
Using and Understanding
Java Data Objects

DAVID EZZIO

43-0 front.fm Page i Monday, May 12, 2003 4:40 PM

Using and Understanding Java Data Objects
Copyright ©2003 by David Ezzio

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-043-0

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewers: Regis Le Brettevillois, John Mitchell, Abe White

Editorial Directors: Dan Appleman, Gary Cornell, Martin Streicher,
Karen Watterson, John Zukowski

Assistant Publisher: Grace Wong

Project Manager: Tracy Brown Collins

Copy Editor: Ami Knox

Production Editor: Julianna Scott Fein

Composition: Susan Glinert

Indexer: Valerie Robbins

Proofreader: Elizabeth Berry

Cover Designer: Kurt Krames

Production Manager: Kari Brooks

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, email
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

43-0 front.fm Page ii Monday, May 12, 2003 4:40 PM

269

CHAPTER 8

Using JDO to Learn More

THE JDO LEARNING TOOLS are a small but comprehensive set of programs that you
can use for several purposes. You can use them as an introduction to JDO. You can use
them to verify what you have learned about JDO. Most importantly, you can use them
to learn more. The first five JDO Learning Tools are discussed in this chapter.

• TestJDOHelper

• TestFactory

• MegaCups

• Library

• StateTracker

The five learning programs are not examples of how your application might
use JDO. Instead, they are atypical applications whose purpose is to illuminate the
interactions with JDO. TestJDOHelper and TestFactory allow you to start using a JDO
implementation and find out more about its capabilities. The MegaCups program
demonstrates JDO’s ability to handle multiple, concurrent updates. The Library
program allows you to interactively populate a small town’s library and run your
own queries against its objects. Using it, you can test JDO’s query language. The
StateTracker program allows you to manipulate and view the managed and
unmanaged state of persistent, transactional, and unmanaged apples. You can use
it to execute all of JDO’s explicit operations and many of its implicit operations,
and you can see the consequences on managed objects.

In addition to the five learning programs, there are two sets of example programs,
the rental application and the quote server, that are discussed in Chapters 9
through 11. The rental applications and the quote servers provide examples of
how your application might use JDO. Between them, they cover many application
architectures. The rental application is a prototype reservation system for a fictitious
lighthouse rental company. It comes in three versions: the rental Swing application,
the rental Web application, and the rental enterprise (EJB) application. Each version
implements nearly the same set of requirements. Each chapter from 9 to 11 takes
one version of the rental application as its main topic. The quote server application
stores new quotes given to it and serves up a random quote upon demand. It is
implemented in five types of Enterprise JavaBeans: a stateless CMT session bean,

Ezzio 43-0.book Page 269 Thursday, May 8, 2003 8:18 PM

Chapter 8

270

a stateful CMT session bean, a stateless BMT session bean, a stateful BMT session
bean, and a BMP entity bean. The quote server examples are discussed in Chapter 6
as well as Chapter 11.

The JDO Learning Tools 1.0 are copyright by Yankee Software and are provided
to the community of Java programmers under the open source GNU General
Public License. Instructions for downloading the JDO Learning Tools are found in
the section “Step One: Download Open Source JDO Learning Tools” that follows in
this chapter. You are encouraged to contribute improvements to make future
releases of the JDO Learning Tools better for all of us.

The Ant Build Scripts

All of the programs provided with this book are built with Ant, a build tool from
Apache’s Ant project. Build scripts are provided for four different implementations:

• The reference implementation from Sun Microsystems

• The Kodo implementation from SolarMetric

• The Lido implementation from Libelis

• The IntelliBO implementation from SignSoft

A new script could be added for any other JDO implementation as long as the
implementation supplies command line tools that can be used with Ant. The
scripts were tested with version 1.4.1 of Ant, and they should work with any later
1.x version of Ant. It is strongly recommended that you use Ant to build the JDO
Learning Tools.

Ant’s build scripts are XML files. The major build scripts are in the bookants
directory. The build scripts that compile the individual programs are in each
project directory. The main build script, called build.xml, reads three property files
in the bookants directory to set its configuration. The global.properties file con-
tains properties that you should not have to change. The custom.properties file is
tailored to the particular JDO tool that you are using. You will want to modify the
appropriate property file for the tool, such as jdori.properties, and then make a
copy of it that is named custom.properties. The default.properties file sets properties
that must be customized to your installation.

Ezzio 43-0.book Page 270 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

271

The main Ant build script reads the property files in the following order:

1. global.properties

2. custom.properties

3. default.properties

Because all Ant properties are final, if a property is set in more than one property file,
the value that sticks is the first value encountered. As a result, if the property jdo.tool
is encountered in the custom.properties file as well as in the default.properties file,
the value in the custom.properties file is the one used.

In order to work with a variety of JDO implementations, the build scripts are a
bit more complicated than they would be in a typical development environment.
The main build.xml script calls out to one of several possible tool scripts that are
individually configured to the specific JDO implementation. There are four supplied
with the code: jdori.xml, kodo.xml, lido.xml, and intellibo.xml. Only one tool
script is used in any build environment. The tool script selection is controlled by
the jdo.tool property in the custom.properties file. To minimize needless redundancy,
the tool scripts call out to a common set of third-level scripts. Each package has its
own compile script to compile the files that are specific to it. These are contained
in build.xml scripts that are in the subdirectories of the source. Likewise, each
container has a script for compiling and deploying the files that are specific to
its needs. These are the tomcat.xml and jboss.xml scripts contained within the
bookants directory.

As a result, when you type ant target in the bookants directory, the target is
invoked in the following build scripts: in the build.xml script in the bookants
directory; in the specific tool script, such as jdori.xml, in the bookants directory; in
the build.xml that is in the target’s source directory; and finally, if the build deploys
on Tomcat or JBoss, then in the tomcat.xml or jboss.xml script in the bookants
directory.

Many of the build targets create batch files for Microsoft Windows that run the
programs. The current build scripts do not produce command files for other
operating systems. As a result, if you are running on Linux or some other operating
system, you will have to change the generated batch files so that they can be
invoked on your operating system.

Getting Started

This section provides a step-by-step guide to getting the code and building the first
five JDO Learning Tools.

Ezzio 43-0.book Page 271 Thursday, May 8, 2003 8:18 PM

Chapter 8

272

Step One: Download Open Source JDO Learning Tools

Download the zip file containing the JDO Learning Tools from SourceForge.net by
going to the following URL:

http://sourceforge.net/projects/jdo-tools

You can also obtain this code from the Apress Web site at http://www.apress.com.
After the download, unzip the files to a directory of your choice. For simplicity, the
instructions here will refer to the directory that you choose as the bookcode-home
directory. Unless otherwise specified, all directory paths mentioned in this chapter
are relative to your bookcode-home directory.

Estimated time excluding download: 5 minutes

Step Two: Download Java SDK If Necessary

The examples in this book were tested with the Java Software Development Kit
(SDK, also known as JDK) version 1.3.1. The various implementations and the
examples will likely work with a later version of the JDK, but this has not been
tested. If you do not already have JDK 1.3.1, go to the following URL:

http://java.sun.com/j2se/1.3

Follow the instructions that come with the JDK to set up the Java development and
runtime environments and verify that they are working.

Estimated time excluding the download: 20 minutes

Step Three: Download Ant If Necessary

If you do not already have Ant version 1.4.1, or a later 1.x version, go to the
following URL:

http://ant.apache.org

Follow the links to download a binary version of Ant. Follow Ant’s instructions to
set up Ant and verify that it is working.

Estimated time excluding download: 45 minutes

Ezzio 43-0.book Page 272 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

273

Step Four: Download J2EE Jar If Necessary

You need access to the j2ee.jar file that contains the public interfaces of J2EE. This
file, which can be found in the J2EE SDK, is available at the following Web location:

http://java.sun.com/j2ee/download.html

Download it, and follow the directions to install it. This file is needed for all build
targets because some of the common files use the J2EE framework to report messages.

Estimated time excluding download: 10 minutes

Step Five: Download JDO Implementation

The next step is to pick the JDO implementation that you want to use. The build
scripts in this book work with any of the four JDO implementations mentioned

earlier. The examples should work with any implementation, but you will have to
create or find the tool script for implementations that are not on this list. It is possible
that some vendors who are not on the list will provide a tool script for their imple-
mentation. Building a new tool script is not difficult, but you may want to start your
exploration of JDO with the reference implementation. The reference implemen-
tation does have one serious drawback: the 1.0 version does not work well with EJB
containers. As a result, the EJB examples in this book do not have build targets for
the reference implementation.

To get the reference implementation, go to the Java Community Process page
at the following URL:

http://jcp.org/aboutJava/communityprocess/final/jsr012/index.html

or go to the public access page maintained by the specification lead at the
following URL:

http://access1.sun.com/jdo

Download the reference implementation and unzip to a directory of your choice.
To download one of the commercial implementations, go to the associated

vendor’s Web site and follow the directions. The home page for each is listed here.

http://www.solarmetric.com

http://www.libelis.com

http://www.signsoft.com

Ezzio 43-0.book Page 273 Thursday, May 8, 2003 8:18 PM

Chapter 8

274

Estimated time for the reference implementation excluding download:
5 minutes. It will take longer for the commercial implementations because of
the need to set up a license key and configure the JDBC settings.

Step Six: Configure Build Properties

In this step, you configure the property files. The properties in the global.properties
file, found in the bookants directory, should not require changes, unless there are
some operating system issues that need to be addressed.

The four tool property files provided are found in the bookants directory. Edit
the property file that goes with the implementation that you have selected. For the
reference implementation, that would be the jdori.properties file. This file has two
properties. The jdo.home property should be set to the root directory where the imple-
mentation is installed. The second property, jdo.tool, is the name used to find the tool’s
build script. It should not be changed, unless you are writing a new tool script. After

configuring the tool’s properties file, make a copy named custom.properties in the
bookants directory.

Next, edit the default.properties file. This file contains the following properties:

• java.home

• jdbc.jar

• j2ee.home

• tomcat.home

• jboss.home

Of these, the last two will be addressed in Chapters 10 and 11. The jdbc.jar property is
required only if a relational implementation of JDO is used. These include the
Kodo, Lido, and IntelliBO implementations. The java.home property provides the
file path to the root directory where you installed the Java SDK. Set the j2ee.home
property to point to the root directory where you installed the J2EE SDK.

Estimated time for this step: 10 minutes

Ezzio 43-0.book Page 274 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

275

Step Seven: Test the Build Environment

You are now ready to test the build environment. To begin, go to the bookants
directory and type ant. You should see console output similar to the output in
the following lines:

E:\Bookcode\bookants>ant

Buildfile: build.xml

Help:

 [echo] Please specify a particular build target, such as testfactory

 [echo] or, enter the command: ant -projecthelp

 [echo] for a list of targets

BUILD SUCCESSFUL

By typing ant -projecthelp, you will see a list of targets for the build. The expected
output will look similar to the output in Listing 8-1. You will see quite a few more
main targets than the ones listed here. The additional targets that are not shown in
Listing 8-1 are used in later chapters.

Listing 8-1. Expected Output from Running ant -projecthelp at the Command Line

E:\Bookcode\bookants>ant -projecthelp

Buildfile: build.xml

Default target:

 Help The default target for this build script

Main targets:

 Help The default target for this build script

 clean-out removes all files in output directories

 megacups build MegaCups example

 testfactory build TestFactory example

 testjdohelper build TestJDOHelper example

 learning-programs Builds all learning-programs

 library build Library example

 statetracker build Statetracker example

Subtargets:

 are-we-ready

 help

 verify

BUILD SUCCESSFUL

Ezzio 43-0.book Page 275 Thursday, May 8, 2003 8:18 PM

Chapter 8

276

If everything is working as expected at this point, then you are ready to try
the most dangerous target in the build, the clean-out target. This target deletes all
files in the build directory, enhanced directory, and warfiles directory under the
bookcode-home directory. The expected output, since you have not yet built any
files to delete, will look like the following:

E:\Bookcode\bookants>ant clean-out

Buildfile: build.xml

are-we-ready:

verify:

clean-out:

 [echo] Deleting files in build, enhanced, and warfiles

BUILD SUCCESSFUL

Use the clean-out target whenever you want the subsequent build to proceed
from scratch.

The testjdohelper, testfactory, megacups, library, and statetracker targets are
described in the following sections of this chapter. They can be built individually,
or you can build them all at once by going to the bookants directory and typing ant
learning-programs. The build should take a minute or so.

Estimated time for this step: 10 minutes

Hello, JDO!

The TestJDOHelper program is simple. Listing 6-2 in Chapter 6 shows the one class,
TestJDOHelper, found in the com.ysoft.jdo.book.factory package.

The program takes one command line parameter that names the properties
file configured for the selected JDO implementation. The main method of the class
loads the properties from the file and then calls the getPersistenceManagerFactory
method in JDOHelper. For more information about getting a persistence manager
factory from JDOHelper, see Chapter 6. After verifying that a persistence manager
can be obtained from the persistence manager factory, the program ends.

The properties file that specifies the factory settings varies with the implemen-
tation used. For the reference implementation, the properties file is jdori.properties,
located at com/ysoft/jdo/book/factory/jdori. The build copies it to factory.properties
at build/com/ysoft/jdo/book/factory. If you are using one of the three mentioned
commercial implementations, you will have to edit the appropriate file to configure
the JDBC connection. When using the Kodo implementation, you must also add a
valid license key to the properties file. The reference implementation does not use
JDBC and does not require a license key.

Ezzio 43-0.book Page 276 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

277

Building and Running the TestJDOHelper Program

To build the TestJDOHelper program, go to the bookants directory and type ant
testjdohelper. This build is part of the ant learning-programs build. Listing 8-2
shows some of the expected output when using the reference implementation.

Listing 8-2. Expected Output from Running ant testjdohelper

testjdohelper:

 [javac] Compiling 1 source file to E:\Bookcode\build

 [echo] creating runTestJDOHelper.bat

 [echo] Running TestJDOHelper

 [java] -- listing properties --

 [java] javax.jdo.option.RestoreValues=false

 [java] javax.jdo.option.ConnectionURL=fostore:FOStoreTestDB

 [java] javax.jdo.option.Optimistic=false

 [java] javax.jdo.option.ConnectionUserName=JDO

 [java] javax.jdo.option.ConnectionPassword=book

 [java] javax.jdo.option.NontransactionalWrite=false

 [java] javax.jdo.PersistenceManagerFactoryClass=

 com.sun.jdori.fostore.FOStorePMF

 [java] javax.jdo.option.NontransactionalRead=false

 [java] javax.jdo.option.IgnoreCache=false

 [java] javax.jdo.option.RetainValues=false

 [java] javax.jdo.option.Multithreaded=false

 [java] Got the PMF okay

 [echo] created runTestJDOHelper.bat

BUILD SUCCESSFUL

Notice that the build creates the runTestJDOHelper batch file. The batch
file can be used to run the test again. All generated batch files are placed in the
bookcode-home directory. The TestJDOHelper program has no user interface. It
runs to completion in a matter of seconds.

As soon as you can get TestJDOHelper to build and run, you have successfully
completed the steps necessary to use the remaining client-server programs in this
chapter and the next. Chapters 10 and 11 provide additional instructions for the con-
figuration needed to build examples that deploy in the Tomcat and JBoss containers.

Ezzio 43-0.book Page 277 Thursday, May 8, 2003 8:18 PM

Chapter 8

278

Interrogating the PersistenceManagerFactory

JDOFactory is a utility class that can interrogate the factory for its default settings
and supported options. JDOFactory also illustrates the use of the adaptor pattern to
localize the vendor dependencies inherent in construction. Unlike most other
example programs with this book, TestFactory uses construction to acquire a
persistence manager factory. The TestFactory program writes the results of the
interrogation to the console. After obtaining a persistence manager, it terminates.
The TestFactory class is contained in the com.ysoft.jdo.book.factory.client
package.

Building and Running the TestFactory Program

To build the TestFactory program, go to the bookants directory and type ant
testfactory. This build is part of the ant learning-programs build. Listing 8-3
shows some of the expected output when using the reference implementation.

Listing 8-3. Expected Output from Running ant testfactory

testfactory:

 [echo] creating runTestFactory.bat

 [echo] Running TestFactory

 [java] Starting TestFactory ...

 [java] Using adaptor class: com.ysoft.jdo.book.factory.jdori.JDORIAdaptor

 [java] The database (FOStoreTestDB.btd) exists

 [java] Using URL: (fostore:FOStoreTestDB)

 [java] Loaded factory adaptor: com.ysoft.jdo.book.factory.jdori.JDORIAdaptor

 [java]

 [java] Supported JDO Options

 [java] javax.jdo.option.TransientTransactional

 [java] javax.jdo.option.NontransactionalRead

 [java] javax.jdo.option.NontransactionalWrite

 [java] javax.jdo.option.RetainValues

 [java] javax.jdo.option.RestoreValues

 [java] javax.jdo.option.Optimistic

 [java] javax.jdo.option.ApplicationIdentity

 [java] javax.jdo.option.DatastoreIdentity

 [java] javax.jdo.option.ArrayList

 [java] javax.jdo.option.HashMap

 [java] javax.jdo.option.Hashtable

 [java] javax.jdo.option.LinkedList

 [java] javax.jdo.option.TreeMap

Ezzio 43-0.book Page 278 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

279

 [java] javax.jdo.option.TreeSet

 [java] javax.jdo.option.Vector

 [java] javax.jdo.option.Array

 [java] javax.jdo.option.NullCollection

 [java] javax.jdo.query.JDOQL

 [java] Unsupported JDO Options

 [java] javax.jdo.option.NonDurableIdentity

 [java] javax.jdo.option.ChangeApplicationIdentity

 [java] javax.jdo.option.List

 [java] javax.jdo.option.Map

 [java] Non-configurable properties

 [java] Key: VendorName, value: Sun Microsystems

 [java] Key: VersionNumber, value: 1.0

 [java] Initial PMF transaction settings

 [java] Optimistic: true

 [java] Non-trans read: true

 [java] Non-trans write: false

 [java] RetainValues: true

 [java] RestoreValues: true

 [java] Connection information

 [java] Connection driver: null

 [java] Connection factory: null

 [java] Connection factory2: null

 [java] Connection URL: fostore:FOStoreTestDB

 [java] Connection UserName: JDO

 [java] Caching info

 [java] Ignore Cache: true

 [java] Threading setting for PM's

 [java] Multithreading turned on: false

 [java] This PMF can be serialized

 [java] This PMF implements javax.naming.Referenceable

 [java] Obtained PersistenceManagerFactory

 [java] Just got 1 PersistenceManagers!

 [java] Closing FOStoreDB

 [java] -- All done!

 [echo] created runTestFactory.bat

BUILD SUCCESSFUL

Like the previous example, the build, after running TestFactory, also creates
the batch file runTestFactory that can be used to run it again. The TestFactory
program has no user interface. It runs to completion in a few seconds.

Ezzio 43-0.book Page 279 Thursday, May 8, 2003 8:18 PM

Chapter 8

280

Consuming Java at the MegaCups Company

The people who work at the MegaCups Company love their coffee. In fact, they
have gone over the edge and are in need of counseling. During the work day, they
incessantly elbow each other around the coffee urn as they seek another cup of
coffee to satisfy their never-ending craving for caffeine.

The company has a coffee urn set up in the kitchen that holds 40 cups of coffee.
One worker, Mark, adds 20 cups of coffee to the urn every 14 seconds. Four other
workers, Frank, Sam, Julie, and Susan, come around for a fresh cup of coffee every
2 seconds. Most real people wait more than 2 seconds before seeking a fresh cup of
coffee, but these workers are computer simulations. For that reason, their sense of
time is compressed.

Doing the math, you can see that the workers sometimes find that the coffee
urn is empty. If this happens too often, they complain to the manager, who either
promises to do something about it or ignores the complaint. If he ignores the com-
plaint, the workers quit. Because of the hectic pace at the MegaCups Company, the
work day is short, lasting only 1 minute.

In the MegaCups program, there is only one persistent object, the coffee urn in
the kitchen. Everyone comes to this coffee urn to either add or draw coffee. Each
addition or subtraction is done transactionally and the result is committed. Each
worker runs in his own thread and uses a separate persistence manager. As a
result, each worker acts on his own CoffeeUrn object in memory that represents in
his transaction the persistent state of the coffee urn found in the datastore. The
properties file that configures the persistence manager factory for this example
specifies a datastore transaction. As the transactions clash, you can see exactly
how your selected JDO implementation handles the transactional semantics for
datastore transactions.

The com.ysoft.jdo.book.coffee package contains three classes: MegaCups, Worker,
and CoffeeUrn. The Worker class is contained in the source file for the MegaCups class.
Excluding comments, blank lines, and lines with a solitary brace, there are approx-
imately 200 lines of code in the two source files. Of these, approximately 20 percent
have something to do with the explicit use of JDO. Much of the code that uses JDO
explicitly is concerned with setting the program’s and the datastore’s initial state.
To start a transaction, draw a cup of coffee from the coffee urn, and commit the
transaction requires only two lines of code that explicitly use JDO.

The MegaCups program was created after a prolonged discussion that occurred
on JDOCentral.com about the semantics of JDO transactions. It illustrates the
behavior of datastore transactions. The behavior that you see depends on the
transactional semantics of the datastore and the JDO implementation. Most
implementations use some form of pessimistic locking in the datastore. For a
detailed description of JDO’s transactional semantics, see Chapter 4.

Ezzio 43-0.book Page 280 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

281

Building and Running the MegaCups Program

To build the MegaCups program, go to the bookants directory and type ant megacups.
This build is part of the ant learning-programs build.

The program acquires a persistence manager factory that is configured by the
property file. For the reference implementation, the properties file is jdori.properties
contained in the com/ysoft/jdo/book/coffee directory. The build copies it to
factory.properties at the build/com/ysoft/jdo/book/coffee directory.

Listing 8-4 shows some of the expected output from the build when using the
reference implementation.

Listing 8-4. Expected Output from Running ant megacups

megacups:

 [javac] Compiling 2 source files to E:\Bookcode\build

 [echo] returned from com/ysoft/jdo/book/coffee/build.xml

 [copy] Copying 1 file to E:\Bookcode\build\com\ysoft\jdo\book\coffee

 [copy] Copying 1 file to E:\Bookcode\enhanced\com\ysoft\jdo\book

 [java] done.

 [echo] creating runMegaCups.bat

BUILD SUCCESSFUL

Unlike the previous build targets, the build for the MegaCups program does not
run the program. Instead, you must change to the bookcode-home directory and
execute the runMegaCups batch file. The MegaCups program does not have a user
interface. It takes about a minute to run. The expected output from running the
program will start off looking something like the output shown in Listing 8-5. This
output was obtained from using the reference implementation. Notice the number
that follows “kitchen” within the brackets. This number is incremented each time
one cup of coffee is drawn from the urn. It numbers the order of changes to the
coffee urn in the kitchen.

Listing 8-5. Sample Output from the MegaCups Program

E:\Bookcode>runMegaCups

Using property file: com/ysoft/jdo/book/coffee/factory.properties

This program will end in one minute

Mark found: CoffeeUrn [Kitchen-0] contains 0 cups

Sam found: CoffeeUrn [Kitchen-0] contains 0 cups

Julie found: CoffeeUrn [Kitchen-0] contains 0 cups

Susan found: CoffeeUrn [Kitchen-0] contains 0 cups

Ezzio 43-0.book Page 281 Thursday, May 8, 2003 8:18 PM

Chapter 8

282

Frank found: CoffeeUrn [Kitchen-0] contains 0 cups

Mark added coffee to CoffeeUrn [Kitchen-0] contains 20 cups

Sam drank a cup of coffee from CoffeeUrn [Kitchen-1] contains 19 cups

Julie drank a cup of coffee from CoffeeUrn [Kitchen-2] contains 18 cups

Susan drank a cup of coffee from CoffeeUrn [Kitchen-3] contains 17 cups

Frank drank a cup of coffee from CoffeeUrn [Kitchen-4] contains 16 cups

Sam drank a cup of coffee from CoffeeUrn [Kitchen-5] contains 15 cups

Julie drank a cup of coffee from CoffeeUrn [Kitchen-6] contains 14 cups

Susan drank a cup of coffee from CoffeeUrn [Kitchen-7] contains 13 cups

Frank drank a cup of coffee from CoffeeUrn [Kitchen-8] contains 12 cups

If you are using the reference implementation, then the datastore files require
a one-time initialization. If you see the following error:

Using property file: com/ysoft/jdo/book/coffee/factory.properties

javax.jdo.JDOFatalDataStoreException: com.sun.jdori.fostore.FOStoreLoginException:

 Could not login user JDO to database FOStoreTestDB.

NestedThrowables:

org.netbeans.modules.mdr.persistence.StorageIOException

then you want to go to the factory.properties file located in the build/com/ysoft/jdo/
book/coffee directory and uncomment the second line, so that it reads as follows:

#set this to true to create valid datastore files

com.sun.jdori.option.ConnectionCreate=true

After running the MegaCups program again, the files FOStoreTestDB.btd and
FOStoreTestDB.btx should exist and be larger than zero bytes in size. To prevent the
MegaCups program from continually creating new datastore files, recomment the
option string in the factory.properties file after valid datastore files have been created.

The MegaCups program accepts a number of optional command line parameters.
You can specify the number of workers and their names by using the following
parameters:

-names Tom Dick Harry

Pick the names you like and add as many as you want. The first person named is
given the responsibility to fill the coffee urn. You can also prevent anyone from
filling the coffee urn by specifying this option:

-nofilling

Ezzio 43-0.book Page 282 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

283

Multiple invocations of the MegaCups program can run simultaneously. Most
commercial datastores support multiuser access, but the datastore for the ref-
erence implementation does not support concurrent access from multiple JVMs.

The Console User Interface

The JDO Learning Tools described so far do not provide an interactive user interface.
The next two programs in the JDO Learning Tools use a simple console user
interface. Although the workings of this console interface are incidental to the
purposes of this book, the interface is also unfamiliar to you. This section gives
you an idea of what the console interface is like. It also gives you an idea of how
you can modify the programs that use it.

When the interface comes up, it prompts you with two lines:

enter command:

-->

You can control the configuration of the prompt by modifying the properties in the
package.properties file found in the com/ysoft/jdo/book/common/console directory.
The default configuration works well for highlighting the user’s input in the listings
provided in this chapter.

There are only three things to remember about the console interface. One, it
will not do anything unless you enter a command. Two, every program has at least
two commands, quit and help. The quit command terminates the program. The
help command lists all of the commands, except help, that the program recognizes.
Three, if you enter a command string that the interface does not recognize, it
outputs a question mark and prompts again, as the following interaction shows:

enter command:

--> whatever

?

enter command:

-->

Some of the command strings are wordy. In some cases, there is more than one
command string that will activate the command. The additional command strings
provide flexibility in activating a command. For example, the command string

add data object

Ezzio 43-0.book Page 283 Thursday, May 8, 2003 8:18 PM

Chapter 8

284

may have the additional command strings

add

add object

There are only two ways to tell what the additional command strings are. Either try
something and see if it is accepted, or look at the source code.

Each command is implemented in a separate class that extends the base class
Command, which is found in the com.ysoft.jdo.book.common.console package. In the
constructor for the derived command class, there is a call to the super constructor
of Command. One of the parameters to this constructor is a list of command strings.
For example, the Add command in the Library program has the following constructor:

public Add(UIClient c)

 {

 super(c, new String[]

 {

 "add data object",

 "add",

 "add object",

 });

 }

Any of the command strings activate the command. The first one is the preferred
command string, and for that reason, it is shown in the help listing. If you want,
you can add more command strings to any command. Within the application,
each command string should be unique.

When you enter a command, you may be prompted for command param-
eters. Often you cannot get out of the command without entering the additional
information. Since no lives are at stake, enter something to make the interface happy.

The command classes are package-level classes contained within the source
file for the public application class. For example, the source file Library.java
contains the source for the public class Library, and also the source for all of the
command classes, such as Add, Delete, and Find. Adding additional commands is
easy. Pick a command class that is close in behavior to what you want, then copy,
paste, and modify. Don’t forget to add an instance of the new class to the appli-
cation’s list of Command objects.

Querying the Small Town Library

The Library program prototypes a simple system for a small town library. Figure 2-3
in Chapter 2 shows the UML model for application data classes used by the Library

Ezzio 43-0.book Page 284 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

285

program. There are four application data classes in Figure 2-3: Book, Category,
Borrower, and Volunteer. Using the Library program, you can manipulate the
persistent objects, define queries, and view the results.

The Library program is built from six primary source files, the four application
data classes, the Library class and its command classes, and the LibraryHandler
data service. These are contained in the com.ysoft.jdo.book.library and
com.ysoft.jdo.book.library.client packages. All of the explicit use of JDO occurs
within the LibraryHandler data service. The console interface handles all exceptions
thrown by the implicit use of JDO. The persistence manager factory is configured
by a properties file that varies by the JDO implementation. For the reference
implementation, the file is named jdori.properties and is found in the com/ysoft/
jdo/book/library directory. The build copies it to the build/com/ysoft/jdo/book/
library directory and renames it to factory.properties.

Building the Library Program

To build the program, go to the bookants directory and type ant library. This build
is part of the ant learning-programs build. Listing 8-6 shows some of the expected
output from the build when using the reference implementation.

Listing 8-6. Expected Output from Running ant library

library:

 [javac] Compiling 7 source files to E:\Bookcode\build

 [echo] returned from com/ysoft/jdo/book/library/build.xml

 [copy] Copying 1 file to E:\Bookcode\enhanced\com\ysoft\jdo\book

 [copy] Copying 1 file to E:\Bookcode\build\com\ysoft\jdo\book\library

 [echo] Enhancing the persistent classes of library

 [java] done.

 [echo] creating runLibrary.bat

BUILD SUCCESSFUL

To run the Library program, go to the bookcode-home directory and type
runLibrary.

Using the Library Commands

When you enter the help command after starting the Library program, you see all
the commands that it supports. The expected output is shown in Listing 8-7.

Ezzio 43-0.book Page 285 Thursday, May 8, 2003 8:18 PM

Chapter 8

286

Listing 8-7. Example of Help Output from the Library Program

E:\Bookcode>runlibrary

enter command:

--> help

commands:

 quit

 begin

 commit

 rollback

 get pm config

 view attributes

 define query variable

 find all

 find

 find in results

 add data object

 delete data object

 view volunteer

 view borrower

 view book

 view category

 borrow book

 return book

 modify volunteer

 modify book

 populate database

 clear database

enter command:

-->

As Listing 8-7 shows, the program recognizes a large number of commands.
Begin by populating the database. This will add seven books, six categories, three
borrowers, and one volunteer to the datastore. The properties file sets to false all
the Boolean properties of the PersistenceManager and Transaction. This can be verified
by executing the get pm config command.

The three commands begin, commit, and rollback allow you to control the
transactional boundaries. When you execute a begin command, a JDO datastore
transaction starts. If you then execute a series of find all commands, you can view
the summary information for all objects in the datastore. There is an apparent bug
in the 1.0 reference implementation that prevents the capture of the identity string
on the first transaction for an object. Finding all objects and executing a commit

Ezzio 43-0.book Page 286 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

287

works around this bug. If you find all the objects again, you will see the value of the
identity strings in the output.

A large number of commands allows you to manipulate the state of the persistent
objects. The add, delete, view, borrow, return, and modify commands allow you to
add books, categories, borrowers, and volunteers; delete the same; view all the
information about them; borrow books; return them; and modify information
about books and volunteers. The view commands track the last list of objects that
were presented. As a result, if you view a category and it lists two books, then the
view book command will present that list of two books to choose from.

Running Queries in the Library Program

The Library program’s primary purpose is to exercise the JDO query language. The
find command will query against the extent, while the find in results command will
query against the last collection of query results. The view attributes command shows

the names and types of all the attributes of the application data classes. Finally, the
define query variable command allows you to define a query variable for use in
navigating collections within JDOQL. The effect of defining a query variable lasts
only until the next query is executed. Consequently, the query variable must be
defined before executing the query that will use it.

As an example, suppose that you want to know what categories of books
interest Tom. Listing 8-8 shows the user interactions to find that information.

Listing 8-8. User Commands to Find All the Categories That Interest Tom

enter command:

--> begin

Okay

enter command:

--> define variable

Enter query variable declaration:

--> Book b

Okay

enter command:

--> find

Find what type of objects:

 1. Book

 2. Borrower

 3. Volunteer

 4. Category

Enter selection:

--> 4

Ezzio 43-0.book Page 287 Thursday, May 8, 2003 8:18 PM

Chapter 8

288

Enter query string:

--> books.contains(b) && b.borrower.name == "Tom"

Find

 Class: com.ysoft.jdo.book.library.Category

 Filter: books.contains(b) && b.borrower.name == "Tom"

 Variables: Book b

Found 2 objects in the results

 category [OID: 103-12] "Sportsman"

 category [OID: 103-11] "Outdoors"

enter command:

-->

Although there are only four application data classes, the object model of the
library supports a variety of queries. For example, to find the books that have been
borrowed by a volunteer, use the Book extent and the following query string:

borrower.volunteer != null

Your answer for the default object population should be as follows:

Found 2 objects in the results

 book [OID: 102-13] "Gone Sailing" checked out: Mon Aug 26 08:23:10 EDT 2002

 book [OID: 102-12] "Gone Hunting" checked out: Mon Aug 26 08:23:10 EDT 2002

The OID values may very well be different in your datastore, and the date when the
books were checked out will certainly be different.

To find all the books that are in categories that interest Harry, use the Book
extent, and define the query variables as shown here:

Book b; Category c;

Then use the following query string:

categories.contains(c) && (c.books.contains(b) && b.borrower.name == "Harry")

Your answer for the default object population should be as follows:

Found 1 objects in the results

 book [OID: 102-16] "Gone to Work" checked out: Mon Aug 26 08:23:10 EDT 2002

Now that you have the general idea, perhaps you are ready for a challenge. Can
you find all the categories that have books borrowed by more than one borrower?
Hint: output similar to the following is expected from the query when it runs on
the default population.

Ezzio 43-0.book Page 288 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

289

Found 2 objects in the results

 category [OID: 103-12] "Sportsman"

 category [OID: 103-11] "Outdoors"

Monitoring the State of Persistent Apples

The StateTracker program allows you to use nearly all of the explicit and implicit
operations of JDO while monitoring the persistent, transactional, and unmanaged
fields of persistent, transactional, and unmanaged apples.

Figure 8-1 diagrams the relationships of the main classes and interfaces of the
StateTracker program. The StateTracker class implements the user interface and
is the client of the Monitor and StateHandler services. It creates new apples and
worms and modifies the state of existing ones. The source file StateTracker.java
contains all of the command classes of the StateTracker program. The
application classes and interfaces shown in Figure 8-1 are contained in the

com.ysoft.jdo.book.statetracker and com.ysoft.jdo.book.statetracker.client
packages.

Figure 8-1. The classes and interfaces of the StateTracker program

StateTracker

«Interface»
Monitored

Object

StateHandlerStateHandler

Apple

Worm

«Interface»
Cloneable

«Interface»
InstanceCallbacks

MonitorMonitor

0..n
0..n

«Interface»
PersistenceManager

Ezzio 43-0.book Page 289 Thursday, May 8, 2003 8:18 PM

Chapter 8

290

Figure 8-1 diagrams ten classes and interfaces. There are two application data
classes, Apple and Worm. These have an n-m relationship to each other. The worms
in the StateTracker program have the transcendental ability to exist in more than
one apple at a time. The major purpose of the worms is to provide persistent fields
that are not in the apple’s default fetch group. The Apple class divides its fields into
three groups, persistent, transactional, and unmanaged. The persistent group has
the five fields shown in Listing 8-9. The fields were selected to give a representative
sample of persistent fields. The first three fields are in the default fetch group,
while the remaining two are not. The set of transactional (but not persistent) fields
and the set of unmanaged fields are identical in type and similarly named.

Listing 8-9. The Persistent Fields of the Apple Class

private String persistentName;

private int persistentSize;

private Date persistentPicked;

private HashSet persistentWorms;

private Worm persistentHeadWorm;

The remaining classes and interfaces in Figure 8-1 serve the following purposes.
The Apple class implements the Monitored interface. The Monitor service uses the
Monitored interface to determine the apple’s management state without affecting
it. The Monitored interface also ensures that Apple has a public clone method that is
used by the StateTracker to snoop on the state of an apple without affecting the
apple’s managed state. The StateHandler is the application service that uses the
persistence manager. It handles objects, and knows nothing about apples and
worms. The Apple class implements InstanceCallbacks. These callback methods
serve two purposes: they capture the persistent object’s identity string, and they
provide notification to the user interface when the callbacks occur.

Building the StateTracker Program

To build the StateTracker program, go to the bookants directory and type ant
statetracker. This build is part of the ant learning-programs build. Listing 8-10
shows some of the expected output from the build when using the reference
implementation.

Ezzio 43-0.book Page 290 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

291

Listing 8-10. Expected Output from Running ant statetracker

statetracker:

 [javac] Compiling 7 source files to E:\Bookcode\build

 [echo] returned from com/ysoft/jdo/book/statetracker/build.xml

 [copy] Copying 1 file to E:\Bookcode\enhanced\com\ysoft\jdo\book

 [java] done.

 [echo] creating runStatetracker.bat

BUILD SUCCESSFUL

To run the StateTracker program, go to the bookcode-home directory and type
runStatetracker.

Getting Started with the StateTracker Commands

If you enter the help command after starting the StateTracker program, you see all
the commands that it supports. The expected output is shown in Listing 8-11.

Listing 8-11. Example of Help Output from the StateTracker Program

E:\Bookcode>runstatetracker

Using adaptor class: com.ysoft.jdo.book.factory.jdori.JDORIAdaptor

The database (FOStoreTestDB.btd) exists

Using URL: (fostore:FOStoreTestDB)

enter command:

--> help

commands:

 quit

 begin

 commit

 rollback

 active

 find all

 add apple

 select apple

Ezzio 43-0.book Page 291 Thursday, May 8, 2003 8:18 PM

Chapter 8

292

 modify apple

 add worm

 delete worm

 snoop

 view

 get JDO state

 make persistent

 delete persistent

 make transactional

 make nontransactional

 make transient

 evict

 evict all

 refresh

 refresh all

 retrieve

 tickle default fetch group

 dirty

 toss exception

 configure

 configuration

 open

 is open

 close

enter command:

-->

As Listing 8-11 shows, the program recognizes a large number of commands.
The commands begin, commit, rollback, and active allow you to control and
monitor transactional boundaries. A good place to start is to add a few worms.
Their only attribute is a name. For example, the following interaction adds one
new worm named Henry:

enter command:

--> add worm

Enter worm's name:

--> Henry

Okay, but worms are made persistent only by being in a persistent apple

enter command:

-->

Ezzio 43-0.book Page 292 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

293

A new worm remains unmanaged. It becomes persistent only when it is reached
from a persistent apple. After creating a few worms, make a new apple. Listing 8-12
shows a sample interaction that adds a new McIntosh apple with three worms.

Listing 8-12. User Commands to Create a New McIntosh Apple with Three Worms

enter command:

--> add apple

Enter apple's name:

--> McIntosh

Enter apple's size (> 0):

--> 3

Enter date picked (mm-dd-yy):

--> 10-15-02

 Date accepted:Tue Oct 15 00:00:00 EDT 2002

Add a worm?:

 1. true

 2. false

Enter selection:

--> 1

Pick a worm:

 1. Worm Henry

 2. Worm Martha

 3. Worm Jack

Enter selection:

--> 1

Add a worm?:

 1. true

 2. false

Enter selection:

--> 1

Pick a worm:

 1. Worm Martha

 2. Worm Jack

Enter selection:

--> 1

Add a worm?:

 1. true

 2. false

Enter selection:

--> 1

Ezzio 43-0.book Page 293 Thursday, May 8, 2003 8:18 PM

Chapter 8

294

Pick a worm:

 1. Worm Jack

Enter selection:

--> 1

Add a worm?:

 1. true

 2. false

Enter selection:

--> 2

Pick the head worm:

 1. Worm Henry

 2. Worm Martha

 3. Worm Jack

Enter selection:

--> 2

Okay, the new transient apple has been added to the selection list

enter command:

-->

The new apple remains unmanaged. To see this, first use the select apple
command to select the apple from the current list of apples. Then use the get JDO state
command to determine the current JDO management state of the selected apple.

enter command:

--> select apple

Select an apple:

 1. Apple transientName: McIntosh

Enter selection:

--> 1

Okay

enter command:

--> get JDO state

Apple transientName: McIntosh is in JDO state transient

enter command:

-->

Because all actions so far have occurred on unmanaged state, there has been no
reason to start a transaction.

Ezzio 43-0.book Page 294 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

295

Next, execute the begin and the make persistent commands to make the
unmanaged McIntosh apple persistent. Now execute the view and get JDO state
commands to determine the unmanaged, transactional, and persistent state of
the apple and to determine its management state. Using any implementation,
you should see output like the following, which was produced by the reference
implementation:

enter command:

--> view

Viewing managed state for: OID: 105-12 [JVM ID:4066855]

 transient state: McIntosh, 3, 10-15-02, Worm Martha,

 3 worms {Worm Martha,Worm Jack,Worm Henry}

 transactional state: McIntosh, 3, 10-15-02, Worm Martha,

 3 worms {Worm Henry,Worm Martha,Worm Jack}

 persistent state: McIntosh, 3, 10-15-02, Worm Martha,

 3 worms {Worm Henry,Worm Martha,Worm Jack}

enter command:

--> get state

OID: 105-12 [JVM ID:4066855] is in JDO state persistent-new

enter command:

-->

Notice that all three states are the same. That is because the values entered when
the apple was created were copied to all three sets of fields, as a way to reduce the
amount of user input. As expected, the management state after the make persistent
command is persistent-new.

If you have not executed the configure command, then all transactional
attributes are off at this point, and the configuration commands returns the
following output:

--> configuration

Current transaction properties: active, !Opt, !RetainV, !RestoreV, !NTR, !NTW

enter command:

-->

At this point, commit the transaction and ask for the apple’s management
state. You should see output that looks like the interaction in Listing 8-13, which
was produced by the reference implementation.

Ezzio 43-0.book Page 295 Thursday, May 8, 2003 8:18 PM

Chapter 8

296

Listing 8-13. Sample Output from Committing the New McIntosh Apple

enter command:

--> commit

Synchronization.beforeCompletion called

OID: 105-12 [JVM ID:4066855] jdoPreStore

OID: 105-12 [JVM ID:4066855] jdoPreClear

Synchronization.afterCompletion called with status: committed

Okay

enter command:

--> get state

OID: 105-12 [JVM ID:4066855] is in JDO state hollow

enter command:

-->

After committing the transaction, you will get an exception if you execute the

view command because a transaction is not active. Instead run the snoop command.
The snoop command produces a view of the object without affecting the managed
state or requiring a transaction. The expected output will look like the output in
Listing 8-14.

Listing 8-14. Sample Output from Snooping on the Hollow Apple

enter command:

--> snoop

Viewing raw state for: OID: 105-12 [JVM ID:8083121]

 transient state: McIntosh, 3, 10-15-02, OID: 106-21,

 3 worms {OID: 106-21, OID: 106-22, OID: 106-20}

 transactional state: null, 0, no date, null, null worms

 persistent state: null, 0, no date, null, null worms

enter command:

-->

There are four things to notice in Listing 8-14. One, the JVM ID has changed
from Listing 8-13. The change occurs because the snoop command views a clone
of the original apple. (Remember from Chapter 5 that, by default, cloning a persistent
object gets a snapshot of the current memory state without invoking transparent
persistence.) Two, the persistent state has Java default values. This is expected
since the object is in the hollow management state. Three, the transactional state
also has Java default values. This is an unexpected outcome. The specification
describes eviction only in terms of clearing the persistent state. It says nothing
about clearing the nonpersistent and transactional state. In fact, the specification
strongly implies that eviction does not clear the nonpersistent and transactional

Ezzio 43-0.book Page 296 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

297

state. This behavior has been reported as a bug in the JDO reference implementation
at the Java bug parade (http://developer.java.sun.com/developer/bugParade).

Finally, note that the transient state is not changed, except that all of the
worms are now unnamed. The transientWorms field and the transientHeadWorm field
both point to persistent objects even though the fields are unmanaged. When the new
apple was created, the same worms were used to set the unmanaged, transactional,
and persistent fields. As a result, all worm fields are referring to the same worms,
which became persistent when the apple became persistent. When the snoop
command executes, it clones the apple, but it does not clone the worms. The
worm’s toString method catches the exception that results from trying to examine
the persistent name of a Worm outside of a transaction, and it recovers from the
exception by returning the worm’s identity string instead of its name.

Brief Look at the Other StateTracker Commands

The previous section describes many commands that the StateTracker program
recognizes. This section describes the remaining commands.

Many of the command strings are self-describing. For example, the make
transactional command will make a nontransactional object transactional. In
some cases, for the command to succeed, the implementation must support the
appropriate implementation options. An unmanaged object cannot be made
transactional unless the implementation supports, as the reference implementation
does, the javax.jdo.option.TransientTransactional feature. Most commands operate
on the selected apple, but some operate on a set of apples. The evict all command
evicts all persistent-clean apples (and worms) and the refresh all command refreshes
all transactional apples and worms.

The configure command sets the five properties of the Transaction object:
Optimistic, RetainValues, RestoreValues, NontransactionalRead, and
NontransactionalWrite. The is open command checks whether the persistence
manager is open. The open and close commands open and close the persistence
manager.

The toss exception command sets a flag in the transaction’s Synchronization
object that will cause it to throw a JDOUserException on the next commit. It’s a one-
shot setting that does not block a subsequent commit. The tickle default fetch
group command reads a couple of fields of the default fetch group and outputs a
message with their values. It will cause the default fetch group to load in most
cases. The dirty command will call the makeDirty method in JDOHelper for the
selected managed field.

The StateTracker program has been invaluable in writing this book, and you
will find it very useful for test driving your selected JDO implementation.

Ezzio 43-0.book Page 297 Thursday, May 8, 2003 8:18 PM

Chapter 8

298

Using the Commercial Implementations

Three commercial implementations are featured in this book, but you can use the
JDO Learning Tools with any implementation that supports Ant build scripts. The
code provided with this book provides build scripts for the three implementations
Kodo, Lido, and IntelliBO. The 1.0 release of the JDO Learning Tools supports the
Microsoft Windows operating systems. Undoubtedly, the open source community
will extend support to other JDO implementations and operating systems. You will
have to find or write a script for any other implementation. The JDO Learning
Tools are demanding programs, and you may very well find bugs in the commercial
implementations as a result of using these programs. If you find bugs, report them
to the vendor.

Using the Kodo Implementation

When using the Kodo implementation, configure the kodo.properties file, and
copy it to custom.properties. The main build.xml script will invoke the tool script
kodo.xml. The tool script runs the Kodo verifier, Kodo enhancer, and Kodo schema
tool. The Kodo implementation supports live schema generation and evolution.
As a result, when the schema tool is invoked, there is no need to take any further
steps to update the database schema. Because the schema tool is fairly time con-
suming, the Kodo build script with the JDO Learning Tools optimizes the use of the
schema tool by detecting whether the enhanced classes have changed. This detection
is not foolproof. To force schema generation, use the -Dschema=generate option
with the ant command as shown in the following command line:

ant -Dschema=generate megacups

The learning-programs target sets this property for you.

Using the Lido Implementation

When using the Lido implementation, configure the lido.properties file, and copy
it to custom.properties. The main build.xml script invokes the tool script lido.xml.
The tool script runs the Lido enhancer and schema tool. Because the use of the
schema tool is somewhat time consuming, it runs only when the schema property
is defined. This can be done at the command line when invoking Ant, as the following
line shows:

ant -Dschema=generate megacups

Ezzio 43-0.book Page 298 Thursday, May 8, 2003 8:18 PM

Using JDO to Learn More

299

The learning-programs target sets this property for you.
The Lido tool script has been configured to have the schema tool output SQL

files. These files are placed in the bookcode-home directory. Their file names are
composed of the lowest package directory plus the SQL extension, such as coffee.sql.
After generating the SQL files, you will need to execute the portion of the SQL
script that is appropriate for your schema evolution. You may have to drop tables
if you alter the definition of persistent fields in the application data classes.

Using the IntelliBO Implementation

When using the IntelliBO implementation, configure the intellibo.properties file,
and copy it to custom.properties. The main build.xml script invokes the tool script
intellibo.xml. The tool script runs the IntelliBO verifier, enhancer, and schema
tools. Because the use of the schema tool is somewhat time consuming, it runs
only when the schema property is defined. This can be done at the command line

when invoking Ant, as the following line shows:

ant -Dschema=generate megacups

The learning-programs target sets this property for you.
The IntelliBO tool script has been configured to have the schema tool output

SQL files. These files are placed in the package directory under the enhanced
directory. You will find three SQL files: create.sql, drop.sql, and select.sql. After
generating the SQL files, you will need to execute the portion of the SQL scripts
that are appropriate for your schema evolution.

Ezzio 43-0.book Page 299 Thursday, May 8, 2003 8:18 PM

Chapter 8

300

Summary

The first five JDO Learning Tools range from elementary to advanced in their use
of JDO. Each of them can help you understand the capabilities and limitations of
JDO. Do not let the console interface, which is rudimentary, hide their true merit
from you. By using them and understanding the results that you obtain, you can
become a JDO expert. Better than any book, they can teach you the underlying
logic of JDO’s behavior. The understanding that you gain will help make your first
project that uses JDO a complete success.

The next chapter examines a Swing client-server application that satisfies the
requirements of a simple reservation system. Unlike the five JDO Learning Tools
programs covered in this chapter, the JDO Learning Tools programs presented in
the remaining chapters have the flavor of real-world applications.

Ezzio 43-0.book Page 300 Thursday, May 8, 2003 8:18 PM

