
Real-World SQL-DMO 
for SQL Server

ALLAN MITCHELL AND MARK ALLISON 

0406front.fm  Page i  Thursday, September 12, 2002  7:40 PM



Real-World SQL-DMO for SQL Server
Copyright © 2003 by Allan Mitchell and Mark Allison 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any 
means, electronic or mechanical, including photocopying, recording, or by any information storage or 
retrieval system, without the prior written permission of the copyright owner and the publisher. 

ISBN (pbk): 1-59059-040-6

Printed and bound in the United States of America 12345678910 

Trademarked names may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, we use the names only in an editorial fashion and to the 
benefit of the trademark owner, with no intention of infringement of the trademark. 

Technical Reviewer: Ron Talmage

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Simon Hayes, Karen Watterson, 
John Zukowski

Managing Editor: Grace Wong 

Project Manager and Development Editor: Tracy Brown Collins

Copy Editor: Nicole LeClerc

Compositor: Susan Glinert

Illustrator: Cara Brunk, Blue Mud Productions

Cover Designer: Kurt Krames

Indexer: Valerie Perry

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth 
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG, 
Tiergartenstr. 17, 69112 Heidelberg, Germany. In the United States, phone 1-800-SPRINGER, 
email orders@springer-ny.com, or visit http://www.springer-ny.com. Outside the United States, 
fax +49 6221 345229, email orders@springer.de, or visit http://www.springer.de. 

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219, 
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit 
http://www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author nor Apress shall 
have any liability to any person or entity with respect to any loss or damage caused or alleged to 
be caused directly or indirectly by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the 
Downloads section. 

0406front.fm  Page ii  Thursday, September 12, 2002  7:40 PM



45

CHAPTER 2

Backup and Restore: 
A DBA’s Bread and Butter

ONE OF A DATABASE ADMINISTRATOR’S (DBA’s) primary jobs is backing up a database 
so that should the need arise it can be restored. This chapter deals with how to do 
that using SQL-DMO by building a sample application.

In our opinion, one of the most important tasks we perform as DBAs is creating a 
backup plan for our servers and databases. The type of plan we implement depends 
on the type of environment we’re looking at.

When we arrive at a new client’s site, the first thing we like to do is find out 
what we back up, what we don’t back up, and why and where. Even if we never use 
the backups, it’s always good to have them, just in case. We’ve lost count of the 
number of times we’ve been asked by developers to restore a database because 
they forgot to limit a DELETE statement by using a WHERE clause, and instead of 
deleting 11 rows they ended up removing 11,000.

DBAs aren’t exempt from these sorts of issues, either. We recently had a junior 
administrator ask us if we could restore a database because he managed to drop 
half the tables in the database before realizing his mistake. Natural disasters are 
another reason to keep backups. We recently had to restore a few database servers 
because when we arrived at the client’s site, we found the server room doing an 
impression of Jacques Cousteau—not a pretty sight, we assure you.

In this chapter we’ll show you some of the various backup methods available 
and how you can implement them using SQL-DMO. We provide quite a bit of 
explanation at first, as we think it’s important that you understand a little about 
how backups work and how to use them. It’s also important to look into any 
options set on the database that may influence your backup strategy. We then 
move on to cover restoring your backup. We find this an often-overlooked point—
after all, what’s the point in creating backups if none of them is any good? 

To illustrate the concepts we describe, we’re going to take you through a 
couple of our applications. They’re very simple, but they provide practical 
examples of what we’re writing about. The first application will do the backups 
and the second application will do the restore. Finally, you’ll look at doing some 
log shipping. Log shipping is a way of maintaining a copy of your database(s) on 
another server. Having this kind of fallback can reduce the time it takes you to 
recover from a disaster.

0406_Mitchell.book  Page 45  Thursday, September 12, 2002  2:42 PM



Chapter 2

46

NOTE If you’re using SQL Server 2000 Enterprise Edition, you can 
configure log shipping in your Database Maintenance Plan Wizard. If 
you don’t use this version of SQL Server, there is a log shipping tool in 
the SQL Server Resource Kit in ToolsAndSamples\SimpleLogShipper.

We begin with a discussion of the available backup methods, and then we discuss 

• Applying sample backup methods

• Choosing your backup method

• Using backup devices

• Performing the backup

• Using the 15-minute database checker application

Types of Backup Available

There are four types of backups available to you: full, differential, file group, and trans-
action log. We describe each backup type in more detail in the following sections.

Full Backup

In a full backup, SQL Server does exactly as the backup’s name suggests: It backs 
up the entire database. Every single database page is taken to the media of your 
choice, be it file or tape. Users can still be logged in at the time of the backup, but 
they can’t be performing any of the following:

• DBCC SHRINKDATABASE

• DBCC CHECKALLOC

• SELECT INTO

• BCP

0406_Mitchell.book  Page 46  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

4747

If users are active in the database during the backup, it makes sense that there 
will be transactions in the database that the backup has missed. It is for this reason 
that at the end of the backup, SQL Server backs up the transaction log to capture 
these new transactions.

Differential Backup

When a full backup occurs, SQL Server marks all the data pages as having been 
backed up. When you use your database again, and maybe insert some new data 
or update a row in a table, SQL Server marks that extent as changed. Differential 
backups hunt through your database and only backup those extents (8 pages of 
data) that have been tagged as modified.

Differential backups, however, won’t reset the marker to indicate that it has 
been backed up. A differential backup is cumulative, meaning that it will include 
all database changes made since the last full backup. If you perform a differential 

backup today and one tomorrow, then the backup tomorrow will contain all of the 
changes in today’s backup as well. This method is faster than the others because it 
only backs up new data in the database.

NOTE Your mileage may vary with this method, especially in SQL 
Server 7.0. The number of changes isn’t necessarily indicative of the 
time that a differential takes to happen. Backup file size is also some-
thing that varies greatly. We’ve spoken to people who have a database of 
10GB with 32GB differential backup files.

File Group Backup

This is possibly the most difficult type of backup from a management perspective. 
The way a file group backup works is this: In a database you can have many file 
groups, which can contain many physical files. You can place objects in your 
database into certain file groups. You choose this method if, for example, you have 
a table that has 40 million rows and it is constantly being queried. To get the most 
from the table, you decide to place it in a file group on the fastest hard disk drive 
you have or a fast redundant array of independent disks (RAID) 10 array. When this 
table is queried, you can get to your data more quickly. Another use is when you 
have a very large database (VLDB) and the amount of time it takes to back up the 
whole thing is greater than the window of opportunity you have. If you split up 

0406_Mitchell.book  Page 47  Thursday, September 12, 2002  2:42 PM



Chapter 2

48

the database into different file groups, you can back them up one at a time, and 
when they’re all backed up, you have a full database backup equivalent.

Transaction Log Backup

The transaction log maintains a history of the activity in your database. When you 
insert a row into a table in your database, you aren’t actually writing it to disk but to 
the log. At specified periods, called checkpoints, SQL Server will write out your 
INSERT statement to the disk. As we hope you can see, the log is a very important 
file. A transaction log backup will back up all transactions that have happened in 
your database since the last full, differential, or transaction log backup. The way in 
which the log behaves is dependent on some of the options set in your database, 
which we explain later in the section “Considerations for Choosing Your Backup 
Method.” 

Sample Backup Scenarios and Methods

As we mentioned earlier in the chapter, how you back up your databases is dependent 
on many factors. In a test environment, you may only need to do a full backup 
once a week and no more. In a production environment, however, you’ll most 
probably need to be able to recover your database to the time as near as possible to 
a disaster. You can use a combination of the types of backups we described in the 
previous section to achieve your aims. In this section, we describe two methods of 
backing up your database.

Method 1

This first method is the simplest backup strategy. Every day at a predetermined 
hour you do a full backup of your database. You don’t do anything else to it at all. 
This unfortunately gives you 24 hours of exposure (exposure being the amount of 
data you could lose). If you lost the server or database in the middle of the day, 
then you could only recover to the backup taken the night before. (Yes, if you got to 
the log file you would be able to recover more, but we’re presuming here that you 
only have your backups to go on.)

This type of plan may be suitable in a test environment where being up-to-
date is not essential, or where you can recover any lost data through scripts. In 
order to recover this database, you would just need to restore it from the previous 
night’s backup and carry on. This method is very quick to set up, but it’s only suitable 
in a few cases. Figure 2-1 shows a possible backup scenario using only full backups.

0406_Mitchell.book  Page 48  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

4949

Figure 2-1. Scenario using only full backups

Method 2

The second method is a more detailed plan that should enable you to recover the 
database to the second of a disaster. For example, say on a Sunday night you do a 
full backup of your database. Then Monday through Friday you do hourly trans-
action log backups during business hours. Each weekday night you do differential 
backups of the database as well. Then you have a database failure on Thursday at 
3:30 P.M. and you manage to back up the current transaction log of the database. 
To restore this database to its previous state, you would need to do the following:

1. Restore the full backup from Sunday.

2. Restore the differential backup from Wednesday night.

3. Restore the transaction log backups that occurred between start of 
business on Thursday and 3:00 P.M.

4. Restore the final transaction log backup that you managed to rescue from 
the database.

0406_Mitchell.book  Page 49  Thursday, September 12, 2002  2:42 PM



Chapter 2

50

As you can see, this method is certainly involved, but it does allow you to 
recover more data than the first method. In fact, if you’re able to get to the current 
transaction log, then you may be able to recover the database without losing any 
data at all. Figure 2-2 shows a possible backup scenario using a combination of 
full, differential, and transaction log backups.

Figure 2-2. Scenario using full, differential, and transaction log backups

Considerations for Choosing Your Backup Method

Remember earlier when we said there were certain database settings that would 
affect your ability to do some types of backup? Well, here they are. In the sections 
that follow, the database settings are broken down into the different options for 
both SQL Server 7.0 and SQL Server 2000. 

0406_Mitchell.book  Page 50  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

5151

NOTE We explain how to set these options using T-SQL, SQL-DMO, 
and Enterprise Manager in Chapter 1.

SQL Server 7.0

In SQL Server 7.0 you have to do a bit more work than you do in SQL Server 2000, 
as version 2000 sets the version 7.0 options under the covers when you choose 
your recovery model.

Truncate Log on Checkpoint

This option is very easy to remember. It wrecks your chances of doing transaction 
log backups. This means that the only backups you can perform with this option 
set are full and differential. This might not be a problem for you, but we only 
recommend using this option in development and test environments. 

The way the option works is this: When SQL Server has written out your data 
to disk from the log at preset intervals, it will come along and clean up after itself. 
It doesn’t back up the log—it just gets rid of any transactions that have been marked as 
completed. If you try to back up the log when this option is set, you’ll get an error. 
It effectively creates holes in the life of a database. You have nothing to put back 
into your database because SQL Server has removed the entries from the log. 

NOTE Lots of people ask if they can just get rid of the transaction log 
because they don’t need it. The answer to this is no. SQL Server needs 
the transaction log to ensure database consistency. If you get rid of the 
transaction log and your database has the option Truncate Log on 
Checkpoint set, then you can’t do file group backups, because these 
backups rely on the transaction log to make them consistent.

Select Into/Bulk Copy

The Select Into/Bulk Copy option enables you to perform actions such as SELECT 
INTO, BCP, or WRITETEXT in your database. These types of actions are often 
referred to as nonlogged, but this is actually a bit of a misnomer as they’re logged 

0406_Mitchell.book  Page 51  Thursday, September 12, 2002  2:42 PM



Chapter 2

52

but only minimally. Once you perform one of these actions, you invalidate point-
in-time recovery of your database. Point-in-time recovery is where you can stop a 
restore of a database at a given time, which is preferably just before the action 
occurred that caused you to do the restore.

An example of this would be when you have a table with records in it that you 
want to replicate, perhaps just in case the following operation goes wrong. You 
could CREATE the table and then do an INSERT INTO to get the records in, but 
instead you decide to use SELECT INTO, as that will create the table for you as well. 
SQL Server will then create your new table and pump the records in. It will log the 
fact that it allocated extents to the table, but it won’t log every insertion. This is 
where gaps in recovery may appear. 

CAUTION Using SELECT INTO on a large table isn’t a good idea. It will 
lock up tempdb for the duration of the statement; therefore, it has the 
potential to stop others from working. If you can create the table first 
and then do an INSERT statement, you’ll stop this from happening.

SQL Server 2000

SQL Server 2000 does things a little differently from SQL Server 7.0. You can still 
use the options described previously, but they’re provided for backward compati-
bility and should only be used as such. In version 2000, you have recovery options, 
of which there are three.

The Simple Recovery Option

You would use this option when you have no use for the transaction log whatsoever 
and you want to make sure that it doesn’t get too large. As with the Truncate Log on 
Checkpoint option in SQL Server 7.0, the Simple Recovery option allows you to 
only use full and differential backups. If your database is set to Simple, then you 
can’t do file group backups, as these backups rely on the transaction log to make 
them consistent.

0406_Mitchell.book  Page 52  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

5353

The Bulk-Logged Recovery Option

Here is where the differences between the SQL Server 7.0 and SQL Server 2000 
options really start to become evident. With this model you can perform your min-
imally logged operation as you can with the Select Into/Bulk Copy option of SQL 
Server 7.0. The transaction log will log the fact that a nonlogged operation has 
occurred, and pages within the database will be marked as having been subjected 
to minimally logged operations. When you come to back up your database, the log 
file itself will still be small, but in addition to backing itself up it will also back up 
those extents that have been modified by the minimally logged operation.

The Full Recovery Option

The Full Recovery option allows you to have the least data loss of the three options. 
If you’ve been making transaction log backups, then you have the ability to restore 

to a point in time. Although this may sound like the best option, there’s a penalty to 
pay. Because everything but the kitchen sink is logged, this option can result in the 
size of the transaction log being huge. This means, of course, that it will take a 
longer time to back up as well. You can still perform your minimally logged oper-
ations when the database is using the Full Recovery mode.

Using Backup Devices

There are two ways of telling SQL Server where to send your backups. The first is by 
typing in the file path to the location where you want SQL Server to send your 
backups every time you issue the BACKUP DATABASE command. The second is by 
creating a backup device that points to the location where you want SQL Server to 
send your backups and then using the name of the backup device each time you 
do a backup. The only difference between the two methods that you’ll probably 
notice is that the second method involves less typing. 

Another neat thing about using a backup device is that in Enterprise Manager 
you can easily see, using the GUI, the contents of the backup device. We’ll show 
you shortly how you can create your own view of the contents of your backup 
device, and we’ll also show you the code that Enterprise Manager is issuing under 
the covers. Let’s see, then, how to add a backup device to your server using three 
methods: T-SQL, SQL-DMO, and Enterprise Manager.

0406_Mitchell.book  Page 53  Thursday, September 12, 2002  2:42 PM



Chapter 2

54

T-SQL

sp_addumpdevice [ @devtype = ] 'device_type' , 

[ @logicalname = ] 'logical_name' , 

[ @physicalname = ] 'physical_name' 

[ , { [ @cntrltype = ] controller_type 

| [ @devstatus = ] 'device_status' 

} 

]

Example

EXEC sp_addumpdevice 'disk','My_Backup_Device','f:\DBBackups\MyBackups.bak'

SQL-DMO

In Enterprise Manager, you’ll find the option to add a device under the 
Management folder. Then click the Backup icon. Figure 2-3 shows the prompt 
in SQL Server when you create a new backup device.

Figure 2-3. Adding a backup device in Enterprise Manager

The following code creates a SQLServer object and a BackupDevice object:

Private Sub cmdCreate_Click()

0406_Mitchell.book  Page 54  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

5555

Dim oServer As SQLDMO.SQLServer

Dim oDevice As SQLDMO.BackupDevice

Set oServer = New SQLDMO.SQLServer

Connect to the SQL Server

oServer.LoginSecure = True

oServer.Connect "AM2"

Set oDevice = New SQLDMO.BackupDevice

The following code sets the properties of the backup device. First, you set the 
Name property of the device:

oDevice.Name = "My_Backup_Device"

You want to create a device that points to location on the physical hard disk, so 
you specify the options here to do that:

oDevice.Type = SQLDMODevice_DiskDump

oDevice.PhysicalLocation = "f:\DBBackups\MyBackups.bak"

Once you’ve set all the properties of the device, the last thing you need to do is 
add the Device object to the Devices collection of the server:

oServer.BackupDevices.Add oDevice

oServer.DisConnect

Set oServer = Nothing

End Sub

The result of these three methods is shown in Figure 2-4.

Figure 2-4. Creation of the device is confirmed.

0406_Mitchell.book  Page 55  Thursday, September 12, 2002  2:42 PM



Chapter 2

56

TIP SQL Server Books Online provides a list of the other options for 
the device type and controller type.

Performing the Backup

Now you come to the meat of the chapter, where you’ll actually perform your 
backup. In this section, we show you how to do a full, a differential, and a trans-
action log backup. We also show you some of the options available to you when 
you do a backup. The following code shows how to do the backup for the database. 
The two code listings that follow are taken directly from SQL Server Books Online.

T-SQL

BACKUP DATABASE 

{ database_name | @database_name_var } 

TO < backup_device > [ ,...n ] 

[ WITH 

[ BLOCKSIZE = { blocksize | @blocksize_variable } ] 

[ [ , ] DESCRIPTION = { 'text' | @text_variable } ] 

[ [ , ] DIFFERENTIAL ] 

[ [ , ] EXPIREDATE = { date | @date_var } 

| RETAINDAYS = { days | @days_var } ] 

[ [ , ] PASSWORD =

 { password | @password_variable } ] 

[ [ , ] FORMAT | NOFORMAT ] 

[ [ , ] { INIT | NOINIT } ] 

[ [ , ] MEDIADESCRIPTION = { 'text' | @text_variable } ] 

[ [ , ] MEDIANAME = 

{ media_name | @media_name_variable } ] 

[ [ , ] MEDIAPASSWORD =

 { mediapassword | @mediapassword_variable } ] 

[ [ , ] NAME = 

{ backup_set_name | @backup_set_name_var } ] 

[ [ , ] { NOSKIP | SKIP } ] 

[ [ , ] { NOREWIND | REWIND } ] 

[ [ , ] { NOUNLOAD | UNLOAD } ] 

[ [ , ] RESTART ] 

[ [ , ] STATS [ = percentage ] ] 

]

0406_Mitchell.book  Page 56  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

5757

Here’s the code for backing up the log:

BACKUP LOG { database_name | @database_name_var } 

{ 

TO < backup_device > [ ,...n ] 

[ WITH 

[ BLOCKSIZE =

 { blocksize | @blocksize_variable } ] 

[ [ , ] DESCRIPTION = { 'text' | @text_variable } ] 

[ [ ,] EXPIREDATE = { date | @date_var } 

| RETAINDAYS = { days | @days_var } ] 

[ [ , ] PASSWORD =

 { password | @password_variable } ] 

[ [ , ] FORMAT | NOFORMAT ] 

[ [ , ] { INIT | NOINIT } ] 

[ [ , ] MEDIADESCRIPTION =

 { 'text' | @text_variable } ] 

[ [ , ] MEDIANAME =

 { media_name | @media_name_variable } ] 

[ [ , ] MEDIAPASSWORD =

{ mediapassword | @mediapassword_variable } ] 

[ [ , ] NAME = 

{ backup_set_name | @backup_set_name_var } ] 

[ [ , ] NO_TRUNCATE ] 

[ [ , ] { NORECOVERY | STANDBY = undo_file_name } ] 

[ [ , ] { NOREWIND | REWIND } ]

[ [ , ] { NOSKIP | SKIP } ] 

[ [ , ] { NOUNLOAD | UNLOAD } ] 

[ [ , ] RESTART ] 

[ [ , ] STATS [ = percentage ] ] 

] 

}

As you can see, you have a lot of options available to you when you back up a 
database or log, and you may never use most of them. In our examples, we’re con-
cerned with the ones you’ll use most, but for completeness, we think it’s worthwhile 
to provide a short description of each option:

• DATABASE_NAME: This is simply the name of the database you want to 
back up.

• BACKUP_DEVICE: This is where you want to put the backup. It can be either 
a physical path or one of the backup devices you created earlier.

0406_Mitchell.book  Page 57  Thursday, September 12, 2002  2:42 PM



Chapter 2

58

• BLOCKSIZE: This is the physical size of blocks in bytes. According to SQL 
Server Books Online, this isn’t necessary, as SQL Server will choose the most 
appropriate size for you.

• DESCRIPTION: This is a label for your backup. You may want to include a 
short description of why you made the backup.

• DIFFERENTIAL: This option indicates if this backup is differential.

• EXPIREDATE: This option gives a date for when the backup can be 
overwritten.

• RETAINDAYS: This option is like EXPIREDATE, except it indicates how many 
days the backup is kept before you’re able to overwrite it.

• PASSWORD: You can password-protect your backup, and you must supply 
the password in order to restore from it.

• FORMAT/NO FORMAT: This option indicates whether or not the media 
header should be written on all backup devices.

• INIT/NOINIT: This option indicates whether or not to clear down the 
contents of your backup device.

• MEDIADESCRIPTION: This option gives you a chance to describe the media 
as something useful.

• MEDIANAME: This option gives you a chance to give the media a name.

• MEDIAPASSWORD: If you specify a password for the media, then before 
you’re able to create a backup on it, you must supply that password.

• NAME: This is the name of the backup set.

• NOSKIP/SKIP: If you’ve set your backups to have expiration dates, then 
using NOSKIP will force SQL Server to check that before trying to overwrite 
it. The SKIP option will bypass checking and overwrite as necessary.

• NOREWIND/REWIND: This option indicates to SQL Server whether or not to 
rewind and release the tape.

0406_Mitchell.book  Page 58  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

5959

• NOUNLOAD/UNLOAD: This option indicates to SQL Server whether or not 
to rewind and unload the tape. SQL Server Books Online says this is only for 
tape devices, although later you’ll see Enterprise Manager using it against 
disk devices once you get some backups onto your device.

• RESTART: This option does exactly what its name indicates: It restarts an 
interrupted backup at the point of interruption.

• STATS = [percentage]: This option indicates to SQL Server to let you know 
when each percentage of the backup has completed. If you don’t specify this 
option, the default is 10 percent. You only use this on large backups because 
it means you have something to look at as the backup is happening. 

For the following examples you’ll back up the same database to the same 
backup device that you created earlier, but you’ll use different options in each so 
you can see the results of the options.

Backing Up MyDMODatabase

Here you’ll back up the database MyDMODatabase and label the backup as having 
been done using T-SQL. The backup here is a full backup. 

T-SQL

BACKUP DATABASE MyDMODatabase

TO My_Backup_Device 

WITH 

     NAME = 'Done using T-SQL'

After you do the backup, check its integrity with the following code:

RESTORE VERIFYONLY FROM My_Backup_Device

If you had more than one backup on the same device, you would need to 
specify a file number, as in the following code:

RESTORE VERIFYONLY FROM My_Backup_Device WITH FILE = 1

0406_Mitchell.book  Page 59  Thursday, September 12, 2002  2:42 PM



Chapter 2

60

In Enterprise Manager, there are a number of ways to get your database 
backed up. We’ve chosen to show three here for brevity:

• Right-click the database, and then choose All Tasks and Backup Database.

• Choose the Tools menu and then select Backup Database.

• Select the wand from the toolbar, choose Maintenance, and then select 
Backup Wizard.

Which method you choose to use is immaterial—you end up looking at the 
same screen eventually—but we rarely use wizards. Figure 2-5 shows the screen 
that greets you if you choose the Tools menu and then select Backup Database. 
As you can see from the options selected in the figure, we’re doing a differential 
backup of the MyDMODatabase. We’re calling it “Done Using EM” and appending 
it to the backup device we created earlier.

Figure 2-5. Enterprise Manager backup database

0406_Mitchell.book  Page 60  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

6161

Backing Up MyDMODatabase Using the Application

You’ll be backing up MyDMODatabase to your backup device using a differential 
backup and setting the time that SQL Server keeps this backup without allowing it 
to be overwritten for 2 days. We’ve provided a GUI along with it to show the ease 
with which you can do it (see Figure 2-6).

Figure 2-6. The backup application

0406_Mitchell.book  Page 61  Thursday, September 12, 2002  2:42 PM



Chapter 2

62

This simple application takes very little time to create. It does more or less 
exactly what the GUI in Enterprise Manager does. Now we’ll go through the 
mechanics of what’s happening behind the scenes and show you a few things 
about what Microsoft is doing in Enterprise Manager under the covers.

Public oServer As SQLDMO.SQLServer

Public oDevice As SQLDMO.BackupDevice

Public oDatabase As SQLDMO.Database

Public oBackup As SQLDMO.Backup

Public oRegisteredServer As SQLDMO.RegisteredServer

Public oApp As SQLDMO.Application

Public oRestore as SQLDMO.Restore

Public oGroup as SQLDMO.ServerGroup

The following procedure will populate the Servers combo box with a list of 
registered servers:

Private Sub ShowServers()

Set oApp = New sqldmo.Application

Set oRegisteredServer = New sqldmo.RegisteredServer

cboServers.Clear

Grouping Your Servers

You may group your servers in Enterprise Manager to define their roles in your 
business or indicate where they’re located in the country. First, you need to loop 
through the ServerGroups collection, looking for the names of your server groups:

For Each oGroup In oApp.ServerGroups

Groups contain your registered servers, so you need to loop through 
your groups looking for any to add. To do this, you’ll need to loop through the 
RegisteredServers collection.

For Each oRegisteredServer In oApp.ServerGroups(oGroup.Name).RegisteredServers

    cboServers.AddItem oRegisteredServer.Name

Next oRegisteredServer

Next oGroup

0406_Mitchell.book  Page 62  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

6363

Set oGroup = Nothing

Set oRegisteredServer = Nothing

Set oApp = Nothing

End Sub

Private Sub ShowDatabases(servername As String)

NOTE There’s another way to look for all your SQL Servers: You can use 
the ListAvailableSQLServers method of the Application object. The reason 
we don’t use this method here is because although it will find your SQL 
Servers, it will only do so if you’re on the same network segment as the 
SQL Servers. This is because the ListAvailableSQLServers method uses a 
broadcast to locate the SQL Servers and this broadcast won’t travel 
through routers. We’ve met some people on newsgroups that have also 
had this problem. 

Outputting Database Names to the Combo Box

When you select the server that contains the database you want to back up, you 
need to populate the Databases combo box with a list of available databases on 
that server. Here you just loop through the Databases collection of the connected 
SQLServer object and output the database names to the combo box.

Set oServer = New SQLDMO.SQLServer

oServer.LoginSecure = True

oServer.Connect servername

cboDatabases.Clear

For Each oDatabase In oServer.Databases

    cboDatabases.AddItem oDatabase.Name

Next oDatabase

0406_Mitchell.book  Page 63  Thursday, September 12, 2002  2:42 PM



Chapter 2

64

oServer.DisConnect

Set oServer = Nothing

Set oDatabase = Nothing

End Sub

Private Sub ShowBackupDevices(servername As String)

For this procedure, you want to list the available predefined backup devices on 
your server. All you do is loop through the BackupDevices collection of the server.

Set oServer = New SQLDMO.SQLServer

oServer.LoginSecure = True

oServer.Connect servername

lstdevices.Clear

For Each oDevice In oServer.BackupDevices

    lstdevices.AddItem oDevice.Name

Next oDevice

oServer.DisConnect

Set oServer = Nothing

Set oDevice = Nothing

End Sub

Prompting the Actual Backup

The following procedure will actually do the backup and will be called by the Create 
button on the form. The procedure takes a number of parameters. The first two, 
servername and DatabaseName, are obvious. The third, Location, is where you 
want to send the backup. The fourth, DeviceYN, indicates whether the location 
you’ve chosen is a predefined backup device or one that you’ve added because 
maybe this is an ad hoc backup. The fifth parameter, BackupType, will tell you 
whether you’re doing a full, differential, or transaction log backup. Next, RetainDays, 
is how long you want to keep the backup before you’re able to overwrite it. Then 
you tell the backup if you should initialize the device first with InitFirst. Finally, 
BackupName is the name of the backup.

0406_Mitchell.book  Page 64  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

6565

Private Sub BackupTheDatabase(servername As String,

 DatabaseName As String, Location As String, 

DeviceYN As Integer, BackupType 

As SQLDMO_BACKUP_TYPE, RetainDays As Integer,

 InitFirst As Boolean, BackupName As String)

On Error GoTo Err_handler

Set oServer = New SQLDMO.SQLServer

During testing we came across an interesting anomaly. If you try to back up a 
database in Enterprise Manager and you don’t supply a backup name, SQL Server 
will tell you that you need one, as shown in Figure 2-7.

Figure 2-7. Message box requesting a backup name

NOTE The error also happens if you try to back up the database using 
SQL-DMO using your application. This seems fair, as all Enterprise 
Manager does is issue SQL-DMO anyway. The problem is when you try 
to back up the database using T-SQL. You don’t need to supply a name, 
and SQL Server has no problem with that. If you read the header from 
your backup, you’ll see that the name of the backup set is “NULL,” 
which indicates that no value is passed.

Initializing the Backup

You initialize your backup and restore objects with the following code:

Set oBackup = New SQLDMO.Backup

Set oRestore = New SQLDMO.Restore

0406_Mitchell.book  Page 65  Thursday, September 12, 2002  2:42 PM



Chapter 2

66

Then you log on to the server on which you want to do a backup:

oServer.LoginSecure = True

oServer.Connect servername

You now pass your values to the backup object. What type of backup is it?

oBackup.Action = BackupType

What’s the name of the backup?

oBackup.BackupSetName = BackupName

Which database are you backing up?

oBackup.Database = DatabaseName

How long are you keeping the backup?

oBackup.RetainDays = RetainDays

Are you initializing the media first?

oBackup.Initialize = InitFirst

Here’s where you indicate whether or not the location you’re sending the backup 
to is a predefined device or a location you added. Note the different properties of 
the Backup object you use. You also set the Restore object’s place to look for files.

If DeviceYN = 1 Then

    oBackup.Devices = Location

    oRestore.Devices = Location

Else

    oBackup.Files = Location

    oRestore.Files = Location

End If

Here’s the actual backup:

oBackup.SQLBackup oServer

This is the check of the backup to ensure it’s structurally sound. After all, 
what’s the point in a backup that’s rubbish?

0406_Mitchell.book  Page 66  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

6767

oRestore.SQLVerify oServer

MsgBox "The database Backup Succeeded", vbOKOnly, "Backup Completed"

oServer.DisConnect

Set oServer = Nothing

Exit Sub

Err_handler:

The following error number indicates a corrupted backup:

If Err.Number = -2147218262 Then

MsgBox "The backup you have just " & _

"performed would appear to be " & _

corrupted", vbCritical, "Backup problem"

Else

    MsgBox "The database Backup " & _

Failed" & vbCrLf & Err.Description, vbOKOnly, _

"Backup Completed"

End If

oServer.DisConnect

Set oServer = Nothing

Exit Sub

End Sub

Private Sub cboServers_Click()

ShowDatabases cboServers.Text

ShowBackupDevices cboServers.Text

End Sub

Here’s where you add new locations for your backups:

Private Sub cmdAdd_Click()

Dim strNewLocation As String

strNewLocation = InputBox("Enter A New Location", "New Backup Location")

0406_Mitchell.book  Page 67  Thursday, September 12, 2002  2:42 PM



Chapter 2

68

If strNewLocation <> "" Then

    lstdevices.AddItem strNewLocation

End If

End Sub

Private Sub cmdCreate_Click()

Dim servername As String

Dim BackupType As SQLDMO_BACKUP_TYPE

Dim Init As Boolean

Dim DeviceCounter As Integer

Dim BackupName As String

Init = False

You need to set the backup type that you’re going to be using:

If optFull.Value = True Then

    BackupType = SQLDMOBackup_Database

ElseIf OptDiff.Value = True Then

    BackupType = SQLDMOBackup_Differential

ElseIf OptLog.Value = True Then

    BackupType = SQLDMOBackup_Log

End If

NOTE As with Enterprise Manager, when you back up the log you get 
no options for it. The default behavior of SQL Server when backing up 
the log is to back it up and remove completed transactions from it.

Here you indicate if you want to initialize the device:

If OptOverwrite.Value = True Then

    Init = True

End If

0406_Mitchell.book  Page 68  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

6969

If you’ve chosen a server, a database, and somewhere to send it to, you can 
proceed.

If (cboServers.Text <> "" Or cboDatabases.Text <> "" 

Or lstdevices.ListIndex <> -1) Then

        Set oServer = New SQLDMO.SQLServer

Set oBackup = New SQLDMO.Backup

Finally, log on to the server:

oServer.LoginSecure = True

oServer.Connect cboServers.Text

Locating the Backup to Restore 

Here’s where you find out if the location for the backup is in the BackupDevices 
collection. You do this by looking for a match between the names in the list box 
on the form and the names of your BackupDevices. If you get a hit, you set 
DeviceCounter = 1, which indicates “Yes.”

        For Each oDevice In oServer.BackupDevices

            If oDevice.Name = lstdevices.Text Then

                DeviceCounter = 1

            End If

        Next oDevice

Because you need to supply the backup with a name, and you may have 
forgotten to put anything in the Name box, you supply a default in the form of 
<database name>_yyyymmddhhmmss>.

        If txtName = "" Then

            BackupName =  _

cboDatabases.Text & "_" & Format(Now(), _

"yyyymmdd") & Format(Now(),"hhmmss")

        Else

            BackupName = txtName.Text

        End If

0406_Mitchell.book  Page 69  Thursday, September 12, 2002  2:42 PM



Chapter 2

70

Here you call the backup procedure with the relevant parameters:

BackupTheDatabase cboServers.Text, cboDatabases.Text,

 lstdevices.Text, DeviceCounter, BackupType, cboRetain.Text,

 Init, BackupName

End If

End Sub

Remove devices from the Devices list box (don’t remove them from the server, 
though):

Private Sub cmdremove_Click()

If lstdevices.ListIndex <> -1 Then

    lstdevices.RemoveItem lstdevices.ListIndex

End If

End Sub

Private Sub Form_Load()

cboRetain.ListIndex = 0

ShowServers

optAppend.Value = True

optFull.Value = True

End Sub

NOTE When you open up Enterprise Manager and select your data-
base, SQL Server remembers where you last sent it to for backing up. 
We’ve chosen not to do this here, but Enterprise Manager uses the 
following code to do it:

use msdb 

select 

distinct f.device_type, f.physical_device_name, f.logical_device_name,

 b.database_name 

from 

backupmediafamily f, backupset b  where

 b.database_name = N'MyDMODatabase'

 and 

b.backup_finish_date = (select MAX(backup_finish_date)

 from backupmediafamily 

INNER JOIN backupset ON 

backupmediafamily.media_set_id=backupset.media_set_id 

0406_Mitchell.book  Page 70  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

7171

where backupset.database_name = N'MyDMODatabase' 

and (backupmediafamily.device_type=2 or 

backupmediafamily.device_type=102))

 and b.media_set_id = f.media_set_id

Backing Up the Log

Periodically, you may need to back up the log of your database. Using Enterprise 
Manager and your SQL-DMO application, you can find everything in the same 
place and you just specify a log backup. In T-SQL, however, you need to use slightly 
different syntax. Most of the options are the same, but a few need explanation. 
Here’s the code, which is taken from SQL Server Books Online.

T-SQL

BACKUP LOG { database_name | @database_name_var } 

{ 

TO < backup_device > [ ,...n ] 

[ WITH 

[ BLOCKSIZE =

 { blocksize | @blocksize_variable } ] 

[ [ , ] DESCRIPTION = 

{ 'text' | @text_variable } ] 

[ [ ,] EXPIREDATE = 

{ date | @date_var } 

| RETAINDAYS = { days | @days_var } ] 

[ [ , ] PASSWORD = 

{ password | @password_variable } ] 

[ [ , ] FORMAT | NOFORMAT ] 

[ [ , ] { INIT | NOINIT } ] 

[ [ , ] MEDIADESCRIPTION = { 'text' | @text_variable } ] 

[ [ , ] MEDIANAME =

 { media_name | @media_name_variable } ] 

[ [ , ] MEDIAPASSWORD =

 { mediapassword | @mediapassword_variable } ] 

[ [ , ] NAME =

 { backup_set_name | @backup_set_name_var } ] 

[ [ , ] NO_TRUNCATE ] 

[ [ , ] { NORECOVERY | STANDBY = undo_file_name } ] 

[ [ , ] { NOREWIND | REWIND } ]

[ [ , ] { NOSKIP | SKIP } ] 

0406_Mitchell.book  Page 71  Thursday, September 12, 2002  2:42 PM



Chapter 2

72

[ [ , ] { NOUNLOAD | UNLOAD } ] 

[ [ , ] RESTART ] 

[ [ , ] STATS [ = percentage ] ] 

] 

}

We would like to explain the TRUNCATE options:

• NO_TRUNCATE: This option indicates that the log should be backed up, but 
committed transactions shouldn’t be removed from it. The SQL-DMO 
constant for this is

SQLDMOBACKUP_Log_NoTruncate

• NO_LOG: This option tells SQL Server to get rid of the committed transac-
tions in the log and to not bother about backing them up to a physical file or 
tape. You don’t need to specify a backup device or location for the option, as 
the log doesn’t get backed up. This creates a hole in your recovery options 
because you’re missing some transactions. It’s advisable to follow this type 
of log backup with a full database backup to restore your ability to recover 
from a disaster. The SQL-DMO constant for this is

SQLDMOBACKUP_Log_NoLog

• TRUNCATE_ONLY: This option is the same as NO_LOG. The SQL-DMO 
constant for this is

SQLDMOBACKUP_Log_TruncateOnly

Restoring the Database

The primary reason you create a backup is that in the event of a disaster you can 
have a good go at re-creating your environments with as little loss of data as possible. 
The following code listings show how to restore a database and log. The code is 
taken from SQL Server Books Online.

T-SQL

RESTORE DATABASE { database_name | @database_name_var } 

[ FROM < backup_device > [ ,...n ] ] 

[ WITH 

[ RESTRICTED_USER ] 

[ [ , ] FILE = { file_number | @file_number } ] 

0406_Mitchell.book  Page 72  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

7373

[ [ , ] PASSWORD =

 { password | @password_variable } ] 

[ [ , ] MEDIANAME = { media_name | @media_name_variable } ] 

[ [ , ] MEDIAPASSWORD =

 { mediapassword | @mediapassword_variable } ] 

[ [ , ] MOVE 'logical_file_name' 

TO 'operating_system_file_name' ] 

[ ,...n ] 

[ [ , ] KEEP_REPLICATION ] 

[ [ , ] { NORECOVERY | RECOVERY | STANDBY = undo_file_name } ] 

[ [ , ] { NOREWIND | REWIND } ] 

[ [ , ] { NOUNLOAD | UNLOAD } ] 

[ [ , ] REPLACE ] 

[ [ , ] RESTART ] 

[ [ , ] STATS [ = percentage ] ] 

]

The following code shows how to restore a log:

RESTORE LOG { database_name | @database_name_var } 

[ FROM < backup_device > [ ,...n ] ] 

[ WITH 

[ RESTRICTED_USER ] 

[ [ , ] FILE = { file_number | @file_number } ] 

[ [ , ] PASSWORD = { password | @password_variable } ] 

[ [ , ] MOVE 'logical_file_name' TO 'operating_system_file_name' ] 

[ ,...n ] 

[ [ , ] MEDIANAME = { media_name | @media_name_variable } ] 

[ [ , ] MEDIAPASSWORD = { mediapassword | @mediapassword_variable } ] 

[ [ , ] KEEP_REPLICATION ] 

[ [ , ] { NORECOVERY | RECOVERY | STANDBY = undo_file_name } ] 

[ [ , ] { NOREWIND | REWIND } ] 

[ [ , ] { NOUNLOAD | UNLOAD } ] 

[ [ , ] RESTART ] 

[ [ , ] STATS [= percentage ] ] 

[ [ , ] STOPAT = { date_time | @date_time_var } 

| [ , ] STOPATMARK = 'mark_name' [ AFTER datetime ] 

| [ , ] STOPBEFOREMARK = 'mark_name' [ AFTER datetime ] 

] 

]

0406_Mitchell.book  Page 73  Thursday, September 12, 2002  2:42 PM



Chapter 2

74

The syntax for restoring a database and restoring a log is rather similar, but 
once again we’ll explain those options that are perhaps not obvious.

• FILE: If you back up to a device on a number of occasions, then you’ll need 
to specify this option. File numbers increment in multiples of one and are 
allocated on writing to the device. This will enable you to specify the par-
ticular backup on the device you require.

• MOVE: This option is used when you want or need to place the physical files 
in a different place than where they were backed up from. For example, say 
you have a database that has both its data file and log file on the F drive. You 
want to restore that database to another server, but that server only has a C 
drive and a D drive. Because the database knows where it previously lived on 
the disks, it defaults to that location. In this example, you don’t have an F 
drive, so you need to tell SQL Server to move the files.

• NORECOVERY/RECOVERY/STANDBY: If you specify RECOVERY, then you’ll 
bring the database up and make it available to users. You won’t be able to 
apply further backups. If you use NORECOVERY, then you can apply more 
backups to the database, but the database is unavailable. Finally, if you 
choose STANDBY, then you’re able to apply more backups to the database 
and you also make the database READ-ONLY. With this option, you also 
need to specify an undo file so you can roll back any transactions.

• REPLACE: You use this option if you have an existing database and you want 
to apply the backup of a different database to it. You force the restore over 
the top.

• STOPAT: This option allows you to specify exactly when you want to restore, 
down to the thousandth of a second. For example, a user may have dropped 
all the tables in the database at 2:30 P.M., so you would need to restore to just 
before that point in the log.

• STOPATMARK/STOPBEFOREMARK: SQL Server 2000 allows you to mark the 
log, and you can then use that mark as a reference point for your restores. 
For example, say you successfully do a load of a database and you mark the 
log. You carry on and manage to mess things up later on. You can choose to 
restore to your previous mark.

0406_Mitchell.book  Page 74  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

7575

Implementing the Restore 

In the next example you’ll restore a database from a full database backup and a 
transaction log backup. The database backup will be on a backup device, and 
the transaction log backup will be on a physical file.

RESTORE DATABASE MyDatabase FROM MyBackupDevice

WITH FILE = 1, NORECOVERY

RESTORE LOG MyDatabase FROM 

disk = 'C:\Logfilebackups\LogFordatabase.bak' 

WITH RECOVERY

If you want to look at the details of a backup before you go and restore it, the 
following three commands won’t actually restore the database but will just tell you 
about the backup:

RESTORE FILELISTONLY FROM ….

RESTORE LABELONLY FROM ….

RESTORE HEADERONLY FROM ….

Figure 2-8 shows the Restore database screen in Enterprise Manager. Here you 
decide which database to restore and also where you restore the database from.

You can access the screen in Figure 2-8 in a number of ways. We include only 
two here for brevity.

• Right-click the database itself or the Databases folder and choose All Tasks 
followed by Restore Database.

• From the Tools menu, choose Restore Database.

On this screen, you specify the database you want to restore, which can be 
either an existing database or a new one. You also indicate what type of backup it 
is and where you want to get the backup from. Figure 2-9 shows the options 
available for placing the restored files and what state to leave the database in. 

0406_Mitchell.book  Page 75  Thursday, September 12, 2002  2:42 PM



Chapter 2

76

Figure 2-8. The Restore database screen in Enterprise Manager

Figure 2-9. The Options tab in the Restore database screen in Enterprise Manager

0406_Mitchell.book  Page 76  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

7777

From the Restore database Options tab, you can choose to move the physical 
files to a different location (remember the MOVE option in T-SQL). You can also 
specify the recovery state of your database (RECOVERY, NORECOVERY, or STANDBY). 
Enterprise Manager is quite easy to get along with.

NOTE Enterprise Manager isn’t particularly good at refreshing, and 
here’s an example of how you can get caught out with it. Say you choose 
to restore a particular database. The “Restore as database” box on the 
first screen of Enterprise Manager contains the database name. You 
then choose to restore from a device with multiple backups on it. 
Backup number 1 is the default choice, so you see the logical names 
and physical names of the backup on the Options tab. If the backup is 
of a different database, then you have incorrectly named files. This is 
problematic when the database from which the backup was taken is on 
the same server. And, if you choose to use a different FILE number on 
the device, Enterprise Manager doesn’t update the view of the logical 
and physical files. Now you’re left with a database with one name, logical 
and physical files from a different database, and a FILE number on the 
backup device from a completely different backup. 

Restoring Using SQL-DMO

To illustrate how you can do restores in SQL-DMO, we’ve built a very small appli-
cation that does most of what Enterprise Manager does. (It actually does refreshing 
better than Enterprise Manager.) We’ve added a tab for you to look at the data def-
inition language (DDL) you’re creating so it can serve as a learning tool for what 
you need to do in T-SQL as well. Figure 2-10 shows our application prompting for 
a database to restore. 

0406_Mitchell.book  Page 77  Thursday, September 12, 2002  2:42 PM



Chapter 2

78

The first screen is where you choose the server, database, and backup device 
that you want to restore from. You can, if there are multiple backups on the device 
(as there are in Figure 2-10), choose which backup device you want to restore from. 
Figure 2-11 shows our application asking where we want to move a file.

Figure 2-10. The first screen of our application

0406_Mitchell.book  Page 78  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

7979

Figure 2-11. Prompting for a restore location

The second screen is where you indicate when you restore the files whether you 
want to keep them in the same physical location or move them. (In Figure 2-11, you 
can see that we’ve chosen to move the file. We made the other screen pop up by 
clicking the Physical File Name we wanted to change.) The second screen is also the 
place you determine what condition you want the database left in after the restore.

0406_Mitchell.book  Page 79  Thursday, September 12, 2002  2:42 PM



Chapter 2

80

The DDL screen (see Figure 2-12) generates a T-SQL statement to show you 
what it is you’ll be executing against SQL Server. This can be an excellent learning 
tool for people who are more comfortable with the GUI but who are looking to 
learn the T-SQL equivalent.

Figure 2-12. The DDL screen

A lot of the code for the application follows. We’ve chosen not to go through 
every single line of code. Rather, we explain those code lines that are pertinent and 
that we think are useful. 

Specifying the Backup Origin

Once you’ve chosen your server and database for the restore, you need to specify 
where the backup will be coming from (i.e., its origin). In our application, that 

0406_Mitchell.book  Page 80  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

8181

origin can be one of two places: a predefined backup or a physical file. If you click 
the ellipses to the right of the Backup Location or Device list box, you’re taken to 
the screen shown in Figure 2-13. This screen allows you to select the location.

Figure 2-13. Selecting the location of the backup

To populate the combo box with the list of backup devices available, you 
simply loop through the backup devices of the server. The following code goes 
through the backup devices defined on the server and adds them to the combo 
box display in the application:

Private Sub ShowBackupDevices(servername As String)

Set oServer = New SQLDMO.SQLServer

oServer.LoginSecure = True

oServer.Connect servername

cboDevices.Clear

For Each oDevice In oServer.BackupDevices

    cboDevices.AddItem oDevice.Name

Next oDevice

oServer.DisConnect

Set oServer = Nothing

Set oDevice = Nothing

End Sub

You can choose either a device or a file. Once you’ve chosen a device or a file, 
your choice is entered in the list box showing backup devices back on the first 

0406_Mitchell.book  Page 81  Thursday, September 12, 2002  2:42 PM



Chapter 2

82

screen. You need to have a look at what backups, if any, exist on this device, so you 
need to execute the equivalent of RESTORE HEADERONLY for the device you select.

Private Sub ShowContentsOfBackup(servername As String, devicename As String)

Dim oHeader As SQLDMO.QueryResults

Dim DeviceCounter As Integer

Dim i As Integer

Dim Backup_type As String

DeviceCounter = 0

msf_Available.Rows = 1

Set oServer = New SQLDMO.SQLServer

Set oRestore = New SQLDMO.Restore

oServer.LoginSecure = True

oServer.Connect servername

Looping Through the Devices

You’ll need to check if the name you passed is a device or an ad hoc file, as this will 
influence which property of the Device object you supply. Here you check whether 
there is a device in the Devices collection with the same name as the text you chose 
in the list box. If there is, you set DeviceCounter = 1 to indicate that.

For Each oDevice In oServer.BackupDevices

    If oDevice.Name = devicename Then

        DeviceCounter = 1

    End If

Next oDevice

Once you find the device with the same name, you want to know what type of 
device it is.

If DeviceCounter = 0 Then

    oRestore.Files = devicename

Else

    oRestore.Devices = devicename

End If

0406_Mitchell.book  Page 82  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

8383

Here’s where you read the contents of the backup header into a QueryResults 
object ready for processing. A QueryResults object is very much like a table with 
rows and columns, so you just go through it processing the rows and columns. 

This is the RESTORE HEADERONLY part. It takes a connected SQLServer 
object as an argument.

Set oHeader = oRestore.ReadBackupHeader(oServer)

For i = 1 To oHeader.Rows

Part of the results of ReadBackupHeader is the type of backup. Unfortunately, 
this is returned to you as an integer. You convert the unintelligible integer value for 
the backup type into something you can read and comprehend without opening a 
reference book. These are all the possible values you could ever have. What Microsoft 
has done with the number 3, we don’t know.

Iterating Through the Possible Backup Types

Select Case oHeader.GetColumnString(i, 3)

    Case 1

    Backup_type = "FULL"

    Case 2

    Backup_type = "LOG"

    Case 4

    Backup_type = "FILE"

    Case 5

    Backup_type = "DIFF DB"

    Case 6

    Backup_type = "DIFF FILE"

End Select

Next, add your required column and row values to the flex grid, which shows 
you the contents of the backup device you specified. Here we chose to only process 
certain values from the results, as we wanted to imitate Enterprise Manager. The 
GetColumnString method of the QueryResults object takes two arguments: row 
and column, in that order.

    msf_Available.AddItem Backup_type & vbTab & 

oHeader.GetColumnString(i, 6) & vbTab & 

oHeader.GetColumnString(i, 10) & vbTab & 

oHeader.GetColumnString(i, 19)

Next i

0406_Mitchell.book  Page 83  Thursday, September 12, 2002  2:42 PM



Chapter 2

84

oServer.DisConnect

Set oServer = Nothing

Set oRestore = Nothing

End Sub

Choosing the Backup to Restore

The next thing you need to do once you click the grid with your list of possible 
backups is have it populate the grid on the Options tab with the logical and physical 
names of the particular backup you selected. This section contains the calling pro-
cedure followed by the actual workhorse.

Because a single backup device may have multiple backups on it, you need to 
specify which one you’re talking about. The way you managed to pass the FileNumber 
was to capture where you clicked the other grid and read off the FileNumber 
column for that particular row.

Private Sub msf_Available_Click()

If msf_Available.Row <> 0 Then

ShowMeFileDetails cboServers.Text, _

lstdevices.Text, _

 msf_Available.TextMatrix(msf_Available.Row, 1)

End If

End Sub

Private Sub ShowMeFileDetails(servername As String,

 devicename As String, filenumber As Integer)

Dim oFileResults As SQLDMO.QueryResults

Dim DeviceCounter As Integer

Dim i As Integer

DeviceCounter = 0

msf_FileList.Rows = 1

0406_Mitchell.book  Page 84  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

8585

Set oServer = New SQLDMO.SQLServer

Set oRestore = New SQLDMO.Restore

oServer.LoginSecure = True

oServer.Connect servername

Again, as before, you need to process the device name in the Devices list:

For Each oDevice In oServer.BackupDevices

    If oDevice.Name = devicename Then

        DeviceCounter = 1

    End If

Next oDevice

If DeviceCounter = 0 Then

    oRestore.Files = devicename

Else

    oRestore.Devices = devicename

End If

oRestore.filenumber = filenumber

Configuring the Restore

Up until now, the code has been exactly the same as when you wanted to populate 
the other grid with details of your backup headers, but this is the part that you do 
the equivalent of RESTORE FILELISTONLY. It returns the result as a QueryResults 
object and takes a connected SQLServer object as an argument.

Set oFileResults = oRestore.ReadFileList(oServer)

For i = 1 To oFileResults.Rows

Add your required column and row values to the flex grid, which shows you 
the file details of the backup device you specified. You only want two of the returned 
column values: the logical and physical names of the backup you specified.

0406_Mitchell.book  Page 85  Thursday, September 12, 2002  2:42 PM



Chapter 2

86

    msf_FileList.AddItem

 oFileResults.GetColumnString(i, 1) & 

vbTab & oFileResults.GetColumnString(i, 2)

Next i

End Sub

On the Options tab, you have the ability to change the physical location of files 
once they’re restored. The way you do that in the application is to click the location 
you want to change and enter into the prompt the new location (you can see this 
in Figure 2-11). This action is the equivalent of the WITH MOVE option in T-SQL. 
Here’s the very simple code that does this:

Private Sub msf_FileList_Click()

Dim strNewFile As String

Only if you click the column with the physical location should you be 
prompted. If you don’t enter anything, then you want to leave the value as is.

If msf_FileList.Col = 1 Then

    strNewFile = _

InputBox("Enter New Location Of File", _

"New File Location", msf_FileList.Text)

        If strNewFile = "" Or msf_FileList.Col <> 1 Then

            msf_FileList.Text = msf_FileList.Text

        Else

            msf_FileList.Text = strNewFile

        End If

End If

End Sub

All the other options are specific to your restore and will only be relevant once 
you tell the application to do the restore itself, so let’s now look at the procedure 
that calls the actual restore procedure. We’ve used this to do the checking:

Private Sub cmdRDDL_Click(Index As Integer)

On the form you’ve created a control array of the button that will generate the 
DDL only, and the one that will generate DDL and do the restore. The reason for 
this is that it means you can reuse the same code.

0406_Mitchell.book  Page 86  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

8787

If cboServers.Text <> "" And cboDatabases.Text <> "" 

And lstdevices.Text <> "" And msf_Available.Rows > 1 

Then

You need to log onto your SQL Server:

Set oServer = New SQLDMO.SQLServer

Set oRestore = New SQLDMO.Restore

oServer.LoginSecure = True

oServer.Connect cboServers.Text

Dim iLeftInState As Integer

Dim iDBRestore As Integer

Dim iForce As Integer

Dim ideviceYN As Integer

Dim iMoveFiles As Integer

Dim iBackupType As Integer

Dim strMoveFiles As String

Dim qry_Comparison As SQLDMO.QueryResults

Dim i As Integer

iForce = 0

ideviceYN = 0

iBackupType = 1

strMoveFiles = ""

iMoveFiles = 0

Here you check to see if you’ve opted to force your restore over the top of an 
existing database (the REPLACE option in T-SQL):

Select Case chkForce.Value

Case vbChecked

iForce = 1

End Select

0406_Mitchell.book  Page 87  Thursday, September 12, 2002  2:42 PM



Chapter 2

88

You need to check your devices again because later you’re going to need to do 
some comparisons with the ReadFileList of the Restore object:

For Each oDevice In oServer.BackupDevices

    If oDevice.Name = lstdevices.Text Then

        ideviceYN = 1

    End If

Next oDevice

Choosing the Restore Type

What type of restore do you want to do? Your options are a database backup and a log 
backup, and they’re set by the option buttons on the first screen of the application.

Select Case optDatabase.Value

Case False

iBackupType = 0

End Select

How do you want to leave the database? You set this on the Options tab of the 
application.

The following code shows how to recover the database after a restore:
If optrecover.Value = True Then

    iLeftInState = 1 

This code will leave the database nonoperational but in a state in which you 
can apply more log backups afterward. 

ElseIf optNonop.Value = True Then

    iLeftInState = 2

This option will leave the database in a read-only state, which is good for 
reporting. You can also restore more backups to the database.

ElseIf optStandby = True Then

    iLeftInState = 3

End If

If you choose to leave the database in a standby state, then make sure you 
have an undo file ready.

0406_Mitchell.book  Page 88  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

8989

If iLeftInState = 3 And txtStandby = "" Then

    MsgBox "You have chosen to place the database in standby." 

& vbCrLf & "You need to specify an undo file",

 vbInformation, "Missing Undo File"

    Exit Sub

End If

Now for the tricky part. You need to compare the values for the placement of 
the files in the grid with those that you know are in the backup set for the backup 
you’ve chosen row for row. If you find any values that are different, then this will 
need to be your move string for the restore.

If ideviceYN = 1 Then

    oRestore.Devices = lstdevices.Text

Else

    oRestore.Files = lstdevices.Text

End If

oRestore.filenumber = msf_Available.TextMatrix(msf_Available.Row, 1)

Here you’re doing the equivalent of RESTORE FILELISTONLY. The results are 
read into a QueryResults object.

Set qry_Comparison = oRestore.ReadFileList(oServer)

This is the comparison. If you find a difference, you add the logical name and 
the new physical name from the grid to your string, which will tell SQL Server to 
move the files. You need to wrap the logical name and physical name in square 
brackets to cater for spaces in either name. SQL Server, like a lot of other products, 
can find it difficult to work with spaces, so wrapping in square brackets smoothes 
things over (don’t worry—they don’t come out in your code).

For i = 1 To qry_Comparison.Rows

    If msf_FileList.TextMatrix(i, 1) <> qry_Comparison.GetColumnString(i, 2) Then

        strMoveFiles = _

strMoveFiles & "[" & msf_FileList.TextMatrix(i, 0) & _

 "],[" & msf_FileList.TextMatrix(i, 1) & "],"

    End If

Next i

If you found any files that need moving, then after you’ve built up this string 
you’re going to have an extra comma at the end of the string, so here you trim 

0406_Mitchell.book  Page 89  Thursday, September 12, 2002  2:42 PM



Chapter 2

90

that off and set an indicator that you’ll later use to indicate that you have files 
that need moving.

If Len(strMoveFiles) > 0 Then

    strMoveFiles = Mid(strMoveFiles, 1, Len(strMoveFiles) - 1)

    iMoveFiles = 1

End If

Here all you do is check whether the button you clicked was the Generate DDL 
only or the Restore button. Based on that, you execute the procedure that does 
what you’ve been building up to.

Select Case Index

The following code only generates the DDL: 

Case 0 

GenerateDDLAndRestore "", cboDatabases.Text, 

iForce, lstdevices.Text, ideviceYN, iBackupType,

 oRestore.filenumber, iLeftInState, iMoveFiles, strMoveFiles, txtStandby.Text

The following code will generate some DDL statements and actually do the 
restore:

Case 1

GenerateDDLAndRestore "", cboDatabases.Text,

 iForce, lstdevices.Text, ideviceYN, iBackupType,

 oRestore.filenumber, iLeftInState, iMoveFiles, 

strMoveFiles, txtStandby.Text

GenerateDDLAndRestore cboServers.Text,

 cboDatabases.Text, iForce, lstdevices.Text,

 ideviceYN, iBackupType, oRestore.filenumber,

 iLeftInState, iMoveFiles, strMoveFiles,

 txtStandby.Text

End Select

End If

End Sub

There remains only one piece of code to go through: the actual restore procedure. 

0406_Mitchell.book  Page 90  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

9191

Private Sub GenerateDDLAndRestore(servername 

As String, DatabaseName As String, Force

 As Integer, location As String, deviceYN As Integer,

 DBRestore As Integer, filenumber As Integer,

 LeftInState As Integer, MoveFiles As Integer,

 movestring As String, standbyfilesloc As String)

On Error GoTo err_handler

Set oRestore = New SQLDMO.Restore

You now check with the following code to see if you’re using a device or a file:

If deviceYN = 1 Then

    oRestore.Devices = location

Else

    oRestore.Files = location

End If

Here you indicate whether or not you force this backup over the top of the 
existing database:

If Force = 1 Then

    oRestore.ReplaceDatabase = True

End If

Here you indicate what type of backup you’re doing:

If DBRestore = 1 Then

    oRestore.Action = SQLDMORestore_Database

Else

    oRestore.Action = SQLDMORestore_Log

End If

Are you moving the files at all? If the answer is yes (MoveFiles = 1), then you 
need to supply a string in the form of logical file name, physical file name for each 
file you’re moving (remember the comparison you did between the results of the 
ReadFileList and the values in the grid in the previous procedure)—that is, 
Logical_file_1, c:\MyData\physical_file _1, logical_file_2, c:\MyData\physical_file _2.

If MoveFiles = 1 Then

    oRestore.RelocateFiles = movestring

End If

0406_Mitchell.book  Page 91  Thursday, September 12, 2002  2:42 PM



Chapter 2

92

In the following code you indicate which database you want to restore:

oRestore.Database = DatabaseName

Here you set the recovery option:

Select Case LeftInState

If you specify the following option you recover the database:

Case 1

oRestore.LastRestore = True

Specifying the following option leaves the database nonoperational:

Case 2

oRestore.LastRestore = False

Finally, choosing this option leaves the database in Standby mode:

Case 3

oRestore.LastRestore = False

oRestore.StandbyFiles = standbyfilesloc

End Select

oRestore.filenumber = filenumber

Because you want to reuse this procedure for DDL only or DDL and actual 
restore, you include the following clause here. If no servername is passed, you only 
need to generate the DDL.

If servername <> "" Then

    Set oServer = New SQLDMO.SQLServer

    oServer.LoginSecure = True

    oServer.Connect servername

Here’s the actual restore statement that takes an argument of a connected 
SQLServer object:

    oRestore.SQLRestore oServer

End If

This is the statement that will generate your T-SQL on the third tab of the 
application:

0406_Mitchell.book  Page 92  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

9393

txtDDL.Text = oRestore.GenerateSQL

Exit Sub

err_handler:

MsgBox "The restore has failed because... " & vbCrLf & Err.Description

Exit Sub

End Sub

The 15-Minute Database Checker

When we’re out and about at client sites, we often find that databases are created 
on servers and no one will bother to tell us. Without fail, you can guarantee that 
when something goes wrong with the database and the client needs it restored, 

then ours will be the first door they come knocking on. Even if we didn’t know any-
thing about the database, it’s still rather embarrassing to find that we can’t recover 
the client’s data. This is the reason we built this little application. We have made it 
a rule that if nobody tells us they’ve built a database server, and hence we haven’t reg-
istered it in our Enterprise Manager console, then as far as we’re concerned it doesn’t 
exist. Fortunately, people do provide us with this information for the most part.

Imagine this scenario: You have a server that has a series of databases that are 
reliant upon a full database backup being done on a night and a differential 
backup being done every day at 2-hour intervals between 8:00 A.M. and 8:00 P.M. 
The full backups are done and scheduled through maintenance plans, but unfor-
tunately you can’t do the same with a differential backup. This means you need to 
write your own procedure, but you want to just let it run and capture any data-
bases on the server, and back it up when the time comes. The procedure to do so 
may look like this:

DECLARE @DBName sysname

DECLARE @EXECString varchar(255)

DECLARE cur_Differentials CURSOR FAST_FORWARD

FOR

select

      Name from master..sysdatabases where name not in ('master','model','tempdb')

OPEN cur_Differentials

FETCH NEXT FROM cur_Differentials INTO @DBName

0406_Mitchell.book  Page 93  Thursday, September 12, 2002  2:42 PM



Chapter 2

94

WHILE (@@FETCH_STATUS<>-1)

BEGIN

set @EXECString =  _

'BACKUP DATABASE 

[' + @DBName + '] to DISK = ''\\NetworkServer\diffBackups\Server1\' +

[' + @DBName + '].DIFF'' WITH INIT,differential'

EXEC(@EXECString)

FETCH NEXT FROM cur_Differentials INTO @DBName

End

Close cur_Differentials

DEALLOCATE cur_Differentials

If you were to create a database during the working day, then at the next 
interval you would attempt to back up that database using a differential backup. 
Shortly after that, you would get a message telling you that the differential backup 
job had failed because of the new database.

This application will search through all databases on all your registered servers 
and look at when they were created. If it finds one that was created in the past 
15 minutes, then it will back it up to a default location, \\MyNetworkServer\
FullBackupShare\<Server_Name>\<Database_Name>_<yyyymmdd>.bak.

The following code shows how to call the procedure:

Option Explicit

Sub main()

ListNewDatabases 15

End Sub

The following code shows the procedure:

Private Sub ListNewDatabases(MinsAgo As Integer)

Dim oServer As SQLDMO.SQLServer

Dim oBackup As SQLDMO.Backup

Dim oDatabase As SQLDMO.Database

Dim OutputString As String

Dim oRserver As SQLDMO.RegisteredServer

On Error GoTo err_handler

0406_Mitchell.book  Page 94  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

9595

Set oServer = New SQLDMO.SQLServer

Set oBackup = New SQLDMO.Backup

For Each oRserver In SQLDMO.ServerGroups(1).RegisteredServers

    oServer.LoginSecure = True

    oServer.Connect oRserver.name

The procedure is self-explanatory so far. Here’s where you check each database, 
and if it isn’t Master, Model, msdb, or tempdb, then you log that fact and back it up:

        For Each oDatabase In oServer.Databases

            If oDatabase.Name <> "master" and 

oDatabase.name <> "tempdb"  and 

oDatabase.Name <> "model" and oDatabase.Name <> 'msdb' 

Then

In the following code you check for any newly created databases:

If DateDiff("n", Left(oDatabase.CreateDate, 19),

 Format(Now(), "dd-mm-yyyy hh:mm:ss")) <= MinsAgo Then

    OutputString = OutputString & "Database " & 

oDatabase.Name & " on " & oServer.Name &

 " was created on " & Left(oDatabase.CreateDate, 19) 

& " by " & oDatabase.Owner & vbCrLf &

 "The database was backed Up to \\MyNetworkServer\FullBackupShare\" & _

 oServer.Name & "\" & oDatabase.Name &

 "_" & Format(Now(), "yyyymmyy") & ".bak" &

 vbCrLf  & vbCrLf                                     

 oBackup.Database = oDatabase.Name

  oBackup.Files = "\\MyNetworkServer\FullBackupShare\" 

& oServer.Name & "\" & oDatabase.Name & "_" &

 Format(Now(), "yyyymmyy") & ".bak"

                    oBackup.SQLBackup oServer

                End If

                

            End If

          Next oDatabase

          

          oServer.DisConnect

    

Next oRserver

0406_Mitchell.book  Page 95  Thursday, September 12, 2002  2:42 PM



Chapter 2

96

If OutputString has anything in it, this means something has been created:

If OutputString <> "" Then

Open "c:\NewDBs.txt" For Output As #1

Print #1, OutputString

End If

Exit Sub

Close #1

err_handler:

Resume Next

End Sub

This is a wonderfully simple and amazingly useful application. It enables you 
to be proactive in your duties over any number of servers. You complement this 
application by having SQL Server check for the existence of the log output file from 
the application, and if it finds the file, it sends it to you so you know what’s going on.

Permissions for Backing Up the Database

BACKUP DATABASE and BACKUP LOG permissions default to members of the 
db_owner fixed database role, who can transfer permissions to other users, and 
members of the db_backupoperator fixed database role.

Permissions for Restoring the Database

If the database being restored doesn’t exist, the user must have CREATE DATABASE 
permissions. If the database does exist, RESTORE permissions default to members of 
the sysadmin fixed server role and members of the db_owner fixed database role.

0406_Mitchell.book  Page 96  Thursday, September 12, 2002  2:42 PM



Backup and Restore: A DBA’s Bread and Butter

9797

Summary

Doing backups and restores is something we believe strongly in. In this chapter, 
we showed you some useful applications in SQL-DMO. We didn’t cover every 
option that you could possibly use for backups and restores, but we did cover 
those points we think are most relevant. We also managed to develop a learning 
tool as a side effect of the restore application. Being asked to restore a database we 
have no idea about is something we would like to avoid, as we said earlier, and 
thankfully we have by using the application in this chapter.

In the next chapter you’re going to add users to the databases and the server. 
Once the users are in there, you’ll look to give them some permissions.

0406_Mitchell.book  Page 97  Thursday, September 12, 2002  2:42 PM




