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4
Realizing and Omitting Types

4.1 Types

Suppose that M is an L-structure and A ⊆ M . Let LA be the language
obtained by adding to L constant symbols for each a ∈ A. We can naturally
viewM as an LA-structure by interpreting the new symbols in the obvious
way. Let ThA(M) be the set of all LA-sentences true in M. Note that
ThA(M) ⊆ Diagel(M).

Definition 4.1.1 Let p be the set of LA-formulas in free variables
v1, . . . , vn. We call p an n-type if p ∪ ThA(M) is satisfiable. We say that
p is a complete n-type if φ ∈ p or ¬φ ∈ p for all LA-formulas φ with free
variables from v1, . . . , vn. We let SMn (A) be the set of all complete n-types.

We sometimes refer to incomplete types as partial types. Also, we often
write p(v1, . . . , vn) to stress that p is an n-type.
By the Compactness Theorem, we could replace “satisfiable” by “finitely

satisfiable” in Definition 4.1.1.
Consider the exampleM = (Q, <) where A is the set of natural numbers.

Let p(v) be the set of formulas {v > 1, v > 2, v > 3, . . .}. If ∆ is a finite
subset of p(v) ∪ThA(M), then we see that ∆ is satisfiable by interpreting
v as a sufficiently large element of Q. By the Compactness Theorem, p(v)∪
ThA(M) is satisfiable and p(v) is a 1-type.
For the same structure, let q(v) = {φ(v) ∈ LA :M |= φ(12 )}. For example

the formula v < 3 is in q(v), whereas v > 2 is not. For any LA-formula
ψ(v), either M |= ψ( 12 ) orM |= ¬ψ( 12 ). Thus, q(v) is a complete 1-type.
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The latter example can be generalized to produce complete types in arbi-
trary structures. If M is any L-structure, A ⊂ M , and a = (a1, . . . , an) ∈
Mn, let tpM(a/A) = {φ(v1, . . . , vn) ∈ LA : M |= φ(a1, . . . , an)}. Then,
tpM(a/A) is a complete n-type. We write tpM(a) for tpM(a/∅).

Definition 4.1.2 If p is an n-type over A, we say that a ∈Mn realizes p if
M |= φ(a) for all φ ∈ p. If p is not realized in M we say that M omits p.

In the examples given above, p(v) is not realized inM = (Q, <), whereas
clearly 1/2 realizes q(v). In fact, there are many realizations of q(v) in M.
Suppose that r is any rational number with 0 < r < 1. We can construct
an automorphism σ of M that fixes every natural number but σ(1/2) =
r. Because σ fixes all elements of A, σ is also an LA-automorphism. By
Theorem 1.1.10,

M |= φ(1/2)⇔M |= φ(r).

Thus, r also realizes q(v).
In fact, the elements of Q that realize q(v) are exactly the rational num-

bers s such that 0 < s < 1. If s ≤ 0, then the formula 0 < v is in q(v) but
M |= ¬(0 < s). Thus, s does not realize q(v). Similarly, no s ≥ 1 realizes
q(v).
The Compactness Theorem tells us that every type can be realized in an

elementary extension.

Proposition 4.1.3 Let M be an L-structure, A ⊆ M , and p an n-type
over A. There is N an elementary extension of M such that p is realized
in N .

Proof Let Γ = p ∪ Diagel(M). We claim that Γ is satisfiable.
Suppose that ∆ is a finite subset of Γ. Without loss of generality, ∆ is

the single formula

φ(v1, . . . , vn, a1, . . . , am) ∧ ψ(a1, . . . , am, b1, . . . , bl),

where a1, . . . , am ∈ A, b1, . . . , bl ∈ M \ A, φ(v, a) ∈ p, and M |= ψ(a, b).
Let N0 be a model of the satisfiable set of sentences p∪ThA(M). Because
∃w ψ(a, w) ∈ ThA(M),

N0 |= φ(v, a) ∧ ∃w ψ(a, w).

By interpreting b1, . . . , bl as witnesses to ∃w ψ(a1, . . . , am, w), we make
N0 |= ∆. Thus, ∆ is satisfiable.
By the Compactness Theorem, Γ is satisfiable. Let N |= Γ. Because

N |= Diagel(M), the map that sends m ∈ M to the interpretation of the
constant symbol m in N is an elementary embedding. Let ci ∈ N be the
interpretations of vi. Then, (c1, . . . , cn) is a realization of p.

It is worth noting that if N is an elementary extension of M, then
ThA(M) = ThA(N ). Thus SMn (A) = SNn (A). This observation and Propo-
sition 4.1.3 yield a characterization of complete types.
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Corollary 4.1.4 p ∈ SMn (A) if and only if there is an elementary exten-
sion N of M and a ∈ Nn such that p = tpN (a/A).

Proof If a ∈ Nn, then tpN (a/A) ∈ SNn (A) = SMn (A). On the other hand
if p ∈ SMn (A), then, by Proposition 4.1.3, there is an elementary extension
N of M and a ∈ M realizing p. Because p is complete, if φ(v) ∈ LA, then
exactly one of φ(v) and ¬φ(v) is in p. Thus, φ(v) ∈ tpN (a/A) if and only
if φ(v) ∈ p and p = tpN (a/A).

Complete types tell us what possible first-order properties elements can
have in an elementary extension. What does it mean if two elements of a
structure M realize the same complete type over A? Let us return to the
example whereM = (Q, <) and A is the natural numbers. We showed that
a, b ∈ Q realize the same complete 1-type over A if and only if there is an
automorphism σ of M fixing A such that α(a) = b. Although this is not
true in general (see, for example, Exercises 4.5.1 and 4.5.9), it is if we allow
passage to an elementary extension.

Proposition 4.1.5 Suppose that M is an L-structure and A ⊆ M . Let
a, b ∈Mn such that tpM(a/A) = tpM(b/A). Then, there is N an elemen-
tary extension of M and σ an automorphism of N fixing all elements of A
such that σ(a) = b.

If M and N are L-structures and B ⊆ M , we say that f : B → N is a
partial elementary map if and only if

M |= φ(b)⇔ N |= φ(f(b))

for all L-formulas φ and all finite sequences b from B. We will prove Propo-
sition 4.1.5 by carefully iterating the following lemma and its corollary.

Lemma 4.1.6 Let M,N , B be as above and let f : B → N be partial
elementary. If b ∈ M , there is an elementary extension N1 of N and g :
B ∪ {b} → N1 a partial elementary map extending f .

Proof Let Γ = {φ(v, f(a1), . . . , f(an)) :M |= φ(b, a1, . . . , an), a1, . . . , an ∈
B} ∪ Diagel(N ).
Suppose that we find a structure N1 and an element c ∈ N1 satisfying

all of the formulas in Γ. Because N1 |= Diagel(N ), N1 is an elementary
extension of N . It is also easy to see that we can extend f to a partial
elementary map by b 7→ c.
Thus, it suffices to show that Γ is satisfiable. By the Compactness Theo-

rem it suffices to show that every finite subset of Γ is satisfiable inN . Taking
conjunctions, it is enough to show that if M |= φ(b, a1, . . . , an), then N |=
∃v φ(v, f(a1), . . . , f(an)). But this is clear becauseM |= ∃v φ(v, a1, . . . , an)
and f is partial elementary.
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Corollary 4.1.7 If M and N are L-structures, B ⊆ M and f : B → N
is a partial elementary map, then there is N ′ an elementary extension of
N and g :M→N ′ an elementary embedding.

Proof Let κ = |M |, and let {aα : α < κ} be an enumeration of M .
Let N0 = N , B0 = B, and g0 = f . Let Bα = B ∪ {aβ : β < α}. We
inductively build an elementary chain (Nα : α < κ) and gα : Bα → Nα
partial elementary such that gβ ⊆ gα for β < α.
If α = β+1, and gβ : Bβ → Nβ is partial elementary, then, by Proposition

4.1.3, we can find Nβ ≺ Nα and gα : Bα → Nα extending gβ.
If α is a limit ordinal, let Nα =

⋃

β<αNβ and gα =
⋃

β<α gβ . By Lemma
2.3.11, Nα is an elementary extension of Nβ for β < α and fα is a partial
elementary map.
Let N ′ =

⋃

α<κNα and g =
⋃

α<κ gα. Again by Lemma 2.3.11, N ≺
N ′ and g is partial elementary. But dom(g) = M , so g is an elementary
embedding of M into N ′.

Proof of 4.1.5 Let f : A ∪ {a} → A ∪ {b} such that f |A is the identity
and f(a) = b. Because tpM(a/A) = tpM(b/A), f is a partial elementary
map. By Corollary 4.1.7 there is N0 an elementary extension of M and
f0 : M → N0 an elementary embedding extending f . We will build a
sequence of elementary extensions

M =M0 ≺ N0 ≺M1 ≺ N1 ≺M2 ≺ N2 . . .

and elementary embeddings fi :Mi → Ni such that f0 ⊆ f1 ⊆ f2 . . . and
Ni is contained in the image of fi+1. Having done this, let

N =
⋃

i<ω

Ni =
⋃

i<ω

Mi

and σ =
⋃
fi. By Lemma 2.3.11, N is an elementary extension of M and

σ : N → N is an elementary map such that σ|A is the identity and σ(a) = b.
By construction σ is surjective. Thus, σ is the desired automorphism.
We now describe the construction. Given fi : Mi → Ni, we can view

f−1i as a partial elementary map from the image of fi into Mi ≺ Ni.
By Corollary 4.1.7, we can find Mi+1 an elementary extension of Ni and
extend f−1i to an elementary embedding gi : Ni →Mi+1. We can view g−1i
as a partial elementary map from the image of g into Ni ≺ Mi+1. Again
by Corollary 4.1.7, we can find Ni+1 an elementary extension ofMi+1 and
an elementary embedding fi+1 : Mi+1 → Ni+1 extending g−1i . Because
fi+1 ⊇ g−1i and gi ⊇ f−1i , fi+1 ⊇ fi. Because Ni is the domain of gi, Ni is
in the range of fi+1.
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Stone Spaces

There is a natural topology on the space of complete n-types SMn (A). For
φ an LA-formula with free variables from v1, . . . , vn, let

[φ] = {p ∈ SM(A) : φ ∈ p}.

If p is a complete type and φ ∨ ψ ∈ p, then φ ∈ p or ψ ∈ p. Thus [φ ∨ ψ] =
[φ] ∪ [ψ]. Similarly, [φ ∧ ψ] = [φ ∩ ψ].
The Stone topology on SMn (A) is the topology generated by taking the

sets [φ] as basic open sets. For complete types p, exactly one of φ and ¬φ
is in p. Thus, [φ] = SMn (A) \ [¬φ] is also closed. We refer to sets that are
both closed and open as clopen.
The topology of the type spaces will eventually play an important role.

The next lemmas summarize some of the basic topological properties.

Lemma 4.1.8 i) SMn (A) is compact.
ii) SMn (A) is totally disconnected, that is if p, q ∈ SMn (A) and p 6= q,

then there is a clopen set X such that p ∈ X and q 6∈ X.

Proof
i) It suffices to show that every cover of SMn (A) by basic open sets has a

finite subcover. Suppose not. Let C = {[φi(v)] : i ∈ I} be a cover of SMn (A)
by basic open sets with no finite subcover. Let

Γ = {¬φi(v) : i ∈ I}.

We claim that Γ ∪ ThA(M) is satisfiable. If I0 is a finite subset of I , then
because there is no finite subcover of C, there is a type p such that

p 6∈
⋃

i∈I0

[φi].

Let N be an elementary extension of M containing a realization a of p.
Then

N |= ThA(M) ∪
∧

i∈I0

¬φi(a).

We have shown that Γ is finitely satisfiable and hence, by the Compactness
Theorem, satisfiable.
Let N be an elementary extension of M, and let a ∈ N realize Γ. Then

tpN (a/A) ∈ SMn (A) \
⋃

i∈I

[φi(v)],

a contradiction.

ii) If p 6= q, there is a formula φ such that φ ∈ p and ¬φ ∈ q. Thus, [φ]
is a basic clopen set separating p and q.

Natural operations on types often give rise to continuous operations on
the type space.
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Lemma 4.1.9 i) If A ⊆ B ⊂ M and p ∈ SMn (B), let p|A be the set of
LA-formulas in p. Then, p|A ∈ S

M
n (A) and p 7→ p|A is a continuous map

from SMn (B) onto SMn (A).
ii) If f :M→N is an elementary embedding and p ∈ SMn (A), let

f(p) = {φ(v, f(a)) : φ(v, a) ∈ p}.

Then, f(p) ∈ SNn (f(A)) and p 7→ f(p) is continuous.
iii) If f : A → N is partial elementary, then SMn (A) is homeomorphic

to SNn (f(A)).

Proof
i) Because p|A ∪ ThA(M) ⊆ p ∪ ThB(M), p|A ∪ ThA(M) is satisfiable.

Because p|A is the set of all LA-formulas in p, p|A is complete. If φ is an
LA-formula, then

{p ∈ SMn (B) : φ ∈ p} = [φ].

Thus, φ is continuous.
If q ∈ SMn (A), there is an elementary extension N ofM and a ∈ N real-

izing q. Then, p = tpN (a/B) ∈ SMn (B) and p|A = q. Thus, the restriction
map is surjective.
ii) Suppose that ∆ is a finite subset of f(p). Say

∆ = {φ1(v, f(a)), . . . , φm(v, f(a))}

where φ1(v, a), . . . , φm(v, a) ∈ p. Because p ∪ ThA(M) is consistent,

M |= ∃v
m∧

i=1

φi(v, a).

Because f is elementary,

N |= ∃v
m∧

i=1

φi(v, f(a))

and f(p)∪Thf(A)(N ) is consistent. It is easy to see that f(p) is complete.
Because

{p ∈ SMn (A) : φ(v, f(a)) ∈ f(p)} = [φ(v, a)],

p 7→ f(p) is continuous.

iii) Exercise 4.5.12.

Definition 4.1.10 We say that p ∈ SMn (A) is isolated if {p} is an open
subset of SMn (A).

Isolated points will play an important role in Section 4.2.
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Proposition 4.1.11 Let p ∈ SMn (A). The following are equivalent.
i) p is isolated.
ii) {p} = [φ(v)] for some LA-formula φ(v). We say that φ(v) isolates p.
iii) There is an LA-formula φ(v) ∈ p such that for all LA-formulas ψ(v),

ψ(v) ∈ p if and only if

ThA(M) |= φ(v)→ ψ(v).

Proof
i) ⇒ ii) If X is open, then

X =
⋃

i∈I

[φi]

for some collection of formulas (φi : i ∈ I). If {p} is open, then {p} = [φ]
for some formula φ.

ii) ⇒ iii) Suppose that {p} = [φ(v)]. Suppose that ψ(v) ∈ p. We claim
that ThA(M) |= φ(v)→ ψ(v). If not, then there is an elementary extension
N of M and a ∈ N such that N |= φ(a) ∧ ¬ψ(a). Let q = tpN (a/A) ∈
SMn (A). Because φ(v) ∈ q, q = p. But ¬ψ(v) ∈ q, a contradiction.
If, on the other hand, ψ(v) 6∈ p, then ¬ψ(v) ∈ p and, by the argument

above, ThA(M) |= φ(v)→ ¬ψ(v). Because ThA(M)∪{φ(v)} is satisfiable,
ThA(M) 6|= φ(v)→ ψ(v).

iii) ⇒ i) We claim that [φ(v)] = {p}. Clearly, p ∈ [φ(v)]. Suppose that
q ∈ [φ(v)] and ψ(v) is an LA-formula. If ψ(v) ∈ p, then ThA(M) |= φ(v)→
ψ(v) and ψ(v) ∈ q. On the other hand, if ψ(v) 6∈ p, then ¬ψ(v) ∈ p and,
by the argument above, ψ(v) 6∈ q. Thus p = q.

Examples

We conclude this section by giving concrete descriptions of SMn (A) for
several important examples.

Example 4.1.12 Dense Linear Orders

Let L = {<}. Let M = (M,<) be a dense linear order without endpoints
and let A ⊆ M . Let p ∈ SM1 (A). If a ∈ A, then, because p is a complete
type, exactly one of the formulas v = a, v < a, or v > a is in p.

case 1: p is realized in A.
In other words, the formula v = a ∈ p for some a ∈ A. In this case,

p = {ψ(v) :M |= ψ(a)} and p is isolated by the formula v = a.

case 2: Otherwise.
Let Lp = {a ∈ A : a < v ∈ p} and Up = {a ∈ A : v < a ∈ p}. If

a < v, v < b ∈ p, then, because p ∪ ThA(M) is satisfiable, a < b. Thus,
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a < b for a ∈ Lp and b ∈ Up and Lp and Up determine a cut in the ordering
(A,<).
Also note that if A is the disjoint union of L and U where a < b for

a ∈ L and b ∈ U , then ThA(M) ∪ {a < v : a ∈ L} and {v < b : b ∈ U} is
satisfiable. Thus, there is a type p with Lp = L and Up = U .
We claim that the cut completely determines p; that is,

{p} =
⋂

a∈Lp

[a < v] ∩
⋂

a∈Up

[v < b].

Suppose that q 6= p, Lp = Lq and Up = Uq. Because the only atomic
formulas are u = v and u < v, p and q determine the same cut in A, and
they contain the same atomic formulas. Because quantifier-free formulas
are Boolean combinations of atomic formulas, p and q contain the same
quantifier-free formulas. Because every formula is equivalent to a quantifier-
free formula, p = q.

Using the identification between types and cuts, we can give a complete
description of all types in SQ

1 (Q).
For a ∈ Q, let pa be the unique type containing v = a.
Let p+∞ be the unique type p with Lp = Q and Up = ∅, and let p−∞

be the unique type p with Lp = ∅ and Up = Q. For r ∈ R \ Q, let pr be
the unique type p with Lp = {a ∈ Q : a < r} and Up = {b ∈ Q : r < b}.
Finally, for c ∈ Q, let pc+ be the unique type p with Lp = {a ∈ Q : a ≤ c}
and Up = {b ∈ Q : c < b}, and let pc− be the unique type p with Lp = {a ∈
Q : a < c} and Up = {b ∈ Q : c ≤ b}. These are all possible types. Note in

particular that |SQ
1 (Q)| = 2ℵ0 .

We return to the general case whereM |= DLO and A ⊆M is nonempty.
Aside from the types realized by elements of A, what types in SM1 (A) are
isolated? Suppose that Lp has a largest element a and Up has a smallest
element b. Then p ∈ [a < v < b]. Moreover, ThA(M) |= a < v < b → c <
v < d for all c ∈ Lp and d ∈ Up. Thus, a < v < b isolates p. Similarly, if
Up = ∅ and Lp has a greatest element a, then a < v isolates p, and if Up
has a smallest element b and Lp = ∅, then v < b isolates p.
We claim that these are the only possibilities. For example, suppose that

Up 6= ∅ and has no least element. Suppose that φ(v) isolates p. Because Up
and Lp determine p,

ThA(M) ∪ {a < v : a ∈ Lp} ∪ {v < b : v ∈ Up} |= φ(v).

Thus, we can find a ∈ Lp ∪ {−∞} and b ∈ Up such that

ThA(M) |= {a < v < b} → φ(v).

There is c ∈ Up such that c < b. Because a < c < b, M |= φ(c). But then
the type containing v = c is in [φ(v)] contradicting the fact that [φ(v)]
isolates p. Other cases are similar. We summarize as follows.
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Proposition 4.1.13 LetM |=DLO and let A ⊆M be nonempty. Types in
SM1 (A) not realized by elements of A correspond to cuts in the ordering of
A. A nonrealized type p is nonisolated if either Up 6= ∅ has no least element
or Lp 6= ∅ has no greatest element.

Example 4.1.14 Algebraically Closed Fields

Let K |= ACF, and let A ⊆ K. We first argue that, without loss of general-
ity, we may assume that A is a field. Let k be the subfield ofK generated by
A. If p ∈ SKn (k), then p|A ∈ SKn (A). We claim that the restriction map is
a bijection. By Lemma 4.1.9, we know that it is surjective, so we need only
show that it is one-to-one. Suppose that q ∈ SKn (A). For b1, . . . , bl ∈ k, there
are a1, . . . , am ∈ A such that for each i there is qi(X) ∈ Z(X1, . . . , Xm)
such that bi = qi(a). Thus, for any f(X1, . . . , Xl) ∈ Z[X1, . . . , Xl, Y ]
there is g ∈ Z[X1, . . . , Xm, Y ] such that f(b1, . . . , bl, y) = 0 if and only
if g(a1, . . . , am, y) = 0 for any y. Thus, by quantifier elimination, for any
formula φ(v, b) with b ∈ k, there is a formula ψ(v, a) with a ∈ A such that

K |= φ(v, b)↔ ψ(v, a).

Thus, if p, q ∈ SKl (k) and p 6= q, then p|A 6= q|A.
Let k be a subfield ofK. We will show that n-types over k are determined

by prime ideals in k[X1, . . . , Xn]. For p ∈ SKn (k), let

Ip = {f(X) ∈ k[X1, . . . , Xn] : f(v) = 0 ∈ p}.

If f, g ∈ Ip, then f + g ∈ Ip, and if f ∈ Ip and g ∈ k[X], then fg ∈ Ip.
Thus, Ip is an ideal. If f, g ∈ k[X], then

K |= ∀v f(v)g(v) = 0→ (f(v) = 0 ∨ g(v) = 0).

Thus, if fg ∈ Ip, then either f ∈ Ip or g ∈ Ip. Hence, Ip is a prime ideal.
On the other hand, suppose that P ⊂ k[X] is a prime ideal. There is a

prime ideal Q ⊂ K[X] such that Q ∩ k[X] = P .1 Let F be the algebraic
closure of the fraction field of K[X]/Q. By model-completeness, F is an
elementary extension of K. Let xi = Xi/Q for i = 1, . . . , n. For f ∈ K[X],
f(x) = 0 if and only if f ∈ Q. Thus, if p = tpF (x/k), then Ip = P . Thus,
p 7→ Ip is a surjective map from SKn (k) onto the prime ideals of k[X ]. We
claim that p 7→ Ip is one-to-one. Suppose that p, q ∈ SKn (k) and p 6= q.

1This follows, for example, from [68] 7.5, because K[X] is a faithfully flat k[X]-
algebra, but we sketch a more elementary proof. If K[X]P is the K[X] ideal generated
by P , we first claim that K[X]P ∩ k[X] = P . Let B be a basis for K as a k-vector
space with 1 ∈ B. B is also a basis for K[X] as a free k[X]-module. If f ∈ K[X], then
f =

�
b∈B fbb, where each fb ∈ k[X] and all but finitely many fb = 0. If f ∈ K[X]P ,

then each fb ∈ P . If f ∈ K[X]P ∩ k[X], then f = f1 ∈ P . Let S be the multiplicatively
closed set k[X] \ P . Let Q ⊂ K[X] be maximal among the ideals containing P and
avoiding S. Then, Q is a prime ideal and Q ∩ k[X] = P .
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There is a formula φ ∈ p such that ¬φ ∈ q. By quantifier elimination, we
may assume that φ is

m∨

i=1





k∧

j=1

fi,j(v) = 0 ∧
s∧

l=1

gi,l(v) 6= 0



 ,

where fi,j , gi,l ∈ k[X ]. If Ip = Iq , then

fi,j(v) = 0 ∈ p⇔ fi,j(v) = 0 ∈ q

and

gi,l(v) = 0 ∈ p⇔ gi,l(v) = 0 ∈ q.

Thus, φ ∈ p if and only if φ ∈ q.

Definition 4.1.15 For A a ring, the Zariski spectrum of A is the set
of all prime ideals of A. We denote the Zariski Spectrum by Spec(A) and
topologize Spec(A) by taking basic closed sets {P ∈ Spec(A) : a1, . . . , am ∈
P} for a1, . . . , am ∈ A. This is called the Zariski topology on Spec(A).

Proposition 4.1.16 The map p 7→ Ip is a continuous bijection from
SKn (k) to Spec(k[X1, . . . , Xn]).

Proof We have shown that the map is one-to-one so we need only show
that it is continuous. Suppose that f1, . . . , fm ∈ k[X1, . . . , Xn]. Then, the
inverse image of {P ∈ Spec(k[X ]) : f1, . . . , fm ∈ P} is {p ∈ SKn (k) : f1(v) =
0 ∧ . . . ∧ fm(v) = 0 ∈ p}, a clopen set. Thus, p 7→ Ip is continuous.

Although p 7→ Ip is continuous, it is not a homeomorphism. In particular,
for f ∈ k[X] \ k, {p ∈ SKn (k) : f(v) = 0} is clopen in SKn (k), whereas the
image in Spec(A) is closed but not open. Although the Stone topology is
finer than the Zariski topology, we can use it when studying the Zariski
topology.

Corollary 4.1.17 The Zariski topology on Spec(k[X ]) is compact.

Proof This is clear because SKn (k) is compact and p 7→ Ip is continuous.

Proposition 4.1.16 also allows us to count types.

Corollary 4.1.18 Suppose that K |= ACF and k is a subfield of K. Then
|SKn (k)| = |k|+ ℵ0.

Proof By Hilbert’s Basis Theorem, all ideals in k[X] are finitely generated.
Thus, there are only |k|+ ℵ0 prime ideals.
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4.2 Omitting Types and Prime Models

The Compactness Theorem allows us to build models realizing types. It
is often also useful to build models that omit certain types. Let L be a
language and T an L-theory. For p an n-type consistent with T , we would
like to know whether there is M |= T omitting p. It is not hard to give a
necessary topological condition.
For T an L-theory, we let Sn(T ) be the set of all complete n-types p such

that p∪T is satisfiable. If T is complete andM |= T , then Sn(T ) = SMn (∅).
In particular, Sn(T ) is a totally disconnected compact topological space
with basic open sets

[φ] = {p : φ ∈ p}.

For p a complete type, p is isolated in Sn(T ) if and only if {p} = [φ] for
some φ. We can extend this notion to possibly incomplete types.

Definition 4.2.1 Let φ(v1, . . . , vn) be an L-formula such that T ∪ {φ(v)}
is satisfiable, and let p be an n-type. We say that φ isolates p if

T |= ∀v(φ(v)→ ψ(v))

for all ψ ∈ p.

Note that if p is a complete type and φ(v) isolates p, then

T |= φ(v)→ ψ(v) ⇔ ψ(v) ∈ p

for all formulas ψ(v). In particular, for all formulas ψ(v) exactly one of
T + φ(v) ∧ ψ(v) and T + φ(v) ∧ ¬ψ(v) is satisfiable.
We can only omit an isolated type if we do not witness the isolating

formula.

Proposition 4.2.2 If φ(v) isolates p, then p is realized in any model of
T ∪ {∃v φ(v)}. In particular, if T is complete, then every isolated type is
realized.

Proof If M |= T and M |= φ(a), then a realizes p. If T is complete and
T ∪ {φ(v)} is satisfiable, then T |= ∃v φ(v).

For countable languages, this is also a sufficient condition.

Theorem 4.2.3 (Omitting Types Theorem) Let L be a countable lan-
guage, T an L-theory, and p a (possibly incomplete) nonisolated n-type over
∅. Then, there is a countable M |= T omitting p.

Proof We will prove this by a modification of the Henkin construction
used to prove the Compactness Theorem. Let C = {c0, c1, . . .} be countably
many new constant symbols, and let L∗ = L ∪ C. As in the proof of the
Compactness Theorem, we will build T ∗ ⊇ T , a complete L∗-theory with
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the witness property, and build M |= T ∗ as in Lemma 2.1.7. We will
arrange the construction such that, for all d1, . . . , dn ∈ C, there is a formula
φ(v) ∈ p such that T ∗ |= ¬φ(d1, . . . , dn). This will ensure that dM1 , . . . , dMn
does not realize p. Because every element of M is the interpretation of a
constant symbol in C, M omits p.
We will construct a sequence θ0, θ1, θ2, . . . of L∗-sentences such that

|= θt → θs

for t > s and T ∗ = T ∪ {θi : i = 0, 1, . . .} is a satisfiable extension of T .
Let φ0, φ1, φ2, . . . list all L∗-sentences. To ensure that T ∗ is complete, we

will either have

|= θ3i+1 → φi

or

|= θ3i+1 → ¬φi.

If φi is ∃v ψ(v) and |= θ3i+1 → φi, then

|= θ3i+2 → ψ(c)

for some c ∈ C. This will ensure that T ∗ has the witness property. Let

d0, d1, . . . list all n-tuples from C. We will choose θ3i+3 to ensure that d
M
i

does not realize p in the canonical model of T ∗.

stage 0: Let θ0 be ∀x x = x.

Suppose that we have constructed θs such that T ∪θs is satisfiable. There
are three cases to consider.

stage s+ 1 = 3i+ 1: (completeness) If T ∪ {θs, φi} is satisfiable then θs+1
is θs ∧ φi; otherwise, θs+1 is θs ∧ ¬φi. In either case T ∪ θs+1 is satisfiable.

stage s+ 1 = 3i+ 2: (witness property) Suppose that φi is ∃v ψ(v) for some
formula ψ and T |= θs → φi. In this case, we want to find a witness for
ψ. Let c ∈ C be a constant that does not occur in T ∪ {θs}. Because only
finitely many constants from C have been used so far, we can always find
such a c. Let θs+1 = θs ∧ ψ(c). If N |= T ∪ {θs}, then there is a ∈ N such
that N |= ψ(a). By letting cN = a, we have N |= θs+1. Thus, in this case
T ∪ {θs+1} is satisfiable.
If φi is not of the correct form or T 6|= θs → φi, then let θs+1 be θs.

stage s+ 1 = 3i+ 3: (omitting p) Let di = (e1, . . . , en). Let ψ(v1, . . . , vn)
be the L-formula obtained from θs by replacing each occurrence of ei by
vi and then replacing every other constant symbol c ∈ C \ {e0, . . . , en}
occurring in θs by the variable vc and putting a ∃vc quantifier in front. In
particular, we get rid of all of the constants in θs from C either by replacing
them by variables or by quantifying over them. For example, if θs is

∀x∃y cx+ e1e2 = y2 + de2,
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where c, d, e1, e2 are distinct constants in C, then ψ(v1, v2) would be the
formula

∃vc∃vd∀x∃y vcx+ v1v2 = y2 + vdv2.

Because p is nonisolated, there is a formula φ(v) ∈ p such that

T 6|= ∀v (ψ(v)→ φ(v)). (∗)

Let θs+1 be θs ∧¬φ(di). We must argue that T ∪ θs+1 is satisfiable. By (∗)
there is N |= T with a ∈ N such that

N |= ψ(a) ∧ ¬φ(a).

We can make N into a model of θs+1 by interpreting the constants c ∈
C \ {e1, . . . , en} as the witnesses to vc and ei as ai.

This completes the construction. Let T ∗ = T ∪ {θ0, θ1, . . .}. Because
T ∪ {θs} is satisfiable for each s, T ∗ is satisfiable. If φ is any L-sentence,
then φ = φi for some i, and at stage 3i + 1 we ensure that T ∗ |= φ or
T ∗ |= ¬φ. Thus, T ∗ is complete.
If ψ(v) is an L-formula and T ∗ |= ∃v ψ(v), then there is an i such that

φi is ∃v ψ(v) and at stage 3i+2 we ensure that T ∗ |= ψ(c) for some c ∈ C.
Thus, T ∗ has the witness property.
If M is the canonical model of T ∗ constructed as in Lemma 2.1.7, we

claim thatM omits p. Suppose that a ∈Mn. Because every element of M

is the interpretation of a constant symbol, there is di such that d
M
i = a.

At stage 3i+ 3, we ensure that M |= ¬φi(d) for some φi ∈ p. Thus a does
not realize p.

The proof of the Omitting Types Theorem can be generalized to omit
countably many types at once.

Theorem 4.2.4 Let L be a countable language, and let T be an L-theory.
Let X be a countable collection of nonisolated types over ∅. There is a
countable M |= T that omits all of the types p ∈ X.

Proof (Sketch) Let p0, p1, . . . list X . Let C be as in the proof of Theorem
4.2.3, and let d0, d1 . . . list all finite sequences from C. Fix π : N×N → N,
a bijection.
We do a Henkin-style argument as in the proof of Theorem 4.2.3. If s = 0,

3i+1, or 3i+2, we proceed exactly as above. If i = π(m,n), then at stage
s = 3i+ 3 we proceed as above to ensure that dm does not realize pn.
IfM is the canonical model, we eventually ensure that no finite sequence

from M realizes any of the types pi.

The assumption of countability of L is necessary in the Omitting Types
Theorem. Suppose that L is the language with two disjoint sets of constant
symbols C and D, where C is uncountable and |D| = ℵ0. Let T be the
theory {a 6= b : a, b ∈ C, a 6= b} and p be the type {v 6= d : d ∈ D}. Because
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every model of T is uncountable, there is always an element that is not the
interpretation of a constant in D. Thus, every model of T realizes p. On the
other hand, if φ(v) is any L-formula, then, because only countably many
constants from D occur in T ∪ {φ(v)}, there is d ∈ D such that T ∪ {φ(d)}
is satisfiable. Thus, p is nonisolated.
The necessity ofX being countable in Theorem 4.2.4 is more problematic.

For example, if ℵ0 < λ < 2ℵ0 , we could ask whether for a countable T we
can omit a family of λ nonisolated types. This turns out to depend on set
theoretic assumptions (see Exercise 4.5.14).
We give one concrete application of the Omitting Types Theorem. Let

L = {+, ·, <, 0, 1}, and let PA be the axioms for Peano arithmetic. Suppose
thatM,N |= PA. We say that N is an end extension ofM if N ⊃M and
a < b for all a ∈M and b ∈ N \M .

Theorem 4.2.5 If M is a countable model of PA, then there is M ≺ N
such that N is a proper end extension of M.

Proof Consider the language L∗ where we have constant symbols for all
elements ofM and a new constant symbol c. Let T = Diagel(M)∪{c > m :
m ∈ M}, and for a ∈ M \ N let pa be the type {v < a, v 6= m : m ∈ M}.
Any N |= T is a proper elementary extension of M. If N omits each pa,
then N is an end extension of M. By Theorem 4.2.4, it suffices to show
that each pa is nonisolated.
Suppose that φ(v) is an L∗ formula isolating pa. Let φ(v) = θ(v, c), where

θ is an LM -formula. Then

T ∪ θ(v, c) |= v < a.

Because T ∪ {θ(v, c)} is satisfiable,

M |= ∀x∃y > x∃v < a θ(v, y).

The Pigeonhole Principle is provable in Peano arithmetic. Thus

M |= [∀x∃y > x∃v < a θ(v, y)]→ ∃v < a∀x∃y > x θ(v, y). (∗∗)

Thus, there is m < a such that

M |= ∀x∃y > x θ(m, y).

We claim that T ∪ {θ(m, c)} is satisfiable. If not, there is n ∈M such that

Diagel(M) + c > n |= ¬θ(m, c)

contradicting (∗∗). Thus, φ(v) does not isolate pa, a contradiction.
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Prime and Atomic Models

We use the Omitting Types Theorem to study small models of a com-
plete theory. For the remainder of this section, we will assume that L is a
countable language and T is a complete L-theory with infinite models.

Definition 4.2.6 We say thatM |= T is a prime model of T if whenever
N |= T there is an elementary embedding of M into N .

For example, let T =ACF0. If K |=ACF0, and F is the algebraic closure
of Q, then there is an embedding of F into K. Because ACF0 is model
complete this embedding is elementary. Thus, F is a prime model of ACF0.
Similarly, RCF has a prime model, the real closure of Q.
For a third example, consider L = {+, ·, <, 0, 1} and let T be Th(N),

true arithmetic. If M |= T , then we can view N as an initial segment
of M. We claim that this embedding is elementary. We use the Tarski–
Vaught test (Proposition 2.3.5). Let φ(v, w1, . . . , wm) be an L-formula and
let n1, . . . , nm ∈ N such that M |= ∃v φ(v, n). Let ψ be the L-sentence

∃v φ(v, 1 + . . .+ 1
︸ ︷︷ ︸

n1−times

, . . . , 1 + . . .+ 1
︸ ︷︷ ︸

nm−times

).

Then, M |= ψ and N |= ψ because M≡ N. But then, for some s ∈ N,

N |= φ(s, 1 + . . .+ 1
︸ ︷︷ ︸

n1−times

, . . . , 1 + . . .+ 1
︸ ︷︷ ︸

nm−times

)

and
N |= φ(1 + . . .+ 1

︸ ︷︷ ︸

s−times

, 1 + . . .+ 1
︸ ︷︷ ︸

n1−times

, . . . , 1 + . . .+ 1
︸ ︷︷ ︸

nm−times

).

Because the latter statement is an L-sentence,

M |= φ(1 + . . .+ 1
︸ ︷︷ ︸

s−times

, 1 + . . .+ 1
︸ ︷︷ ︸

n1−times

, . . . , 1 + . . .+ 1
︸ ︷︷ ︸

nm−times

)

and M |= φ(s, n1, . . . , nm). By the Tarski–Vaught test, N ≺ M. Thus, N
is a prime model of T .
Suppose M is a prime model of T . Suppose that j : M → N is an

elementary embedding. If a ∈Mn realizes p ∈ Sn(T ), then so does j(a). If
p ∈ Sn(T ) is nonisolated, there is N such that N omits p. If M realizes p,
then we can not elementarily embed M into N ; thus, M must also omit
p. In particular, if a ∈Mn, then tpM(a) must be isolated. This leads us to
the following definition.

Definition 4.2.7 We say that M |= T is atomic if tpM(a) is isolated for
all a ∈Mn.

We have just argued that prime models are atomic. For countable models,
the converse is also true.
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Theorem 4.2.8 Let L be a countable language and let T be a complete
L-theory with infinite models. Then, M |= T is prime if and only if it is
countable and atomic.

Proof
(⇒) We have argued that prime models are atomic. Because L is count-

able, T has a countable model. Thus, the prime model must be countable.

(⇐) LetM be countable and atomic. Let N |= T . We must construct an
elementary embedding ofM into N . Letm0,m1, . . . ,mn, . . . be an enumer-
ation of M . For each i, let θi(v0, . . . , vi) isolate the type of (m0, . . . ,mi).
We will build f0 ⊆ f1 ⊆ . . . a sequence of partial elementary maps fromM
into N where the domain of fi is {m0, . . . ,mi−1}. Then, f =

⋃∞
i=0 fi is an

elementary embedding of M into N .
Let f0 = ∅. Because M≡N , f0 is partial elementary.
Given fs, let ni = f(mi) for i < s. Because θs(m0, . . . ,ms) and fs is

partial elementary,

N |= ∃v θs(n0, . . . , ns−1, v).

Let ns ∈ N such that N |= θs(n0, . . . , ns). Because θs isolates
tpM(m0, . . . ,ms),

tpM(m0, . . . ,ms) = tpN (n0, . . . , ns).

Thus, fs+1 = fs ∪ {(ms, ns)} is a partial elementary map.

Theorem 4.2.8 will lead to a criterion for the existence of prime models.
We need one preparatory lemma.

Lemma 4.2.9 Suppose that (a, b) ∈ Mm+n realizes an isolated type in
Sm+n(T ). Then a realizes an isolated type in Sm(T ). Indeed if A ⊆ M
and (a, b) ∈ Mm+n realizes an isolated type in SMm+n(A), then tpM(a/A)
is isolated.

Proof Let φ(v, w) isolate tpM(a, b/A). We claim that ∃w φ(v, w) isolates
tpM(a/A). Let ψ(v) be any LA-formula such that M |= ψ(a). We must
show that

ThA(M) |= ∃w (φ(v, w)→ ψ(v)).

Suppose not. Then, there is c ∈Mm such that

M |= ∃w (φ(c, w) ∧ ¬ψ(c)).

Let d ∈ Mn such that M |= φ(c, d) ∧ ¬ψ(c). Because φ(v, w) isolates
tpM(a, b/A),

ThA(M) |= φ(v, w)→ ψ(v).

This is a contradiction because

ψ(v) ∈ tpM(a/A) ⊂ tpM(a, b/A).



4.2 Omitting Types and Prime Models 131

An extension of this lemma is proved in Exercise 4.5.11.

Theorem 4.2.10 Let L be a countable language and let T be a complete
L-theory with infinite models. Then, the following are equivalent:
i) T has a prime model;
ii) T has an atomic model M;
iii) the isolated types in Sn(T ) are dense for all n.

Proof We have already shown i) ⇔ ii).

ii) ⇒ iii) Let φ(v) be an L-formula such that [φ(v)] is a nonempty open
set in Sn(T ). We must show that [φ(v)] contains an isolated type.
Let M |= T be atomic. Because T is complete and T ∪ {φ(v)} is satis-

fiable, T |= ∃v φ(v). Thus, there is a ∈ Mn such that M |= φ(a). Then,
tpM(a) ∈ [φ] and, becauseM is atomic, tpM(a) is isolated. Therefore, the
isolated types are dense.

iii) ⇒ ii) Suppose that the isolated types in T are dense. We will build
an atomic model of T by a Henkin argument. Let C = {c0, . . . , cn, . . .}
be a new set of constant symbols, and let L∗ = L ∪ C. Let φ0, φ1, . . .
list all L∗-sentences. We build θ0, θ1, . . . a sequence of L∗-sentences such
that T ∗ = {θi : i = 0, 1, . . .} ∪ T is a complete satisfiable theory with the
witness property. We do this so that the canonical model of T ∗ is atomic.
We assume inductively that T ∪ {θs} is satisfiable and θs+1 |= θs.

stage 0: θ0 = ∃x x = x.

stage s+ 1 = 3i+ 1: (completeness) If T + θs ∧ φi is satisfiable, let θs+1 =
θs ∧ φi; otherwise, θs+1 = θs ∧ ¬φi.

stage s+ 1 = 3i+ 2: (witness property) If φi is ∃v ψ(v) and θs |= φi, let
c ∈ C be a constant symbol not occurring in θs, and let θs+1 = θs ∧ ψ(c).
Otherwise, let θs+1 = θs. As in Theorem 4.2.3, T ∪ {θs+1} is satisfiable.

stage s+ 1 = 3i+ 3: Let n be minimal such that all of the constants in C
occurring in θs are from {c0, . . . , cn}. Let ψ(v0, . . . , vn) be an L-formula
such that θs = ψ(c0, . . . , cn). Clearly, T ∪ {ψ(v0, . . . , vn)} is satisfiable.
Because the isolated types in Sn(T ) are dense, there is an isolated type
p ∈ [ψ(v)]. Let χ(v) be an L-formula isolating p; in particular, [χ(v)] = {p}
and T∪{χ(v)} is satisfiable. Let θs+1 = χ(c). Then, T∪{θs+1} is satisfiable.
Because ψ(v) ∈ p, θs+1 |= θs.

As in Theorem 4.2.3, the theory T ∗ = T ∪ {θ1, θ2, . . .} is a complete
theory with the witness property. LetM be the canonical model of T ∗. We
must show M is atomic. Let d ∈ M. We can find an n and an s = 3i + 2
such that each di is in {c0, . . . , cn} and n is minimal such that {c0, . . . , cn}
contains all the constants occuring in θs. At stage s+1 we make sure that
(cM0 , . . . , cMn ) realizes an isolated type. By 4.2.9, d realizes an isolated type.
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In Exercise 4.5.16 we use Theorem 4.2.10 to give an example of a theory
with no prime models. We now give one important case where the iso-
lated types are dense. Note that if L is countable and A is countable, then
|SMn (A)| ≤ 2ℵ0 because there are only 2ℵ0 sets of LA-formulas. We will
show that if there are fewer than the maximal possible number of types,
then there are prime models.

Theorem 4.2.11 Suppose that T is a complete theory in a countable lan-
guage and A ⊆M |= T is countable. If |SMn (A)| < 2ℵ0 , then
i) the isolated types in SMn (A) are dense and
ii) |SMn (A)| ≤ ℵ0.

In particular, if |Sn(T )| < 2ℵ0 , then T has a prime model.

Proof
i) We first prove that the isolated types are dense. Suppose that there is

a formula φ such that [φ] contains no isolated types. Because φ does not
isolate a type, we can find ψ such that [φ∧ψ] 6= ∅ and [φ∧¬ψ] 6= ∅. Because
[φ] does not contain an isolated type, neither does [φ ∧ ±ψ].
We build a binary tree of formulas (φσ : σ ∈ 2<ω) such that:
i) each [φσ] is nonempty but contains no isolated types;
ii) if σ ⊂ τ , then φτ |= φσ;
iii) φσ,i |= ¬φσ,1−i.
Let φ∅ = φ for some formula φ where [φ] contains no isolated types.

Suppose that [φσ] is nonempty but contains no isolated types. As above,
we can find ψ such that [φσ ∧ ψ] and [φσ ∧ ¬ψ] are both nonempty and
neither contains an isolated type. Let φσ,0 = φ ∧ ψ and φσ,1 = φ ∧ ¬ψ.
Let f : ω → 2. Because

[φf |0] ⊇ [φ(f |1)] ⊇ [φ(f |2)] ⊇ . . .

and SMn (A) is compact, there is

pf ∈
∞⋃

n=0

[φf |n].

If g 6= f , we can find m such that f |m = g|m but f(m) 6= g(m). By
construction, φf |m+1 |= ¬φg|m+1; thus pf 6= pg. Because f 7→ pf is a

one-to-one function from 2ω into SMn (A), |SMn (A)| = 2ℵ0 .

ii) Suppose that |SMn (A)| > ℵ0. We claim that |SMn (A)| = 2ℵ0 . Because
|SMn (A)| > ℵ0 and there are only countably many LA-formulas, there is a
formula φ such that |[φ]| > ℵ0.

Claim If |[φ]| > ℵ0, there is an LA-formula ψ such that |[φ∧ψ]| > ℵ0 and
|[φ ∧ ¬ψ] > ℵ0.
Suppose not. Let p = {ψ(v) : |[φ ∧ ψ]| > ℵ0}. Clearly, for each ψ either

ψ ∈ p or ¬ψ ∈ p but not both. We claim that p is satisfiable. Suppose that



4.2 Omitting Types and Prime Models 133

ψ1, . . . , ψm ∈ p. Either ψ1 ∧ . . . ∧ ψm ∈ p, in which case {ψ1, . . . , ψm} ∪
ThA(M) is satisfiable, or ¬ψ1 ∨ . . . ∨ ¬ψm ∈ p. Because

[¬ψ1 ∨ . . . ∨ ¬ψm] = [¬ψ1] ∪ . . . ∪ [¬ψm],

we must have |[¬ψi]| > ℵ0 for some ℵ0, a contradiction. Thus p ∈ SMn (A).
Moreover, if ψ 6∈ p, then |[φ ∧ ψ]| ≤ ℵ0. But

[φ] =
⋃

ψ 6∈p

[φ ∧ ψ] ∪ {p}.

Because [φ] is the union of at most ℵ0 sets each of size at most ℵ0, we have
|[φ]| ≤ ℵ0, a contradiction.

We build a binary tree of formulas (φσ : σ ∈ 2<ω) such that:
i) if σ ⊂ τ then φτ |= φσ;
ii) φσ,i |= ¬φσ,1−i;
iii) |[φσ]| > ℵ0.
Let φ∅ = φ for some formula φ with |[φ]| > ℵ0. Given φσ where |[φσ]| >

ℵ0, by the claim we can find ψ such that |[φσ∧ψ]| > ℵ0 and |[φσ∧¬ψ]| > ℵ0.
Let φσ,0 = φσ ∧ ψ and φσ,1 = φσ ∧ ¬ψ.
As in i), for each f ∈ 2ω there is a

pf ∈
∞⋂

m=0

[φf |m],

and if f 6= g, then pf 6= pg . Thus |SMn (A)| = 2ℵ0 .

We note that it is possible for there to be prime models even if |Sn(T )| =
2ℵ0 . For example, Th(N,+, ·, <, 0, 1) and RCF have prime models.

Countable Homogeneous Models

Our next goal is to show that prime models are unique up to isomorphism.
This will follow from work on homogeneous models.

Definition 4.2.12 Let κ be an infinite cardinal. We say that M |= T is
κ-homogeneous if whenever A ⊂ M with |A| < κ, f : A → M is a partial
elementary map, and a ∈M , there is f∗ ⊇ f such that f∗ : A ∪ {a} →M
is partial elementary.
We say that M is homogeneous if it is |M |-homogeneous.

In homogeneous models, partial elementary maps are just restrictions of
automorphisms.

Proposition 4.2.13 Suppose thatM is homogeneous, A ⊂M , |A| < |M |,
and f : A → M is a partial elementary map. Then, there is an automor-
phism σ of M with σ ⊇ f .
In particular, if M is homogeneous and a, b ∈ Mn realize the same n-

type, then there is an automorphism σ of M with σ(a) = b.
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Proof Let |M | = κ, and let (aα : α < κ) be an enumeration of M . We
build a sequence of partial elementary maps (fα : α < κ) extending f with
fα ⊆ fβ for α < β such that aα is in the domain and image of fα+1 and
|fα+1| ≤ |fα| + 2 < κ. Then, σ =

⋃

α<κ fα is the desired automorphism.
Let f0 = f .

If α is a limit ordinal and fβ is partial elementary with

|fβ | ≤ |A|+ |β|+ ℵ0 < κ

for all β < α, let fα =
⋃

β<α fβ. Then, fα is partial elementary and

|fα| ≤ |α|(|A| + |α|+ ℵ0) ≤ |A|+ |α|+ ℵ0 < κ.

Given fα with |fα| < κ, becauseM is homogeneous, there is b ∈M such
that if gα = fα ∪ {(aα, b)}, then gα is partial elementary. Note that g−1α is
also partial elementary. Thus, because M is homogeneous there is c ∈ M
such that g−1α ∪{(aα, c)} is partial elementary. Thus, fα+1 = gα ∪{(c, aα)}
is partial elementary, |fα+1| ≤ |fα| + 2 ≤ |A| + |α| + ℵ0, and aα is in the
domain and range of fα+1.

If M is homogeneous and tpM(a) = tpM(b), then a 7→ b is a partial
elementary map that must extend to an automorphism.

Lemma 4.2.14 IfM is atomic, thenM is ℵ0-homogeneous. In particular,
countable atomic models are homogeneous.

Proof Suppose that a 7→ b is elementary and c ∈ M . Let φ(v, w) isolate
tpM(a, c). Because M |= ∃w φ(a, w) and a 7→ b is elementary, M |=
∃w φ(b, w). Suppose that M |= φ(b, d). Because φ(v, w) isolates a type,
tpM(a, c) = tpM(b, d). Thus, a, c 7→ b, d is elementary.

For countable homogeneous models, there is a simple test for isomor-
phism. Clearly, if M ∼= N , then M and N realize the same types from
Sn(T ). For countable homogeneous models, this condition is also sufficient.

Theorem 4.2.15 Let T be a complete theory in a countable language. Sup-
pose that M and N are countable homogeneous models of T and M and
N realize the same types in Sn(T ) for n ≥ 1. Then M∼= N .

Proof We build an isomorphism f : M → N by a back-and-forth ar-
gument. We will build f0 ⊂ f1 ⊂ . . ., a sequence of partial elementary
maps with finite domain, and let f =

⋃∞
i=0 fi. Let a0, a1, . . . enumerate M

and b0, b1, . . . enumerate N . We will ensure that ai ∈ dom(f2i+1) and bi ∈
img(f2i+2). Thus, we will have dom(f)=M and f : M → N , a surjective
elementary map, as desired.

stage 0: Let f0 = ∅. Because T is complete f0 is partial elementary.

We inductively assume that fs is partial elementary. Let a be the domain
of fs and b = fs(a).
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stage s+ 1 = 2i+ 1: Let p = tpM(a, ai). Because M and N realize the
same types, we can find c, d ∈ N such that tpN (c, d) = p. Note that
tpN (c) = tpM(a), by choice of c, and tpM(a) = tpN (b) because fs is partial
elementary. Thus, tpN (c) = tpN (b). Because N is homogeneous, there is
e ∈ N such that tpN (b, e) = tpN (c, d) = p. Thus, fs+1 = fs ∪ {(ai, e)} is
partial elementary with ai in the domain.

stage s+ 1 = 2i+ 2: As in the previous case, we can find c, d ∈ M such
that tpM(c, d) = tpN (b, bi). Because M is homogeneous, there is e ∈ M
such that tpM(c, d) = tpM(a, e). Then, fs+1 = fs ∪ {(e, bi)} with bi in the
range.

Corollary 4.2.16 Let T be a complete theory in a countable language. If
M and N are prime models of T , then M∼= N .

Proof By Theorem 4.2.8, M and N are atomic. Because the types in
Sn(T ) realized in an atomic model are exactly the isolated types, M and
N realize the same types. By Lemma 4.2.14, countable atomic models are
homogeneous. Thus, by Theorem 4.2.15,M∼= N .

Prime Model Extensions of ω-Stable Theories

We conclude this section by looking at a relative notion of prime models.
Suppose that M |= T and A ⊆ M . We say that M is prime over A
if whenever N |= T and f : A → N is partial elementary, there is an
elementary f∗ :M→N extending f .
We give three examples. Let L be any linear order. We build L∗ |= DLO

prime over L as follows. If L has a least element a, add a copy of Q below a.
If L has a greatest element b, add a copy of Q above b. If c, d ∈ L with c < d
but there are no elements of L between c and d, add a copy of Q between
c and d. We add no other new elements. It is easy to see that L∗ |= DLO
and that if f : L→M |= DLO, then f extends to f ∗ : L∗ →M. Because
DLO has quantifier elimination, it is model-complete and f ∗ is elementary.
For ACF, if R is any integral domain and F is the algebraic closure of the

fraction field of R, then F is prime over R and any embedding of R into an
algebraically closed field K extends to F . Because ACF is model-complete,
this map is elementary. Similarly, if R is an ordered integral domain, then
the real closure of the fraction field of R is a model of RCF prime over R.
In Exercise 4.5.26, we will give examples of theories without prime model
extensions.

There is one very natural class of theories with prime model extensions.
This class will play a very important role later in the book.

Definition 4.2.17 Let T be a complete theory in a countable language,
and let κ be an infinite cardinal. We say that T is κ-stable if whenever
M |= T , A ⊆M , and |A| = κ, then |SMn (A)| = κ.
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We say that M is κ-stable if Th(M) is κ-stable.

For historical reasons, we will refer to ℵ0-stable theories as being “ω-
stable.” By Corollary 4.1.18, ACF is ω-stable. On the other hand,
|SQ
1 (Q)| = 2ℵ0 so DLO is not ω-stable.
We will show that ω-stable theories have prime model extensions. An

important first step is to show that if there are few types over countable
sets, then there are few types over arbitrary sets.

Theorem 4.2.18 Let T be a complete theory in a countable language. If
T is ω-stable, then T is κ-stable for all infinite cardinals κ.

Proof Suppose thatM |= T , A ⊆M , |A| = κ and |SMn (A)| > κ. Because
there are only κ formulas with parameters from A, there is some LA-formula
φ∅(v) such that |[φ∅]| > κ. The argument from Theorem 4.2.11 ii) can be
extended to show that if |[φ]| > κ there is an LA-formula ψ such that
|[φ ∧ ψ]| > κ and |[φ ∧ ¬ψ]| > κ.
As in Theorem 4.2.11 ii), we build a binary tree of formulas (φσ : σ ∈

2<ω) such that:
i) if σ ⊂ τ , then φτ |= φσ;
ii) φσ,i |= ¬φσ,1−i;
iii) |[φσ]| > κ.
Let A0 be the set of all parameters from A occurring in any formula φσ.

Clearly A0 is a countable set. Arguing as in Theorem 4.2.11 ii), |SMn (A0)| =
2ℵ0 , contradicting the ω-stability of T .

Proposition 4.2.19 Let T be a complete theory in a countable language.
If T is ω-stable, then for all M |= T and A ⊆ M , the isolated types in
SMn (A) are dense.

Proof Suppose not. We can build a binary tree of formulas as in Theorem
4.2.11 i). As in Theorem 4.2.18, we can find a countable A0 ⊆ A such that
all parameters come from A0. But then |SMn (A0)| = 2ℵ0 , contradicting the
ω-stability of T .

Theorem 4.2.20 Suppose that T is ω-stable. Let M |= T and A ⊆ M .
There isM0 ≺M, a prime model extension of A. Moreover, we can choose
M0 such that every element of M0 realizes an isolated type over A.

Proof We will find an ordinal δ and build a sequence of sets (Aα : α ≤ δ)
where Aα ⊆M and
i) A0 = A;
ii) if α is a limit ordinal, then Aα =

⋃

β<αAβ ;
iii) if no element of M \ Aα realizes an isolated type over Aα, we stop

and let δ = α; otherwise, pick aα realizing an isolated type over Aα, and
let Aα+1 = Aα ∪ {aα}. Let M0 be the substructure of M with universe

Aδ.
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Claim 1M0 ≺M.
We apply the Tarski–Vaught test. Suppose that M |= φ(v, a), where

a ∈ Aδ. By Proposition 4.2.19, the isolated types in SM(Aδ) are dense.
Thus, there is b ∈M such thatM |= φ(b, a) and tpM(b/Aδ) is isolated. By
choice of δ, b ∈ Aδ. Thus, by Proposition 2.3.5,M0 ≺M.

Claim 2M0 is a prime model extension of A.
Suppose that N |= T and f : A→ N is partial elementary. We show by

induction that there are f = f0 ⊂ . . . ⊂ fα ⊂ . . . ⊂ fδ,where fα : Aα → N
is elementary.
If α is a limit ordinal, we let fα =

⋃

β<α fβ.

Given fα : Aα → N partial elementary, l φ(v, a) isolate tpM0(aα/Aα).
Because fα is partial elementary, by Lemma 4.1.9 iii), φ(v, fα(a)) isolates
fα(tp

M0(aα/Aα)) in SN1 (fα(A)). Also, because fα is partial elementary,
there is b ∈ N with N |= φ(b, fα(a)). Thus,fα+1 = fα∪{(aα, b)} is elemen-
tary.
In particular,fδ : M0 → N is elementary. Thus, M0 is a prime model

extension of A.

To see that every element of M0 realizes an isolated type over A, we
must show that a realizes an isolated type over A for all a ∈ Aα, α < δ. We
argue by induction on α. For α a limit ordinal,this is clear. For successor
ordinals,it follows from the following lemma.

Lemma 4.2.21 Suppose that A ⊆ B ⊆M |= T and every b ∈ Bm realizes
an isolated type in SMm (A). Suppose that a ∈ Mn realizes an isolated type
in SMn (B). Then, a realizes an isolated type in SMn (A).

Proof Let φ(v, w) be an L-formula and b ∈ Bm such that φ(v, b) isolates
tpM(a/B). Let θ(w) be an LA-formula isolating tpM(b/A). We first claim
that φ(v, w) ∧ θ(w) isolates tpM(a, b/A).
Suppose that M |= ψ(a, b). Because φ(v, b) isolates tpM(a/B),

ThA(M) |= φ(v, b)→ ψ(v, b).

Thus, because θ(w) isolates tpM(b/A),

ThA(M) |= θ(w)→ (φ(v, w)→ ψ(v, w))

and
ThA(M) |= (θ(w) ∧ φ(v, w))→ ψ(v, w),

as desired.
Because tpM(a, b/A) is isolated, so is tpM(a/A) by Lemma 4.2.9.

For ω-stable theories (indeed, for theories that are κ-stable for some κ),
prime model extensions are unique, although we postpone the proof to
Chapter 6.
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Theorem 4.2.22 Let T be ω-stable. Suppose that M |= T and N |= T
are prime model extensions of A and ThA(M) = ThA(N ). Then, there is
f :M→ N , an isomorphism fixing A.

4.3 Saturated and Homogeneous Models

In Section 4.2 we concentrated on models that realize very few types. In
this section, we will study models realizing many types. Throughout this
section, we will assume that T is a complete theory with infinite models in
a countable language L.

Definition 4.3.1 Let κ be an infinite cardinal. We say that M |= T is
κ-saturated if, for all A ⊆M , if |A| < κ and p ∈ SMn (A), then p is realized
in M.
We say that M is saturated if it is |M |-saturated.

Proposition 4.3.2 Let κ ≥ ℵ0. The following are equivalent:
i) M is κ-saturated.
ii) If A ⊆ M with |A| < κ and p is a (possibly incomplete) n-type over

A, then p is realized in M.
iii) If A ⊆M with |A| < κ and p ∈ SM1 (A), then p is realized in M.

Proof
i)⇒ ii) If M is κ-saturated and p is an incomplete n-type over A where

|A| < κ, then there is a complete type p∗ ∈ SMn (A) with p∗ ⊇ p. Because
p∗ is realized in M so is p.

ii) ⇒ iii) Clear.

iii) ⇒ i) We prove this by induction on n. Let p ∈ SMn (A). Let q ∈
SMn−1 be the type {φ(v1, . . . , vn−1) : φ ∈ p}. By induction, q is realized
by some a in M. Let r ∈ SM1 (A ∪ {a1, . . . , an−1}) be the type {ψ(a, w) :
ψ(v1, . . . , vn) ∈ p}. By iii), we can realize r by some b in M. Then, (a, b)
realizes p.

Homogeneity is a weak form of saturation.

Proposition 4.3.3 If M is κ-saturated, then M is κ-homogeneous.

Proof Suppose that A ⊆ M, |A| < κ, and f : A → M is partial elemen-
tary. Let b ∈M \A. Let

Γ = {φ(v, f(a)) : a ∈ Am and M |= φ(b, a)}.

If φ(v, f(a)) ∈ Γ, then M |= ∃v φ(v, a) and hence, because f is partial
elementary, M |= ∃v φ(v, f(a)). Thus, because Γ is closed under conjunc-
tions, Γ is satisfiable. Because M is saturated, there is c ∈ M realizing Γ.
Thus, f ∪ {(b, c)} is elementary and M is κ-homogeneous.
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Countably Saturated Models

We will begin by examining ℵ0-saturated models. If M is ℵ0-saturated,
thenM realizes every type in Sn(T ). We will show that for ℵ0-homogeneous
models this condition is also sufficient.

Proposition 4.3.4 If M |= T , then M is ℵ0-saturated if and only if M
is ℵ0-homogeneous and M realizes all types in Sn(T ).

Proof
(⇒) Clear.
(⇐) Let a ∈ Mm and let p ∈ SMn (a). Let q ∈ Sn+m(T ) be the type

{φ(v, w) : φ(v, a) ∈ p}. By assumption, there is (b, c) ∈ Mn+m realizing q.
Because tpM(c) = tpM(a) andM is ℵ0-homogeneous, there is d ∈M such
that tpM(a, d) = tpM(c, b). Hence, d realizes p and M is ℵ0-saturated.

Countable saturated models are unique up to isomorphism.

Corollary 4.3.5 If M,N |= T are countable saturated models, thenM ∼=
N .

Proof BecauseM and N are ℵ0-homogeneous and both realize all types
in Sn(T ) for all n < ω, by Theorem 4.2.15,M∼= N .

The next proposition shows that we can extend models to
ℵ0-homogeneous models without increasing the cardinality.

Proposition 4.3.6 Let M |= T . There is M ≺ N such that N is ℵ0-
homogeneous and |N | = |M |.

Proof We first argue that we can find M ≺ N1 such that |M | = |N1|,
and if a, b, c ∈ M and tpM(a) = tpM(b), then there is d ∈ N1 such that
tpN1(a, c) = tpN1(b, d).
Let ((aα, bα, cα) : α < |M |) list all tuples (a, b, c) where a, b, c ∈ M and

tpM(a) = tpM(b). We build an elementary chain M0 ≺ M1 . . . ≺ Mα ≺
. . . for α < |M |.
Let M0 =M.
If α is a limit ordinal, let Mα =

⋃

β<αMβ.
Given Mα, let Mα ≺ Mα+1 with |Mα| = |Mα+1| such that there is

d ∈Mα with tpMα+1(b, d) = tpMα+1(a, c). Let N1 =
⋃

α<|M|Mα. Because

N1 is a union of |M | models of size |M |, |N1| = |M |.

We now build N0 ≺ N1 ≺ N2 . . . such that |Ni| = |M | and if a, b, c ∈ Ni
and tpNi(a) = tpNi(b), then there is d ∈ Ni+1 such that tpNi+1(a, c) =
tpNi+1(b, d).
Let N =

⋃

i<ωNi. Clearly, |N | = |M| and N is ℵ0-homogeneous.

Propositions 4.3.5 and 4.3.6 allow us to characterize theories with count-
able saturated models.
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Theorem 4.3.7 T has a countable saturated model if and only if |Sn(T )| ≤
ℵ0 for all n.

Proof We need only show that if |Sn(T )| ≤ ℵ0 for all n then T has a
countable saturated model. Let p0, p1, . . . list all elements of

⋃

n∈ω Sn(T ).
Let M0 |= T . Iterating Lemma 4.1.3, we build M0 ≺M1 ≺ . . . such that
Mi is countable and Mi+1 realizes pi. Thus, M =

⋃

i∈ωMi is countable
and contains realizations of all types in Sn(T ) for n < ω. By Proposition
4.3.6, there is M≺ N such that N is countable and ℵ0-homogeneous. By
Corollary 4.3.5, N is ℵ0-saturated.

Curiously, theories with large countable models also have small countable
models.

Corollary 4.3.8 i) If T has a countable saturated model, then T has a
prime model.
ii) If T has fewer than 2ℵ0 countable models, then T has a countable

saturated model and a prime model.

Proof
i) If T has a saturated model, then |Sn(T )| is countable for all n. By

Theorem 4.2.11, the isolated types are dense in Sn(T ) for all n. Thus, by
Theorem 4.2.10, T has a prime model.
ii) It suffices to show that Sn(T ) is countable for all n < ω. Suppose

not. By Theorem 4.2.11, if |Sn(T )| > ℵ0, then |Sn(T )| = 2ℵ0 . Each n-type
must be realized in some countable model. Because each countable model
realizes only countably many n-types, if there are 2ℵ0 n-types, then there
must be 2ℵ0 nonisomorphic countable models.

We consider several examples.

Example 4.3.9 Dense Linear Orders

We will show that (Q, <) is saturated. Suppose A ⊂ Q is finite. Suppose
that A = {a1, . . . , am} where a1 < . . . < am. By the analysis of types in
DLO given in Section 4.1, there are exactly 2m+1 types in S1(A). Each
type is isolated by one of the formulas v = ai, v < a0, ai < v < ai+1, or
am < v. Clearly, all of these types are realized in Q. Note that in this case
Q is both saturated and prime! In Section 4.4, we will see that this always
happens in ℵ0-categorical theories.

Example 4.3.10 Algebraically Closed Fields

Fix p prime or 0. Let k be Fp if p > 0 and Q if p = 0. Because Sn(ACFp) is in
bijection with Spec(k[X1, . . . , Xn]), by Corollary 4.1.18, |Sn(ACFp)| = ℵ0.
Thus, there is a countable saturated model of ACFp.
Let qn be the type corresponding to the 0 ideal in k[X1, . . . , Xn]. If

a1, . . . , an realizes qn, then a1, . . . , an are algebraically independent over
k. Thus, any saturated model has infinite transcendence degree. It follows
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that the countable saturated model of ACFp is the unique algebraically
closed field of characteristic p and transcendence degree ℵ0.

Example 4.3.11 Real Closed Fields

Let r ∈ R \ Q. Let pr be the set of formulas
{

v + . . .+ v
︸ ︷︷ ︸

m−times

< 1 + . . .+ 1
︸ ︷︷ ︸

n−times

:

m,n ∈ N, r <
n

m

}

∪
{

v + . . .+ v
︸ ︷︷ ︸

m−times

> 1 + . . .+ 1
︸ ︷︷ ︸

n−times

: m,n ∈ N , r >
n

m

}

.

Clearly, pr is satisfiable. Let p∗r ∈ S1(RCF) with p∗r ⊇ pr. If r 6= s, then
p∗r 6= p∗s . Thus, |S1(RCF)| = 2ℵ0 and RCF has no saturated model.

Existence of Saturated Models

Next we think about the existence of κ-saturated models for κ > ℵ0.

Theorem 4.3.12 For all M, there is a κ+-saturated M≺ N with |N | ≤
|M |κ.

Proof

Claim For anyM there isM≺M′ such that |M ′| ≤ |M |κ, and if A ⊆M ,
|A| ≤ κ and p ∈ SM1 (A), then p is realized in M′.
We first note that

|{A ⊆M : |A| ≤ κ}| ≤ |M |κ

because for each such A there is f mapping κ onto A. Also, for each such
A, |SM1 (A)| ≤ 2κ. Let (pα : α < |M |κ) list all types in SM1 (A) for n < ω,
A ⊆ M with |A| ≤ κ. We build an elementary chain (Mα : α < |M |κ) as
follows:
i) M0 =M;
ii) Mα =

⋃

β<αMβ for α a limit ordinal;
iii)Mα ≺Mα+1 with |Mα+1| = |Mα|, andMα+1 realizes pα. By induc-

tion, we see that |Mα| ≤ |M |κ for all α. Let M′ =
⋃

α<|M|κMα. Then,

|M ′| ≤ |M |κ and M′ is the desired model. This proves the claim.
We build an elementary chain (Nα : α < κ+) such that each |Nα| ≤ |M |κ

and
i) N0 =M;
ii) Nα =

⋃

β<αNβ for α a limit ordinal;
iii) Nα ≺ Nα+1, |Nα| ≤ |M |κ, and if A ⊆ Nα with |A| ≤ κ and p ∈

SNαn (A), then p is realized in Nα+1. This is possible by the claim because,
by induction,

|Nα|
κ ≤ (|M |κ)κ = |M |κ.

Let N =
⋃

α<κ+ Nα. Because κ+ ≤ |M |κ, N is the union of at most
|M |κ sets of size |M |κ so |N | ≤ |M |κ. Suppose that |A| ⊆ N , |A| ≤ κ, and
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p ∈ SNn (A). Because κ+ is a regular cardinal, there is α < κ+ such that
A ⊂ Nα and p is realized in Nα+1 ≺ N . Thus, N is κ+-saturated.

Theorem 4.3.12 guarantees the existence of saturated models under suit-
able set-theoretic assumptions.

Corollary 4.3.13 Suppose that 2κ = κ+. Then, there is a saturated model
of T of size κ+. In particular, if the Generalized Continuum Hypothesis is
true, there are saturated models of size κ+ for all κ.

For arbitrary T , some set-theoretic assumption is necessary. For example,
if |Sn(T )| = 2ℵ0 , then any ℵ0-saturated model has size 2ℵ0 . If ℵ1 < 2ℵ0 ,
then there is no saturated model of size ℵ1.
We can extend this a bit further.

Corollary 4.3.14 Suppose that κ ≥ ℵ1 is regular and 2λ ≤ κ for λ < κ.
Then, there is a saturated model of size κ. In particular, if κ ≥ ℵ1 is
strongly inaccessible, then there is a saturated model of size κ.

Proof Let M |= T with |M | = κ. If κ = λ+ for λ < κ, then the corollary
follows from Corollary 4.3.13. Thus, we may assume that κ is a limit car-
dinal. We build an elementary chain (Mλ : λ < κ, λ a cardinal). EachMλ

will have cardinality κ. Let M0 =M.
LetMλ =

⋃

µ<λMµ for λ a limit cardinal. BecauseMα is the union of
fewer than κ models of size κ, |Mα| = κ.
Given Mλ, by Theorem 4.3.12 there is Mλ ≺ Mλ+ such that M is

λ+-saturated and |Mλ+ | ≤ κλ = κ (see Corollary A.17).
Let N =

⋃
Mλ. Because κ is a regular limit cardinal, κ = ℵκ (see

Proposition A.13). Thus, because κ is regular, if A ⊂ N and |A| < κ, then
there is λ < κ such that A ⊂Mλ. Thus, if p ∈ SNn (A), then p is realized in
Mλ+ ≺ N .

The assumption of regularity is necessary for some T . For example, sup-
pose that M |= DLO with |M | = ℵω. We claim that M is not saturated.
Let M =

⋃

n<ωMn where |Mn| = ℵn. If M is saturated, then for each
n < ω we can find an ∈M such that an > b for all b ∈Mn. One more use
of saturation allows us to find c ∈ M such that c > an for n < ω. This is
impossible. Similar arguments show that all saturated dense linear orders
must have regular cardinality.
If T is κ-stable, then we can eliminate all assumptions about cardinal

exponentiation.

Theorem 4.3.15 Let κ be a regular cardinal. If T is κ-stable, then there
is a saturated M |= T with |M | = κ. Indeed, if M0 |= T with |M0| = κ,
then there is a saturated elementary extension M of M0 with |M | = κ.
In particular, if T is ω-stable, then there are saturated models of size κ

for all regular cardinals κ.
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Proof We build an elementary chain (Mα : α < κ) where |Mα| = κ such
that:
i) M0 |= T with |M0| = κ;
ii) Mα =

⋃

β<αMβ for α a limit ordinal;

iii) Mα ≺Mα+1 and if p ∈ SMα

1 (Mα), then p is realized in Mα+1.

Because T is κ-stable, if |Mα| = κ, then |SMα

1 (Mα)| = κ. Thus, as in
Theorem 4.3.12, we can find Mα ≺ Mα+1 such that |Mα+1| = κ and
Mα+1 realizes all types in S

Mα

1 (Mα).
LetM =

⋃
Mα. BecauseM is the union of κ models of size κ, |M | = κ.

We claim that M is saturated. Let A ⊂ M with |A| < κ. Because κ is
regular, there is an α < κ such that A ⊆Mα. If p ∈ SM1 (A), then there is
q ∈ SM1 (Mα) = SMα

1 (Mα) with p ⊆ q. Because q is realized in Mα+1, p is
realized in M. Thus, M is saturated.

Saturated models of singular cardinality exist for ω-stable theories, but
the proof is much more subtle. We prove this in Theorem 6.5.4.

Homogeneous and Universal Models

Although prime models elementarily embed into all models of T , saturated
models embed all small models.

Definition 4.3.16 We say that M |= T is κ-universal if for all N |= T
with |N | < κ there is an elementary embedding of N into M.
We say that M is universal if it is |M |+-universal.

Lemma 4.3.17 Let κ ≥ ℵ0. IfM is κ-saturated, thenM is κ+-universal.

Proof Let N |= T with |N | ≤ κ. Let (nα : α < κ) enumerate N . Let
Aα = {nβ : β < α}. We build a sequence of partial elementary maps
f0 ⊂ f1 ⊂ . . . ⊂ fα ⊂ . . . for α < κ with fα : Aα →M.
Let f0 = ∅ and, if α is a limit ordinal, let fα =

⋃

β<α fβ.
Given fα : Aα →M partial elementary, let

Γ(v) = {φ(v, fα(a)) :M |= φ(nα, a)}.

Because fα is partial elementary and |Aα| < κ, Γ is satisfiable and, by
κ-saturation, realized by some b in M. The fα+1 = fα ∪ {(nα, b)} is the
desired partial elementary map.
We have constructed f =

⋃
fα, an elementary embedding of N into M.

Theorem 4.3.18 Let κ ≥ ℵ0. The following are equivalent.
i) M is κ-saturated.
ii) M is κ-homogeneous and κ+-universal.

If κ ≥ ℵ1 i) and ii) are also equivalent to:
iii) M is κ-homogeneous and κ-universal.
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Proof By Proposition 4.3.2 and Lemma 4.3.17, i) ⇒ ii). Clearly, ii) ⇒
iii). We argue that ii) ⇒ i) and, if κ is uncountable, iii) ⇒ i).
Let A ⊆M with |A| < κ, and let p ∈ SM1 (A). We can find N |= ThA(M)

such that A ⊆ N and there is a ∈ N realizing p. If κ = ℵ0, then we can
choose N with |N | = ℵ0. If κ ≥ ℵ1, then we can choose N with |N | < κ.
By assumption, there is an elementary embedding f : N → M. Because
f |A is partial elementary, by κ-homogeneity, there is b ∈M such that

tpM(b/A) = tpM(f((a))/f(A)) = tpN (a/A) = p.

Thus, M is κ-saturated.

Corollary 4.3.19 M is saturated if and only if it is homogeneous and
universal.

Similar arguments can be used to show that there is at most one satu-
rated model of any particular cardinality.

Theorem 4.3.20 If M and N are saturated models of T of cardinality κ,
then M∼= N .

Proof By Corollary 4.3.5, we may assume that κ ≥ ℵ1. Let (mα : α < κ)
enumerate M and (nα : α < κ) enumerate N . We build a sequence of
partial embeddings f0 ⊂ . . . ⊂ fα . . . for α < κ such that mα ∈ dom(fα+1)
and nα ∈ img(fα+1). Let Aα denote the domain of fα. We will have |Aα| ≤
|α|+ ℵ0 < κ for all α.
Let f0 = ∅, and let fα =

⋃

β<α fβ for β a limit ordinal.
Suppose that fα is partial elementary. By saturation, we can find b ∈ N

such that
N |= φ(b, fα(a))⇔M |= φ(mα, a)

for all φ and all a ∈ Aα. Then gα = fα ∪ {(mα, b)} is partial elementary.
Again by saturation, we can find a ∈M such that

N |= φ(nα, g(a))⇔M |= φ(a, a)

for all φ and all a ∈ Aα ∪ {mα}. Then, fα+1 = gα ∪ {(a, nα)} is partial
elementary and f =

⋃
fα is an isomorphism from M to N .

Lemma 4.3.17 and Theorem 4.3.20 are special cases of embedding and
uniqueness results on homogeneous models generalizing Theorem 4.2.15.

Lemma 4.3.21 Suppose that N |= T is κ-homogeneous where κ ≤ |N |
and M≡ N such that every type in Sn(T ) realized in M is realized in N
for n < ω. If A ⊆ M and |A| ≤ κ, then there is a partial elementary map
f : A→ N .

Proof We prove the claim by induction on |A|. Suppose that |A| is finite.
Let A = {a1, . . . , an}. Because every type realized in M is realized in
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N , there is b ∈ Nn such that tpM(a) = tpN (b). Then, a 7→ b is partial
elementary.
Suppose that |A| = λ ≤ κ and the claim is true for sets of size µ < λ.

Let (aα : α < λ) enumerate A. For α < λ, let Aα = {aβ : β < α}. We build
a sequence of partial elementary maps f0 ⊆ . . . ⊆ fα ⊆ . . . where Aα is the
domain of fα for α < λ.
Let f0 = ∅. If α is a limit ordinal, let fα =

⋃

β<α fβ .
Suppose that we are given fα. Because |Aα+1| < λ, by the induction

assumption, there is a partial elementary g : Aα+1 → N . Let B be the
image of Aα under fα and let C be the image of Aα under g. Let h =
fα ◦ g−1 : C → B. Because fα and g are partial elementary, h : C → B
is partial elementary. Because N is homogeneous, we can extend h to a
partial elementary h∗ : C ∪ {g(aα)} → N . Let b = h∗(g(aα)), and let
fα+1 = fα ∪ {(aα, b)}. Then, fα+1 = h∗ ◦ g is partial elementary.
Clearly, f =

⋃

α<λ fα : A→ N is partial elementary.

Corollary 4.3.22 If M |= T is κ-homogeneous and realizes all types in
Sn(T ) for all n < ω, then M is κ-saturated.

Proof By Lemma 4.3.21, M is κ+-universal. Thus, by Theorem 4.3.18,
M is saturated.

Theorem 4.3.23 If M ≡ N are homogeneous models of T of the same
cardinality realizing the same types in Sn(T ) for all n < ω, then M∼= N .

Proof If M and N are countable, this is Theorem 4.2.15 so we assume
that κ = |M | = |N | is uncountable. We build an isomorphism f : M →
N by a back-and-forth argument. Let (aα : α < κ) enumerate M . Let
(bα : α < κ) enumerate N . We build a sequence of partial elementary maps
f0 ⊂ . . . ⊂ fα ⊂ . . . such that the domain of fα has cardinality at most
|α|+ ℵ0 < κ, aα is in the domain of fα+1, and bα is in the image of fα+1.
Then, f =

⋃

α<κ fα is the desired isomorphism.
Let f0 = ∅. If α is a limit ordinal, then fα =

⋃

β<α fβ . Let A be the
domain of fα, and let B be its image. By Lemma 4.3.21, there is a partial
elementary h : A ∪ {aα} → N . Let C be the image of A under h, and
let c = h(aα). As in the proof of Lemma 4.3.21, fα ◦ h−1 : C → B is
partial elementary and, because N is homogeneous, we can extend this
map to C ∪ {c}. Let b be the image of c under this extension. Then, gα =
fα ∪ {(aα, b)} is partial elementary and aα is in the domain.
Let D be the image of gα. Then, g

−1
α : D → M is partial elementary.

By a symmetric argument, we can find a ∈M such that g−1α ∪ {(bα, a)} is
partial elementary. Let fα+1 = gα ∪ {(a, bα)}.

Corollary 4.3.24 i) The number of nonisomorphic homogeneous models

of T of size κ is at most 22
ℵ0
.

ii) If T has a countable saturated model, then the number of homogeneous
models of T of size κ is at most 2ℵ0 .
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Proof Homogeneous models of cardinality κ are determined by the set
of types realized. Because |Sn(T )| ≤ 2ℵ0 , the number of possible sets of

types realized in a model is at most 22
ℵ0
. If T has a saturated model, then

|Sn(T )| ≤ ℵ0 for all n < ω and there are at most 2ℵ0 possible sets of types.

Applications of Saturated Models

We conclude this section with several applications of saturated and homo-
geneous models. Saturated models are useful because we can do things in
the model that we usually could only do in an elementary extension.

Proposition 4.3.25 Let M be saturated. Let A ⊂M with |A| < |M |. Let
X ⊂ Mn be definable with parameters from M . Then, X is A-definable if
and only if every automorphism of M that fixes A pointwise fixes the X
setwise.

Proof
(⇒) If a ∈ A, X = {b ∈ Mn :M |= φ(b, a)} and σ is an automorphism

of M, then

σ(X) = {c ∈Mn :M |= φ(σ−1(c), a)}

= {c ∈Mn :M |= φ(c, σ(a))} because σ is an automorphism

= {c ∈Mn :M |= φ(c, a)} because σ(a) = a
= X.

(⇐) Let ψ(v,m) define X , where m ∈Mk. Consider the type Γ(v, w) =

{ψ(v,m),¬ψ(w,m)} ∪ {φ(v)⇔ φ(w) : φ an LA-formula}.

Suppose that Γ∪Diagel(M) is satisfiable. Then, by saturation, we can find
(a, b) realizing Γ in M. Let f be the map that is the identity on A and
sends a to b. By choice of Γ, f is elementary. Because M is homogeneous,
f extends to an automorphism σ ofM. ButM |= ψ(a,m)∧¬ψ(b,m), thus
a ∈ X and σ(a) = b 6∈ X , a contradiction. Thus, Γ ∪ Diagel(M) is not
satisfiable.
Therefore, there are LA-formulas φ1, . . . φm such that

M |= ∀v∀w

(
n∧

i=1

(φi(v)↔ φi(w))→ (ψ(v,m)↔ ψ(w,m))

)

. (∗)

For τ : {1, . . . , n} → 2, let θτ (v) be the formula

∧

τ(i)=1

φi(v) ∧
∧

τ(i)=0

¬φi(v).
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If θτ (a) and θτ (b), then, by (∗), a ∈ X if and only if b ∈ X . Let S = {τ :
{1, . . . ,m} → 2 :M |= θτ (a) for some a in Mn}. Then,

a ∈ X if and only if M |=
∨

τ∈S

θτ (v).

Hence, X is definable with parameters from A.

Recall that b ∈ M is definable from A if {b} is A-definable. The next
corollary is a simple consequence of Proposition 4.3.25.

Corollary 4.3.26 Let M be saturated, and let A ⊂ M with |A| < |M |.
Then, b is definable from A if and only if b is fixed by all automorphisms
of M that fix A pointwise.

Proof By Proposition 4.3.25, {b} is A-definable if and only if every auto-
morphism that fixes A pointwise fixes the set {b}.

Recall that b is algebraic over A if there is a finite A-definable set X such
that b ∈ X .

Proposition 4.3.27 Let M be saturated. Let A ⊂M with |A| < |M | and
b ∈M . The following are equivalent:
i) b is algebraic over A;
ii) b has only finitely many images under automorphisms of M fixing A

pointwise;
iii) tpM (b/A) has finitely many realizations.

Proof
i)⇒ ii) Let X be a finite A-definable set with b ∈ A. By Proposition

4.3.25, any automorphism of M that fixes A pointwise permutes the ele-
ments of the finite set X .

ii)⇒ iii) If c realizes tpM(b/A), then, because M is homogeneous, there
is an automorphism of M fixing A pointwise and mapping b to c. Thus,
if b has only finitely many images under automorphisms fixing A, then
tpM(b/A) has only finitely many realizations.

iii) ⇒ i) Suppose that p = tpM(b/A) has exactly n realizations. Let

Γ = ThA(M) ∪ {φ(vi) : φ ∈ p, i = 0, . . . , n} ∪ {
∧

0≤i<j≤n

vi 6= vj}.

Because p has only n realizations in M and M is saturated, Γ is not
satisfiable. Thus there are φ1, . . . , φm ∈ p such that

M |=

(
m∧

k=1

n∧

i=0

φk(vi)

)

→
∨

i6=j

vi = vj .

In particular {c ∈ M : M |=
∧m
j=1 φj(c)} is an A-definable set of size n

containing b, so b is algebraic over A.
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Saturated models can be used to give a new test for quantifier elimina-
tion.

Proposition 4.3.28 If L is a language containing a constant symbol and
T is an L-theory, then T has quantifier elimination if and only if whenever
M |= T , A ⊆ M , N |= T is |M |+-saturated, and f : A → N is a partial
embedding, f extends to an embedding of M into N .

Proof
(⇒) By quantifier elimination f is a partial elementary embedding. As in

the proof of Lemma 4.3.17, we can extend f to an elementary embedding
of M into N .

(⇐) We use the quantifier elimination criterion from Corollary 3.1.6.
Suppose that M,N |= T , A ⊆ M ∩ N , and M |= φ(b, a), where φ is
quantifier-free, a ∈ A, and b ∈ M . Let N ≺ N ′ be an |M |+-saturated
model of T . By assumption the identity map on A extends to an embedding
f : M → N ′. Because f is the identity on A, N ′ |= φ(f(b), a). Because
N ≺ N ′, N |= ∃v φ(v, a), as desired.

Quantifier Elimination for Differentially Closed Fields

We will show how to apply Proposition 4.3.28 in one very interesting case.
A derivation on a commutative ring R is a map δ : R→ R such that

δ(x+ y) = δ(x) + δ(y)

and
δ(xy) = xδ(y) + yδ(x).

We often write a′, a′′, . . . , a(n) for δ(a), δ(δ(a)), . . ..
If (R, δ) is a differential ring, we form the ring of differential polynomials

R{X} = R[X,X ′, X ′′, . . . , X(n), . . .]. There is a natural extension of the
derivation δ to R{X} where δ(X (n)) = X(n+1). For f in R{X} \ R, the
order of f is the least n such that f ∈ R[X, . . . , X (n)], whereas if f ∈ R we
say that f has order −∞.
We will consider differential fields, which we always assume have charac-

teristic zero.

Definition 4.3.29 We say that K is a differentially closed field if K is a
differential field of characteristic zero such that if f, g ∈ K{X} \ {0} and
the order of f is less than the order of g, then there is x ∈ K such that
f(x) = 0 and g(x) 6= 0.

In particular, if f has order 0, there is x ∈ K with f(x) = 0, so K is al-
gebraically closed. We can give axioms for DCF, the theory of differentially
closed fields, in the language L = {+,−, ·, δ, 0, 1}, where δ is a unary func-
tion symbol for the derivation. Our goal is to show that DCF has quantifier
elimination.
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Let k ⊆ K be differential fields, we say that a ∈ K is differentially
algebraic over k if f(a) = 0 for some nonzero f ∈ k{X}. Otherwise, we say
that a is differentially transcendental over k.
The next proposition summarizes some basic algebra of differential fields

that we will need. We assume that all of our fields have characteristic zero.
If k ⊂ K are differential fields and a ∈ K, we let k〈a〉 be the differential
subfield of K generated by a over k.

Proposition 4.3.30 Let k ⊂ K be differential fields of characteristic zero.
i) Suppose that f(X,X ′, . . . , X(n)) ∈ k{X} \ 0 and a,b ∈ K such

that f(a) = f(b) = 0, a, . . . , a(n−1) are algebraically independent over k,
b, . . . , b(n−1) are algebraically independent over k, and g(a) 6= 0, g(b) 6= 0
for any g of order n of lower degree in X (n). Then, k〈a〉 and k〈b〉 are
isomorphic over k.
ii) If a ∈ K is differentially algebraic over k, then there is f ∈ k{X}\{0}

such that f(a) = 0 and if g ∈ k{X} \ {0} has lower order, then g(a) 6= 0.
Moreover, we can choose f such that if f(b) = 0 and g(b) 6= 0 for any lower
order g, then k〈a〉 and k〈b〉 are isomorphic over k.
iii) If f ∈ k{X}, there is a differential field F ⊃ k and a ∈ F such that

f(a) = 0 and g(a) 6= 0 for all g ∈ k{X} \ {0} where the order of g is less
than the order of f .

Proof
i) Certainly, k(a, . . . , a(n)) and k(b, . . . , b(n)) are isomorphic as fields. We

need only show that the isomorphism preserves the derivation. For i < n
we have δ(a(i)) = a(i+1) and δ(b(i)) = b(i+1). Because f(a, . . . , an) = 0, we
must have δ(f(a, . . . , an)) = 0, but an easy calculation shows that

δ(f(a, . . . , a(n)) = f δ(a, . . . , a(n)) +
n∑

i=0

∂f

∂X(i)
(a, . . . , an)δ(a(i)),

where f δ is the polynomial obtained by differentiating the coefficients of f .
Because f(a, . . . , a(n−1), Y ) is irreducible,

∂f

∂X(n)
(a, . . . , a(n)) 6= 0.

Thus

δ(a(n)) =
−f δ(a, . . . , a(n))−

∑n−1
i=0

∂f

∂X(i) (a, . . . , a
(n))δ(a(i))

∂f

∂X(n) (a, . . . , an)
.

Similarly,

δ(b(n)) =
−f δ(b, . . . , b(n))−

∑n−1
i=0

∂f

∂X(i) (b, . . . , b
(n))δ(b(i))

∂f

∂X(n) (b, . . . , bn)
.
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Thus, the natural field isomorphism is a differential field isomorphism.

ii) Let n be minimal such that a, a′, . . . , a(n) are algebraically dependent
over k and let f(X, . . . , Xn) ∈ k[X, . . . , X(n)] be of minimal degree such
that f(a, a′, . . . , a(n)) = 0. Clearly, g(a) 6= 0 for any g ∈ k{X}\{0} of order
less than n.
Suppose that f(b) = 0 and g(b) 6= 0 for any lower order g. Then,

b, . . . , b(n−1) are algebraically independent over k and bn is a solution to
the irreducible polynomial f(b, . . . , bn−1, Y ). Thus, by i), k〈a〉 and k〈b〉 are
isomorphic over k.

iii) Let n be the order of f . By taking an irreducible factor of f of maximal
order, we may assume that f is irreducible. Let K0 be the field obtained
from k by first adding elements a, a′, . . . , a(n−1) algebraically independent
over k. LetK be the algebraic extension ofK0 obtained by adding a solution
a(n) to the irreducible algebraic equation f(a, a′, . . . , a(n−1), Y ) = 0. We
must extend the derivation δ from k to K. For i < n, let δ(a(i)) = a(i+1).
As in i), we let

δ(a(n)) =
−f δ(a, . . . , a(n))−

∑n−1
i=0

∂f

∂X(i) (a, . . . , a
(n))δ(a(i))

∂f

∂X(n) (a, . . . , a(n))
.

Because a, . . . , a(n−1) are algebraically independent over k, a satisfies no
differential polynomial over k of order less than n.

Corollary 4.3.31 If k is a differential field of characteristic zero, then
there is K ⊇ k with K |= DCF.

Proof If f, g ∈ k{X}\{0}with g of lower order than f , then by Proposition
4.3.30 iii) we can find k1 ⊃ k with a ∈ k1 where f(a) = 0 and g(a) 6= 0.
Iterating this process, we build K ⊃ k differentially closed.

We can now prove quantifier elimination.

Theorem 4.3.32 DCF has quantifier elimination.

Proof Let K,L be differential closed fields where L is |K|+-saturated. Let
R be a differential subring of K, and let f : R → L be a differential ring
embedding. We must show that f extends to an embedding of K into L.
Because there is a unique extension of the derivation from R to its fraction
field k, we may as well assume that R = k is a field. By induction, it
suffices to show that if f : k → L is a differential field embedding and
a ∈ K \ k, there is a differential field embedding of k〈a〉 into L extending
f . Identifying k with f(k), we may assume that k ⊂ L and f is the identity
on k. There are two cases to consider.

case 1: a is differentially algebraic over k.
Let f be as in Proposition 4.3.30 ii). Let n be the order of f . Let p be

the type {f(v) = 0} ∪ {g(v) 6= 0 : g is nonzero of order less than n}. If
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g1, . . . , gm are nonzero differential polynomials of order less than n, then
there is x ∈ L such that f(x) = 0 and

∏
gi(x) 6= 0. Thus p is satisfiable. If

b ∈ L realizes p, then b, b′, . . . , b(n−1) are algebraically independent over k;
thus, by i), we can extend the embedding by sending a to b.

case 2: a is differentially transcendental over k.
We claim that there is b ∈ L differentially transcendental over k. Let p

be the type {f(v) 6= 0 : f ∈ k{X} \ 0}. Let f1, . . . , fn ∈ k{X} \ {0}. Let
N be greater than the order of fi for i = 1, . . . , N . Because L is differen-
tially closed, there is x ∈ L such that x(N) = 0 and

∏
fi(x) 6= 0. Thus

p is consistent and must be realized in L by some element b differentially
transcendental over k. Because a and b are differentially transcendental
over k, k〈a〉 and k〈b〉 are isomorphic to the fraction field of the differential
polynomial ring k{X} over k. In particular, we can extend the embedding
by sending a to b.

Vaught’s Two-Cardinal Theorem

We conclude this section with an application of homogeneous models that
will be useful in Chapter 6. If M is an L-structure and φ(v1, . . . , vn) is an
L-formula, we let φ(M) = {x ∈Mn :M |= φ(x)}.

Definition 4.3.33 Let κ > λ ≥ ℵ0. We say that an L-theory T has a
(κ, λ)-model if there is M |= T and φ(v) an L-formula such that |M | = κ
and |φ(M)| = λ.

(κ, λ)-models are an obstruction to κ-categoricity. If T is a theory in a
countable language with infinite models, then an easy compactness argu-
ment shows that there is M |= T of cardinality κ where every ∅-definable
subset of M has cardinality κ. If T also has a (κ, λ)-model, then T is not
κ-categorical. Our main goal is the following theorem of Vaught.

Theorem 4.3.34 If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then T has
an (ℵ1,ℵ0)-model.

We will prove Theorem 4.3.34 by first showing that the existence of a
(κ, λ)-model has interesting implications for the countable models of T .

Definition 4.3.35 We say that (N ,M) is a Vaughtian pair of models of
T if M ≺ N , M 6= N , and there is an LM -formula φ such that φ(M) is
infinite and if φ(M) = φ(N ).

For example, if M and N are nonstandard models of Peano arithmetic
and N is a proper elementary end extension of M, then (N ,M) is a
Vaughtian pair. If a is any infinite element of M, then the formula v < a
defines an infinite set containing no elements of N \M .

Lemma 4.3.36 If T has a (κ, λ)-model where κ > λ ≥ ℵ0, then there is
(N ,M) a Vaughtian pair of models of T .
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Proof Let N be a (κ, λ)-model. Suppose that X = φ(N ) has cardinality
λ. By the Löwenheim–Skolem Theorem, there isM≺ N such that X ⊆M
and |M | = λ. Because X ⊆M , (N ,M) is a Vaughtian pair.

We would like to show that if there is a Vaughtian pair, then there is a
Vaughtian pair of countable models. In the right context, this is a simple
Löwenheim–Skolem argument.
Let L∗ = L∪{U}, where U is a unary predicate symbol. IfM⊆N are L-

structures, we consider the pair (N ,M) as an L∗-structure by interpreting
U as M .
If φ(v1, . . . , vn) is an L-formula, we define φU (v), the restriction of φ to

U , inductively as follows:
i) if φ is atomic, then φU is U(v1) ∧ . . . ∧ U(vn) ∧ φ;
ii) if φ is ¬ψ, then φU is ¬ψU ;
iii) if φ is ψ ∧ θ, then φU is ψU ∧ θU ;
iv) if φ is ∃v ψ, then φU is ∃v U(v) ∧ ψU .

An easy induction shows that if M ⊂ N , a ∈ M k and we view (N ,M)
as an L∗-structure, then M |= φ(a) if and only if (N ,M) |= φU (a).

Lemma 4.3.37 If (N ,M) is a Vaughtian pair for T , then there is a
Vaughtian pair (N0,M0) where N0 is countable.

Proof Let φ be an LM -formula such that φ(M) is infinite and φ(M) =
φ(N ). Letm0 be the parameters fromM occurring in φ. By the Löwenheim–
Skolem Theorem, there is (N0,M0) a countable L∗-structure such that
m ∈ M0 and (N0,M0) ≺ (N ,M). Because M ≺ N , for any formula
ψ(v1, . . . , vk)

(N ,M) |= ∀v

((
k∧

i=1

U(vi) ∧ ψ(v)

)

→ ψU (v)

)

.

Because (N0,M0) ≺ (N ,M), these sentences are also true in (N0,M0),
so N0 ≺M0.
Let φ(v) be an LM -formula with infinitely many realizations in M and

none in N \M, witnessing that (N ,M) is a Vaughtian pair. For each k,
the sentences

∃v1 . . .∃vk




∧

i<j

vi 6= vj ∧
k∧

i=1

φ(vi)





hold in (N ,M), as do the sentences ∃x ¬U(x) and

∀v (φ(v)→
∧

U(vi)).

Because these sentences also hold in (N0,M0), this structure is also a
Vaughtian pair.

We need one more lemma before proving Vaught’s Theorem.
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Lemma 4.3.38 Suppose thatM0 ≺ N0 are countable models of T . We can
find (N0,M0) ≺ (N ,M) such that N andM are countable, homogeneous,
and realize the same types in Sn(T ). By Theorem 4.2.15 M∼= N .

Proof

Claim 1 If a ∈ M0 and p ∈ Sn(a) is realized in N0, then there is
(N0,M0) ≺ (N ′,M′) such that p is realized in M′.
Let Γ(v) = {φU (v, a) : φ(v, a) ∈ p} ∪ Diagel(N0,M0). If φ1, . . . , φm ∈ p,

then N0 |= ∃v
∧
φi(v, a), thus M0 |= ∃v

∧
φi(v, a) and (N0,M0) |=

∃v
∧
φUi (v, a). Thus, Γ(v) is satisfiable. Let (N ′,M′) be a countable el-

ementary extension realizing Γ.

By iterating Claim 1, we can find (N0,M0) ≺ (N ∗,M∗) countable such
that if a ∈M0 and p ∈ Sn(a) is realized in N0, then p is realized in M∗.

Claim 2 If b ∈ N0 and p ∈ Sn(b), then there is (M0,N0) ≺ (N ′,M′)
such that p is realized in N ′.
Let Γ(v) = p ∪ Diagel(N0,M0). If φ1, . . . , φm ∈ p, then N0 |=

∃v
∧
φi(v, b); thus, we can find a countable elementary extension of

(N0,M0) realizing p.

We build an elementary chain of countable models

(N0,M0) ≺ (N1,M1) ≺ . . .

such that
i) if p ∈ Sn(T ) is realized in N3i, then p is realized in M3i+1;
ii) if a, b, c ∈ M3i+1 and tpM3i+1(a) = tpM3i+1(b), then there is d ∈

M3i+2 such that tpM3i+2(a, c) = tpM3i+2(b, d);
iii) if a, b, c ∈ N3i+2 and tpN3i+2(a) = tpN3i+2(b), then there is d ∈ N3i+3

such that tpN3i+3(a, c) = tpN3i+3(b, d).
i) and ii) are done by using the first claim to build elementary chains,

iii) is done by using the second claim to build an elementary chain.

Let (N ,M) =
⋃

i<ω(Ni,Mi). Then, (N ,M) is a countable Vaughtian
pair. By i),M and N realize the same types. By ii) and iii),M and N are
homogeneous and hence isomorphic by Theorem 4.2.15.

Proof of 4.3.34 Suppose that T has a (κ, λ)-model. By the lemmas above,
we can find (N ,M) a countable Vaughtian pair such that M and N are
homogeneous models realizing the same types. Let φ(v) be an LM -formula
with infinitely many realizations in M and none in N \M .
We build an elementary chain (Nα : α < ω1), each Nα is isomorphic

to N , and (Nα+1,Nα) ∼= (N ,M). In particular, Nα+1 \ Nα contains no
elements satisfying φ.
Let N0 = N . For α a limit ordinal, let Nα =

⋃

β<αNβ . Because Nα is
a union of models isomorphic to N , Nα is homogeneous and realizes the
same types as N so Nα ∼= N by Theorem 4.2.15.
Given Nα ∼= N , because N ∼=M there is Nα+1 an elementary extension

of Nα such that (N ,M) ∼= (Nα+1,Nα). Clearly, Nα+1 ∼= N .
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Let N ∗ =
⋃

α<ω1
Nα. Then, |N∗| = ℵ1 and if N ∗ |= φ(a), then a ∈ M ;

thus, N ∗ is an (ℵ1,ℵ0)-model.

Corollary 4.3.39 If T is ℵ1-categorical, then T has no Vaughtian pairs
and hence no (κ, λ) models for κ > λ ≥ ℵ0.

If T is ω-stable, we can prove a partial converse to Vaught’s Theorem.

Lemma 4.3.40 Suppose that T is ω-stable,M |= T , and |M | ≥ ℵ1. There
is a proper elementary extension N of M such that if Γ(w) is a countable
type over M realized in N , then Γ(w) is realized in M.

Proof

Claim There is an LM -formula φ(v) such that |[φ(v)]| ≥ ℵ1 and for all
ψ(v) ∈ LM either |[φ(v) ∧ ψ(v)]| ≤ ℵ0 or |[φ(v) ∧ ¬ψ(v)]| ≤ ℵ0.
Suppose not. Then for any LM -formula φ(v) with |[φ(v)]| ≥ ℵ1, there

is a formula ψ(v) such that [φ(v) ∧ ψ(v)] and [φ(v) ∧ ¬ψ(v)] are both
uncountable. Let φ∅ be the formula v = v. Then [φ∅] = |M | ≥ ℵ1. We can
build an infinite tree of formulas (φσ : σ ∈ 2<ω) such that for all σ ∈ 2<ω:
i) |[φσ]| ≥ ℵ1;
ii) [φσ,0] ∩ [φσ,1] = ∅.
As in Theorem 4.2.18 we can find a countable A ⊂ M such that

|SM1 (A)| = 2ℵ0 , contradicting ω-stability.

Let φ(v) be as above. We construct the type p of formulas that are true
for “almost all” elements satisfying φ(v). Let p = {ψ(v) : ψ an LM -formula
and |[φ(v) ∧ψ(v)]| ≥ ℵ1}. If ψ1, . . . , ψm ∈ p, then |[φ(v) ∧

∨
¬ψi(v)]| ≤ ℵ0.

Thus,
∧m
i=1 ψ(v) ∈ p and p is finitely satisfiable. Because |[φ(v)]| ≥ ℵ1, for

each LM -formula ψ(v) exactly one of ψ(v) and ¬ψ(v) is in p. Thus, p is a
complete type over M .
LetM′ be an elementary extension ofM containing c, a realization of p.

By Theorem 4.2.20, there is N ≺M′ prime over M ∪ {c} such that every
a ∈ N realizes an isolated type over M ∪ {c}.
Let Γ(w) be a countable type over M realized by b ∈ N . There is an

LM -formula θ(w, v) such that θ(w, c) isolates tpN (b/M ∪ {c}). Note that
∃w θ(w, v) ∈ p and

∀w (θ(w, v)→ γ(w)) ∈ p

for all γ(w) ∈ Γ. Let

∆ = {∃w θ(w, v)} ∪ {∀w (θ(w, v)→ γ(w)) : γ ∈ Γ}.

Then, ∆ ⊂ p is countable and, if c′ realizes ∆, then ∃w θ(w, c′), and if

θ(b
′
, c′), then b

′
realizes Γ.

Let δ0(v), δ1(v), . . . enumerate ∆. By choice of p, |{x ∈M : φ(x)}| ≥ ℵ1
and |{x ∈ M : φ(x) ∧ ¬(δ0(x) ∧ . . . ∧ δn(x))}| ≤ ℵ0 for all n < ω. Thus
|{x ∈ M : φ(x) and x realizes ∆}| ≥ ℵ1. Let c′ ∈ M realize ∆ and choose

b
′
such that M |= θ(b

′
, c′). Then, b

′
is a realization of Γ in M.
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Theorem 4.3.41 Suppose that T is ω-stable and there is an (ℵ1,ℵ0)-model
of T . If κ > ℵ1, then there is a (κ,ℵ0)-model of T .

Proof LetM |= T with |M | ≥ ℵ1 such that |φ(M)| = ℵ0 and letM≺N
be as in Lemma 4.3.40. The type Γ(v) = {φ(v)} ∪ {v 6= m : m ∈ M and
M |= φ(m)} is a countable type omitted in M and hence in N . Thus
φ(N ) = φ(M).
Iterating this construction, we build an elementary chain (Mα : α < κ)

such that M0 = M and Mα+1 6= Mα but φ(Mα) = φ(M0). If N =
⋃

α<κMα, then N is a (κ,ℵ0)-model of T .

Without the assumption of ω-stability, Theorem 4.3.41 is false (see Ex-
ercise 5.5.7).

4.4 The Number of Countable Models

Throughout this section, T will be a complete theory in a countable lan-
guage with infinite models.
For any infinite cardinal κ, we let I(T, κ) be the number of nonisomorphic

models of T of cardinality κ. In this section, we will look at the possible
values of I(T,ℵ0). We have already considered a number of examples.
• I(DLO,ℵ0) = 1.
• In Exercise 2.5.28, we gave examples of Tn where I(Tn,ℵ0) = n for

n = 3, 4, . . . ,.
• I(ACFp,ℵ0) = ℵ0.
• I(RCF, ℵ0) = I(Th(N),ℵ0) = 2ℵ0 .
Because there are at most 2ℵ0 nonisomorphic countable models of T ,

there are two natural questions:
Can we have I(T,ℵ0) = 2?
Can we have ℵ0 < I(T,ℵ0) < 2ℵ0?
Surprisingly, Vaught answered the first question negatively. If the Con-

tinuum Hypothesis is true, then the second question has a trivial negative
answer. Vaught conjectured that the answer is negative even when the
Continuum Hypothesis fails. This remains one of the deep open questions
of model theory. Although Vaught’s Conjecture has been proved for some
special classes of theories (for example, Shelah [93] proved Vaught’s Con-
jecture for ω-stable theories), the best general result is Morley’s theorem
that if I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .

ℵ0-categorical Theories

We begin by taking a closer look at ℵ0-categorical theories. In particular,
we show how to recognize ℵ0-categoricity by looking at the type space.
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Theorem 4.4.1 The following are equivalent:
i) T is ℵ0-categorical.
ii) Every type in Sn(T ) is isolated for n < ω.
iii) |Sn(T )| < ℵ0 for all n < ω.
iv) For each n < ω, there is a finite list of formulas

φ1(v1, . . . , vn), . . . , φm(v1, . . . , vn)

such that for every formula ψ(v1, . . . , vn)

T |= φi(v)↔ ψ(v)

for some i ≤ m.

Proof
i) ⇒ ii) If p ∈ Sn(T ) is nonisolated, then there is a countable M |= T

omitting p. There is also a countable N |= T realizing p. Clearly, M 6∼= N
so T is not ℵ0-categorical.

ii) ⇒ iii) Suppose that Sn(T ) is infinite. For each p ∈ Sn(T ), let φp
isolate p. Because

⋃

p∈Sn(T )
[φp] = Sn(T ) and Sn(T ) is compact, there are

p1, . . . , pm such that [φp1 ]∪ . . .∪ [φpm ] = Sn(T ). Because [φp] = {p}, Sn(T )
is finite.

iii) ⇒ iv) For each i, we can find a formula θi such that θi ∈ pi and
¬θi ∈ pj for i 6= j. Then, θi isolates pi. For any formula ψ(v1, . . . , vn),

T |= ψ(v)↔
∨

ψ∈pi

θi.

Thus, each ψ with free variables v1, . . . , vn is equivalent to
∨

i∈S

θi for some

S ⊆ {1, . . . ,m}. There are at most 2m such formulas.

iv) ⇒ i) LetM be a countable model of T . If a ∈Mn, let Sa = {i ≤ m :
M |= φi(a)}. Then, tpM(a) is isolated by

∧

i∈Sa

φi(v) ∧
∧

i6∈Sa

¬φ(v).

Thus, M is atomic and hence, by Theorem 4.2.8, prime. Because there is
a unique prime model, T is ℵ0-categorical.

Theorem 4.4.1 tells us a great deal about definability in ℵ0-categorical
theories. Recall that b is algebraic over A if there is a formula φ(v, w) and
a ∈ A such that M |= φ(b, a) and {x ∈ M : M |= φ(x, a)} is finite. Also,
acl(A) = {b ∈ A : b is algebraic over A}.

Corollary 4.4.2 Suppose that T is ℵ0-categorical. There is a function f :
N → N such that if M |= T , A ⊂M , and |A| ≤ n, then |acl(A)| ≤ f(n).
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Proof By Theorem 4.4.1, |Sn+1(T )| is finite. Let q1, . . . , qk list all n+ 1-
types. Let X = {i : qi contains a formula φ(v, w) such that M |=

∀v0, . . . , vN
∧N
i=0 φ(vi, w) →

∨

i<j≤N vi = vj for some N}. For i ∈ X ,
let Ni be the least N such that some formula φ,

∀v0, . . . , vN

N∧

i=0

φ(vi, w)→
∨

i<j

vi = vj ,

is in qi.
If a, b1, . . . , bn ∈ M and a is algebraic over b, then (a, b) realizes some

qi ∈ X and |{x : (x, b) realizes qi}| ≤ Ni. Thus,

|acl(b1, . . . , bn)| ≤
∑

i∈X

Ni.

Let
f(n) =

∑

i∈X

Ni.

Corollary 4.4.2 is very useful in understanding algebraic examples.

Corollary 4.4.3 If F is an infinite field, then the theory of F is not ℵ0-
categorical.

Proof By compactness, we can find an elementary extension K of F such
thatK contains a transcendental element t. Because t, t2, t3, . . . are distinct,
acl(t) is infinite. Thus, by Corollary 4.4.2, Th(F ) is not ℵ0-categorical.

For groups, the situation is more interesting. We study groups in the
multiplicative language L = {·, 1}. We say that a group G is locally finite
if, for any finite X ⊆ G, the subgroup generated by X is finite.

Corollary 4.4.4 Let G be an infinite group.
i) If Th(G) is ℵ0-categorical, then G is locally finite. Moreover, there is

a number b such that if g ∈ G, then gn = 1 for some n ≤ b (we say that G
has bounded exponent).
ii) If G is an infinite Abelian group of bounded exponent, then Th(G) is

ℵ0-categorical.

Proof
i) By Corollary 4.4.2, there is a function f : N → N such that if |X | ≤ n,

the group generated by X has size at most f(n). In particular, if g ∈ G,
then gn = 1 for some n ≤ f(1).
ii) Suppose that G is a countable abelian group of bounded exponent.

Then, there are q1, . . . , qm distinct prime powers such that

G ∼= (Z/q1Z)n1 ⊕ . . .⊕ (Z/qkZ)nk ⊕
∞⊕

i=1

Z/qk+1Z⊕ . . .⊕
∞⊕

i=1

Z/qmZ
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where ni ∈ N for i ≤ k. Because G is infinite, we must have k < m.

Let qi = plii , where pi is a prime. The group (Z/qiZ)ni has pnilii −p
ni(li−1)
i

elements of order exactly qi. If g ∈ (Z/qiZ)ni has order less than qi, then
there is h ∈ (Z/qiZ)ni with pih = g (i.e., g is pi-divisible).
Let T be the theory with the following axioms:
i) the axioms for Abelian groups;
ii) ∀x x � qi = 1;

iii) there are pnilii − p
ni(li−1)
i elements of order exactly qi that are not

pi-divisible for i ≤ k;
iv) there are infinitely many elements of order exactly qi that are not

pi-divisible for i > k.

By the remarks above G |= T . If H is a countable model of T , then
H ∼= G. Thus, T is ℵ0-categorical.

We now move on to Vaught’s result that I(T,ℵ0) 6= 2. We will use the
next lemma, although we leave the proof for the exercises.

Lemma 4.4.5 Let κ ≥ ℵ0. Let A ⊂ M with |A| < κ. Let MA be the LA-
structure obtained fromM by interpreting the new constant symbols in the
natural way. If M is κ-saturated, then so is MA.

Theorem 4.4.6 I(T,ℵ0) 6= 2.

Proof Suppose that I(T,ℵ0) = 2. By Corollary 4.3.8 ii), there isN a prime
model of T and M a countable saturated model of T . Because T is not
ℵ0-categorical, by Theorem 4.4.1, there is a nonisolated type p ∈ Sn(T ) for
some n. The type p is realized in M and omitted in N . Let a ∈M realize
p. Let T ∗ be the La-theory ofMa (in the notation of the previous lemma).
By Theorem 4.4.1, there are infinitely many T -inequivalent formulas in

the free variables v1, . . . , vn. As they are still T ∗-inequivalent, T ∗ is not
ℵ0-categorical. By Lemma 4.4.5,Ma is a saturated La-structure. Thus, by
Corollary 4.3.8 i), T ∗ has a countable atomic model A. Let B denote the
L-reduct of B. Because A |= T ∗, B contains a realization of p, thus B 6∼= N .
Because T ∗ is not ℵ0-categorical, there is a nonisolated La-type. This type
is not realized in A. Thus A is not saturated. If B were saturated, then, by
Lemma 4.4.5, A would be saturated. Thus, B 6∼=M and I(T,ℵ0) ≥ 3.

Morley’s Analysis of Countable Models

Next we prove Morley’s theorem that if I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .
As in the proof of Theorem 2.4.15 , we will use infinitary logic to analyze
countable models.

Definition 4.4.7 A fragment of Lω1,ω is a set of Lω1,ω-formulas contain-
ing all first-order formulas and closed under subformulas, finite Boolean
combinations, quantification, and change of free variables.
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If F is a fragment of Lω1,ω, we say that M≡F N if

M |= φ if and only if N |= φ

for all sentences φ ∈ F .
If F is a fragment of Lω1,ω, we say that p ⊂ F is an F -type if

there is a countable L-structure M and a1, . . . , an ∈ M such that p =
{φ(v1, . . . , vn) ∈ F : M |= φ(a)}. Let Sn(F, T ) be the set of all F -types
realized by some n-tuple in some countable model of T .

We will count models by counting types for various fragments. If
|Sn(F, T )| = 2ℵ0 for some countable fragment F , then, because a countable
model can realize only countably many types, we must have I(T,ℵ0) = 2ℵ0 .
Next, we look at a case where we have the minimal number of types for

all countable fragments.

Definition 4.4.8 We say that an L-theory T is scattered if |Sn(F, T )| is
countable for all countable fragments F of Lω1,ω and all n < ω.

In particular, if T is scattered, then for countable fragments F , there are
only countably many ≡F -classes of countable models of T . We will show
that if T is scattered, then I(T,ℵ0) ≤ ℵ1.
Suppose that T is scattered. We build a sequence of countable fragments

(Lα : α < ω1) as follows. Let L0 be all first-order L-formulas. If α is a limit
ordinal, then Lα =

⋃

β<α Lβ.
Suppose that Lα is a countable fragment. For p ∈ Sn(Lα, T ), let

Φp(v1, . . . , vn) be the Lω1,ω-formula
∧

φ∈p

φ. This is an Lω1,ω-formula be-

cause Lα is countable. Let Lα+1 be the smallest fragment containing Φp
for p ∈ Sn(Lα, T ), n < ω. Because T is scattered, Lα+1 is a countable
fragment.
If M is a countable model of T and a1, . . . , an ∈ M , let tpMα (a) ∈

Sn(Lα, T ) be the Lα-type realized by a in M .

Lemma 4.4.9 For each countable M |= T , there is an ordinal γ < ω1
such that if a, b ∈ Mn and tpMγ (a) = tpMγ (b), then tpMα (a) = tpMα (b) for
all α < ω1.
We call the least such γ the height of M.

Proof Note first that if tpMα (a) 6= tpMα (b), then tpMβ (a) 6= tpMβ (b) for all

β > α. For a, b in Mn, let

f(a, b) =

{

−1 tpMα (a) = tpMα (b) for all α < ω1
α if α is least tpMα (a) 6= tpMα (b).

Because M is countable, we can find γ < ω1 such that γ > f(a, b) for all
a, b ∈Mn and n < ω.
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Lemma 4.4.10 Suppose that M and N are countable models of T such
that M has height γ and M≡Lγ+1 N . If a, b ∈ Nn and tpNγ (a) = tpNγ (b),

then tpNγ+1(a) = tpNγ+1(b).

Proof Let p = tpNγ (a) = tpNγ (b) and let ψ(v) be an Lγ+1-formula. Let Θ
be the Lγ+1-formula

∀v∀w ((Φp(v) ∧ Φp(w))→ (ψ(v)↔ ψ(w))).

Because γ is the height of M, M |= Θ. Because N ≡Lγ+1 M, N |= Θ.

Thus tpNγ+1(a) = tpNγ+1(b).

Lemma 4.4.11 If M and N are countable models of T such that M has
height γ and M≡Lγ+1 N , then M∼= N .

Proof Let a0, a1, . . . list M and let b0, b1, . . . list N . We build a sequence
of finite partial embeddings f0 ⊆ f1 ⊆ . . . such that if a is the domain of fn,
then tpMγ (a) = tpNγ (fn(a)). We will ensure that an is in the domain of fn+1
and bn is in the image of fn+1. Then f =

⋃
fn is the desired isomorphism.

Let f0 = ∅. Suppose that a is the domain of fn and fn(a) = b. Let
p = tpMγ (a, an). We must find e ∈ N such that tpNγ (b, e) = p. Because

M |= ∃v∃w
∧

φ∈p

φ(v, w)

and this is an Lγ+1-sentence,

N |= ∃v∃w
∧

φ∈p

φ(v, w).

Let (c, d) ∈ N realize p. Because a and c realize the same Lγ-type, c and
b realize the same Lγ-type. By Lemma 4.4.10, c and b realize the same
Lγ+1-type. Because

N |= ∃w
∧

φ∈p

φ(c, w)

and this is an Lγ+1-formula,

N |= ∃w
∧

φ∈p

φ(b, w).

Thus, there is e ∈ N such that p = tpNγ (b, e).

By a symmetric argument, we can find s ∈M such that tpMγ (a, an, s) =

tpNγ (b, e, bn). Let fn+1 = fn ∪ {(an, e), (s, bn)}.

Theorem 4.4.12 If T is scattered, then I(T,ℵ0) ≤ ℵ1.
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Proof For each countable M |= T , let i(M) = (γ, tpMγ+1(∅)), where γ is

the height of M. Note that M ≡Lα N if and only if tpMα (∅) = tpNα (∅).
By Lemma 4.4.11, if M and N are countable models of T , then M ∼= N
if and only i(M) = i(N ). There are only ℵ1 possible heights and, for any
given α, there are only ℵ0 possibilities for tpMα (∅). Thus I(T,ℵ0) ≤ ℵ1.

To finish the proof of Morley’s theorem, we will show that if T is not
scattered, then |Sn(F, T )| = 2ℵ0 for some countable fragment F . Although
this is a generalization of Theorem 4.2.11 i), complications arise because we
do not have the Compactness Theorem in Lω1,ω. The proof requires some
ideas from descriptive set theory.

Suppose F is a fragment of Lω1,ω. We will consider L-structures where
the universe of the models is ω. If M = (ω, . . .) is an L-structure, the
F -diagram of M is {φ(v0, . . . , vn) ∈ F :M |= φ(0, 1, . . . , n)}.
We consider D(F, T ) the set of all possible F -diagrams of models of T .

There is a natural bijection between the power set P(F ) and 2F , the set
of all functions from F to {0, 1} (identifying a set with its characteristic
function). BecauseD(F, T ) is a set of subsets of F , we can viewD(F, T ) as a
subset of 2F . If we think of {0, 1} as the two-element space with the discrete
topology, then we can give 2F the product topology. The topology on 2F

has a basis of clopen sets of the form {f ∈ 2F : ∀x ∈ F0 f(x) = σ(x)} where
F0 ⊆ F is finite and σ : F0 → 2. If F is countable, then 2F is homeomorphic
to 2ω.

Lemma 4.4.13 If F is a countable fragment of Lω1,ω, then D(F, T ) is a
Borel subset of 2F .2

Proof Let

E0 = {f ∈ 2F : f(φ) = 1⇔ f(¬φ) = 0 for all φ ∈ F}

=
⋂

φ∈F

{f ∈ 2F : (f(φ) = 0 ∧ f(¬φ) = 1) ∨ (f(φ) = 1 ∧ f(¬φ) = 0)}.

Because E0 is an intersection of clopen sets, E0 is closed.
Let E1 = {f ∈ 2F : f(∃vφ(v)) = 1 if and only if f(φ(vi)) = 1 for some i

for all φ ∈ F with one free variable}. If

E+1,φ = {f ∈ 2F : f(∃vφ(v)) = 1} ∩
∞⋃

i=0

{f ∈ 2F : f(φ(vi)) = 1}

and

E−1,φ = {f ∈ 2F : f(∃vφ(v)) = 0} ∩
∞⋂

i=0

{f ∈ 2F : f(φ(vi)) = 0},

2Recall that the collection of Borel subsets of 2F is the smallest collection of sets
containing the open sets and closed under complement and countable unions and inter-
sections.
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then
E1 =

⋂

φ∈F

(E+1,φ ∪E
−
1,φ)

and E1 is Borel.

If ψ =
∧

i∈I

φi and ψ ∈ F , let

E2,ψ = {f ∈ 2F : f(ψ) = 1 if and only if f(φi) = 1 for all i ∈ I}.

Because I is countable, we argue as above that E2,ψ is Borel. Thus

E2 =
⋂{

E2,ψ : ψ =
∧

i∈I

φi and ψ ∈ F
}

is Borel. Similarly the following sets are Borel:
E3 = {f ∈ 2F : f(vi = vj) = 0 for all i 6= j},
E4 = {f ∈ 2F : f(vi = vi) = 1 for all i},
E5 = {f ∈ 2F : f(vi = vj → vj = vi) = 1 for all i, j},
E6 = {f ∈ 2F : f((vi = vj ∧ vj = vk)→ vi = vk) = 1 for all i, j, k}, and
E7 = {f ∈ 2F : f(φ) = 1 for all φ ∈ T}.

Let D = E0 ∩ . . .∩E7. Clearly, D is Borel. We claim that D = D(F, T ).
It is easy to see that if M |= T with universe ω, then the F -diagram ofM
is in D.
Suppose that f ∈ D. We build an L-structure Mf with universe ω. If

R is an n-ary relation symbol of L, then (i1, . . . , in) ∈ RMf if and only if
f(R(vi1 , . . . , vin)) = 1. Let g be an n-ary function symbol of L. Because f ∈
E7, f(∃vg(vi1 , . . . , vin) = v) = 1. Because f ∈ E1, f(g(vi1 , . . . , iin) = vj) =
1 for some j. Let gMf (i1, . . . , in) = j. Because f ∈ D, f(g(vi1 , . . . , iin) =
vk) = 0 for j 6= k and gMf is well-defined. Now, using the fact that f ∈ D,
we can do an induction on formulas to show that

Mf |= φ(i1, . . . , in)⇔ f(φ(vi1 , . . . , vin)) = 1

for all φ ∈ F . Thus, f is in D(F, T ).

We may also view Sn(F, T ) as a subset of 2F . Although this set may not
be Borel, it is not much more complicated.
We construct a continuous map Ψ such that Sn(F, T ) is the image of

D(F, T ) under this map. For f ∈ 2F , let Ψ(f) ∈ 2F , where

Ψ(f)(φ) =
{
1 φ has free variable v0, . . . , vn−1 and f(φ) = 1
0 otherwise.

Because Ψ(f)(φ) = Ψ(g)(φ) if f(φ) = g(φ), Ψ is continuous. If p ∈
Sn(F, T ), then there is M |= T with universe ω such that (0, 1, . . . , n− 1)
realizes p inM. Thus, the space of F -types Sn(F, T ) is the image ofD(F, T )
under Ψ.
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We now need a classical result from descriptive set theory.

Definition 4.4.14 If |X | = ℵ0, we say that Y ⊆ 2X is analytic if there is
a continuous map τ : 2X → 2X and a Borel set B ⊆ 2X such that Y is the
image of B under τ .

By the remarks above Sn(F, T ) is an analytic subset of 2F for any count-
able fragment F .

Theorem 4.4.15 Suppose that X is countable and Y ⊆ 2X is analytic. If
|Y | > ℵ0, then |Y | = 2ℵ0 .

Proof See [52] 14.13.

Theorem 4.4.16 Let T be a complete theory in a countable language. If
I(T,ℵ0) > ℵ1, then I(T,ℵ0) = 2ℵ0 .

Proof For any countable fragment F , Sn(F, T ) is analytic. Thus, by The-
orem 4.4.15, we either have |Sn(F, T )| ≤ ℵ0 or |Sn(F, T )| = 2ℵ0 . If there is
any countable fragment F , where |Sn(F, T )| = 2ℵ0 , then I(T,ℵ0) = 2ℵ0 . If
not, then T is scattered and, by Theorem 4.4.12, I(T,ℵ0) ≤ ℵ1.

4.5 Exercises and Remarks

We assume throughout that L is a countable language and that T is an
L-theory with only infinite models.

Exercise 4.5.1 a) LetM = (X,<) be a dense linear order, let A ⊂M and
b, c ∈ Mn with b1 < . . . < bn and c1 < . . . < cn. Show that tpM(a/A) =
tpM(b/A) if and only if bi < a ⇔ ci < a and bi > a ⇔ ci < a for all
i = 1, . . . , n and a ∈ A. In particular, show that any two elements of X
realize the same 1-type over ∅.
b) If a, b ∈ Q, then tpQ(a/N) = tpQ(b/N) if and only if there is an

automorphism σ of Q fixing N pointwise with σ(a) = b.
c) Let A = {1 − 1

n
: n = 1, 2, . . .} ∪ {2 + 1

n
: n = 1, 2, . . .}. Show that

1 and 2 realize the same type over A, but there is no automorphism of Q
fixing A pointwise sending 1 to 2.

Exercise 4.5.2 Let T be the theory of (Z, s) where s(x) = x+1. Determine
the types in Sn(T ) for each n. Which types are isolated? Do the same for
(Z, <, s).

Exercise 4.5.3 Recall that for A ⊂ M , dcl(A) denotes the definable
closure of A (see Exercise 1.4.10). Show that if a, b ∈Mn and tpM(a/A) =
tpM(b/A), then tpM(a/dcl(A)) = tpM(b/dcl(A)).

Exercise 4.5.4 Suppose thatM is an L-structure, A ⊆M , b ∈M , and b
is algebraic over A (see Exercise 1.4.11). Show that tpM(b/A) is isolated.
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Exercise 4.5.5 Let K be an algebraically closed field and k be a subfield
of K. What are the isolated types in SK1 (k)?

Exercise 4.5.6 Let R be a real closed field. Show that 1-types over R
correspond to cuts in the ordering (R,<).

Exercise 4.5.7 Let T be a complete extension of Peano arithmetic. Show
that |S1(T )| = 2ℵ0 . [Hint: Let pn be the nth prime number. For X ⊆ N, let
ΓX(v) = {pn divides v : n ∈ X} ∪ {pn does not divide v : n 6∈ X}.]

Exercise 4.5.8 † If A is a commutative ring, then an ideal P ⊂ A is real
if whenever a21 + . . .+ a2n ∈ P , then a1, . . . , an ∈ P .
a) Show that a prime ideal P is real if and only if A/P is orderable.
Let Specr(A) = {(P,<) : P ⊂ A is a real prime ideal and < is an

ordering of A/P}. We call Specr(A) the real spectrum of A. If a ∈ A, let
Xa = {(P,<) ∈ Specr(A) : a/P > 0 in A/P}. We topologize Specr(A) by
taking the weakest topology in which the sets Xa are open.
If R is a real closed field, k is a subfield of R, and p ∈ SRn (k), let Pp =

{f ∈ k[X1, . . . , Xn] : f(v1, . . . , vn) = 0 ∈ p}.
b) Show that Pp is a real prime ideal.
c) Show that we can order k[X ]/Pp by f(X)/Pp <p g(X)/Pp if and only

if f(v) < g(v) ∈ p. Thus (Pp, <p) ∈ Specr(k[X ]).
d) Show that p 7→ (Pp, <p) is a continuous bijection between SRn (k) and

Specr(k[X]).
e) Show that Specr(k[X]) is compact.
f) What are the isolated types in SR1 (k)?

Exercise 4.5.9 Let x and y be algebraically independent over R. Order
R(x, y) such that x > r for all r ∈ R and y > xn for all n > 0. Let F
be the real closure of R(x, y). Show that tpF (x) = tpF (y), but there is no
automorphism of F sending x to y.

Exercise 4.5.10 Suppose that A ⊆ B, θ(v) is a formula with parameters
from A, and θ isolates tpM(a/B). Then, θ isolates tpM(a/A).

Exercise 4.5.11 Suppose that A ⊂M , a, b ∈M such that tpM(a, b/A) is
isolated. Show that tpM(a/A, b) is isolated.
Combining this with Lemma s4.2.9 and 4.2.21, we have shown that

tpM(a, b/A) is isolated if and only if tpM(a/A, b) is isolated and tpM(b/A)
is isolated.

Exercise 4.5.12 Prove Lemma 4.1.9 iii).

Exercise 4.5.13 Let ∆ be a set of L-formulas closed under ∧,∨,¬ and
let M be an L-structure. Let S∆n (T ) = {Σ ⊂ ∆ : Σ ∪ T is satisfiable and
φ ∈ Σ or ¬φ ∈ Σ for all φ ∈ ∆}.
a) Show that for all p ∈ S∆n (T ) there is q ∈ Sn(T ) with p ⊆ q.
b) Suppose that for each n and each p ∈ S∆n (T ) there is a unique q ∈

Sn(T ) with p ⊆ q. Show that for every L-formula φ(v) there is ψ(v) ∈ ∆
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such that T |= φ(v)↔ ψ(v). In particular, if every quantifier-free type has
a unique extension to a complete type, then T has quantifier elimination.

Exercise 4.5.14 † We continue with the notation from Exercise 2.5.24.
Suppose that p is a non-isolated n-type over ∅ and c1, . . . , cn are constants
in L∗. Let D′p,c = {Σ ∈ P : ¬φ(c) ∈ Σ for some φ(v1, . . . , vn) ∈ p}.
a) Show that D′p,c is dense.
b) Use a) and Exercise 2.5.24 to give another proof of Theorem 4.2.4.
c) Assume that Martin’s Axiom is true (see Appendix A). Suppose that

L is a countable language, T is an L-theory, and X is a collection of noniso-
lated types over ∅ with |X | < 2ℵ0 . Show that there is a countable M |= T
that omits all of the types p ∈ X .

Exercise 4.5.15 We say that a linear order (X,<) is ℵ1-like if |X | = ℵ1
but |{y : y < x}| ≤ ℵ0 for all x ∈ X .
Show that there is an ℵ1-like model of Peano arithmetic.

Exercise 4.5.16 Let Ln = {U0, U1, . . . , Un}, where U0, U1, . . . , Un are
unary predicates. Let Tn be the Ln-theory that asserts that for each
X ⊆ {0, . . . , n} there are infinitely many x such that Ui(x) for i ∈ X
and ¬Ui(x) for i 6∈ X .
a) For which κ is Tn κ-categorical?
b) Show that Tn is complete.
c) Show that Tn has quantifier elimination. [Remark: It is probably eas-

iest to do this explicitly.]
Let L =

⋃
Ln. For X and Y finite subsets of N, let ΦX,Y be the sentence

∃x
∧

i∈X

Ui(x) ∧
∧

i∈Y

¬Ui(x).

Let T be the L-theory {ΦX,Y : X,Y disjoint finite subsets of N}.
d) Suppose that M |= T . Show that M |= Tn for all n.
e) Show that T is complete and has quantifier elimination.
f) For X ⊂ N, let ΓX = {Ui(v) : i ∈ X} ∪ {¬Ui(v) : i 6∈ X}. Show that

there is a unique 1-type pX over ∅ with pX ⊃ ΓX .
g) Show that X 7→ pX is a bijection between 2ω and SM1 (∅).
h) Show that SM1 (∅) has no isolated points and hence has no prime

model.
i) If 2ω is given the product topology, then X 7→ pX is a homeomorphism

between 2ω and SM1 (∅).
j) Describe all 2-types over ∅.
k) Show that T is κ-stable for all κ ≥ 2ℵ0 .

Exercise 4.5.17 Show that every algebraically closed field is homoge-
neous. Show that any uncountable algebraically closed field is saturated.

Exercise 4.5.18 Suppose that M = (R,+, ·, <, 0, 1) is a real closed
field. Show that M is κ-saturated if and only if the ordering (R,<) is
κ-saturated.
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Exercise 4.5.19 a) Show that the theory of Z-groups is κ-stable for all
κ ≥ 2ℵ0 .
b) Does the theory of Z-groups have prime models over sets?

Exercise 4.5.20 Let L = {E} be the language with a single binary
relation symbol. Let T be the theory of an equivalence relation where for
each n ∈ ω there is a unique equivalence class of size n.
a) Show that T is ω-stable but not ℵ1-categorical.
b) Exhibit a Vaughtian pair of models of T .

Exercise 4.5.21 Show that DLO is not κ-stable for any infinite κ.

Exercise 4.5.22 Let L = {E1, E2, E3, . . .}, and let T be the theory assert-
ing that:
i) each En is an equivalence relation where every equivalence class is

infinite;
ii) if xEi+1y, then xEiy.
We say that E1, E2, . . . is a family of refining equivalence relations.
Let T 2 ⊃ T be the theory that asserts that E1 has two classes and each

Ei class is the union of two infinite Ei+1 classes.
Let T∞ ⊃ T be the theory that asserts that E1 has infinitely many classes

and each Ei class is the union of infinitely many infinite Ei+1 classes.
For example, if En is the equivalence relation f |n = g|n on ωω, then

(ωω, E1, E2, . . .) |= T∞ and (2ω, E1, E2, . . .) |= T 2. Both T 2 and T∞ are
complete theories with quantifier elimination.
a) Show that T 2 is κ-stable for all κ ≥ 2ℵ0 .
b) Show that T∞ is κ-stable if and only if κ such that κℵ0 = κ.

Exercise 4.5.23 Suppose that M is interpretable in N and κ ≥ ℵ0.
a) Show that if M is κ-stable, then N is κ-stable.
b) Show that if M is κ-stable, then Meq is κ-stable.
c) Show that if M is κ-saturated, then N is κ-saturated.

Exercise 4.5.24 We say that M |= T is minimal if M has no proper
elementary submodels.
a) Show that the field of algebraic numbers is a minimal model of ACF

and that the field of real algebraic numbers is a minimal model of RCF.
b) Give an example of a theory with a prime model that is not minimal.

Exercise 4.5.25 Suppose that T is a theory in a countable language with
a prime modelM that is not minimal. We will show that T has an atomic
model of size ℵ1.
a) Show that there is an elementary embedding j : M →M such that

j(M) 6=M.
b) Use a) to show that there is M≺N , M∼= N and M 6= N .
c) Show that if M0 ≺ M1 ≺ M2 . . . and each Mi

∼=M, then
⋃
Mi

∼=
M. [Hint: Use the uniqueness of atomic models.]
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d) Use b) and c) to construct an elementary chain (Mα : α < ω1) such
that each Mα

∼= M and Mα 6= Mα+1. Let M
′ =

⋃

α<ω1
Mα. Show that

M′ is atomic and |M ′| = ℵ1.
e) Show that if T is not ℵ0-categorical, then T has a nonatomic model

of size ℵ1. Conclude that if T is ℵ1-categorical, but not ℵ0-categorical,
then any prime model is minimal. (We will prove in Corollary 5.2.10 that
ℵ1-categorical theories are ω-stable, thus there always is a prime model.)
f) Give an example of a theory that is ℵ1-categorical and ℵ0-categorical

but has a prime model that is not minimal.

Exercise 4.5.26 Let L = {U,<}, where U is a unary predicate and < is
a binary relation symbol. Let T be the L-theory extending DLO where U
picks out a subset that is dense and has a dense complement. Let M |= T
and let A = UM. Show that there is no prime model over A.

Exercise 4.5.27 Suppose that A ⊂ M, |A| ≤ ℵ0, M0, and M1 are
elementary submodels of M with A ⊆ M0 ∩ M1, and M0 and M1 are
prime model extensions of A. Then, M0 and M1 are isomorphic over A
(i.e., there is an isomorphism f :M0 →M1 that fixes A pointwise).

Exercise 4.5.28 Suppose that T is an o-minimal theory, M |= T , and
A ⊆M . Show that the isolated types in A ⊆M are dense. Conclude that
o-minimal theories have prime models over sets.

Exercise 4.5.29 Show that the union of an elementary chain of ℵ0-
homogeneous structures is ℵ0-homogeneous.

Exercise 4.5.30 Show that if T is ℵ0-categorical, then any homogeneous
model is saturated. In particular, a dense linear order is saturated if and
only if it is homogeneous.

Exercise 4.5.31 Show that ifM is κ-saturated, then every infinite defin-
able subset of Mk has cardinality at least κ.

Exercise 4.5.32 Prove Lemma 4.4.5.

Exercise 4.5.33 Suppose that M is κ-saturated, A ⊂M , and |A| < κ. If
p ∈ SMn (A) has only finitely many realizations inM and a realizes p, then
a ∈ acl(p).

Exercise 4.5.34 Suppose that M is κ-saturated, and (φi(v) : i ∈ I) and
(θj(v) : j ∈ J) are sequences of LM -formulas such that |I |, |J | < κ and

M |=
∨

i∈I

φi(v)↔ ¬




∨

j∈J

θj(v)



 .

Show that there are finite sets I0 ⊆ I and J0 ⊆ J such that

M |=
∨

i∈I

φi(v)↔
∨

i∈I0

φi(v).
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Exercise 4.5.35 (Expandability of Saturated Models) Suppose that κ ≥
ℵ0 and M is a saturated L-structure of cardinality κ. Let L∗ ⊃ L with
|L∗| ≤ κ. Suppose that T is an L∗-theory consistent with Th(M). We
show that we can interpret the symbols in L∗ \ L to obtain an expansion
M∗ of M with M∗ |= T .
Let L∗M be the language obtained by adding to L∗ constants for every

element of M. Let (φα : α < κ) enumerate all L∗M -sentences. We build an
increasing sequence of L∗-theories (Tα : α < κ) such that Tα∪T∪Diagel(M)
is satisfiable and |Tα| < κ for all α < κ (indeed |Tα+1| ≤ |Tα|+ 2).
Let T0 = ∅. For α a limit ordinal, let Tα =

⋃

β<α Tβ. Suppose that we
have Tα such that |Tα| < κ and Tα ∪ T ∪ Diagel(M) is satisfiable.

a) Show that either Tα ∪ {φα} ∪ T ∪ Diagel(M) is satisfiable or Tα ∪
{¬φα} ∪ T ∪ Diagel(M) is satisfiable.
b) Show that if φα is ∃v ψ(v) and Tα∪{φα}∪T ∪Diagel(M) is satisfiable,

then for some a ∈M , Tα ∪{φα, ψ(a)}∪T ∪Diagel(M) is satisfiable. [Hint:
Let A ⊂M be all parameters fromM occurring in formulas in Tα ∪ {φα}.
Let Γ(v) be all of the LA-consequences of Tα∪{φα, ψ(v)}∪T ∪Diagel(M).
Show that Γ(v) is satisfiable and hence, by saturation, must be realized by
some a in M. Show that Tα ∪ {φα, ψ(a)} ∪ T ∪ Diagel(M) is satisfiable.]
c) Show that we can always choose Tα+1 such that
i) Tα+1 ∪ T ∪ Diagel(M) is satisfiable;
ii) either φα ∈ Tα+1 or ¬φα ∈ Tα+1;
iii) if φα ∈ Tα+1 and φα is ∃v ψ(v), then ψ(a) ∈ Tα+1 for some a ∈M ;
iv) |Tα+1| ≤ |Tα|+ 2 < κ.

Let T ∗ =
⋃

α<κ Tα.

d) Show that T ∗ is a complete L∗M -theory with the witness property and
T ∗ ⊃ T ∪ Diagel(M). Let N be the canonical model of T ∗. Show that as
an L-structure N is exactlyM. Thus, N is the desired expansion ofM to
a model of T .

Exercise 4.5.36 Let L = {U0, U1, . . .} ∪ {s0, s1, . . .}. We describe an L-
structure M with universe N× Z. Let UMi = {i} × Z and

si((j, x)) =

{
(j, x) if i 6= j
(j, x + 1) if i = j.

Let T be the full theory ofM. Basically, T is the theory of countably many
copies of (Z, s).
a) Show that |Sn(T )| = ℵ0 for all n. (Either show or assume that T has

quantifier elimination.)
b) Show that I(T,ℵ0) = 2ℵ0 .

Exercise 4.5.37 (ℵ1-saturation of Ultraproducts) Suppose that U is a non
principal ultrafilter on ω. Let (M0,M1, . . .) be a sequence of L-structures,
and let M∗ =

∏
Mi/U . We will show that M∗ is ℵ1-saturated.
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Let A ⊂M∗ be countable. For each a ∈ A, choose fa ∈
∏
Mi such that

a = fa/∼. Let Γ(v) = {φi(v) : i < ω} be a set of LA-formulas such that
Γ(v) ∪ ThA(M∗) is satisfiable. By taking conjunctions, we may, without
loss of generality, assume that φi+1(v) → φi(v) for i < ω. Let φi(v) be
θi(v, ai,1, . . . , ai,mi

), where θi is an L-formula.
a) Let Di = {n < ω :Mn |= ∃vθi(v, fai,1(n), . . . , fai,mi

(n))}. Show that
Di ∈ U .
b) Find g ∈

∏
Mi such that if i ≤ n and n ∈ Di, then

Mn |= θi(g(n), fai,1(n), . . . , fai,mi
(n)).

c) Show that g realizes Γ(v). Where do you use the fact that U is non-
principal? Conclude thatM∗ is ℵ1-saturated. Show that if the Continuum
Hypothesis holds, then M∗ is saturated.

Exercise 4.5.38 (Recursively Saturated Models) Let L be a recursive
language. We say that M is recursively saturated if whenever A ⊂ M is
finite and Γ is a recursive (possibly incomplete) n-type over A, then Γ is
realized in M. In particular, every ℵ0-saturated structure is recursively
saturated.
a) Suppose that N is a countable model of T . Show that there is a

countable recursively saturated M with N ≺M.
b) Show that if M is recursively saturated, then M is ℵ0-homogeneous.

[Hint: If tp(a) = tp(b), consider the set of formulas {φ(v, b) ↔ φ(c, a) : φ
an L-formula}.]
c) Show that if M0 ≺ M1 ≺ . . . is an elementary chain of recursively

saturated models, then M =
⋃

n∈ωMn is recursively saturated.
d) Suppose M,N |= T and such that (M,N ) is a countable recursively

saturated model of the theory of pairs of models of T (as in our proof of
Vaught’s Two-Cardinal Theorem). ShowM∼= N . [Hint: Recall that count-
able ℵ0-homogeneous models are isomorphic if and only if they realize the
same types.] Use this to give a simplified proof of Vaught’s Two-Cardinal
Theorem.
e) Let M be a recursively saturated L-structure. Suppose that L∗ ⊃ L

is recursive and T is a recursive L∗-theory such that Diagel(M) ∪ T is
satisfiable. Show that there is an expansion ofM∗ ofM such thatM∗ |= T .
[Hint: Follow the proof of expandability of saturated models.] Show that
we can make M∗ recursively saturated.

Exercise 4.5.39 (Robinson’s Consistency Theorem) Let L0 and L1 be
languages, and let L = L1 ∩ L2. Let T be a complete L-theory and let
Ti ⊃ T be a satisfiable Li-theory for i = 1, 2.
a) Show that there is a recursively saturated structure (M1,M2) where

Mi |= Ti for i = 1, 2.
b) Let Ni be the L-reduct ofMi. Show that (N1,N2) is still recursively

saturated and that N1 ∼= N2.
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c) Conclude that we can view M1 and M2 as expansions of a single
L-structure and that T1 ∪ T2 is satisfiable.

Exercise 4.5.40 † Let M be a nonstandard model of Peano arithmetic.
a) Let A be a finite subset of M, and let Γ be a recursive type over A

of bounded quantifier complexity (i.e., there is n such that all formulas in
Γ have at most n-quantifiers). Show that Γ is realized in M. [Hint: (see
[51] §9). There is a formula S(v, w) that is a truth definition for formulas
with at most n quantifiers. In other words if dφe is the Gödel code for a
formula φ(v1, . . . , vn) and dbe codes a sequence b = (b1, . . . , bn) ∈Mn, then
M |= S(dφe, b) ↔ φ(b1, . . . , bn). Because Γ is recursive, there is a formula
G(dφe) if and only if φ(v, a) ∈ Γ. Because Γ is satisfiable for all n < ω

M |= ∃b∀m < n G(m)→ S(m, d(b, a)e)e.

Apply overspill (Exercise 2.5.7).]
b) Let (G,+, <, 0) be the ordered additive group of M. Use a) to show

that G is a recursively saturated model of Presburger arithmetic.

Exercise 4.5.41 † (Tennenbaum’s Theorem) IfM is a nonstandard model
of Peano arithmetic and a ∈M , let r(a) = {n ∈ N : pn divides a}, where pn
is the nth prime number. Let SS(M) = {r(a) : a ∈ M}. We call SS(M)
the Scott set of M.

a) Suppose that X ∈ SS(M) and Y is recursive in X , then Y ∈ SS(M).
[Hint: use Exercise 4.5.40.]
b) We say that T ⊆ 2<ω is a tree if whenever σ ∈ T and τ ⊂ σ, then

τ ∈ T . We say that f ∈ 2ω is an infinite path through T if f |n ∈ T for all
n < ω. Show that if X ∈ SS(M) and T is an infinite tree recursive in X ,
then there is Y ∈ SS(M) and f an infinite path through T recursive in Y .
[Hint: use Exercise 4.5.40.]
c) Let φ0, φ1, . . . be a list of all partial recursive functions. We write

φi(n) ↓= j if on input n Turing machine i halts with output j. Let A = {i :
φi(i) ↓= 0} and B = {i : φi(i) ↓= 1}. Show that there is no recursive set C
such that A ⊆ C and B ∩ C = ∅. We call A and B recursively inseparable.
[Hint: Suppose that φi is the characteristic function of C and ask whether
i ∈ C.]
d) There is a recursive infinite tree T ⊆ 2<ω with no recursive infinite

paths. [Hint: Let T = {σ ∈ 2<ω : if i < |σ| and Turing machine i on input
i halts by stage |σ| with output j ∈ {0, 1}, then σ(i) = j}. Show that if f
is a recursive infinite path through T , then C = {i : f(i) = 0} contradicts
c).]
e) We can find an isomorphic copy ofM with universe ω. Thus, we may

assume thatM = (ω,⊕,⊗). Show that r(a) is recursive in ⊕ for all a ∈M .
Conclude that ⊕ is not recursive.

Exercise 4.5.42 Show that there is no Vaughtian pair of real closed fields.
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Exercise 4.5.43 Let k be a differential field, K |= DCF, and k ⊆ K. The
ring of differential polynomials in X = (X1, . . . , Xn) is the ring

k{X1, . . . , Xn} = k[X1, . . . , Xn, X
′
1, . . . , X

′
n, . . . , X

(m)
1 , . . . , X(m)n , . . .].

We extend the derivation from k to k{X} by letting δ(X
(m)
n ) = X

(m+1)
n .

An ideal I ⊂ k{X} is called a differential ideal if δ(f) ∈ I whenever f ∈ I .
a) For p ∈ SKn (k), let Ip = {f ∈ k{X} : f(v1, . . . , vn) = 0 ∈ p}. Show

that Ip is a differential prime ideal.
b) Show that if I ⊂ k{X} is a differential prime ideal, then I = Ip for

some p ∈ SKn (k). Thus, p 7→ Ip is a bijection between complete n-types
over k and differential prime ideals in k{X}.
c) The Ritt–Raudenbusch Basis Theorem (see [50]) asserts that every

differential prime ideal in k{X} is finitely generated. Use this to show that
DCF is ω-stable.
d) If K |= DCF, we say that X ⊆ Kn is Kolchin closed if X is a finite

union of sets of the form {x ∈ Kn : f1(x) = . . . = fm(x) = 0} where
f1, . . . , fm ∈ K{X}. Prove that there are no infinite descending chains of
Kolchin closed sets.
e) (Differential Nullstellensatz) Suppose that K |= DCF, P ⊆

K{X1, . . . , Xn} is a differential prime ideal and g ∈ K{X} \ P . Show that
there is a ∈ Kn such that f(a) = 0 for all f ∈ P but g(a) 6= 0.
f) (Existence of Differential Closures) Suppose that k is a differentially

closed field and k ⊆ K |= DCF. We say that K is a differential closure of
k if whenever k ⊆ L and L |= DCF there is a differential field embedding
of K into L fixing k. Show that every field has a differential closure. [Hint:
Show that differential closures are prime model extensions.]

Exercise 4.5.44 Suppose that L is a countable language and T is an L-
theory. Let C = {T ′ ⊇ T : T ′ a complete L-theory}. Show that if |C| ≥ ℵ1,
then |C| = 2ℵ0 . Argue that if Vaught’s Conjecture is true for complete
theories, then it is also true for incomplete theories.

Exercise 4.5.45 Suppose L is a finite language with no function sym-
bols and T is an L-theory with quantifier elimination. Prove that T is
ℵ0-categorical.

Exercise 4.5.46 Describe all ℵ0-categorical linear orders.

Remarks

The Omitting Types Theorem is due to Henkin and Orey , each of whom
used it to prove the Completeness Theorem for ω-logic. Theorem 4.2.5
is due to MacDowell and Specker. Their proof uses an ultraproduct con-
struction and works for uncountable models as well. See [51] §8.2 for further
results on end extensions of models of arithmetic.
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The results on prime models, atomic models, and countable saturated
models are due to Vaught and appear in [99], one of the most elegant
papers in model theory. Theorem 4.3.23 is due to Keisler, and the other
basic results on saturated and homogeneous models are due to Morley and
Vaught.
Recursively saturated models were introduced by Barwise and Schlipf.

Many results that can be proved using saturated models have elegant proofs
using recursively saturated models (see [22] §2.4 or [53]). Friedman showed
the weak recursive saturation of nonstandard models of arithmetic and used
it to prove the following result (see [51] §12.1).

Theorem 4.5.47 If M is a countable nonstandard model of Peano arith-
metic, then there is I a proper initial segment of M with I ∼=M.

The ℵ1-saturation of ultraproducts is due to Keisler (see [22] §6.1 for
generalizations).

Morley introduced ω-stable theories in his proof of Theorem 6.1.1. He
also proved that ω-stable theories have prime model extensions. Shelah
showed that there are three possibilities for {κ ≥ ℵ0 : T is κ-stable}.

Theorem 4.5.48 If T is a complete theory in a countable language, then
one of the following holds:
i) there are no cardinals κ such that T is κ-stable,
ii) T is κ-stable for all κ ≥ 2ℵ0 ,
iii) T is κ-stable if and only if κℵ0 = κ.

A proof of this theorem can be found in [7], [18] or [76]. If i) holds, we
say that T is unstable; otherwise, we say that T is stable. If ii) holds,
we say that T is superstable. By Theorem 4.2.18, every ω-stable theory is
superstable. In Exercise 4.5.22, we gave an example of a superstable theory
that is not ω-stable and a stable theory that is not superstable.
The saturated model test for quantifier elimination is due to Blum, who

also axiomatized the theory of DCF, proved that DCF is ω-stable, and
deduced from that the existence of differential closures.
In Theorem 5.2.15, we will examine another two-cardinal result. There

are many interesting two cardinal questions, but most can not be answered
in ZFC. The following Theorem gives several interesting examples.

Theorem 4.5.49 Let L be a countable language and T an L-theory.
i) Assume that V = L.3 If κ > λ ≥ ℵ0 and T has a (κ, λ)-model, then T

has a (µ+, µ)-model for all infinite cardinals µ.
ii) Assume that V = L. If T has a (κ++, κ)-model for some infinite

cardinal κ, then T has a (λ++, λ)-model for all infinite cardinals λ.

3V = L is Gödel’s Axiom of Constructibility asserting that all sets are constructible
(see [57] or [47]).
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iii) If ZFC is consistent, then it is consistent with ZFC that there is a
countable theory with an (ℵ1,ℵ0)-model but no (ℵ2,ℵ1)-model.

The first result was proved by Chang (see [22] 7.2.7) for regular µ under
the weaker assumption that the Generalized Continuum Hypothesis holds.
The general case is due to Jensen who also proved the second result (see
[27] §VIII). The third result is due to Mitchell and Silver (see [47] §29).
The characterization of ℵ0-categorical theories was proved independently

by Ryll-Nardzewski, Engler, and Svenonius.
Although Vaught’s Conjecture is open for arbitrary theories, we do know

that it holds for several interesting classes of theories.

Theorem 4.5.50 Vaught’s Conjecture holds for:
i) (Shelah [93]) ω-stable theories;
ii) (Buechler [19]) superstable theories of finite U-rank;
iii) (Mayer [69]) o-minimal theories;
iv) (Miller) theories of linear orders with unary predicates;
v) (Steel [98]) theories of trees.

See [100] for more on iv) and v).

Theorem 4.4.16 also follows from another powerful theorem in descriptive
set theory. Consider the equivalence relation on D(L, T ) given by fEg if
and only if Mf

∼=Mg. It is easy to argue that E is an analytic subset of
D(L, T )×D(L, T ). Burgess (see, for example, [98]) proved that any analytic
equivalence relation on a Borel subset of 2ω with at least ℵ2 classes has 2ℵ0

classes.
If φ is an Lω1,ω-sentence, we can ask about the number of nonisomorphic

countable models of φ. Burgess’ Theorem shows that if there are at least
ℵ2 nonisomorphic models, then there are 2ℵ0 , but it is unknown whether
there can be an Lω1,ω-sentence with exactly ℵ1 < 2ℵ0 models.
Questions around Vaught’s Conjecture can be reformulated in a way

that does not involve any model theory. We say that a topological space
X is Polish if it is a complete separable metric space. Suppose that G is
a Polish topological group and G acts continuously on a Borel subset X
of a Polish space X. For example, X could be D(L, T ) and G could be
the group of permutations of ω topologized by taking subbasic open sets
Nn,m = {f : f(n) = m}. The Topological Vaught Conjecture asserts that
if G has uncountably many orbits on X , then G has 2ℵ0 orbits. See [9] for
more on this topic.


