
Preface

One of the key tools in classical representation theory is the fact that a repre-
sentation of a group can also be viewed as an action of the group algebra on
a vector space. This has been (one of) the motivations to introduce algebras,
and modules over algebras. During the passed century, it has become clear
that several different notions of module can be introduced, with a variety of
applications in different mathematical disciplines. For example, actions by
group algebras can also be used to develop Galois descent theory, with its
applications in number theory. Graded modules originated from projective
algebraic geometry. In fact a group grading can be considered as a coac-
tion by the group algebra, i.e. the dual of an action. One may then consider
various types of modules over bialgebras and Hopf algebras: Hopf modules
(in integral theory), relative Hopf modules (in Hopf-Galois theory), dimod-
ules (when studying the Brauer group). Perhaps the most important ones
are the Yetter-Drinfeld modules, that have been studied in connection with
the theory of quantum groups, the quantum Yang-Baxter equation, braided
monoidal categories, and knot theory.
Frobenius fuctors generalize the classical concept of Frobenius algebra that
appeared first 100 years ago in the work of Frobenius on representation the-
ory. The study of Frobenius algebras has seen a revival during the passed five
years, serving as an important tool in problems arising from different fields:
Jones theory of subfactors of von Neumann algebras ([98], [100]), topological
quantum field theory ([3], [8]), geometry of manifolds and quantum cohomol-
ogy ([79], [129] and the references indicated there), the quantum Yang-Baxter
equation ([15], [42]), and Yetter-Drinfeld modules ([49], [88]).
Separable functors are a generalization of the theory of separable field exten-
sions, and of separable algebras. Separability plays a crucial role in several
topics in algebra, number theory and algebraic geometry, for example in clas-
sical Galois theory, ramification theory, Azumaya algebras and the Brauer
group theory, Hochschild cohomology and étale cohomology. A more recent
application can be found in the Jones theory of subfactors of von Neumann
algebras, already mentioned above with respect to Frobenius algebras.
In this monograph, we present - from a purely algebraic point of view - a
unification schedule for actions and coactions and their properties, where we
are mainly interested in generalizations of Frobenius and separability prop-
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erties. The unification theory takes place at four different levels.
First, we have a unification on the level of categories of modules: Doi-
Koppinen modules were introduced first, and all modules mentioned above
can be viewed as special cases. Entwined modules arose from noncommutative
geometry; they are at the same time more general and easier to deal with,
and provide new fields of applications. Secondly, there is a unification at the
level of functors between module categories: one can introduce morphisms of
entwining structures, and then associate such a morphism a pair of adjoint
functors. Many “classical” pairs of adjoint functors (the induction functor,
forgetful functors, restriction of (co)scalars, functors forgetting a grading, and
their adjoints) are in fact special cases of this construction. A third unifica-
tion takes place at the level of the properties of these pairs of adjoint functors.
Here the inspiration comes from two at first sight completely different alge-
braic notions, having their roots in representation theory: separable algebras
and Frobenius. We give a categorical approach, leading to the introduction
of separable functors and Frobenius functors. Not only this explains the at
first sight mysterious fact that both separable and Frobenius algebras can be
characterized using Casimir elements, it also enables us to prove Frobenius
and separability type properties in a unified framework, with several new
versions of Maschke’s Theorem as a consequence.
The fourth unification is based on the theory of Yetter-Drinfeld modules,
their relation with the quantum Yang-Baxter equation, and the FRT Theo-
rem. The pentagon equation has appeared in the theory of duality for von
Neumann algebras, in connection with C∗-algebras. Here we explain how
they are related to Hopf modules. In a similar way, another nonlinear equa-
tion which we called the Long equation is related to the category of Long
dimodules, that finds its origin in generalizations of the Brauer-Wall group.
Finally, the FS equation can be used to characterize Frobenius algebras, as
well as separable algebras, providing yet another explanation of the relation-
ship between the two notions. For all these equations, we have a version of
the FRT Theorem.
In Chapter 1, some preliminary results are given. We have included a Section
about coalgebras and bialgebras, and one about adjoint functors. Section 1.2
deals with a classical treatment of Frobenius and separable algebras over
fields, and we explain how they are connected to classical representation the-
ory.
Chapter 2 provides a discussion of entwining structures and their represen-
tations, entwined modules, and we discuss how they generalize other types
of modules and how they are related to the smash (co)product and the fac-
torization problem of an algebra through two subalgebras. We also give the
general pair of adjoint functors mentioned earlier. First properties of the cat-
egory of entwined modules are discussed, for example we discuss when the
category of entwined modules is a monoidal category. We use entwining struc-
tures mainly as a tool to unify all kinds of modules, but we want to point
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out that they were originally introduced with a completely different motiva-
tion, coming from noncommutative geometry: one can generalize the notion
of principal bundles to a very general setting in which the role of coordinate
functions on the base is played by a general noncommutative algebra A, and
the fibre of the principal bundle by a coalgebra C, where A and C are related
by a map ψ : A ⊗ C → C ⊗ A, called the entwining map, that has to sat-
isfy certain compatibility conditions (see [32] and [33]). Entwined modules,
as representations of an entwining structure, were introduced by Brzeziński
[23], and he proved that Doi-Koppinen Hopf modules and, a fortiori, graded
modules, Hopf modules and Yetter-Drinfeld modules are special cases. En-
twined modules can also be applied to introduce coalgebra Galois theory, we
come back to this in Section 4.8, where we also explain the link to descent
theory.
The starting points of Chapter 3 are Maschke’s Theorem from Representation
Theory (a group algebra is semisimple if and only if the order of the group
does not divide the characteristic of the base field), and the classical result
that a finite group algebra is Frobenius. Larson and Sweedler have given Hopf
algebraic generalizations of these two results, using integrals.
Both the Maschke and Frobenius Theorem can be restated in categorical
terms. Let us first look at Maschke’s Theorem. If we replace the base field
k by a commutative ring, then we obtain the following result: if the order
of the group G is invertible in k, then every exact sequence of kG-modules
that splits as a sequence of k-modules is split as a sequence of kG-modules.
If k is field, this implies immediately that kG is semisimple; in fact it turns
out that all variations of Maschke’s Theorem that exist in the literature ad-
mit such a formulation. In fact we have more: the kG-splitting maps are
constructed deforming the k-splitting maps in a functorial way. A proper
definition of functors that have this functorial Maschke property was given
by Năstăsescu, Van den Bergh, and Van Oystaeyen [145]. They called these
functors separable functors because for a given ring extension R → S, the
restriction of scalars functor is separable if and only if S/R is separable in
the classical sense. A Theorem of Rafael [158] gives necessary and sufficient
conditions for a functor with an adjoint to be separable: the unit (or counit)
of the adjunction has to be split (or cosplit). We will see that the separable
functor philosophy can be applied successfully to any adjoint pair of functors
between categories of entwined modules. We will focus mainly on the functors
forgetting the action and the coaction, as this is more transparent and leads
to several interesting results.
A similar functorial approach can be used for the Frobenius property. It is
well-known that a k-algebra S is Frobenius if and only if the restriction of
scalars functors is at the same time a left and right adjoint of the induction
functor. This has lead to the introduction of Frobenius functors: this is a
functor which has a left adjoint that is also a right adjoint. An adjoint pair
of Frobenius functors is called a Frobenius pair.
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Let η : 1 → GF be the unit of an adjunction; as we have seen, to conclude
that F is separable, we need a natural transformation ν : GF → 1. Our
strategy will be to describe all natural transformations GF → 1; we will see
that they form a k-algebra, and that the natural transformations that split
the unit are idempotents (separability idempotents) in this algebra.
A look at the definition of adjoint pairs of functors tells us that we have to
investigate natural transformations GF → 1 and 1 → FG; the difference is
that the normalizing properties for the separability property and the Frobe-
nius property are not the same. But still we can handle both problems in a
unified framework, and this is what we will do in Chapter 3. In Chapter 4, we
will apply the results from Chapter 3 in some important subcases. We have
devoted Sections to relative Hopf modules and Hopf-Galois theory, graded
modules, Yetter-Drinfeld modules and the Drinfeld double, and Long dimod-
ules. For example, we prove that, for a finitely generated projective Hopf
algebra H, the Drinfeld double D(H) is a Frobenius extension of H if and
only if H is unimodular.
Part I tells us that Hopf modules, Yetter-Drinfeld modules and Long di-
modules over a Hopf algebra H can be regarded as special cases as Doi-
Koppinen Hopf modules and entwined modules, and that a unified theory
can be developed. In Part II, we look at these three types of modules from
a different point of view: we will see how they are connected to three dif-
ferent nonlinear equations. The celebrated FRT Theorem shows us the close
relationship between Yetter-Drinfeld modules and the quantum Yang-Baxter
equation (QYBE) (see e.g. [115], [108], [128]). We will discuss how the two
other types of modules, Hopf modules and Long dimodules, are related to
other nonlinear equations. It comes as a surprise that the nonlinear equation
related to the category of Hopf modules HMH is the pentagon (or fusion)
equation, which is even older, and somehow more basic then the quantum
Yang-Baxter equation. Using Hopf modules, we will present two different ap-
proaches to solving this equation: a first approach is to prove an FRT type
Theorem for the pentagon equation; a second, completely different, approach
was developed by Baaj and Skandalis for unitary operators on Hilbert spaces
([10]) and, more recently, by Davydov ([65]) for arbitrary vector spaces. We
will conclude Chapter 6 with a few open problems that may have important
consequences: from a philosophical point of view the theory presented herein
views a finite dimensional Hopf algebra H simply as an invertible matrix
R ∈ Mn2(k) ∼= Mn(k) ⊗ Mn(k) that is a solution for the pentagon equa-
tion R12R13R23 = R23R12. Furthermore, in this case dim(H)|n. This point of
view could be crucial in reducing the problem of classifying finite dimensional
Hopf algebras (currently in full development and using different and complex
techniques) to the elementary theory of matrices from linear algebra. At this
point a new Jordan theory (we called it restricted Jordan theory) has to be
developed.
In Chapter 8, we will focus on the Frobenius-separability equation, all solu-
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tions of which are also solutions of the braid equation. An FRT type theorem
will enable us to clarify the structure of two fundamental classes of algebras,
namely separable algebras and Frobenius algebras. The fact that separable
algebras and Frobenius algebras are related to the same nonlinear equation
is related to the fact that separability and Frobenius properties studied in
Chapters 3 and 4 are based on the same techniques.
As we already indicated, the quantum Yang-Baxter equation has been inten-
sively studied in the literature. For completeness sake, and to illustrate the
similarity with our other nonlinear equations, we decided that to devote a
special Chapter to it. This will also allow us to present some recent results,
see Section 5.5.
The three authors started their common research on Doi-Koppinen Hopf
modules in 1995, with a three month visit by the second and third author
to Brussels. The research was continued afterwards within the framework
of the bilateral projects “Hopf algebras and (co)Galois theory” and “Hopf
algebras in Algebra, Topology, Geometry and Physics” of the Flemish and
Romanian governments, and “New computational, geometric and algebraic
methods applied to quantum groups and differential operators” of the Flem-
ish and Chinese governments.
We benefitted greatly from direct and indirect contributions from - in alpha-
betical order - X-TO-Status: 00000003 Margaret Beattie, Tomasz Brzeziński,
Sorin Dǎscǎlescu, Jose (Pepe) Gómez Torrecillas, Bogdan Ichim, Bogdan Ion,
Lars Kadison, Claudia Menini, Constantin Nǎstǎsescu, Şerban Raianu, Peter
Schauenburg, Mona Stanciulescu, Dragos Ştefan, Lucien Van hamme, Fred
Van Oystaeyen, Yinhuo Zhang, and Yonghua Xu. Chapters 2 and 3 are based
on an seminar given by the first author in Brussels during the spring of 1999.
The first author wishes to thank Sebastian Burciu, Corina Calinescu and
Erwin De Groot for their useful comments. Finally we wish to thank Paul
Taylor for his kind permission to use his “diagrams” software.
A few words about notation: in Part I, we work over a commutative ring
k; unadorned Hom, ⊗, M etc. are assumed to be taken over k. In Part II,
we are always assuming that we work over a field k. For k-modules M and
N , IM will be the identity map on M , and τ : N ⊗M → M ⊗ N will be
the switch map mapping m⊗ n to n⊗m. Also it is possible to read part II
without reading part I first: one needs the generalities of Chapter 1, and the
definitions in the first Sections of Chapter 2.
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