GEODYNAMICS

Second Edition

First published in 1982, Don Turcotte and Jerry Schubert's *Geodynamics* became a classic textbook for several generations of students of geophysics and geology. In this second edition, the authors bring this classic text completely up-to-date. Important additions include a chapter on chemical geodynamics, an updated coverage of comparative planetology based on recent planetary missions, and a variety of other new topics.

Geodynamics provides the fundamentals necessary for an understanding of the workings of the solid Earth. The Earth is a heat engine, with the source of the heat the decay of radioactive elements and the cooling of the Earth from its initial accretion. The work output includes earthquakes, volcanic eruptions, and mountain building. *Geodynamics* comprehensively explains these concepts in the context of the role of mantle convection and plate tectonics. Observations such as the Earth's gravity field, surface heat flow, distribution of earthquakes, surface stresses and strains, and distribution of elements are discussed. The rheological behavior of the solid Earth, from an elastic solid to fracture to plastic deformation to fluid flow, is considered. Important inputs come from a comparison of the similarities and differences between the Earth, Venus, Mars, Mercury, and the Moon. An extensive set of student exercises is included.

This new edition of *Geodynamics* will once again prove to be a classic textbook for intermediate to advanced undergraduates and graduate students in geology, geophysics, and Earth science.

Donald L. Turcotte is Maxwell Upson Professor of Engineering, Department of Geological Sciences, Cornell University. In addition to this book, he is author or co-author of 3 books and 276 research papers, including *Fractals and Chaos in Geology and Geophysics* (Cambridge University Press, 1992 and 1997) and *Mantle Convection in the Earth and Planets* (with Gerald Schubert and Peter Olson; Cambridge University Press, 2001). Professor Turcotte is a Fellow of the American Geophysical Union, Honorary Fellow of the European Union of Geosciences, and Fellow of the Geological Society of America. He is the recipient of several medals, including the Day Medal of the Geological Society of America, the Wegener Medal of the European Union of Geosciences, the Whitten Medal of the American Geophysical Union, the Regents (New York State) Medal of Excellence, and Caltech's Distinguished Alumnus Award. Professor Turcotte is a member of the National Academy of Sciences and the American Academy of Arts and Sciences.

Gerald Schubert is a Professor in the Department of Earth and Space Sciences and the Institute of Geophysics and Planetary Physics at the University of California, Los Angeles. He is co-author with Donald Turcotte and Peter Olson of *Mantle Convection in the Earth and Planets* (Cambridge University Press, 2001), and author of over 400 research papers. He has participated in a number of NASA's planetary missions and has been on the editorial boards of many journals, including *Icarus, Journal of Geophysical Research, Geophysical Research Letters*, and *Annual Reviews of Earth and Planetary Sciences*. Professor Schubert is a Fellow of the American Geophysical Union and a recipient of the Union's James B. MacElwane medal. He is a member of the American Academy of Arts and Sciences.

GEODYNAMICS

Second Edition

DONALD L. TURCOTTE

Professor of Geological Sciences Cornell University

GERALD SCHUBERT

Professor of Earth and Space Sciences University of California, Los Angeles

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, VIC 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published by John Wiley & Sons, Inc., 1982.

Printed in the United States of America

Typefaces Times Ten 9.75/12.5 pt., Formata and Melior System $IAT_EX 2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Turcotte, Donald Lawson.

Geodynamics / Donald L. Turcotte, Gerald Schubert. - 2nd ed.

p. cm.

Rev. ed. of: Geodynamics applications of continuum physics to geological problems, c1982.

Includes bibliographical references and index.

ISBN 0-521-66186-2 – ISBN 0-521-66624-4 (pb.)

1. Geodynamics.I. Schubert, Gerald.II. Turcotte, Donald Lawson. Geodynamicsapplications of continuum physics to geological problems, c1982.III. Title.QE501.78320012001025802

ISBN 0 521 66186 2 hardback ISBN 0 521 66624 4 paperback

Contents

Preface Preface to the Second Edition	<i>page</i> xi xiii
ONE. Plate Tectonics	1
1–1 Introduction	1
1–2 The Lithosphere	5
1–3 Accreting Plate Boundaries	6
1–4 Subduction	9
1–5 Transform Faults	13
1–6 Hotspots and Mantle Plumes	14
1–7 Continents	17
1-8 Paleomagnetism and the Motion of the Plates	22
1–9 Triple Junctions	35
1–10 The Wilson Cycle	38
1–11 Continental Collisions	41
1–12 Volcanism and Heat Flow	46
1–13 Seismicity and the State of Stress in the Lithosphere	49
1–14 The Driving Mechanism	54
1–15 Comparative Planetology	55
1–16 The Moon	56
1–17 Mercury	58
1–18 Mars	59
1–19 Phobos and Deimos	64
1–20 Venus	65
1–21 The Galilean Satellites	67
TWO. Stress and Strain in Solids	73
2–1 Introduction	73
2–2 Body Forces and Surface Forces	73
2–3 Stress in Two Dimensions	80
2-4 Stress in Three Dimensions	83
2-5 Pressures in the Deep Interiors of Planets	84

۷

vi **CONTENTS**

2–6 Stress Measurement	85
2–7 Basic Ideas about Strain	87
2–8 Strain Measurements	94
THREE. Elasticity and Flexure	105
3–1 Introduction	105
3–2 Linear Elasticity	106
3–3 Uniaxial Stress	106
3–4 Uniaxial Strain	108
3–5 Plane Stress	109
3–6 Plane Strain	111
3–7 Pure Shear and Simple Shear	111
3–8 Isotropic Stress	112
3–9 Two-Dimensional Bending or Flexure of Plates	112
3–10 Bending of Plates under Applied Moments and Vertical Loads	116
3–11 Buckling of a Plate under a Horizontal Load	118
3–12 Deformation of Strata Overlying an Igneous Intrusion	119
3–13 Application to the Earth's Lithosphere	121
3–14 Periodic Loading	122
3–15 Stability of the Earth's Lithosphere under an End Load	123
3–16 Bending of the Elastic Lithosphere under the Loads	
of Island Chains	124
3–17 Bending of the Elastic Lithosphere at an Ocean Trench	127
3–18 Flexure and the Structure of Sedimentary Basins	129
FOUR. Heat Transfer	132
4–1 Introduction	132
4–2 Fourier's Law of Heat Conduction	132
4–3 Measuring the Earth's Surface Heat Flux	133
4–4 The Earth's Surface Heat Flow	135
4–5 Heat Generation by the Decay of Radioactive Elements	136
4-6 One-Dimensional Steady Heat Conduction with Volumetric	
Heat Production	138
4–7 A Conduction Temperature Profile for the Mantle	140
4–8 Continental Geotherms	141
4–9 Radial Heat Conduction in a Sphere or Spherical Shell	144
4–10 Temperatures in the Moon	145
4–11 Steady Two- and Three-Dimensional Heat Conduction	146
4–12 Subsurface Temperature Due to Periodic Surface Temperature	
and Topography	147
4-13 One-Dimensional, Time-Dependent Heat Conduction	149
4–14 Periodic Heating of a Semi-Infinite Half-Space: Diurnal	
and Seasonal Changes in Subsurface Temperature	150
4–15 Instantaneous Heating or Cooling of a Semi-Infinite Half-Space	153
4–16 Cooling of the Oceanic Lithosphere	157
4–17 Plate Cooling Model of the Lithosphere	161
4–18 The Stefan Problem	162

CAMBRIDGE

Cambridge University Press 0521666244 - Geodynamics, Second Edition Donald L. Turcotte and Gerald Schubert Frontmatter More information

CONTENTS vii

4–19 Solidification of a Dike or Sill	166
4–20 The Heat Conduction Equation in a Moving Medium:	
Thermal Effects of Erosion and Sedimentation	168
4–21 One-Dimensional, Unsteady Heat Conduction in an Infinite Region	169
4–22 Thermal Stresses	171
4–23 Ocean Floor Topography	174
4–24 Changes in Sea Level	178
4–25 Thermal and Subsidence History of Sedimentary Basins	179
4–26 Heating or Cooling a Semi-Infinite Half-Space by a Constant	
Surface Heat Flux	183
4–27 Frictional Heating on Faults: Island Arc Volcanism and Melting	
on the Surface of the Descending Slab	184
4–28 Mantle Geotherms and Adiabats	185
4–29 Thermal Structure of the Subducted Lithosphere	190
4–30 Culling Model for the Erosion and Deposition of Sediments	191
FIVE. Gravity	195
5–1 Introduction	195
5–2 Gravitational Acceleration External to the Rotationally	
Distorted Earth	195
5–3 Centrifugal Acceleration and the Acceleration of Gravity	200
5–4 The Gravitational Potential and the Geoid	201
5–5 Moments of Inertia	205
5–6 Surface Gravity Anomalies	207
5–7 Bouguer Gravity Formula	210
5–8 Reductions of Gravity Data	212
5–9 Compensation	213
5–10 The Gravity Field of a Periodic Mass Distribution on a Surface	213
5–11 Compensation Due to Lithospheric Flexure	214
5–12 Isostatic Geoid Anomalies	216
5–13 Compensation Models and Observed Geoid Anomalies	219
5–14 Forces Required to Maintain Topography and the Geoid	223
SIX. Fluid Mechanics	226
6–1 Introduction	226
6–2. One-Dimensional Channel Flows	226
6–3 Asthenospheric Counterflow	230
6–4 Pipe Flow	231
6–5 Artesian Aquifer Flows	233
6–6 Flow Through Volcanic Pipes	234
6–7 Conservation of Fluid in Two Dimensions	234
6–8 Elemental Force Balance in Two Dimensions	235
6–9 The Stream Function	237
6–10 Postglacial Rebound	238
6–11 Angle of Subduction	242
6–12 Diapirism	244
6–13 Folding	249

viii CONTENTS

6–14 Stokes Flow	254
6–15 Plume Heads and Tails	259
6–16 Pipe Flow with Heat Addition	262
6–17 Aquifer Model for Hot Springs	264
6–18 Thermal Convection	266
6–19 Linear Stability Analysis for the Onset of Thermal Convection	
in a Layer of Fluid Heated from Below	267
6–20 A Transient Boundary-Layer Theory for Finite-Amplitude	
Thermal Convection	272
6–21 A Steady-State Boundary-Layer Theory for Finite-Amplitude	
Thermal Convection	274
6–22 The Forces that Drive Plate Tectonics	280
6–23 Heating by Viscous Dissipation	283
6–24 Mantle Recycling and Mixing	285
SEVEN. Rock Rheology	292
7–1 Introduction	292
7–2 Elasticity	293
7–3 Diffusion Creep	300
7–4 Dislocation Creep	307
7–5 Shear Flows of Fluids with Temperature- and	
Stress-Dependent Rheologies	311
7–6 Mantle Rheology	318
7–7 Rheological Effects on Mantle Convection	323
7–8 Mantle Convection and the Cooling of the Earth	325
7–9 Crustal Rheology	327
7–10 Viscoelasticity	329
7–11 Elastic-Perfectly Plastic Behavior	333
EIGHT. Faulting	339
8–1 Introduction	339
8–2 Classification of Faults	339
8–3 Friction on Faults	341
8–4 Anderson Theory of Faulting	343
8–5 Strength Envelope	347
8–6 Thrust Sheets and Gravity Sliding	347
8–7 Earthquakes	350
8–8 San Andreas Fault	355
8–9 North Anatolian Fault	359
8–10 Some Elastic Solutions for Strike–Slip Faulting	361
8–11 Stress Diffusion	367
8–12 Thermally Activated Creep on Faults	368
NINE. Flows in Porous Media	374
9–1 Introduction	374
9–2 Darcy's Law	374
9_3 Permeability Models	374
7.5 Termeability models	515

CAMBRIDGE

Cambridge University Press 0521666244 - Geodynamics, Second Edition Donald L. Turcotte and Gerald Schubert Frontmatter More information

CONTENTS ix

9–4 Flow in Confined Aquifers	376
9–5 Flow in Unconfined Aquifers	378
9-6 Geometrical Form of Volcanoes	387
9-7 Equations of Conservation of Mass, Momentum, and Energy	
for Flow in Porous Media	390
9-8 One-Dimensional Advection of Heat in a Porous Medium	391
9–9 Thermal Convection in a Porous Layer	393
9–10 Thermal Plumes in Fluid-Saturated Porous Media	396
9–11 Porous Flow Model for Magma Migration	402
9–12 Two-Phase Convection	405
TEN. Chemical Geodynamics	410
10–1 Introduction	410
10–2 Radioactivity and Geochronology	411
10–3 Geochemical Reservoirs	415
10–4 A Two-Reservoir Model with Instantaneous	
Crustal Differentiation	417
10–5 Noble Gas Systems	423
10–6 Isotope Systematics of OIB	424
APPENDIX ONE. Symbols and Units	429
APPENDIX TWO. Physical Constants and Properties	433
Answers to Selected Problems	437
Index	441

Preface

This textbook deals with the fundamental physical processes necessary for an understanding of plate tectonics and a variety of geological phenomena. We believe that the appropriate title for this material is *geodynamics*. The contents of this textbook evolved from a series of courses given at Cornell University and UCLA to students with a wide range of backgrounds in geology, geophysics, physics, mathematics, chemistry, and engineering. The level of the students ranged from advanced undergraduate to graduate.

In all cases we present the material with a minimum of mathematical complexity. We have not introduced mathematical concepts unless they are essential to the understanding of physical principles. For example, our treatment of elasticity and fluid mechanics avoids the introduction or use of tensors. We do not believe that tensor notation is necessary for the understanding of these subjects or for most applications to geological problems. However, solving partial differential equations is an essential part of this textbook. Many geological problems involving heat conduction and solid and fluid mechanics require solutions of such classic partial differential equations as Laplace's equation, Poisson's equation, the biharmonic equation, and the diffusion equation. All these equations are derived from first principles in the geological contexts in which they are used. We provide elementary explanations for such important physical properties of matter as solid-state viscosity, thermal coefficient of expansion, specific heat, and permeability. Basic concepts involved in the studies of heat transfer, Newtonian and non-Newtonian fluid behavior, the bending of thin elastic plates, the mechanical behavior of faults, and the interpretation of gravity anomalies are emphasized. Thus it is expected that the student will develop a thorough understanding of such fundamental physical laws as Hooke's law of elasticity, Fourier's law of heat conduction, and Darcy's law for fluid flow in porous media.

The problems are an integral part of this textbook. It is only through solving a substantial number of exercises that an adequate understanding of the underlying physical principles can be developed. Answers to selected problems are provided.

The first chapter reviews plate tectonics; its main purpose is to provide physics, chemistry, and engineering students with the geological background necessary to understand the applications considered throughout the rest of the textbook. We hope that the geology student can also benefit from this summary of numerous geological, seismological, and paleomagnetic observations. Since plate tectonics is a continuously evolving subject, this material may be subject to revision. Chapter 1 also briefly summarizes the geological and geophysical characteristics of the other planets and satellites of the solar system. Chapter 2 introduces the concepts of stress and strain and discusses the measurements of these quantities in the Earth's crust. Chapter 3 presents the basic principles of linear elasticity. The bending of thin elastic plates is emphasized and is applied to problems involving the bending of the Earth's lithosphere. Chapter 4 deals mainly with heat conduction and the application of this theory to temperatures in the continental crust and the continental and oceanic lithospheres. Heat transfer by convection is briefly discussed

xii **PREFACE**

and applied to a determination of temperature in the Earth's mantle. Surface heat flow measurements are reviewed and interpreted in terms of the theory. The sources of the Earth's surface heat flow are discussed. Problems involving the solidification of magmas and extrusive lava flows are also treated. The basic principles involved in the interpretation of gravity measurements are given in Chapter 5. Fluid mechanics is studied in Chapter 6; problems involving mantle convection and postglacial rebound are emphasized. Chapter 7 deals with the rheology of rock or the manner in which it deforms or flows under applied forces. Fundamental processes are discussed from a microscopic point of view. The mechanical behavior of faults is discussed in Chapter 8 with particular attention being paid to observations of displacements along the San Andreas fault. Finally, Chapter 9 discusses the principles of fluid flow in porous media, a subject that finds application to hydrothermal circulations in the oceanic crust and in continental geothermal areas.

The contents of this textbook are intended to provide the material for a coherent one-year course. In order to accomplish this goal, some important aspects of geodynamics have had to be omitted. In particular, the fundamentals of seismology are not included. Thus the wave equation and its solutions are not discussed. Many seismic studies have provided important data relevant to geodynamic processes. Examples include (1) the radial distribution of density in the Earth as inferred from the radial profiles of seismic velocities, (2) important information on the locations of plate boundaries and the locations of descending plates at ocean trenches provided by accurate determinations of the epicenters of earthquakes, and (3) details of the structure of the continental crust obtained by seismic reflection profiling using artificially generated waves. An adequate treatment of seismology would have required a very considerable expansion of this textbook. Fortunately, there are a number of excellent textbooks on this subject.

A comprehensive study of the spatial and temporal variations of the Earth's magnetic field is also considered to be outside the scope of this textbook. A short discussion of the Earth's magnetic field relevant to paleomagnetic observations is given in Chapter 1. However, mechanisms for the generation of the Earth's magnetic field are not considered.

In writing this textbook, several difficult decisions had to be made. One was the choice of units; we use SI units throughout. This system of units is defined in Appendix 1. We feel there is a strong trend toward the use of SI units in both geology and geophysics. We recognize, however, that many cgs units are widely used. Examples include μ cal cm⁻² s⁻¹ for heat flow, kilobar for stress, and milligal for gravity anomalies. For this reason we have often included the equivalent cgs unit in parentheses after the SI unit, for example, MPa (kbar). Another decision involved the referencing of original work. We do not believe that it is appropriate to include a large number of references in a basic textbook. We have credited those individuals making major contributions to the development of the theory of plate tectonics and continental drift in our brief discussion of the history of this subject in Chapter 1. We also provide references to data. At the end of each chapter a list of recommended reading is given. In many instances these are textbooks and reference books, but in some cases review papers are included. In each case the objective is to provide background material for the chapter or to extend its content.

Many of our colleagues have read all or parts of various drafts of this textbook. We acknowledge the contributions made by Jack Bird, Peter Bird, Muawia Barazangi, Allan Cox, Walter Elsasser, Robert Kay, Suzanne Kay, Mark Langseth, Bruce Marsh, Jay Melosh, John Rundle, Sean Solomon, David Stevenson, Ken Torrance, and David Yuen. We particularly wish to acknowledge the many contributions to our work made by Ron Oxburgh and the excellent manuscript preparation by Tanya Harter.

Preface to the Second Edition

As we prepared our revisions for this second edition of *Geodynamics* we were struck by the relatively few changes and additions that were required. The reason is clear: this textbook deals with fundamental physical processes that do not change. However, a number of new ideas and concepts have evolved and have been included where appropriate.

In revising the first chapter on plate tectonics we placed added emphasis on the concept of mantle plumes. In particular we discussed the association of plume heads with continental flood basalts. We extensively revised the sections on comparative planetology. We have learned new things about the Moon, and the giant impact hypothesis for its origin has won wide acceptance. For Venus, the Magellan mission has revolutionized our information about the planet. The high-resolution radar images, topography, and gravity data have provided new insights that emphasize the tremendous differences in structure and evolution between Venus and the Earth. Similarly, the Galileo mission has greatly enhanced our understanding of the Galilean satellites of Jupiter.

In Chapter 2 we introduce the crustal stretching model for the isostatic subsidence of sedimentary basins. This model provides a simple explanation for the formation of sedimentary basins. Space-based geodetic observations have revolutionized our understanding of surface strain fields associated with tectonics. We introduce the reader to satellite data obtained from the global positioning system (GPS) and synthetic aperture radar interferometry (INSAR). In Chapter 4 we introduce the plate cooling model for the thermal structure of the oceanic lithosphere as a complement to the halfspace cooling model. We also present in this chapter the Culling model for the diffusive erosion and deposition of sediments. In Chapter 5 we show how geoid anomalies are directly related to the forces required to maintain topography.

In Chapter 6 we combine a pipe-flow model with a Stokes-flow model in order to determine the structure and strength of plume heads and plume tails. The relationship between hotspot swells and the associated plume flux is also introduced. In addition to the steadystate boundary-layer model for the structure of mantle convection cells, we introduce a transient boundarylayer model for the stability of the lithosphere.

Finally, we conclude the book with a new Chapter 10 on chemical geodynamics. The concept of chemical geodynamics has evolved since the first edition was written. The object is to utilize geochemical data, particularly the isotope systematics of basalts, to infer mantle dynamics. Questions addressed include the homogeneity of the mantle, the fate of subducted lithosphere, and whether whole mantle convection or layered mantle convection is occurring.

The use of SI units is now firmly entrenched in geology and geophysics, and we use these units throughout the book. Since *Geodynamics* is meant to be a textbook, large numbers of references are inappropriate. However, we have included key references and references to sources of data in addition to recommended collateral reading.

In addition to the colleagues who we acknowledge in the preface to the first edition, we would like to add Claude Allègre, Louise Kellogg, David Kohlstedt, Bruce Malamud, Mark Parmentier, and David Sandwell. We also acknowledge the excellent manuscript preparation by Stacey Shirk and Judith Hohl, and figure preparation by Richard Sadakane.

GEODYNAMICS

Second Edition