ ε} (0 ≤ ∀ε < 1). (4.2.2)

Remark 4.2.1. The right-hand side of (4.2.2) is a right-continuous and
monotone increasing function of ε. �

D(X||X) R

Fig. 4.2.

Proof of Theorem 4.2.1.
1) Direct part:

Define R0 = sup {R | K(R) ≤ ε}. We prove that for an arbitrary γ > 0
R = R0−γ is ε-achievable. First, from the definition of R0 = sup {R | K(R) ≤ ε},
we have K(R) ≤ ε, i.e.,

lim sup
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}
≤ ε. (4.2.3)

If we consider the hypothesis testing with the acceptance region

An =
{
x ∈ Xn | 1

n
log

PXn(x)
PX

n(x)
> R

}
,

Lemma 4.1.1 with t = R implies

λn ≤ e−nR. (4.2.4)
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We notice here that, since the left-hand side of (4.2.3) is equal to lim sup
n→∞

µn,

we have

lim sup
n→∞

µn ≤ ε.

In addition, (4.2.4) guarantees that

lim inf
n→∞

1
n

log
1
λn

≥ R.

Consequently, R = R0 − γ is ε-achievable. Since γ > 0 can be arbitrarily
small, Bf (ε|X||X) ≥ R0 is established.

2) Converse part:
Suppose that R is ε-achievable. Then, there exists an acceptance region

An satisfying

lim sup
n→∞

µn ≤ ε and lim inf
n→∞

1
n

log
1
λn

≥ R.

The second inequality leads to

λn ≤ e−n(R−γ) (∀n ≥ n0), (4.2.5)

where γ > 0 is an arbitrary constant. If we set t = R − 2γ and apply
Lemma 4.1.2, it follows that

µn + en(R−2γ)λn ≥ Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
.

By substituting (4.2.5) into the left-hand side and taking lim sup
n→∞

of the both

hand sides, we obtain

ε ≥ lim sup
n→∞

µn ≥ lim sup
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
,

i.e.,

K(R − 2γ) ≤ ε. (4.2.6)

Here, define R0 = sup {R | K(R) ≤ ε} and assume that R > R0. We can
choose a sufficiently small γ > 0 such that R − 2γ > R0. Then, the defini-
tion of R0 gives rise to K(R − 2γ) > ε, which contradicts (4.2.6). Therefore,
R ≤ R0 must be satisfied. The proof of Bf (ε|X||X) ≤ R0 is now completed. �

Now, consider the case that X and X are the stationary memoryless
sources subject to PX and PX , respectively. Since Khintchin’s law of large
numbers implies that K(R) can be expressed as

K(R) =
{

0 for 0 ≤ R < D(X||X),
1 for R > D(X||X),

we obtain the following corollary from Theorem 4.2.1.
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Corollary 4.2.1 (Stein’s lemma).

Bf (ε|X||X) = D(X||X) (0 ≤ ∀ε < 1). (4.2.7)

Example 4.2.1. Let us consider the case that X = {Xn}∞n=1 is the station-
ary memoryless source subject to a probability distribution P over X and
X = {Xn}∞n=1 the mixed source of X1 = {Xn

1 }∞n=1 and X2 = {Xn
2 }∞n=1 with

the probability distribution given by

PXn(x) = α1PXn
1
(x) + α2PXn

2
(x).

Here, X1 and X2 are the stationary memoryless sources subject to probability
distributions P1 and P2, respectively. If we apply the property described in
Remark 1.4.1 in §1.4 to

1
n

log
PXn(Xn)
PX

n(Xn)
,

K(R) can be expressed as

K(R) =
{

0 for 0 ≤ R < D(P1||P ),
α1 for D(P1||P ) < R < D(P2||P ).

Thus, Bf (ε|X||X), which is illustrated in Fig. 4.3, is dependent on 0 ≤ ε < 1.
�

10
ε

α1

D(P1||P )

eq=
\Huge
\[
D(P_1||
\overline
{P})\]

D(P2||P )

eq=
\Huge
\[
D(P_2||
\overline
{P})\]

Bf (ε|X||X)

Fig. 4.3.

Example 4.2.2. In the example given in Example 4.1.3 in §4.1, Lemma 4.1.4
guarantees∫

{θ|D(Xθ||X)<R}
dw(θ) ≤ K(R) ≤

∫
{θ|D(Xθ||X)≤R}

dw(θ).
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This shows that K(R) is a monotone increasing function of R. Therefore, the
formula

Bf (ε|X||X) = sup

{
R

∣∣∣∣∣
∫
{θ|D(Xθ||X)≤R}

dw(θ) ≤ ε

}
(4.2.8)

is obtained from Theorem 4.2.1. This function is also monotone increasing
with respect to ε. �

4.3 Strong Converse Theorem for Hypothesis Testing

We also have the strong converse theorem on hypothesis testing corresponding
to the strong converse theorems on source coding (§1.5), random number
generation (§2.3) the channel coding (§3.5).

Definition 4.3.1. Consider the hypothesis testing X against X and choose
a rate R satisfying R > B(X||X) (cf. Definition 4.1.2) arbitrarily. If

lim
n→∞

µn = 1 holds for all acceptance regions An satisfying lim inf
n→∞

1
n

log
1
λn

≥ R,

the hypothesis testing X against X is called to satisfy the strong converse
property. �

Here, we define:

Definition 4.3.2.

D(X||X) = p- lim sup
n→∞

1
n

log
PXn(Xn)
PX

n(Xn)

and call D(X||X) the spectral sup-divergence rate of X against X.
Then, we have the following theorem.

Theorem 4.3.1 (Strong converse theorem). The hypothesis testing X
against X satisfies the strong converse property if and only if

D(X||X) = D(X||X).

Remark 4.3.1. This theorem means that the hypothesis testing satisfies the
strong converse property if and only if the information-spectrum of the di-
vergence density rate asymptotically becomes the one-point spectrum with a
peak of probability one. �

Proof of Theorem 4.3.1.
1) Sufficiency:

Assume that D(X||X) = D(X||X). For an arbitrary constant γ > 0 define
R by
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R = B(X||X) + 3γ = D(X||X) + 3γ (4.3.1)

and consider an arbitrary hypothesis testing with an acceptance region An

satisfying

lim inf
n→∞

1
n

log
1
λn

≥ R.

Then, it follows that

1
n

log
1
λn

≥ R − γ (∀n ≥ n0),

which can be written as

λn ≤ e−n(R−γ) (∀n ≥ n0). (4.3.2)

By noticing that µn = Pr {Xn /∈ An} and λn = Pr
{

X
n ∈ An

}
and substi-

tuting (4.3.2) into the inequality in Lemma 4.1.2, setting t = R − 2γ, we
obtain

µn + e−nγ ≥ Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
. (4.3.3)

We notice here that (4.3.1) implies R − 2γ = D(X||X) + γ due to the as-
sumption of D(X||X) = D(X||X). Therefore, we obtain

lim
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − 2γ

}
= 1.

Then, (4.3.3) guarantees lim inf
n→∞

µn ≥ 1, i.e., lim
n→∞

µn = 1.

2) Necessity:
Define R = B(X||X) + γ for an arbitrary constant γ > 0. If we consider

a hypothesis testing with an acceptance region An defined by

An =
{
x ∈ X | 1

n
log

PXn(Xn)
PX

n(Xn)
≥ R

}
, (4.3.4)

Lemma 4.1.1 implies that λn ≤ e−nR, i.e.,

lim inf
n→∞

1
n

log
1
λn

≥ R > B(X||X).

Then, it follows from the assumption of the strong converse property that

lim
n→∞

Pr {Xn /∈ An} = lim
n→∞

µn = 1.

By using (4.3.4), we obtain

lim
n→∞

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≥ R

}
= 0,
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which leads to

D(X||X) ≤ R = B(X||X) + γ = D(X||X) + γ.

Since γ > 0 is arbitrary,

D(X||X) ≤ D(X||X)

is established. By noticing that D(X||X) ≥ D(X||X), the inequality in the
opposite direction, always holds, D(X||X) = D(X||X) is established. �

Remark 4.3.2. If the hypothesis testing satisfies the strong converse prop-
erty, then Bf (ε|X||X) becomes a constant independent of 0 ≤ ε < 1 (however,
the converse is not always true). In particular, if both X and X are station-
ary and memoryless, it is obvious that Khintchin’s law of large numbers
guarantees that the strong converse property is satisfied. Therefore, Corol-
lary 4.2.1 in the preceding section can also be obtained as a consequence of
Theorem 4.3.1. �

Remark 4.3.3. For X = {Xn}∞n=1 and X = {Xn}∞n=1 we define D(X||X)
by

D(X||X) = lim inf
n→∞

1
n

D(Xn||Xn
) (4.3.5)

and call D(X||X) the inf-divergence rate of X with respect to X (in particular,
D(X||X) is simply called the divergence rate if the right-hand side of (4.3.5)
has a limit). Then, the inequality

D(X||X) ≤ D(X||X) (4.3.6)

can be proved for an arbitrary alphabet X similarly to the proof of Theo-
rem 3.5.2 using Lemma 3.2.4 with Xn and X

n
instead of Un and Vn respec-

tively. On the other hand, the inequality

D(X||X) ≤ D(X||X) (4.3.7)

does not always hold even if X is a finite alphabet. Therefore, the strong
converse property does not always guarantee

D(X||X) = D(X||X) = D(X||X). (4.3.8)

This fact means that the property corresponding to Corollary 1.7.1 on source
coding and Corollary 3.5.1 on channel coding does not hold on hypothesis
testing. �
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Though in Remark 4.3.3 above we have seen that the strong converse
property does not always imply (4.3.8), we can make (4.3.8) true under a
certain condition on sources X = {Xn}∞n=1 and X = {Xn}∞n=1. That is, for
an arbitrary source alphabet X , if X and X are a stationary ergodic source
and a stationary irreducible Markov source of finite order, respectively, then

the divergence density rate Zn ≡ 1
n

log
PXn(Xn)
PX

n(Xn)
converges almost surely

to lim
n→∞

1
n

D(Xn||Xn
) (Barron [7]), which implies that

1
n

D(Xn||Xn
) on the

right-hand side of (4.3.5) has a limit and satisfies (4.3.8). Therefore, the
hypothesis testing X against X for such X and X satisfies the strong converse
property, and hence, we have:

Theorem 4.3.2.

Bf (ε|X||X) = lim
n→∞

1
n

D(Xn||Xn
) (0 ≤ ∀ε < 1). (4.3.9)

This theorem is regarded as a considerable generalization of the formulae
(4.1.1) and (4.2.7) given in the preceding sections.

Now, consider a special case that X is a finite source alphabet and X and
X are stationary irreducible Markov sources of the first order with transition
probabilities P (·|·) and P (·|·), respectively. Then, the formula (4.3.9) yields

Bf (ε|X||X) = D(P ||P |p) (0 ≤ ∀ε < 1), (4.3.10)

where p denotes the stationary distribution of P and the conditional diver-
gence is defined by

D(P ||P |p) =
∑
x∈X

p(x)D(P (·|x)||P (·|x)).

This is a natural generalization of Stein’s lemma (Corollary 4.2.1).

Remark 4.3.4. By considering that the hypothesis testing X against X
in (4.3.10) satisfies the strong converse property, Lemma 4.1.4 and Theo-
rem 4.1.3 in §4.1 are generalized in the following way. If X and Xθ are the
stationary irreducible Markov sources of the first order with transition prob-
abilities P (·|·) and Pθ(·|·), respectively, then all of (4.1.11) and (4.1.12) in
§4.1 and (4.2.8) in §4.2 hold, where D(Xθ||X) is replaced by the conditional
divergence D(Pθ||P |pθ) (see Remark 1.4.4 in §1.4 of Chapter 1). �

4.4 Hypothesis Testing and Large Deviation Probability
of Testing Error

In §4.1 and §4.2 we have studied the hypothesis testing problems with the er-
ror probability of the first kind µn converging to 0 or asymptotically bounded
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by a constant 0 ≤ ε < 1. In this section we consider the hypothesis testing
with the error probability of the first kind µn required to asymptotically
satisfy

µn � e−nr

for a given constant r > 0. Under this constraint we would like to find the
maximum of the exponent R > 0 when the error probability of the second
kind λn is expressed as λn � e−nR. Such a problem formulation means to
simultaneously evaluate the large deviation behaviors of µn and λn similarly
to the analysis of the large deviation behaviors on the fixed-length source
coding given in §1.9. The idea of the information-spectrum slicing plays an
important role in this section as well as §1.9.

First, we give two definitions. In this section as well, we denote the null hy-
pothesis and the alternative hypothesis by X = {Xn}∞n=1 and X = {Xn}∞n=1,
respectively.

Definition 4.4.1.

Rate R is r-achievable def⇐⇒ There exists an acceptance region An

satisfying lim inf
n→∞

1
n

log
1
µn

≥ r and

lim inf
n→∞

1
n

log
1
λn

≥ R.

Definition 4.4.2 (Supremum r-achievable error probability expo-
nents).

Be(r|X||X) = sup {R | R is r-achievable} .

The objective of this section is determining this Be(r|X||X) as a (left-
continuous and monotone decreasing) function of r. To this end, we define
η(R) by

η(R) = lim inf
n→∞

1
n

log
1

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

} . (4.4.1)

Though η(R) is clearly a monotone decreasing function of R, η(R) is not
continuous in general.

Lemma 4.4.1. If R > D(X||X), then η(R) = 0.

Proof. If R > D(X||X), then the definition of D(X||X) guarantees the exis-
tence of some 0 < ε0 < 1 such that

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}
> ε0

for infinitely many n. Hence,
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η(R) ≤ lim inf
n→∞

1
n

log
1
ε0

= 0.

�

Lemma 4.4.1 means that R ≤ D(X||X) must be satisfied for η(R) > 0.
We have the following quite general theorem.

Theorem 4.4.1 (Han [38]). For an arbitrary r ≥ 0

Be(r|X||X) = inf
R

{R + η(R) | η(R) < r} , (4.4.2)

where Be(0|X||X) (r = 0) is defined as +∞.

Remark 4.4.1. Note that η(R) < r on the right-hand side of (4.4.2) is
not η(R) ≤ r. There is an essential difference between these two as is clar-
ified in the following proof. In addition, R + η(R) ≥ 0 is satisfied for all
−∞ < R < +∞ since η(R) ≥ −R is guaranteed from Lemma 3.2.1 in Chap-
ter 3. �

Remark 4.4.2. From Lemma 4.4.1, we have

inf
R>D(X||X)

{R + η(R) | η(R) < r} = inf
R>D(X||X)

R,

where the infimum on the right-hand side is attained at R = D(X||X). There-
fore, inf

R
on the right of (4.4.2) can be replaced with inf

R≤D(X||X)
if η(R) is

continuous at R = D(X||X). �

Proof of Theorem 4.4.1.
1) Direct part:

We use the following notation:

Sn(a) =
{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
> a

}
. (4.4.3)

Set

R = inf {R | η(R) < r} (4.4.4)

and consider the hypothesis testing with the acceptance region

An = Sn(R − γ),

where γ > 0 is an arbitrarily small constant. Then, the error probability of
the first kind can be written as

µn = Pr {Xn /∈ An}

= Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R − γ

}
,
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which leads to

lim inf
n→∞

1
n

log
1
µn

= η(R − γ).

We notice here that (4.4.4) implies η(R − γ) ≥ r. Therefore,

lim inf
n→∞

1
n

log
1
µn

≥ r (4.4.5)

is established. Next, we evaluate the error probability of the second kind. Set

ρ0 = inf
R

{R + η(R) | η(R) < r} . (4.4.6)

Let K be an arbitrarily large number satisfying K > ρ0 and define L =
(K − R + γ)/(2γ). Denote by

Ii = (R − γ + 2(i − 1)γ, R − γ + 2iγ] (i = 1, 2, · · · , L) (4.4.7)

the L subintervals of the interval (R− γ, K] each of which has the width 2γ.
According to these subintervals we partition the set

T0 =
{
x ∈ Xn

∣∣∣∣R − γ <
1
n

log
PXn(x)
PX

n(x)
≤ K

}

into L subsets as follows:

S(i)
n =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
∈ Ii

}
(i = 1, 2, · · · , L)

(information-spectrum slicing). In addition, set

S(0)
n =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
> K

}
.

It is clear that

Sn(R − γ) =
L⋃

i=0

S(i)
n . (4.4.8)

If we set bi = R − γ + 2iγ for simplicity, (4.4.7) can be expressed as

Ii = (bi − 2γ, bi] (i = 1, 2, · · · , L).

Since for i = 1, 2, · · · , L

Pr
{

Xn ∈ S(i)
n

}
≤ Pr

{
1
n

log
PXn(Xn)
PX

n(Xn)
≤ bi

}
,

it follows that

lim inf
n→∞

1
n

log
1

Pr
{

Xn ∈ S
(i)
n

} ≥ η(bi).

Hence, we obtain
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Pr
{

Xn ∈ S(i)
n

}
≤ e−n(η(bi)−γ) (∀n ≥ n0). (4.4.9)

We notice here that, since x ∈ S
(i)
n implies that

1
n

log
PXn(x)
PX

n(x)
> bi − 2γ,

we have the following inequality:

PX
n(x) ≤ PXn(x)e−n(bi−2γ).

Then, it follows from (4.4.9) that

Pr
{

X
n ∈ S(i)

n

}
≤

∑
x∈S

(i)
n

PXn(x)e−n(bi−2γ)

≤ e−n(bi+η(bi)−3γ). (4.4.10)

If we note here that bi ≥ R + γ for all i = 1, 2, · · · , L, we have

bi + η(bi) ≥ ρ0 (i = 1, 2, · · · , L).

By substituting this into (4.4.10), it holds that

Pr
{

X
n ∈ S(i)

n

}
≤ e−n(ρ0−3γ) (i = 1, 2, · · · , L). (4.4.11)

On the other hand, by taking the fact that PX
n(x) ≤ PXn(x)e−nK for x ∈

S
(0)
n into consideration, we have

Pr
{

X
n ∈ S(0)

n

}
=

∑
x∈S

(0)
n

PX
n(x)

≤ e−nK
∑

x∈S
(0)
n

PXn(x)

≤ e−nK . (4.4.12)

Then, (4.4.8), (4.4.11) and (4.4.12) lead to

λn = Pr
{

X
n ∈ Sn(R − γ)

}
≤ Le−n(ρ0−3γ) + e−nK .

We now obtain

lim inf
n→∞

1
n

log
1
λn

≥ ρ0 − 3γ

since K > ρ0 guarantees that K > ρ0 − 3γ for γ > 0. By noticing (4.4.5), we
can conclude that ρ0 − 3γ is r-achievable (note that γ > 0 can be arbitrarily
small).
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2) Converse part:
Let R and ρ0 be defined as in (4.4.4) and (4.4.6), respectively. Then, since

η(R) is monotone decreasing in R, there exists an R0 satisfying R0 ≥ R and

lim
ε↓0

(R0 + ε + η(R0 + ε)) = ρ0. (4.4.13)

Let us consider the set

S0 =
{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
≤ R0 + γ

}
,

where γ > 0 is an arbitrarily small constant. Then, from the definition of
η(R), there exists some divergent sequence n1 < n2 < · · · → ∞ of integers
such that

Pr {Xnj ∈ S0} ≥ e−nj(η(R0+γ)+τ) (∀j ≥ j0), (4.4.14)

where τ > 0 is an arbitrarily small constant. We prove the converse part by
the contradiction argument. To do so, assume that R = ρ0 + 2δ (δ > 0 is a
fixed constant) is r-achievable, i.e., assume that there exists an acceptance
region An satisfying

lim inf
n→∞

1
n

log
1
µn

≥ r (4.4.15)

and

lim inf
n→∞

1
n

log
1
λn

≥ R ≡ ρ0 + 2δ. (4.4.16)

Since x ∈ S0 implies

PXn(x) ≤ PX
n(x)en(R0+γ),

we have

Pr {Xn ∈ S0 ∩ An} =
∑

x∈S0∩An

PXn(x)

≤
∑

x∈S0∩An

PX
n(x)en(R0+γ)

≤ en(R0+γ)
∑

x∈An

PX
n(x)

= λnen(R0+γ). (4.4.17)

Furthermore, it follows from (4.4.16) that

λn ≤ e−n(R−γ) (∀n ≥ n0).

Substitution of this into (4.4.17) yields

Pr {Xn ∈ S0 ∩ An} ≤ e−n(R−R0−2γ)

= e−n(ρ0−R0+2δ−2γ). (4.4.18)
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By virtue of (4.4.13), for any γ > 0 small enough,

ρ0 ≥ R0 + γ + η(R0 + γ) − δ.

Therefore, by (4.4.18) we have

Pr {Xn ∈ S0 ∩ An} ≤ e−n(η(R0+γ)+δ−γ).

If we choose τ > 0 and γ > 0 so small as to satisfy δ > 2τ + γ, then

Pr {Xn ∈ S0 ∩ An} ≤ e−n(η(R0+γ)+2τ), (4.4.19)

where τ > 0 is the same one as in (4.4.14). On the other hand, by using
(4.4.15), we obtain

Pr {Xn ∈ S0 ∩ Ac
n} ≤ Pr {Xn ∈ Ac

n}
= µn ≤ e−n(r−τ) (∀n ≥ n0). (4.4.20)

We observe here that η(R0 + γ) < r for all γ > 0, and hence, for any suffi-
ciently small τ > 0,

η(R0 + γ) + 2τ < r − τ.

Then, it follows from (4.4.19) and (4.4.20) that

Pr {Xn ∈ S0} = Pr {Xn ∈ S0 ∩ An} + Pr {Xn ∈ S0 ∩ Ac
n}

≤ e−n(η(R0+γ)+2τ) + e−n(r−τ)

≤ 2e−n(η(R0+γ)+2τ) (4.4.21)

for all n ≥ n0. However, since τ > 0, (4.4.21) contradicts (4.4.14). Thus, the
rate R = ρ0 + 2δ cannot be r-achievable. Since δ > 0 is arbitrary, we can
conclude that any R such that R > ρ0 cannot be r-achievable. �

Example 4.4.1. Let X = {Xn}∞n=1 and X = {Xn}∞n=1 be stationary mem-
oryless sources subject to probability distributions P and P over a finite
alphabet X , respectively, and consider the corresponding hypothesis testing.
We first define the plane

κR =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P (x)
P (x)

= R

}
(4.4.22)

in P(X ), where P(X ) denotes the set of all probability distributions over X .
Denote by PR the projection of P on κR in the sense of the divergence (see
Example 1.9.1 in §1.9). Figure 4.4 illustrates such a situation. Then, Sanov’s
theorem (cf. Dembo and Zeitouni [22]) tells us that η(R) = 0 if R ≥ D(P ||P )
and η(R) = D(PR||P ) if R ≤ D(P ||P ). Here, note that D(X||X) = D(P ||P )
from the law of large numbers. Thus, in (4.4.2) we have only to consider R
satisfying R ≤ D(P ||P ) (see Remark 4.4.2). Since PR is on κR, PR satisfies
the equation
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PR

κRP

P

Fig. 4.4.

∑
x∈X

PR(x) log
P (x)
P (x)

= R,

which can be written as

D(PR||P ) − D(PR||P ) = R. (4.4.23)

Hence, we have

R + η(R) = D(PR||P ).

Here, note that (4.4.23) and the definition of PR imply that

D(PR||P ) = inf
Q∈κR

D(Q||P ).

Then, it follows from Theorem 4.4.1 that

Be(r|X||X) = inf
R

{R + η(R) | η(R) < r}

= inf
R

{
D(PR||P ) | D(PR||P ) < r

}
,

which can be immediately written as

Be(r|X||X) = inf
Q:D(Q||P )<r

D(Q||P ). (4.4.24)

This is nothing but Hoeffding’s theorem [50], well-known in statistics. This
formula also implies that Be(r|X||X) = 0 for all r ≥ D(P ||P ). �

Example 4.4.2. Let X be a finite alphabet. Let us consider the case
that the null hypothesis X = (X1, X2, · · ·) and the alternative hypothe-
sis X = (X1, X2, · · ·) are first-order stationary irreducible Markov sources
subject to transition probabilities P (x2|x1) = Pr {X2 = x2|X1 = x1} and
P (x2|x1) = Pr

{
X2 = x2|X1 = x1

}
for x1, x2 ∈ X , respectively. Similarly to

Example 1.9.2 in §1.9 of Chapter 1, we denote by P(X ×X ) the set of all joint
probability distributions over X × X and define the conditional divergences
by
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D(Q||P |q) =
∑

x1∈X
q(x1)D(Q(·|x1)||P (·|x1)),

D(Q||P |q) =
∑

x1∈X
q(x1)D(Q(·|x1)||P (·|x1))

for any Q ∈ P(X ×X ), where q(·) and Q(·|·) denote the marginal distribution
and the conditional probability distribution defined by

q(x1) =
∑

x2∈X
Q(x1, x2),

Q(x2|x1) =
Q(x1, x2)

q(x1)
,

respectively. Then, from the argument using Sanov’s theorem for stationary
irreducible Markov sources similarly to Example 4.4.1, we have η(R) = 0 for
R ≥ D(P ||P |p) and

η(R) = D(PR||P |pR), (4.4.25)
R + η(R) = D(PR||P |pR) (4.4.26)

for R ≤ D(P ||P |p). Here, p means the stationary distribution of P , P0 de-
notes the set of all probability distributions of Q ∈ P(X × X ) with the
stationarity (see Example 1.9.2 in §1.9 of Chapter 1), PR ∈ P0 denotes the
projection of P on the plane

κR =


Q ∈ P0

∣∣∣∣∣∣
∑

x1,x2∈X
Q(x1, x2) log

P (x2|x1)
P (x2|x1)

= R


 , (4.4.27)

and pR means the marginal distribution of PR. We define the projection of
P as the distribution PR satisfying

inf
Q∈κR

D(Q||P |q) = D(PR||P |pR),

where q denotes the marginal distribution of Q. Hence, we obtain

Be(r|X||X) = inf
R

{
D(PR||P |pR) | D(PR||P |pR) < r

}
= inf

Q∈P0:D(Q||P |q)<r
D(Q||P |q) (∀r > 0) (4.4.28)

from Theorem 4.4.1 (cf. Natarajan [72]). This formula tells us that Be(r|X||X)
= 0 for all r ≥ D(P ||P |p), where p denotes the stationary distribution of P . �

Example 4.4.3. Let us generalize Example 4.4.2 above to the hypothesis
testing for unifilar finite-state sources (see Example 1.9.3 in §1.9 of Chap-
ter 1). To this end, let X be a finite source alphabet and S a finite set of
states. Let the null hypothesis X = {Xn = (X1, · · · , Xn)}∞n=1 be the unifilar
finite-state source subject to



4.4 Hypothesis Testing and Large Deviation Probability of Testing Error 295

PXn(x) =
n∏

i=1

P (xi|si) (x = (x1, x2, · · · , xn) ∈ Xn) (4.4.29)

si+1 = f(xi, si) (si ∈ S; i = 1, 2, · · · , n) (4.4.30)

and the alternative hypothesis X = {Xn
= (X1, ·, Xn)}∞n=1 the unifilar finite-

state source subject to

PX
n(x) =

n∏
i=1

P (xi|si) (x = (x1, x2, · · · , xn) ∈ Xn) (4.4.31)

si+1 = f(xi, si) (si ∈ S; i = 1, 2, · · · , n). (4.4.32)

We now fix an initial state s1 ∈ S arbitrarily and denote by S0 the set of all
states that can be reached from s1 with “positive probability” with respect
to PXn . Next, let XS ≡ (X, S) be an arbitrary random variable taking values
in X × S0 and define

S′ = f(X, S). (4.4.33)

Furthermore, denote by V0 the set of all random variables XS satisfying both
the stationary condition

PS′(·) = PS(·)

and the condition that the probability transition matrix PS′|S(·|·) is irre-
ducible. Now, setting

λR =


PXS ∈ V0

∣∣∣∣∣∣
∑

x∈X ,s∈S0

PXS(x, s) log
P (x|s)
P (x|s)

= R


 , (4.4.34)

we define the projection PXRSR
∈ V0 of P (·|·) on the plane λR by

inf
PXS∈λR

D(PXS ||P |PS) = D(PXRSR
||P |PSR

).

Then, similarly to Example 4.4.2 Sanov’s theorem for unifilar finite-state
sources (cf. Han [37]) yields

η(R) = D(PXRSR
||P |PSR

) (4.4.35)
R + η(R) = D(PXRSR

||P |PSR
). (4.4.36)

Thus, by substituting these equalities into Theorem 4.4.1, we obtain the
following formula for the hypothesis testing for unifilar finite-state sources X
against X:

Be(r|X||X)
= inf

R

{
D(PXRSR

||P |PSR
) |D(PXRSR

||P |PSR
) < r

}
= inf

PXS∈V0:D(PXS ||P |PS)<r
D(PXS ||P |PS) (∀r > 0), (4.4.37)
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where PXS and PS denote the probability distributions of random variables
XS and S, respectively, and the conditional divergences are defined by

D(PXS ||P |PS) =
∑
s∈S0

PS(s)D(PX|S(·|s)||P (·|s)), (4.4.38)

D(PXS ||P |PS) =
∑
s∈S0

PS(s)D(PX|S(·|s)||P (·|s)). (4.4.39)

Recall here that, in general, every unifilar finite-state source is asymptoti-
cally a mixed source of stationary (or periodic) irreducible sources (see Ex-
ample 1.9.3 in §1.9 of Chapter 1).

If we consider the hypothesis testing X against X for the unifilar finite-
state sources X and X, it is easy to verify that the following formula on
the supremum achievable error probability exponent B(X||X) (see Defini-
tion 4.1.2) holds:

B(X||X) = inf
XS∈V0

D(PXS ||P |PS), (4.4.40)

where V0 denotes the set of all random variables XS ∈ V0 satisfying the
condition PX|S(·|·) = P (·|·). �

Example 4.4.4. Let X be a finite alphabet and consider the mixed source
X = {Xn}∞n=1 and the stationary memoryless source X = {Xn}∞n=1 subject
to the probability distribution P given in Example 4.2.1. Recall that the
mixed source X = {Xn}∞n=1 is defined by

PXn(x) = α1PXn
1
(x) + α2PXn

2
(x) (∀x ∈ Xn) (4.4.41)

for the two stationary memoryless sources X1 = {Xn
1 }∞n=1 and X2 =

{Xn
2 }∞n=1 subject to probability distributions P1 and P2, respectively. We

define ν1 and ν2 by

ν1 =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P2(x)

≥ 0

}
, (4.4.42)

ν2 =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P2(x)

≤ 0

}
(4.4.43)

as are defined in (1.9.34) and (1.9.35) in Example 1.9.4 in §1.9 of Chapter 1
and two half-spaces in P(X ) by

κ
(1)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P (x)

≤ R

}
, (4.4.44)

κ
(2)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P (x)

≤ R

}
, (4.4.45)
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where P(X ) denotes the space of all probability distributions over X . By
taking (1.9.39) and (1.9.40) in Example 1.9.4 into account, Sanov’s theorem
yields

η(R) = min(D(P (1)
R ||P1), D(P (2)

R ||P2)), (4.4.46)

where P
(1)
R and P

(2)
R denote the projections of P1 and P2 on ν1 ∩ κ

(1)
R and

ν2 ∩ κ
(2)
R , respectively. If we substitute this η(R) into the right-hand side of

(4.4.2) in Theorem 4.4.1, we can compute values of Be(r|X||X) for the mixed
source as a function of r.

We note here that it easily follows from (4.4.46) that η(R) = 0 for R
satisfying R ≥ min(D(P1||P ), D(P2||P )) and η(R) is a monotone decreasing
and continuous function of R. Therefore,

Be(r|X||X) ≤ min(D(P1||P ), D(P2||P )) (∀r > 0). (4.4.47)

On the other hand, since η(h) > 0 for any rate h satisfying h < min(D(P1||P ),
D(P2||P )) is verified from (4.4.46), we have

inf
R

{R + η(R)|η(R) < η(h)} ≥ h,

which implies that h is η(h)-achievable. Hence, it holds that

lim
r↓0

Be(r|X||X) = min(D(P1||P ), D(P2||P )). (4.4.48)

Example 4.4.5. Example 4.4.4 can be generalized in the following way
(suppose that X is a finite alphabet). First, denote by X1 = {Xn

1 }∞n=1 ,

X2 = {Xn
2 }∞n=1 , X1 = {Xn

1}∞n=1 and X2 = {Xn

2}∞n=1 the stationary memo-
ryless sources subject to probability distributions P1, P2, P 1 and P 2, respec-
tively. Consider the hypothesis testing with the mixed source X = {Xn}∞n=1

defined by

PXn(x) = α1PXn
1
(x) + α2PXn

2
(x) (α1 > 0, α2 > 0, α1 + α2 = 1) (4.4.49)

as the null hypothesis and the mixed source X = {Xn}∞n=1 defined by

PX
n(x) = β1PX

n

1
(x) + β2PX

n

2
(x) (β1 > 0, β2 > 0, β1 + β2 = 1) (4.4.50)

as the alternative hypothesis. We define ν1 and ν2 by (4.4.42) and (4.4.43) in
Example 4.4.4, respectively, and µ1 and µ2 by

µ1 =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P 1(x)
P 2(x)

≥ 0

}
, (4.4.51)

µ2 =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P 1(x)
P 2(x)

≤ 0

}
, (4.4.52)

where P(X ) denotes the space of all probability distributions over X . Fur-
thermore, define the four half-spaces in P(X ) by
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κ
(1)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P 1(x)

≤ R

}
, (4.4.53)

κ
(2)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P 2(x)

≤ R

}
, (4.4.54)

κ
(3)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P 2(x)

≤ R

}
, (4.4.55)

κ
(4)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P 1(x)

≤ R

}
(4.4.56)

and denote by P
(1)
R and P

(2)
R the projections of P1 and P2 on

ν1 ∩
(
(µ1 ∩ κ

(1)
R ) ∪ (µ2 ∩ κ

(2)
R )

)
,

ν2 ∩
(
(µ2 ∩ κ

(3)
R ) ∪ (µ1 ∩ κ

(4)
R )

)
,

respectively. By applying Sanov’s theorem similarly to Example 4.4.4, we
have

η(R) = min(D(P (1)
R ||P1), D(P (2)

R ||P2)). (4.4.57)

If this η(R) is substituted into the right-hand side of (4.4.2) in Theorem 4.4.1,
we can compute values of Be(r|X||X) for the mixed sources as a function of
r.

We note here that it easily follows from (4.4.57) that η(R) = 0 if

R ≥ min(D(P1||P 1), D(P1||P 2), D(P2||P 1), D(P2||P 2))

and η(R) is a monotone decreasing and continuous function of R. Therefore,

Be(r|X||X)
≤ min(D(P1||P 1), D(P1||P 2), D(P2||P 1), D(P2||P 2)) (∀r > 0).

(4.4.58)

On the other hand, since η(h) > 0 is obtained from (4.4.57) for any rate h
satisfying

0 < h < min(D(P1||P 1), D(P1||P 2), D(P2||P 1), D(P2||P 2)),

it follows that

inf
R

{R + η(R)|η(R) < η(h)} ≥ h,

which implies that h is η(h)-achievable. Hence, it holds that

lim
r↓0

Be(r|X||X) = min(D(P1||P 1), D(P1||P 2), D(P2||P 1), D(P2||P 2)).

(4.4.59)
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Remark 4.4.3. In fact, we can generalize Example 4.4.4 and Example 4.4.5
in a much simpler way without computation of the information-spectrum.
Let X be an arbitrary (not necessarily finite) alphabet and for four general
sources X1 = {Xn

1 }∞n=1, X2 = {Xn
2 }∞n=1, X1 = {Xn

1}∞n=1 and X2 = {Xn

2}∞n=1

define X = {Xn}∞n=1 as the mixed source of X1 and X2 and X = {Xn}∞n=1

as the mixed source of X1 and X2 given by (4.4.49) and (4.4.50), respectively.
Then, we have the following formula on the hypothesis testing X against X:

Be(r|X||X) = min
1≤i,j≤2

Be(r|Xi||Xj) (∀r > 0). (4.4.60)

This formula is established in the following way. First, we arbitrarily choose
four rates R11, R12, R21 and R22 satisfying

Rij < Be(r|Xi||Xj) (∀i, j = 1, 2). (4.4.61)

Then, the definition of Be(r|Xi||Xj) guarantees the existence of an accep-
tance region A(i,j)

n of the hypothesis testing Xi against Xj satisfying

lim inf
n→∞

1
n

log
1

µ
(i,j)
n

≥ r, (4.4.62)

lim inf
n→∞

1
n

log
1

λ
(i,j)
n

≥ Rij , (4.4.63)

where

µ(i,j)
n = PXn

i
((A(i,j)

n )c), λ(i,j)
n = PX

n

j
(A(i,j)

n ) (i, j = 1, 2). (4.4.64)

We define the acceptance region An of the hypothesis testing X against X
by

An =
(
A(1,1)

n ∩ A(1,2)
n

)
∪

(
A(2,1)

n ∩ A(2,2)
n

)
. (4.4.65)

Since we have

µn ≡ PXn(Ac
n) = α1PXn

1
(Ac

n) + α2PXn
2
(Ac

n)

≤ α1PXn
1
((A(1,1)

n ∩ A(1,2)
n )c)

+ α2PXn
2
((A(2,1)

n ∩ A(2,2)
n )c)

≤ α1PXn
1
((A(1,1)

n )c) + α1PXn
1
((A(1,2)

n )c)

+ α2PXn
2
((A(2,1)

n )c) + α2PXn
2
((A(2,2)

n )c),

(4.4.62) and (4.4.64) guarantee

lim inf
n→∞

1
n

log
1
µn

≥ r. (4.4.66)

On the other hand, since
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λn ≡ PX
n(An) = β1PX

n

1
(An) + β2PX

n

2
(An)

≤ β1PX
n

1
(A(1,1)

n ∪ A(2,1)
n )

+ β2PX
n

2
(A(1,2)

n ∪ A(2,2)
n )

≤ β1PX
n

1
(A(1,1)

n ) + β1PX
n

1
(A(2,1)

n )

+ β2PX
n

2
(A(1,2)

n ) + β2PX
n

2
(A(2,2)

n ),

we obtain from (4.4.63) and (4.4.64) that

lim inf
n→∞

1
n

log
1
λn

≥ min
1≤i,j≤2

Rij . (4.4.67)

By noticing that the rates R11, R12, R21 and R22 are arbitrary as far as they
satisfy (4.4.61), (4.4.67) means that

lim inf
n→∞

1
n

log
1
λn

≥ min
1≤i,j≤2

Be(r|Xi||Xj). (4.4.68)

We can conclude from the combination of (4.4.66) and (4.4.68) that the right-
hand side of (4.4.68) is r-achievable as a rate of the hypothesis testing X
against X. That is, we have established the inequality

Be(r|X||X) ≥ min
1≤i,j≤2

Be(r|Xi||Xj) (4.4.69)

meaning the direct part.
Next, to establish the inequality in the opposite direction, meaning the

converse part, let R be an arbitrary r-achievable rate of the hypothesis testing
X against X and denote by An its corresponding acceptance region. From
the definition, we have

lim inf
n→∞

1
n

log
1
µn

≥ r, (4.4.70)

lim inf
n→∞

1
n

log
1
λn

≥ R, (4.4.71)

where

µn = PXn(Ac
n), λn = PX

n(An). (4.4.72)

Now, consider the hypothesis testing Xi against Xj with this An as an ac-
ceptance region and set

µ(i,j)
n = PXn

i
(Ac

n), λ(i,j)
n = PX

n

j
(An) (i, j = 1, 2). (4.4.73)

Since

µn = α1PXn
1
(Ac

n) + α2PXn
2
(Ac

n)

= α1µ
(1,1)
n + α2µ

(2,1)
n ,
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it follows that

µ(1,1)
n = µ(1,2)

n ≤ µn

α1
,

µ(2,1)
n = µ(2,2)

n ≤ µn

α2
.

Therefore, (4.4.70) guarantees

lim inf
n→∞

1
n

log
1

µ
(i,j)
n

≥ r (∀i, j = 1, 2). (4.4.74)

In addition, by noticing that

λn = β1PX
n

1
(An) + β2PX

n

2
(An)

= β1λ
(1,1)
n + β2λ

(1,2)
n ,

we have

λ(1,1)
n = λ(2,1)

n ≤ λn

β1
,

λ(1,2)
n = λ(2,2)

n ≤ λn

β2
.

Hence, it holds from (4.4.71) that

lim inf
n→∞

1
n

log
1

λ
(i,j)
n

≥ R (∀i, j = 1, 2). (4.4.75)

Equations (4.4.74) and (4.4.75) mean that R is r-achievable for all hypothesis
testings Xi against Xj (i, j = 1, 2). Thus,

R ≤ min
1≤i,j≤2

Be(r|Xi||Xj). (4.4.76)

We note here that (4.4.76) implies

Be(r|X||X) ≤ min
1≤i,j≤2

Be(r|Xi||Xj) (4.4.77)

since R is an arbitrary r-achievable rate of the hypothesis testing X against
X. Now (4.4.60) follows from the combination of (4.4.69) with (4.4.77).

Here, let us apply the formula (4.4.60) to Example 4.4.4 as a special case.
Since X1 = X2 = X, (4.4.60) can be written as

Be(r|X||X) = min(Be(r|X1||X), Be(r|X2||X)).

By substituting the formula (4.4.24) in Example 4.4.1 into the right-hand
side of the equation above, we obtain the following simple formula on the
hypothesis testing for the mixed sources:

Be(r|X||X) = min
(

inf
Q:D(Q||P1)<r

D(Q||P ), inf
Q:D(Q||P2)<r

D(Q||P )
)

.

(4.4.78)
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Similarly, if we consider the case of Example 4.4.5, (4.4.60), together with
the formula (4.4.24) in Example 4.4.1, yields the following simple formula on
the hypothesis testing for the mixed sources:

Be(r|X||X) = min
1≤i,j≤2

inf
Q:D(Q||Pi)<r

D(Q||P j). (4.4.79)

In addition, we also have the following formula of B(X||X) (see Defini-
tion 4.1.1 and Definition 4.1.2):

B(X||X) = min
1≤i,j≤2

B(Xi||Xj)

= min
1≤i,j≤2

D(Xi||Xj), (4.4.80)

which can be verified by using the argument yielding the formula (4.4.60)
(see Theorem 4.1.1 and Example 4.1.1). �

Example 4.4.6. In the mixed hypothesis testing given in Remark 4.4.3, sup-
pose that X1 = {Xn

1 }∞n=1,X2 = {Xn
2 }∞n=1, X1 = {Xn

1}∞n=1 and X2 =
{Xn

2}∞n=1 are first-order stationary irreducible Markov sources subject to tran-
sition probabilities P1(·|·), P2(·|·), P 1(·|·) and P 2(·|·), respectively (assume
that X is a finite source alphabet). In this case, by substituting (4.4.28)
in Example 4.4.2 into the formula (4.4.60) in Remark 4.4.3, we obtain the
following formula on the mixed hypothesis testing X against X:

Be(r|X||X) = min
1≤i,j≤2

inf
Q∈P0:D(Q||Pi|q)<r

D(Q||P j |q) (∀r > 0). (4.4.81)

Example 4.4.7. Let us consider here the case that X is a countably in-
finite alphabet, say X = {1, 2, · · ·}. Then, we can use Cramér’s Theorem
(cf. Dembo and Zeitouni [22]), which always holds, although Sanov’s theo-
rem used in Example 4.4.1 and Example 4.4.2 does not always hold. First,
let P = (p1, p2, · · ·) and P = (p1, p2, · · ·) be two arbitrary probability dis-
tributions over X and denote by X and X the random variables that are
equal to k with probabilities pk and pk (k = 1, 2, · · ·), respectively. Let
X = {Xn = (X1, X2, · · · , Xn)}∞n=1 and X = {Xn

= (X1, X2, · · · , Xn)}∞n=1

be the stationary memoryless sources specified by X and X, respectively.
Since the divergence density rate can be written as

1
n

log
PXn(Xn)
PX

n(Xn)
=

1
n

n∑
i=1

log
PXi

(Xi)
PXi

(Xi)
, (4.4.82)

η(R) in (4.4.1) can be expressed as

η(R) = inf
x≤R

I(x), (4.4.83)

where I(x) denotes the large deviation rate function of (4.4.82). If we notice

here that the moment generating function M(θ) of log
PX(X)
PX(X)

is written as
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M(θ) = Ee
θ log

PX (X)
P

X
(X) =

∞∑
i=1

pie
θ log

pi
pi

=
∞∑

i=1

p1+θ
i p−θ

i . (4.4.84)

Cramér’s theorem tells that the rate function I(x) is given by

I(x) = sup
θ

(θx − Λ(θ)), (4.4.85)

where Λ(θ) = log M(θ) and − log M(θ) is usually called Chernoff’s θ-distance
(cf. Blahut [11], Cover and Thomas [17]). Here, since the expectation of

log
PX(X)
PX(X)

is

E
[
log

PX(X)
PX(X)

]
=

∞∑
i=1

pi log
pi

pi

≡ D(P ||P ) (divergence),

we notice from (4.4.83) that η(R) = 0 for R ≥ D(P ||P ) and η(R) = I(R)
for R ≤ D(P ||P ) (I(x) is monotone increasing for x ≥ D(P ||P ), monotone
decreasing for x ≤ D(P ||P ) and I(x) = 0 at x = D(P ||P )). Therefore,
we obtain the formula for computing values of Be(r|X||X) by substituting
(4.4.83) into (4.4.2) in Theorem 4.4.1.

If (4.4.84) is substituted into (4.4.85) with x = R, we obtain

I(R) = sup
θ

(θR − log
∞∑

i=1

p1+θ
i p−θ

i ). (4.4.86)

Thus, we can compute I(R) by using this equation. To this end, we differen-
tiate the terms on the right-hand side with respect to θ and set it to 0. Then,
we have the following equation with respect to θ:

R =

∞∑
i=1

p1+θ
i p−θ

i log
pi

pi

∞∑
i=1

p1+θ
i p−θ

i

≡ ϕ(θ). (4.4.87)

As far as P �= P is satisfied, ϕ(θ) on the right-hand side turns out to be
a continuous and strictly monotone increasing function of θ owing to the
term by term differentiability of M(θ) (cf. Dembo and Zeitouni [22]), which
is easily verified by using the Schwarz inequality (cf. Gallager [30]). If we
define D = {−∞ < ϕ(θ) < +∞ | θ}, then D forms an interval on the real
line. Consequently, if R ∈ D, I(R) can be computed as

I(R) = θR − log
∞∑

i=1

p1+θ
i p−θ

i , (4.4.88)
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where θ is determined by (4.4.87). In this case, denoting by P(X ) the set of
all probability distributions over X and QR the projection of P on the plane
in P(X ) defined by

κR =

{
Q ∈ P(X )

∣∣∣∣∣
∞∑

i=1

Q(i) log
pi

pi

= R

}
,

we can verify by direct computation that

I(R) = D(QR||P ) (4.4.89)

and

QR(i) =
p1+θ

i p−θ
i∑∞

i=1 p1+θ
i p−θ

i

(i ∈ X ) (4.4.90)

with θ satisfying (4.4.87). That is, if R ∈ D, then Cramér’s theorem is reduced
to Sanov’s theorem as in Example 4.4.1 for a finite alphabet case. However,
equality such as (4.4.89) does not hold for R satisfying R /∈ D. Therefore, it
is important to know what kind of interval D forms. In particular, if

D(P ||P ) < +∞, D(P ||P ) < +∞, (4.4.91)

then

[−D(P ||P ), D(P ||P )] ⊂ D.

Thus, in this case we obtain

Be(r|X||X) = inf
Q:D(Q||P )<r

D(Q||P ) (4.4.92)

for 0 < r ≤ D(P ||P ) from Sanov’s theorem in the same way as in Exam-
ple 4.4.1 (see Fig. 4.5). This equation clearly holds for r > D(P ||P ); we

P

P

D(Q||P ) ≤ r

Be(r|X||X)D(Q||P ) ≤

Fig. 4.5.

have Be(r|X||X) = 0 in this case. The formula (4.4.92) is regarded as an
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extension of Hoeffding’s theorem in (4.4.24) for the case of a finite alphabet
to the case with a countably infinite alphabet X . In fact, the formula (4.4.92)
holds in general with any infinite alphabet X that is not necessarily countably
infinite under the condition (4.4.91). This fact follows from the fact that, if
we rewrite p1+θ

i p−θ
i , appearing in the proof above, in the equivalent form of

pi

(
pi

pi

)θ

, pi

pi
is well-defined as the Radon-Nikodym derivatives (cf. Billingsley

[9]) for any infinite alphabet X . We note here that the condition (4.4.91)
is equivalent to the condition that the probability measure P is absolutely
continuous with respect to the probability measure P and, conversely, P is
absolutely continuous with respect to P .

Cramér type equivalent of the formula (4.4.92) under the condition
(4.4.91) is found in Dembo and Zeitouni [22] where the Neyman-Pearson
lemma is directly invoked, while here Theorem 4.4.1 is invoked. �

Example 4.4.8. Let us consider the hypothesis testing for autoregressive
processes given in Example 1.9.9 in §1.9. Let the null hypothesis X =
{Xn = (X1, X2, . . . , Xn)}∞n=1 and the alternative hypothesis X = {Xn

=
(X1, X2, . . . , Xn)} be the autoregressive processes defined by

Xn = aXn−1 + Wn (0 < a < 1; n = 1, 2, · · ·),

Xn = aXn−1 + Wn (0 < a < 1; n = 1, 2, · · ·),

respectively, where

W = (W1, W2, · · ·) (Wn = (W1, · · · , Wn)),

W = (W 1, W 2, · · ·) (W
n

= (W 1, · · · ,Wn))

are the stationary memoryless sources subject to probability distributions PW

and PW over the same alphabet W, respectively, and we define X0 = X0 = 0.
The alphabet W can be any countably infinite set, continuous set or even
any subset of real numbers. Then, since there is a one-to-one correspondence
between the two divergence density rates

1
n

log
PXn(Xn)
PX

n(Xn)

and

1
n

log
PW n(Wn)
PW

n(Wn)
=

1
n

n∑
i=1

log
PWi(Wi)
PW i

(Wi)
,

the information-spectrum of
1
n

log
PXn(Xn)
PX

n(Xn)
coincides with the information-

spectrum of
1
n

log
PW n(Wn)
PW

n(Wn)
. Therefore, if
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D(PW ||PW ) < +∞, D(PW ||PW ) < +∞

are satisfied, from the formula (4.4.92) developed in Example 4.4.7 we obtain
the following formula on the hypothesis testing for autoregressive sources:

Be(r|X||X) = inf
Q:D(Q||PW )<r

D(Q||PW ). (4.4.93)

Example 4.4.9. Let us consider here the case that the null hypothesis X
and the alternative hypothesis X are the stationary memoryless sources sub-
ject to Gaussian distributions N(κ, σ2) and N(κ, σ2), respectively. We denote
the probability density functions by

Pκ(x) =
1√
2πσ

e−
(x−κ)2

2σ2 ,

Pκ(x) =
1√
2πσ

e−
(x−κ)2

2σ2 .

Denote by X the random variable subject to the probability density function
Pκ. Since the moment generating function M(θ) = E(eθY ) of

Y = log
Pκ(X)
Pκ(X)

(4.4.94)

is computed as

M(θ) = e
(κ−κ)2(θ+θ2)

2σ2 ,

we have

θx − log M(θ) = θx − (κ − κ)2(θ + θ2)
2σ2

.

Then, simple computation tells us that the large deviation rate function I(x)
for (4.4.94) can be written as

I(x) = sup
θ

(θx − log M(θ)) =
σ2(x − a)2

2(κ − κ)2
, (4.4.95)

where we set a =
(κ − κ)2

2σ2
for simplicity. In addition, we note that D(Pκ||Pκ)

= a. Now, Cramér’s theorem implies that η(R) in Theorem 4.4.1 can be
computed as

η(R) = inf
x≤R

I(x) = min
x≤R

σ2(x − a)2

2(κ − κ)2

= min
{

[a − R]+,
σ2(R − a)2

2(κ − κ)2

}
. (4.4.96)

Furthermore, since
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R + η(R) = min
{

R + [a − R]+, R +
σ2(R − a)2

2(κ − κ)2

}

= min
{

R + [a − R]+,
σ2(R + a)2

2(κ − κ)2

}
, (4.4.97)

the substitution of (4.4.96) and (4.4.97) into the right-hand side of (4.4.2) in
Theorem 4.4.1 and a little computation lead to

Be(r|X||X) = min
{
[a − r]+, (

√
r −

√
a)2

}
= (

√
r −

√
a)21[r ≤ a],

where 1[ · ] denotes the characteristic function (Fig 4.6). This formula tells

Be(r|X||X)

a
r

Fig. 4.6.

us that Be(r|X||X) is monotone decreasing for 0 < r < a. It also tells us that
Be(0|X||X) = a = D(Pκ||Pκ) and Be(r|X||X) = 0 for r ≥ a. �

Example 4.4.10. In all the examples that we have given so far, the function
η(R) is continuous in R. However, we can construct an example where η(R)
is not continuous in the following way. Let the source alphabet be X = {0, 1}
and fix a subset Sn of Xn satisfying |Sn| = 2αn arbitrarily, where α is a
constant satisfying 0 < α < 1. We also arbitrarily fix x0 and x1 satisfying
x0,x1 ∈ Xn − Sn and x0 �= x1. Now, we define the null hypothesis X =
{Xn}∞n=1 as

PXn(x) =




2−2αn for x ∈ Sn,
2−3αn for x = x1,

1 − 2−αn − 2−3αn for x = x0,
0 for x �∈ Sn ∪ {x1,x0},

(4.4.98)

which clearly satisfies PXn(Sn) = 2−αn. We define the alternative hypothesis
X = {Xn}∞n=1 as PX

n(x) = 2−n (∀x ∈ Xn). Then, simple computation
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tells us that the divergence-spectrum becomes the three-point spectrum with
three peaks of probabilities 1−2−αn−2−3αn, 2−αn and 2−3αn at 1+ 1

n log(1−
2−αn −2−3αn), 1−2α and 1−3α, respectively. Thus, η(R) is computed from
its definition as follows:

η(R) =




+∞ for R < 1 − 3α,
3α for 1 − 3α ≤ R < 1 − 2α,
α for 1 − 2α ≤ R < 1,
0 for 1 ≤ R.

(4.4.99)

Then, R + η(R) is expressed as

R + η(R) =




+∞ for R < 1 − 3α,
R + 3α for 1 − 3α ≤ R < 1 − 2α,
R + α for 1 − 2α ≤ R < 1,

R for 1 ≤ R.

(4.4.100)

By using Theorem 4.4.1, we obtain the following formula:

Be(r|X||X) =
{

1 − α for r > α,
1 for 0 < r ≤ α.

(4.4.101)

We note here that, if r > α, inf
R

on the right-hand side of (4.4.2) is attained

by R = R◦ ≡ 1 − 2α as

inf
R

{R + η(R) | η(R) < r} = R◦ + η(R◦) (R◦ ≡ 1 − 2α)

= 1 − α.

In particular, if r > 3α, inf
R

is not attained by the boundary point R ≡
inf{R|η(R) < r} = 1 − 3α of {R|η(R) < r}, but attained by the internal
point R = R◦ ≡ 1 − 2α. This kind of phenomenon only occurs in the hy-
pothesis testing treating general sources that do not satisfy the consistency
condition, i.e., such a phenomenon never occurs as far as we treat ordinary
sources given in the preceding examples. �

4.5 Hypothesis Testing and Large Deviation:
Probability of Correct Testing

In §4.4 we have considered the large deviation behavior of the error probabil-
ity of the second kind λn subject to the constraint that the error probability
of the first kind µn asymptotically satisfies µn � e−nr for a constant r > 0.
However, λn comes to satisfy λn � 1 if r > 0 is sufficiently large (see Ex-

ample 4.4.1). In this kind of situation it is important to investigate the large
deviation behavior of 1 − λn, the probability of correct testing against the
alternative hypothesis, instead of the error probability λn itself. The prob-
lem to be considered is how the exponent R > 0 can be small when 1− λn is
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expressed as 1− λn � e−nR. This section is devoted to analysis of this prob-
lem. We begin with formulation of this problem. The null hypothesis and the
alternative hypothesis are denoted by X = {Xn}∞n=1 and X = {Xn}∞n=1 in
this section as well.

Definition 4.5.1.

Rate R is r-achievable def⇐⇒ There exists an acceptance region An

satisfying lim inf
n→∞

1
n

log
1
µn

≥ r and

lim sup
n→∞

1
n

log
1

1 − λn
≤ R.

Definition 4.5.2 (infimum r-achievable correct probability expo-
nent).

B∗
e (r|X||X) = inf {R | R is r-achievable} .

The objective of this section is determination of this B∗
e (r|X||X) as a

(left-continuous and monotone increasing) function of r. To this end, let us
define a function η(R) by

η(R) = lim
n→∞

1
n

log
1

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

} . (4.5.1)

This function is in the same form as η(R) in (4.4.1) in the preceding section.
However, η(R) in (4.5.1) is different from η(R) in (4.4.1) in the sense that
the existence of the limit on the right-hand side of (4.5.1) is assumed. We
also note that Lemma 4.4.1 implies that η(R) is monotone decreasing in R
and η(R) = 0 for R > D(X||X).

We give one assumption on the information-spectrum. That is, we assume
that for any constant M > 0 there exists some sufficiently large constant
K > 0 satisfying

lim inf
n→∞

1
n

log
1

Pr

{
1
n

log
PX

n(X
n
)

PXn(X
n
)
≥ K

} ≥ M. (4.5.2)

Remark 4.5.1. This assumption means that the information-spectrum of
X with respect to X does not shift to the right more than some specified
speed as n increases. For example, if X and X are the stationary memoryless
sources subject to probability distributions PX and PX over a finite alphabet
X , respectively, and there is no x ∈ X satisfying PX(x) = 0 and PX(x) > 0,
the assumption (4.5.2) trivially holds. The assumption (4.5.2) holds for other
stationary sources that we usually treat. �
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We have the following theorem that is a dual counterpart of Theo-
rem 4.4.1.

Theorem 4.5.1 (Han [38]). Assume that (4.5.2) holds. Then, for any r ≥ 0

B∗
e (r|X||X) = inf

R

{
R + η(R) + [r − η(R)]+

}
, (4.5.3)

where B∗
e (0|X||X) (r = 0) is defined as 0.

Remark 4.5.2. Lemma 4.4.1 implies that

inf
R>D(X||X)

{
R + η(R) + [r − η(R)]+

}
= inf

R>D(X||X)
(R + r),

where the infimum on the right-hand side is attained at R = D(X||X).
Hence, inf

R
on the right-hand side of (4.5.3) can be replaced with inf

R≤D(X||X)

if η(R) is continuous at R = D(X||X). Recently, another general expression
for B∗

e (r|X||X) was given by Nagaoka and Hayashi [69]. �

Proof of Theorem 4.5.1.
1) Direct part:

In the proof of the direct part we do not need the assumption (4.5.2).
First, keep in mind that η(R) in

R + η(R) + [r − η(R)]+

on the right-hand side of (4.5.3) is monotone decreasing, and set

ρ∗0 = inf
R

{
R + η(R) + [r − η(R)]+

}
. (4.5.4)

Then, there exists an R0 such that ρ∗0 is expressed as

ρ∗0 = lim
ε↓0

(R0 + ε + η(R0 + ε) + [r − η(R0 + ε)]+), (4.5.5)

which we rewrite as

ρ∗0 = R0 + γ + η(R0 + γ) + [r − η(R0 + γ)]+ − ν(γ), (4.5.6)

where γ > 0 is an arbitrarily small constant and ν(γ) → 0 as γ → 0. We use
here the notation that

S∗
n(a) =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
≤ a

}
. (4.5.7)

Then, since the existence of the limit in (4.5.1) is assumed, we have

e−n(η(R0+γ)+τ) ≤ Pr{Xn ∈ S∗
n(R0 + γ)} ≤ e−n(η(R0+γ)−τ) (∀n ≥ n0),

(4.5.8)
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where τ > 0 is an arbitrarily small constant. Next, define a subset Cn of
S∗

n(R0 + γ) as follows; if η(R0 + γ) ≥ r then set Cn = S∗
n(R0 + γ), otherwise

set Cn = Tn, where Tn is an arbitrary subset of S∗
n(R0 + γ) satisfying

lim
n→∞

1
n

log
1

Pr {Xn ∈ Tn}
= r. (4.5.9)

It should be noted here that it is always possible to choose such a subset Tn,
because in the case with η(R0 + γ) < r we can make η(R0 + γ) + τ < r hold
with a τ > 0 small enough, where we may consider a randomized hypothesis
testing if necessary. Now, consider the hypothesis testing with Cn as the
critical region. First, we evaluate the error probability of the first kind µn.
In the case with η(R0 + γ) ≥ r, since Cn = S∗

n(R0 + γ), by means of (4.5.8)
we have

Pr {Xn ∈ Cn} ≤ e−n(η(R0+γ)−τ)

≤ e−n(r−τ) (∀n ≥ n0),

while in the case where η(R0 + γ) < r, by means of (4.5.9) we have

Pr {Xn ∈ Cn} ≤ e−n(r−τ) (∀n ≥ n0).

Then, in either case, it holds that

Pr {Xn ∈ Cn} ≤ e−n(r−τ). (4.5.10)

Therefore, the error probability of the first kind µn is evaluated as

µn ≡ Pr {Xn ∈ Cn} ≤ e−n(r−τ).

Hence,

lim inf
n→∞

1
n

log
1
µn

≥ r − τ.

Since τ > 0 is arbitrary, we can conclude that

lim inf
n→∞

1
n

log
1
µn

≥ r. (4.5.11)

Next, we evaluate 1−λn, the probability of correct testing, where λn is the
error probability of the second kind. First, we observe that if x ∈ S∗

n(R0 + γ)
then

PX
n(x) ≥ PXn(x)e−n(R0+γ) (4.5.12)

holds. Then, in the case of η(R0 + γ) ≥ r, since Cn = S∗
n(R0 + γ), it follows

from (4.5.8) that

Pr
{

X
n ∈ Cn

}
=

∑
x∈Cn

PX
n(x)

≥
∑
x∈Cn

PXn(x)e−n(R0+γ)

= e−n(R0+γ)Pr {Xn ∈ S∗
n(R0 + γ)}

≥ e−n(R0+γ+η(R0+γ)+τ) (∀n ≥ n0). (4.5.13)
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Similarly, in the case of η(R0 + γ) < r, since Cn = Tn, it follows from (4.5.9)
that

Pr
{

X
n ∈ Cn

}
≥ e−n(R0+γ+r+τ) (∀n ≥ n0). (4.5.14)

Summarizing (4.5.13) and (4.5.14), in either case we have

Pr
{

X
n ∈ Cn

}
≥ e−n(R0+γ+η(R0+γ)+[r−η(R0+γ)]++τ). (4.5.15)

Substitution of (4.5.6) into (4.5.15) yields

Pr
{

X
n ∈ Cn

}
≥ e−n(ρ∗

0+τ+ν(γ)).

Hence,

1 − λn = Pr
{

X
n ∈ Cn

}
≥ e−n(ρ∗

0+τ+ν(γ)),

from which it follows that

lim sup
n→∞

1
n

log
1

1 − λn
≤ ρ∗0 + τ + ν(γ). (4.5.16)

We notice here that we can make τ + ν(γ) → 0, because τ > 0 and γ > 0 are
both made arbitrarily small. Thus, by virtue of (4.5.11) and (4.5.16) we can
conclude that any rate R satisfying R > ρ∗0 is r-achievable.

2) Converse part:
In the proof of the converse part we need the assumption (4.5.2). First,

let K > 0 be a large enough constant (to be specified below) and γ > 0 be an
arbitrarily small constant. Putting L = 2K

γ , we divide the interval (−K, K]
into L subintervals with equal width γ to have

Ii = (ci − γ, ci] (i = 1, 2, · · · , L),

where ci ≡ K − (i − 1)γ. According to this interval partition, divide the set

T ∗
n =

{
x ∈ Xn

∣∣∣∣−K <
1
n

log
PXn(x)
PX

n(x)
≤ K

}

into the L subsets

S(i)
n =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
∈ Ii

}
(i = 1, 2, · · · , L).

This operation is called the information-spectrum slicing. Moreover, we define

S(0)
n =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
≤ −K

}
,

S(−1)
n =

{
x ∈ Xn

∣∣∣∣ 1
n

log
PXn(x)
PX

n(x)
> K

}
,
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where it is obvious that Xn =
⋃L

j=−1 S
(j)
n . Suppose that R is r-achievable,

i.e., suppose that there exists a critical region Cn such that

lim inf
n→∞

1
n

log
1
µn

≥ r, (4.5.17)

lim sup
n→∞

1
n

log
1

1 − λn
≤ R. (4.5.18)

Then, from (4.5.17) we have

µn ≤ e−n(r−τ) (∀n ≥ n0), (4.5.19)

where τ > 0 is an arbitrarily small constant. In order to evaluate the value
of Pr

{
X

n ∈ Cn

}
, let us first evaluate the value of

Pr
{

Xn ∈ C(i)
n

}
(i = 1, 2, · · · , L),

where C(i)
n ≡ S

(i)
n ∩Cn (i = −1, 0, 1, 2, · · · , L). We now evaluate Pr

{
Xn ∈ C(i)

n

}
(i = 1, 2, · · · , L) in two ways as follows. First, we observe that

Pr
{

Xn ∈ C(i)
n

}
≤ Pr {Xn ∈ Cn} = µn,

which, together with (4.5.19), yields

Pr
{

Xn ∈ C(i)
n

}
≤ e−n(r−τ). (4.5.20)

Next, by the definitions of η(ci) and S
(i)
n , we see that

Pr{Xn ∈ S(i)
n } ≤ Pr

{
1
n

log
PXn(Xn)
PX

n(Xn)
≤ ci

}

≤ e−n(η(ci)−τ) (∀n ≥ n0).

Hence,

Pr
{

Xn ∈ C(i)
n

}
≤ Pr

{
Xn ∈ S(i)

n

}
≤ e−n(η(ci)−τ). (4.5.21)

A consequence of (4.5.20) and (4.5.21) is

Pr
{

Xn ∈ C(i)
n

}
≤ e−n(η(ci)+[r−η(ci)]

+−τ) (i = 1, 2, · · · , L). (4.5.22)

We can now evaluate Pr
{

X
n ∈ C(i)

n

}
as follows. Since x ∈ C(i)

n implies x ∈
S

(i)
n (i = 1, 2, · · · , L) and hence also PX

n(x) ≤ PXn(x)e−n(ci−γ), we have
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Pr
{

X
n ∈ C(i)

n

}
=

∑
x∈C(i)

n

PX
n(x)

≤
∑

x∈C(i)
n

PXn(x)e−n(ci−γ)

= e−n(ci−γ)Pr
{

Xn ∈ C(i)
n

}
≤ e−n(ci+η(ci)+[r−η(ci)]

+−γ−τ) (4.5.23)

for i = 1, 2, · · · , L, where we have used (4.5.22) in the last inequality. Further-
more, let us evaluate Pr

{
X

n ∈ S
(−1)
n

}
and Pr

{
X

n ∈ S
(0)
n

}
. Since x ∈ S

(−1)
n

implies PX
n(x) ≤ PXn(x)e−nK , we obtain

Pr
{

X
n ∈ S(−1)

n

}
=

∑
x∈S

(−1)
n

PX
n(x)

≤
∑

x∈S
(−1)
n

PXn(x)e−nK

≤ e−nK . (4.5.24)

Recalling here that

Pr
{

X
n ∈ S(0)

n

}
= Pr

{
1
n

log
PXn(X

n
)

PX
n(X

n
)
≤ −K

}

= Pr

{
1
n

log
PX

n(X
n
)

PXn(X
n
)
≥ K

}

and noting the assumption (4.5.2), we see that for any M > 0 there exists a
K > 0 large enough such that

Pr
{

X
n ∈ S(0)

n

}
≤ e−n(M−τ) (∀n ≥ n0). (4.5.25)

Summarizing (4.5.23)–(4.5.25), we have

1 − λn

= Pr
{

X
n ∈ Cn

}
=

L∑
i=−1

Pr
{

X
n ∈ C(i)

n

}

≤
L∑

i=1

e−n(ci+η(ci)+[r−η(ci)]
+−γ−τ) + e−nK + e−n(M−τ). (4.5.26)

On the other hand, since, by the definition (4.5.4) of ρ∗0,

ci + η(ci) + [r − η(ci)]+ ≥ ρ∗0 (i = 1, 2, · · · , L),

it follows from (4.5.26) that
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1 − λn ≤ Le−n(ρ∗
0−γ−τ) + e−nK + e−n(M−τ).

Thus, if we take M > 0 and K > 0 large enough, then

lim sup
n→∞

1
n

log
1

1 − λn
≥ ρ∗0 − γ − τ. (4.5.27)

Therefore, R ≥ ρ∗0 −γ− τ holds, owing to (4.5.18) and (4.5.27). Since both of
γ > 0 and τ > 0 are arbitrary, we can let γ → 0 and τ → 0 to obtain R ≥ ρ∗0.
Thus, we can conclude that any r-achievable rate R cannot be smaller than
ρ∗0. �

Example 4.5.1. Suppose that X is a finite source alphabet. Let the null
hypothesis X and the alternative hypothesis X be the stationary memoryless
sources subject to probability distributions P and P , respectively. Here, for
simplicity, we assume that P (x) > 0 for all x ∈ X . which is the case that the
assumption (4.5.2) is satisfied. As is shown in Example 4.4.1, in this setting
η(R) = 0 for R ≥ D(P ||P ) and

η(R) = D(PR||P ),
R + η(R) = D(PR||P )

for R ≤ D(P ||P ), where PR denotes the projection of P on the plane κR

defined in (4.4.22). We note here that, since D(X||X) = D(P ||P ), it suf-
fices to consider R satisfying R ≤ D(P ||P ) in (4.5.3) of Theorem 4.5.1 (see
Remark 4.5.2). Then, since we have

R + η(R) + [r − η(R)]+ = D(PR||P ) + [r − D(PR||P )]+,

Theorem 4.5.1 yields

B∗
e (r|X||X) = inf

R

{
D(PR||P ) + [r − D(PR||P )]+

}
. (4.5.28)

This formula indicates that B∗
e (r|X||X) is a monotone increasing function of

r. In addition, while B∗
e (r|X||X) = 0 for the case of r ≤ D(P ||P ), B∗

e (r|X||X)
can be expressed as

B∗
e (r|X||X) = inf

R:D(PR||P )≤r

{
D(PR||P ) + r − D(PR||P )

}
= inf

Q:D(Q||P )≤r

{
D(Q||P ) + r − D(Q||P )

}
(4.5.29)

for the case of r ≥ D(P ||P ) because it is easily verified that inf
R

on the right-

hand side of (4.5.28) is achieved by R satisfying D(PR||P ) ≤ r (Fig. 4.7). This
formula is the same as the formula first developed by Han and Kobayashi [43]
based on the argument of types. �
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P

P

D(Q||P ) ≤ r

B∗
e(r|X||X)D(Q||P ) ≤

Fig. 4.7.

Example 4.5.2. Let us consider the hypothesis testing for first-order sta-
tionary irreducible Markov sources X and X with a finite alphabet that are
considered in Example 4.4.2. We use the notation that appeared in Exam-
ple 4.4.2. From (4.4.25) and (4.4.26), we obtain η(R) = 0 for R ≥ D(P ||P |p)
and

η(R) = D(PR||P |pR),
R + η(R) = D(PR||P |pR),

for R ≤ D(P ||P |p). Then, Theorem 4.5.1 yields

B∗
e (r|X||X) = inf

R

{
D(PR||P |pR) + [r − D(PR||P |pR)]+

}
.

Since it is easy to verify that, if r ≥ D(P ||P |p), inf
R

is attained by R satisfying

D(PR||P |pR) ≤ r,

we obtain

B∗
e (r|X||X) = inf

R:D(PR||P |pR)≤r

{
D(PR||P |pR) + r − D(PR||P |pR)

}
= inf

Q∈P0:D(Q||P |q)≤r

{
D(Q||P |q) + r − D(Q||P |q)

}
, (4.5.30)

where p denotes the stationary distribution of P (cf. Nakagawa and Kanaya
[71]). In addition, we can check that B∗

e (r|X||X) = 0 for all r ≤ D(P ||P |p). �

Example 4.5.3. In order to generalize Example 4.5.2 above, let us consider
the hypothesis testing with unifilar finite-state sources X and X given in
Example 4.4.3 in §4.4. We use the same notations used in Example 4.4.3.
Since (4.4.35) and (4.4.36) hold from Sanov’s Theorem on unifilar finite-state
sources, Theorem 4.5.1 leads to the following formula of B∗

e (r|X||X) for the
hypothesis testing X against X:
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B∗
e (r|X||X)

= inf
R

{
D(PXRSR

||P |PSR
) + [r − D (PXRSR

||P |PSR
)]+

}
= inf

PXS∈V0

{
D(PXS ||P |PS) + [r − D (PXS ||P |PS)]+

}
. (4.5.31)

Example 4.5.4. Let us consider the hypothesis testing for autoregressive
processes with a finite alphabet W treated in Example 4.4.8 in §4.4. If r ≥
D(PW ||PW ), then the result of Example 4.5.1 yields the following formula:

B∗
e (r|X||X) = inf

Q:D(Q||PW )≤r

{
D(Q||PW ) + r − D(Q||PW )

}
. (4.5.32)

Here, B∗
e (r|X||X) = 0 for r ≤ D(PW ||PW ). �

Example 4.5.5. Let X be a finite alphabet. Consider the mixed source X =
{Xn}∞n=1 and the stationary memoryless source X = {Xn}∞n=1 subject to a
probability distribution P given in Example 4.2.1. We assume that P1(x) > 0
and P2(x) > 0 are satisfied for all x ∈ X in order to meet the assumption
(4.5.2). Recall that the mixed source X = {Xn}∞n=1 is defined as

PXn(x) = α1PXn
1
(x) + α2PXn

2
(x) (∀x ∈ Xn), (4.5.33)

where X1 = {Xn
1 }∞n=1 and X2 = {Xn

2 }∞n=1 denote the stationary memoryless
sources subject to probability distributions P1 and P2, respectively. Now, we
define ν1 and ν2 by (4.4.42) and (4.4.43) in Example 4.4.4, respectively, and
the half-spaces κ

(1)
R and κ

(2)
R in P(X ) by

κ
(1)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P (x)

≤ R

}
, (4.5.34)

κ
(2)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P (x)

≤ R

}
, (4.5.35)

where P(X ) denotes the set of all probability distributions over X . Denote by
P

(1)
R and P

(2)
R the projections of P1 and P2 on ν1 ∩ κ

(1)
R and ν2 ∩ κ

(2)
R , respec-

tively. By taking (1.9.39) and (1.9.40) in Example 1.9.4 into consideration
and applying Sanov’s theorem, we obtain

η(R) = min(D(P (1)
R ||P1), D(P (2)

R ||P2)). (4.5.36)

This formula indicates that η(R) = 0 if R ≥ min(D(P1||P ), D(P2||P )) and
η(R) is a continuous and monotone decreasing function of R. By substituting
this η(R) into the right-hand side of (4.5.3) in Theorem 4.5.1, we can com-
pute values of B∗

e (r|X||X) as a function of r. �



318 4 Hypothesis Testing

Example 4.5.6. Let us consider the hypothesis testing for the mixed sources
given in Example 4.4.5. First, we define ν1, ν2, µ1 and µ2 as in the same way
as Example 4.4.5 and the half-spaces κ

(1)
R , κ

(2)
R , κ

(3)
R and κ

(4)
R by

κ
(1)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P 1(x)

≤ R

}
, (4.5.37)

κ
(2)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P1(x)
P 2(x)

≤ R

}
, (4.5.38)

κ
(3)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P 2(x)

≤ R

}
, (4.5.39)

κ
(4)
R =

{
Q ∈ P(X )

∣∣∣∣∣
∑
x∈X

Q(x) log
P2(x)
P 1(x)

≤ R

}
(4.5.40)

in the same way as Example 4.4.5. Denote by P
(1)
R and P

(2)
R the projections

of P1 and P2 on

ν1 ∩
(
(µ1 ∩ κ

(1)
R ) ∪ (µ2 ∩ κ

(2)
R )

)
,

ν2 ∩
(
(µ2 ∩ κ

(3)
R ) ∪ (µ1 ∩ κ

(4)
R )

)
,

respectively. Then, if we apply Sanov’s theorem in the same way as Exam-
ple 4.4.5, we obtain

η(R) = min(D(P (1)
R ||P1), D(P (2)

R ||P2)), (4.5.41)

which is the same as η(R) obtained in Example 4.4.5. This formula indicates
that η(R) = 0 if

R ≥ min(D(P1||P 1), D(P1||P 2), D(P2||P 1), D(P2||P 2))

is satisfied and η(R) is a continuous and monotone decreasing function of R.
By substituting this η(R) into the right-hand side of (4.5.3) in Theorem 4.5.1,
we can compute values of B∗

e (r|X||X) as a function of r. �

Remark 4.5.3. Unfortunately, there is no simple form of B∗
e (r|X||X) cor-

responding to Be(r|X||X) for the mixed sources X and X given in (4.4.60)
in Remark 4.4.3. �

Example 4.5.7. So far, we have only considered the cases where X is a finite
alphabet. If we consider general stationary memoryless sources with an al-
phabet X not restricted to a finite set, Sanov’s theorem does not always hold.
However, we can compute B∗

e (r|X||X) by using Cramér’s theorem, which al-
ways holds (suppose here that X and X are stationary memoryless sources).
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That is, as is mentioned in Example 4.4.7, we have only to use the rate
function I(x) and set

η(R) = inf
x≤R

I(x) (4.5.42)

similarly to (4.4.83). Note that the right-hand side of (4.5.42) is expressed in
terms of divergences (similarly to Sanov’s theorem) only if R ∈ D is satisfied,
where we use the notation given in Example 4.4.7. �

Example 4.5.8. Let us consider the stationary memoryless Gaussian sources
X = {Pκ} and X = {Pκ} treated in Example 4.4.9 in the preceding section.
Since η(R) and R+η(R) are given in (4.4.96) and (4.4.97), respectively, sub-
stitution of these into (4.5.3) in Theorem 4.5.1 and some simple calculation
yield

B∗
e (r|X||X) = (

√
r −

√
a)21[r ≥ a] (4.5.43)

(Fig 4.8), where a = D(Pκ||Pκ). Notice here that this function and Be(r|X||X)
in Example 4.4.9 are symmetric with respect to the vertical axis. The formula
(4.5.43) tells us that B∗

e (r|X||X) is a monotone increasing function of r. It
also tells us that B∗

e (r|X||X) = 0 for r ≤ a. �

B∗
e(r|X||X)

a
r

0

Fig. 4.8.

4.6 Generalized Hypothesis Testing

In all the hypothesis testing problems treated in this chapter, PX
n in the

alternative hypothesis X = {PX
n}∞n=1 is regarded as a probability distribu-

tion (probability measure) over Xn. However, all of the theorems, lemmas
and remarks except Theorem 4.3.2 still hold if PX

n is replaced with another
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nonnegative measure (not necessarily a probability measure) Gn satisfying
Gn(∅) = 0. Here, the error probability of the second kind λn ≡ Pr{Xn ∈ An}
is interpreted as λn ≡ Gn(An). In addition, the inequality D(X||X) ≥ 0 must
be replaced with the inequality D(X||X) ≥ −κ, where

κn ≡ Gn(Xn) (n = 1, 2, · · ·),

κ ≡ lim sup
n→∞

1
n

log Gn(Xn),

κ ≡ lim sup
n→∞

1
n

log
1

Gn(Xn)
.

We also note that Theorem 4.5.1 holds only if κ < +∞ is satisfied. We must
replace B∗

e (0|X||X) = 0 in Theorem 4.5.1 with B∗
e (0|X||X) = κ and 1 − λn

in Definition 4.5.1 by κn − λn.
As an example of such nonnegative measures Gn (n = 1, 2, · · ·) we may

consider the measure (called the counting measure) satisfying Gn(x) = 1
(∀x ∈ Xn; ∀n = 1, 2, · · ·) if X is a finite or a countably infinite alphabet.
Another example may be the n-dimensional Lebesgue measure if X is the set
of all real numbers (Theorem 4.3.2 holds if PX

n is replaced with the counting
measure or the Lebesgue measure). In particular, the hypothesis testing with
the counting measure as Gn is nothing but the fixed-length source coding
described in Chapter 1 as will be shown in the following section.

Remark 4.6.1. If the probability distribution PXn of the null hypothesis is
replaced with another nonnegative measure Fn such that Fn(∅) = 0, we can
easily verify that Theorem 4.4.1 and Theorem 4.5.1 still hold. We have only
to interpret probabilities in the proofs as the corresponding measures. �

4.7 Hypothesis Testing and Source Coding

So far we have described theorems on the hypothesis testing. In this section,
we point out that the hypothesis testing problems with a countably infinite
alphabet X are deeply related to the fixed-length source coding problems de-
scribed in Chapter 1.

For example, we can see that Theorem 1.9.1 on the source coding is ob-
tained as a special case of (the generalized version of) Theorem 4.4.1. To this
end, let the null hypothesis X = {Xn}∞n=1 be arbitrary and let the alternative
hypothesis X = {Cn}∞n=1 be the counting measure

Cn(x) = 1 (∀x ∈ Xn)

described in the preceding section. We denote by C = {Cn}∞n=1 this alter-
native hypothesis. For an arbitrary given acceptance region An ⊂ Xn, set
Mn = |An| and define the mapping ϕn : Xn → Mn that maps each element
of An to a distinct element of Mn = {1, 2, · · · , Mn} in the order of 1, 2, · · · ,
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and all elements of Ac
n to 1. Define ψn : Mn → Xn as the inverse map-

ping of ϕn|An
. If we consider the source coding with ϕn as an encoder and

ψn as a decoder, we have An = {x ∈ Xn | ψn(ϕn(x)) = x}, which leads to
the fact that the error probability of the first kind µn = Pr {Xn /∈ An} of
this hypothesis testing is equal to the decoding error probability εn caused
by the code (ϕn, ψn). Such a relationship between the hypothesis testing
and the source coding is one-to-one if we identify codes sharing the set
An = {x ∈ Xn | ψn(ϕn(x)) = x}, the set of all correctly decodable x ∈ Xn,
as the same code. In this case, the (generalized) error probability of the sec-
ond kind λn can be written as

λn = Cn(An) = |An| = Mn

= enrn (4.7.1)

under the counting measure Cn, where

rn =
1
n

log Mn

means the coding rate of the code (ϕn, ψn). Then, we obtain from (4.7.1)
that

lim inf
n→∞

1
n

log
1
λn

= − lim sup
n→∞

rn.

Hence, R being an r-achievable rate of the (generalized) hypothesis testing
is equivalent to −R being an r-achievable rate of the source coding. From
Definition 1.9.1, Definition 1.9.2, Definition 4.4.1 and Definition 4.4.2, we
can obtain

Be(r|X||C) = −Re(r|X) (∀r > 0) (4.7.2)

connecting Be(r|X||C) with Re(r|X).
By using (4.7.2), we can obtain Theorem 1.9.1 from Theorem 4.4.1 and

vice versa. For example, Theorem 4.4.1 implies Theorem 1.9.1 in the following
manner. First, by recalling that the alternative hypothesis is the counting
measure Cn, the probability on the right-hand side of (4.4.1) defining η(R)
can be written as

Pr
{

1
n

log
PXn(Xn)
PX

n(Xn)
≤ R

}

= Pr
{

1
n

log
PXn(Xn)
Cn(Xn)

≤ R

}

= Pr
{

1
n

log PXn(Xn) ≤ R

}

= Pr
{

1
n

log
1

PXn(Xn)
≥ −R

}
.

Taking the definition σ(R) in (1.9.2) into consideration, we have η(R) =
σ(−R), which leads to
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σ(R) = η(−R). (4.7.3)

Then, Theorem 4.4.1 on the (generalized) hypothesis testing and (4.7.2) yield

Re(r|X) = −Be(r|X||C)
= − inf

R
{R + η(R) | η(R) < r}

= sup
R

{−R − η(R) | η(R) < r} .

By replacing R by −R and using (4.7.3), it follows that

Re(r|X) = sup
R≥0

{R − σ(R) | σ(R) < r} ,

which is exactly the same as Theorem 1.9.1 on the source coding.

By using an argument similar to the argument above, it is easy to verify
that, Theorem 4.1.1, Theorem 4.2.1 and Theorem 4.3.1 with the counting
measure C = {Cn}∞n=1 as the alternative hypothesis X coincide with Theo-
rem 1.3.1, Theorem 1.6.1 and Theorem 1.5.1 on the fixed-length source coding
that are described in Chapter 1. In addition, in this case (4.1.2) coincides with
Lemma 1.4.1 in Chapter 1.

Readers may feel that there may be a relationship between Theorem 4.5.1
on the hypothesis testing and Theorem 1.10.1 on the source coding similar
to the relationship between Theorem 4.4.1 and 1.9.1. Nevertheless, there is
no such a relationship. This is because the two definitions of the r-achievable
rates are different. Recall that, while the r-achievable rate R in Defini-
tion 1.10.1 is defined under the constraint

lim sup
n→∞

1
n

log
1

1 − εn
≤ r,

the r-achievable rate R in Definition 4.5.1 is defined under the constraint

lim inf
n→∞

1
n

log
1
µn

≥ r,

though we have µn = εn in the relationship between the hypothesis testing
and the source coding discussed so far.

However, we can obtain a relationship between them by modifying the
formulation of the source coding problem treated in §1.10. To this end, assume
that a source alphabet X is finite and consider the “dual coding rate”

ρn =
1
n

log(|X |n − Mn) (4.7.4)

instead of the coding rate rn =
1
n

log Mn. Furthermore, let us define, instead
of Definition 1.10.1 and Definition 1.10.2, respectively:
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Definition 4.7.1.

Rate R is r-achievable def⇐⇒ There exists an (n, Mn, εn)-code

satisfying lim inf
n→∞

1
n

log
1
εn

≥ r and

lim inf
n→∞

1
n

log ρn ≥ R.

Definition 4.7.2 (supremum r-achievable fixed-length dual coding
rate).

Re(r|X) = sup {R | R is r-achievable} ,

Such definitions make sense in the following case. Suppose that the decod-
ing error probability is required to satisfy εn � e−nr for a large enough
r > 0. Since εn becomes quite small in such a situation, the coding rate

rn =
1
n

log Mn is nearly equal to log |X |. This implies that Mn � |X |n. There-

fore, it is meaningful to evaluate |X |n −Mn instead of Mn itself. In this case
it is a fundamental problem on the source coding to make the dual coding
rate ρn in (4.7.4) satisfying

|X |n − Mn = enρn

as large as possible. Note that Re(r|X) in Definition 4.7.2 means the supre-
mum of the dual coding rate ρn with respect to all codes satisfying the con-
dition

lim inf
n→∞

1
n

log
1
εn

≥ r.

In this modified source coding problem, since C = {Cn}∞n=1 is defined as
the counting measure, we obtain

|X |n − λn = enρn

instead of (4.7.1) and

lim sup
n→∞

1
n

log
1

|X |n − λn
= − lim inf

n→∞
ρn.

Therefore, it turns out that R being the r-achievable rate of the (generalized)
hypothesis testing is equivalent to −R being the r-achievable source coding
rate. From Definitions 4.5.1, 4.5.2, 4.7.1 and 4.7.2, we have the following
relationship:

B∗
e (r|X||C) = −Re(r|X). (4.7.5)

By making use of this equality, if either B∗
e (r|X||C) or Re(r|X) can be com-

puted, we can compute the other. However, as is easily verified, the assump-
tion (4.5.2) in Theorem 4.5.1 does not hold for the case that X is equal to
the counting measure C. This means that the formula (4.5.3) for B∗

e (r|X||C)
no longer holds. Thus, it is temporally impossible to obtain a formula for
Re(r|X) on the source coding via the formula on the hypothesis testing,
though the formula for Re(r|X) can be obtained in such a way.


