
1. Introduction

1.1 What is a Stochastic System?

A \stochastic system" is understood here as a dynamic system that has some

kind of uncertainty. The type of uncertainty will be speci�ed in a precise

mathematical sense when dealing with methods of analysis and design. At

this point, it is suÆcient to say that the uncertainty will include disturbances

acting on the system, sensor errors and other measurement errors, as well as

partly unknown dynamics of the system. The uncertainties will be modelled

in a probabilistic way using random variables and stochastic processes as

important tools.

Theories of stochastic systems are very useful in many areas of systems

science and information technology, such as controller design, �ltering tech-

niques, signal processing and communications. They give systematic tech-

niques on how to model and handle random phenomena in dynamic systems.

Some typical illustrations of the usefulness of stochastic systems are given

later in this chapter. They show that the concepts of stochastic dynamic

systems can be useful for forecasting (Example 1.1), control under uncertainty

(Example 1.2) and the design of �lters (Example 1.3).

This book is aimed as an introduction to the properties of stochastic

dynamic systems in discrete time. There are several reasons why the emphasis

is on discrete-time systems only. One is that, today, processing equipment

for �ltering and control is very often based on digital hardware, so data are

available only in discrete time. Another reason is that discrete-time stochastic

processes are much easier to handle than their continuous-time counterparts,

which have certain mathematical subtleties that are far from trivial to handle

in a stringent way. Nevertheless, continuous-time processes will occasionally

be discussed, especially as far as sampling is concerned.

Most of the material centres around the treatment of linear systems us-

ing variance criteria as measurements of performance. This is no doubt very

useful in many areas of application. The combination of linear dynamics and

quadratic performance criteria also leads to neat mathematical analysis. One

should, however, remember that aspects other than low variance may some-

times be of importance. There can also be strong nonlinear e�ects to consider.

Such aspects are only discussed brie
y in the book, and the mathematics then
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Fig. 1.1. Electric power consumption for a period of 120 h

no longer show the neat character of the linear quadratic case. Both input{

output models and state space formalisms will be used extensively in the

book. In the linear case, there are always close links between these two ways

of treating dynamics, and it is fruitful to see how any concept appears in

both types of model.

For illustration of the theories of stochastic systems that can be used, a

few examples are in order.

Example 1.1 The consumption of electrical energy in an area varies consid-

erably over time. A typical pattern is shown in Figure 1.1.

The energy consumption shows a regular variation through the day and

decays to low values at night. There is also a random e�ect that adds to

the regular e�ect. This random e�ect has several causes: e�ect of weather,

special needs in industry, popular TV programs, etc. In order to generate the

amount of power that is needed for every time instant, it is important to be

able to forecast the demand a few hours ahead. The regular component of

the consumption may be known, but there is a need to describe (i.e. model)

the random contribution, and use that description to �nd good forecasts or

predictions of its future value using currently available measurements. 2

Example 1.2 In the processing industry, there are many examples of pro-

duction of paper, pulp, concrete, chemicals, etc., where variations in raw

material, temperature and several other e�ects produce random variations

in the �nal product. For several reasons, the producer may want to reduce

such variations. One reason could be the quality requirements of the cus-

tomers. Another could be the need for more eÆcient saving of energy and

raw material. A third could be that smaller variations allow a more econom-

ical setpoint. This is illustrated in Figure 1.2, which shows how a reduced

variation can allow the setpoint to be chosen closer to a critical level.
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Fig. 1.2. Output variations (solid lines) around setpoints (dotted lines); critical
values that presumably should not be passed (dashed lines); crude regulator (left)
and a well-tuned regulator (right)
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Fig. 1.3. Block diagram for a simple radio communication

To achieve eÆcient control of the process, it is often necessary to have

a stochastic model of how the output is in
uenced both by the inputs (the

control variables) and by disturbances. Such a model can then be the basis

for the design of regulators, which seek to minimize the in
uence of the dis-

turbances. 2

Example 1.3 As yet another illustration, consider mobile radio communica-

tion, which in a very simpli�ed form can be described as follows. The message

to be transmitted is digitized. In this example it is represented as a binary

signal, u(t) = �1; see Figure 1.3.
The channel refers to the \system" or \�lter" that describes how the

signal is distorted before it arrives at the receiver. A typical reason for such

distortions is that the signal propagates along several paths to the receiver.

Signals that arrive after re
ection travel a longer distance than direct signals

and introduce a delay. There is often also noise, for example sensor noise in the

receiver, e(t), that adds to the signal, x(t), so that the actual measurement is

y(t). A simple approach to reconstructing the transmitted signal is to take the



4 1. Introduction

-1

-0.5

0

0.5

1

0 10 20 30 40

oooo

o

ooooo

oo

o

o

o

oooo

o

ooo

o

o

oooo

o

ooo

ooo

o

oo

o

-4

-2

0

2

4

0 10 20 30 40

o

ooo

o
o

oooo

o

o

o
o

o
o

ooo

o
o

oo

o
o

o

ooo

o
o

oo

o

oo

o
o

o

o

-4

-2

0

2

4

0 10 20 30 40

o

ooo

o
o

oooo

o

o

o
o

o
o

ooo

o
o

oo

o
o

o

ooo

o
o

oo

o

oo

o
o

o

o

-1

-0.5

0

0.5

1

0 10 20 30 40

ooooo

o

ooooo

oo

o

o

o

oooo

o

ooo

o

o

oooo

o

ooo

ooo

o

oo

t

tt

t

z
(t
)

u
(t
)

y
(t
)

x
(t
)

Fig. 1.4. Examples of signals for a digital radio communication

sign of y(t) to form a binary signal z(t). It should resemble the transmitted

signal x(t) for a good communication system. The procedure for determining

z(t) from the measurements y(t) is called equalizing. The transmission causes

a distortion of the transmitted signal, which is called intersymbol interference.

A good equalizer will include a dynamic �lter operating on y(t) and not only

the sign operator. To design such a �lter, it is important to have a good

description (i.e. a model) of the channel, and the statistical properties of

the transmitted signal x(t) and the disturbance e(t). The \best" equalizer

is a compromise between di�erent objectives. Should there be no noise and

the channel model be invertible, it is, of course, optimal to �lter y(t) by

the inverse of the channel model. However, the inverse is often not stable,

which makes the design more complicated. Another diÆculty is how to take

appropriate consideration of the noise. In the extreme case, when only the

e�ect of the noise is considered, a �lter giving zero as output would be ideal.

In the general case, the �lter must be a compromise between damping the

noise and trying to \invert" the channel by a stable �lter.

Figure 1.4 illustrates, by simulation for a simple case, what the signal

u(t), x(t), y(t) and z(t) may look like.
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This example can also illustrate the concept of smoothing. In order to

reconstruct the transmitted signal x(t) as eÆciently as possible, it seems per-

tinent to allow the output z(t) to depend not only on y(s), s � t, but also

on future data, y(s), s � t + � . Such a principle would introduce a delay in

the received message, so that ideally z(t) = u(t� �). However, such a (small)

delay can often be accepted, especially if it improves the quality of the out-

come. 2

In various communication systems, such as radar, sonar and radio com-

munications, it is convenient to describe the signals as being complex-valued.

For example, in radar, the amplitude of the echo (response) is a measure of

the e�ective size of the target, and the phase (due to Doppler shift in the

carrier frequency) is a measure of the target's radial velocity towards the

radar. In many parts of the book, complex-valued signals and processes are

treated in order to make the treatment as general as possible. In other parts,

though, the more traditional approach of considering only real-valued signals

is employed.

The need for complex-valued signal models can be heuristically motivated

in various ways.

� The signals are often of the narrow-band type, meaning that they have their

energy concentrated in a small frequency region. The signals can therefore

be (approximately) characterized as sinewaves. Interesting information is

contained in the amplitude and the phase. To model amplitudes, phases

and how they are a�ected by linear �ltering, it is convenient to introduce

complex-valued modelling of the signal.

� A radio communication signal contains a low-frequency message that is

modulated using a carrier signal of high frequency. The transmitted signal

then has a frequency content that is varied slightly around the carrier

frequency. Distortion a�ects this frequency content. After demodulation,

when retrieving the low-frequency message, it turns out that the frequency

content is not symmetric. This can be viewed as a sign that a complex-

valued description of the signal is needed.

Not only may the signal be complex-valued, but the dynamic system itself

may also be complex-valued. Section 3.A gives a brief account of complex-

valued models of narrow-band signals and the properties of linear dynamic

complex-valued systems.
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