
GDI+ Programming
in C# and VB .NET

NICK SYMMONDS

035front.fm Page i Saturday, May 25, 2002 3:26 PM

GDI+ Programming in C# and VB .NET
Copyright © 2002 by Nick Symmonds

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and
the publisher.

ISBN (pbk): 1-59059-035-X

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Adriano Baglioni

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager and Development Editor: Tracy Brown Collins

Copy Editor: Nicole LeClerc

Production Editor and Proofreader: Kari Brooks

Compositor: Susan Glinert Stevens

Artist and Cover Designer: Kurt Krames

Indexer: Valerie Perry

Manufacturing Manager: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

035front.fm Page ii Wednesday, May 29, 2002 2:42 PM

165

CHAPTER 5

Advanced Graphics

Dolores breezed along the surface of her life like a flat stone forever skipping
across smooth water, rippling reality sporadically but oblivious to it consis-

tently, until she finally lost momentum, sank, and due to an overdose of
fluoride as a child which caused her to lie forever on the floor of her life

as useless as an appendix and as lonely as a five-hundred-pound
barbell in a steroid-free fitness center.

—Linda Vernon, Newark, California (1990 Winner)

HELLO, AND WELCOME to Chapter 5.
In Chapter 4 I took you through most of the System.Drawing namespace. The

majority of this namespace is devoted to the Graphics class and its members. This
chapter delves a little deeper into some of the more esoteric aspects of pens and
brushes. It also goes much deeper into drawing itself.

In this chapter, you will be introduced to some of the more complicated vector
graphics drawing concepts, such as

• Matrix transforms

• Color blending

• Gradients

• Drawing and filling in shapes made from Graphics paths

While some of the classes in this chapter are from the System.Drawing
namespace, most of the chapter is devoted to the System.Drawing.Drawing2D
namespace.

More About Pens, Lines, and Brushes

Chapter 4 had quite a bit of information on pens and brushes. However, some of
the Pen members are more than a little basic, so I decided to leave them to this
chapter. The Pen members I’m referring to are as follows:

035c05.fm Page 165 Sunday, May 19, 2002 4:54 PM

Chapter 5

166

• Pen.LineJoin

• Pen.CustomEndCap

• Pen.CustomStartCap

Along with these Pen members, there are also a couple of other related classes:

• CustomLineCap

• AdjustableArrowCap

As you can probably guess, these methods, properties, and classes have to do
with how the pen looks as it is drawing lines or other shapes. Let’s start with the
LineJoin method.

Start a new project in either C# or VB. Size the form to be 400×400. Go into the
code and type in the skeleton for the OnPaint method. The OnPaint method
should be ingrained in your brain by now. It is without a doubt the most important
method in any graphics program. Enter the code shown in Listing 5-1.

Listing 5-1a. Different LineJoin Methods in VB

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim G As Graphics = e.Graphics

 Dim PtsA As Point() = {New Point(10, 10), _

 New Point(150, 150), _

 New Point(400, 10)}

 Dim PtsB As Point() = {New Point(10, 40), _

 New Point(150, 180), _

 New Point(400, 40)}

 Dim PtsC As Point() = {New Point(10, 70), _

 New Point(150, 210), _

 New Point(400, 70)}

 Dim PtsD As Point() = {New Point(10, 100), _

 New Point(150, 240), _

 New Point(400, 100)}

 Dim P As Pen = New Pen(Color.Blue, 10)

NOTE Be sure to include the following namespaces in all your code
for this chapter: System.Drawing and System.Drawing.Drawing2D.

035c05.fm Page 166 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

167167

 G.SmoothingMode = SmoothingMode.AntiAlias

 P.LineJoin = LineJoin.Bevel

 G.DrawLines(P, PtsA)

 P.LineJoin = LineJoin.Miter

 G.DrawLines(P, PtsB)

 P.LineJoin = LineJoin.MiterClipped

 G.DrawLines(P, PtsC)

 P.LineJoin = LineJoin.Round

 G.DrawLines(P, PtsD)

 End Sub

Listing 5-1b. Different LineJoin Methods in C#

 protected override void OnPaint (PaintEventArgs e)

 {

 Graphics G = e.Graphics;

 Point[] PtsA = { new Point(10, 10),

 new Point(150, 150),

 new Point(400, 10) };

 Point[] PtsB = { new Point(10, 40),

 new Point(150, 180),

 new Point(400, 40) };

 Point[] PtsC = { new Point(10, 70),

 new Point(150, 210),

 new Point(400, 70) };

 Point[] PtsD = { new Point(10, 100),

 new Point(150, 240),

 new Point(400, 100) };

 Pen P = new Pen(Color.Blue, 10);

 G.SmoothingMode=SmoothingMode.AntiAlias;

 P.LineJoin=LineJoin.Bevel;

 G.DrawLines(P, PtsA);

 P.LineJoin=LineJoin.Miter;

 G.DrawLines(P, PtsB);

 P.LineJoin=LineJoin.MiterClipped;

 G.DrawLines(P, PtsC);

 P.LineJoin=LineJoin.Round;

 G.DrawLines(P, PtsD);

 }

035c05.fm Page 167 Sunday, May 19, 2002 4:54 PM

Chapter 5

168

Here you’re making a set of points that describe line segments. You then set
the smoothing mode to AntiAlias so you can see a straight line. Next, you draw
lines that are connected according to the LineJoin enumeration.

There are four LineJoin enumerations:

• Bevel: Joins two lines with a bevel on the outside of the joint.

• Miter: Joins two lines with a miter joint. This bisects the angle of the two lines.

• MiterClipped: Joins two lines with a miter joint if the length of the miter
exceeds the MiterLimit. Joins two lines with a bevel if the length of the miter
is within the MiterLimit.

• Round: Joins two lines with a smooth, round corner.

The result of running the code in Listing 5-1 is shown in Figure 5-1.

Figure 5-1. Result of different corners joining two lines

Back in Chapter 4 I discussed several kinds of start and end caps that you can
put on a line. These caps are far more interesting than the normal straight, boxed
ends. Next, you will define your own start and end caps.

You define a custom cap using the CustomLineCap class. This class has four
overloaded constructors as well as five properties. The constructors’ arguments
are as follows:

035c05.fm Page 168 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

169169

• GraphicsPath defines the fill. GraphicsPath defines the outline.

• GraphicsPath defines the fill. GraphicsPath defines the outline. LineCap
defines the base of the custom cap.

• GraphicsPath defines the fill. GraphicsPath defines the outline. LineCap
defines the base of the custom cap. Inset defines the distance between the
line and the cap.

The properties of the CustomLineCap class basically make up the individual
arguments of the constructors. They are as follows:

• BaseCap: The LineCap enumeration on which this cap is based.

• BaseInset: The distance between the end of the line and the cap.

• StrokeJoin: The LineJoin enumeration that determines how lines in the cap
are joined.

• WidthScale: The scaling factor of the cap to the pen width.

Listing 5-2 shows an example of how to create a custom line caps. Start with a
new project and do all the work in the OnPaint method.

Listing 5-2a. CustomLineCap Example in C#

 protected override void OnPaint (PaintEventArgs e)

 {

 Graphics G = e.Graphics;

 Pen P = new Pen(Color.Blue, 1);

 Point[] Pts = { new Point(10, 10),

 new Point(15, 10),

 new Point(20, 15),

 new Point(20, 20),

 new Point(15, 25),

 new Point(10, 25),

 new Point(5, 20),

 new Point(5, 15),

 new Point(10, 10)};

 GraphicsPath Path = new GraphicsPath();

 Path.AddLines (Pts);

035c05.fm Page 169 Sunday, May 19, 2002 4:54 PM

Chapter 5

170

 G.SmoothingMode=SmoothingMode.AntiAlias;

 CustomLineCap Lc = new CustomLineCap(null, Path);

 Lc.BaseInset=0;

 Lc.WidthScale=1;

 Lc.StrokeJoin=LineJoin.Miter;

 P.CustomEndCap = Lc;

 P.CustomStartCap=Lc;

 G.DrawLine (P, 50, 150, 200, 150);

 G.DrawLine (P, 150, 50, 150, 200);

 Lc.Dispose();

 Path.Dispose();

 P.Dispose();

 }

Listing 5-2b. CustomLineCap Example in VB

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim G As Graphics = e.Graphics

 Dim P As Pen = New Pen(Color.Blue, 1)

 Dim Pts() As Point = {New Point(10, 10), _

 New Point(15, 10), _

 New Point(20, 15), _

 New Point(20, 20), _

 New Point(15, 25), _

 New Point(10, 25), _

 New Point(5, 20), _

 New Point(5, 15), _

 New Point(10, 10)}

 Dim Path As GraphicsPath = New GraphicsPath()

 Path.AddLines(Pts)

 G.SmoothingMode = SmoothingMode.AntiAlias

 Dim Lc As CustomLineCap = New CustomLineCap(Nothing, Path)

 Lc.BaseInset = 0

 Lc.WidthScale = 1

 Lc.StrokeJoin = LineJoin.Miter

 P.CustomEndCap = Lc

 P.CustomStartCap = Lc

035c05.fm Page 170 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

171171

 G.DrawLine(P, 50, 150, 200, 150)

 G.DrawLine(P, 150, 50, 150, 200)

 Lc.Dispose()

 Path.Dispose()

 P.Dispose()

 End Sub

Using the Hatch Brush

So far, you have used a SolidBrush and a TextureBrush. The SolidBrush is one
where the whole width of the brush stroke is a single, solid color. The TextureBrush
is one where the fill of the brush consists of a supplied bitmap. The HatchBrush is
one that is made up of repeating patterns. Table 5-1 shows the HatchBrush’s available
patterns. This table contains the members of the HatchStyle enumeration.

Table 5-1. HatchBrush Patterns

Style Description

BackwardDiagonal A pattern of lines on a diagonal from the upper right

to the lower left.

Cross Specifies horizontal and vertical lines that cross.

DarkDownwardDiagonal Specifies diagonal lines that slant to the right from

top points to bottom points, and are spaced 50

percent closer together than and are twice the

width of ForwardDiagonal. This hatch pattern is

not antialiased.

DarkHorizontal Specifies horizontal lines that are spaced 50 percent

closer together than Horizontal and are twice the

width of HatchStyleHorizontal.

DarkUpwardDiagonal Specifies diagonal lines that slant to the left from top

points to bottom points, are spaced 50 percent

closer together than BackwardDiagonal, and are

twice its width, but the lines are not antialiased.

DarkVertical Specifies vertical lines that are spaced 50 percent

closer together than Vertical and are twice its width.

DashedDownwardDiagonal Specifies dashed diagonal lines that slant to the right

from top points to bottom points.

035c05.fm Page 171 Sunday, May 19, 2002 4:54 PM

Chapter 5

172

DashedHorizontal Specifies dashed horizontal lines.

DashedUpwardDiagonal Specifies dashed diagonal lines that slant to the left

from top points to bottom points.

DashedVertical Specifies dashed vertical lines.

DiagonalBrick Specifies a hatch that has the appearance of layered

bricks that slant to the left from top points to bottom

points.

DiagonalCross Specifies forward diagonal and backward diagonal

lines that cross. The lines are antialiased.

Divot Specifies a hatch that has the appearance of divots.

DottedDiamond Specifies forward diagonal and backward diagonal

lines, each of which is composed of dots that cross.

DottedGrid Specifies horizontal and vertical lines, each of which

is composed of dots that cross.

ForwardDiagonal A pattern of lines on a diagonal from upper left to

lower right.

Horizontal A pattern of horizontal lines.

HorizontalBrick Specifies a hatch that has the appearance of

horizontally layered bricks.

LargeCheckerBoard Specifies a hatch that has the appearance of a

checkerboard with squares that are twice the size of

SmallCheckerBoard.

LargeConfetti Specifies a hatch that has the appearance of confetti

and is composed of larger pieces than SmallConfetti.

LargeGrid Specifies the hatch style Cross.

LightDownwardDiagonal

LightHorizontal Specifies horizontal lines that are spaced 50 percent

closer together than Horizontal.

LightUpwardDiagonal Specifies diagonal lines that slant to the left from top

points to bottom points and are spaced 50 percent

closer together than BackwardDiagonal, but they are

not antialiased.

Table 5-1. HatchBrush Patterns (Continued)

Style Description

035c05.fm Page 172 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

173173

LightVertical Specifies vertical lines that are spaced 50 percent

closer together than Vertical.

Max Specifies the hatch style SolidDiamond.

Min Specifies the hatch style.

NarrowHorizontal Specifies horizontal lines that are spaced 75 percent

closer together than the hatch style Horizontal (or 25

percent closer together than LightHorizontal).

NarrowVertical Specifies vertical lines that are spaced 75 percent

closer together than the hatch style Vertical (or 25

percent closer together than LightVertical).

OutlinedDiamond Specifies forward diagonal and backward diagonal

lines that cross but are not antialiased.

Percent05 Specifies a 5 percent hatch. The ratio of foreground

color to background color is 5:100.

Percent10 Specifies a 10 percent hatch. The ratio of foreground

color to background color is 10:100.

Percent20 Specifies a 20 percent hatch. The ratio of foreground

color to background color is 20:100.

Percent25 Specifies a 25 percent hatch. The ratio of foreground

color to background color is 25:100.

Percent30 Specifies a 30 percent hatch. The ratio of foreground

color to background color is 30:100.

Percent40 Specifies a 40 percent hatch. The ratio of foreground

color to background color is 40:100.

Percent50 Specifies a 50 percent hatch. The ratio of foreground

color to background color is 50:100.

Percent60 Specifies a 60 percent hatch. The ratio of foreground

color to background color is 60:100.

Percent70 Specifies a 70 percent hatch. The ratio of foreground

color to background color is 70:100.

Percent75 Specifies a 75 percent hatch. The ratio of foreground

color to background color is 75:100.

Table 5-1. HatchBrush Patterns (Continued)

Style Description

035c05.fm Page 173 Sunday, May 19, 2002 4:54 PM

Chapter 5

174

Percent80 Specifies an 80 percent hatch. The ratio of

foreground color to background color is 80:100.

Percent90 Specifies a 90 percent hatch. The ratio of foreground

color to background color is 90:100.

Plaid Specifies a hatch that has the appearance of a plaid

material.

Shingle Specifies a hatch that has the appearance of

diagonally layered shingles that slant to the right

from top points to bottom points.

SmallCheckerBoard Specifies a hatch that has the appearance of a

checkerboard.

SmallConfetti Specifies a hatch that has the appearance of confetti.

SmallGrid Specifies horizontal and vertical lines that cross and

are spaced 50 percent closer together than the hatch

style Cross.

SolidDiamond Specifies a hatch that has the appearance of a

checkerboard placed diagonally.

Sphere Specifies a hatch that has the appearance of spheres

laid adjacent to one another.

Trellis Specifies a hatch that has the appearance of a trellis.

Vertical A pattern of vertical lines.

Wave Specifies horizontal lines that are composed of tildes.

Weave Specifies a hatch that has the appearance of a

woven material.

WideDownwardDiagonal Specifies diagonal lines that slant to the right from

top points to bottom points, have the same spacing

as the hatch style ForwardDiagonal, and are triple its

width, but are not antialiased.

WideUpwardDiagonal Specifies diagonal lines that slant to the left from top

points to bottom points, have the same spacing as

the hatch style BackwardDiagonal, and are triple its

width, but are not antialiased.

ZigZag Specifies horizontal lines that are composed of zigzags.

Table 5-1. HatchBrush Patterns (Continued)

Style Description

035c05.fm Page 174 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

175175

Listing 5-3 shows an OnPaint method that draws on the screen using a
HatchBrush.

Listing 5-3a. HatchBrush in C#

 protected override void OnPaint (PaintEventArgs e)

 {

 HatchBrush h = new HatchBrush(HatchStyle.BackwardDiagonal,

 Color.Black,

 Color.Cyan);

 Pen P = new Pen(h, 20);

 e.Graphics.Clear(Color.AliceBlue);

 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias;

 e.Graphics.DrawLine(P, 80, 90, 80, 200);

 e.Graphics.FillEllipse(h, 50, 50, 50, 30);

 P.Dispose();

 h.Dispose();

 }

Listing 5-3b. HatchBrush in VB

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim h As HatchBrush = New HatchBrush(HatchStyle.BackwardDiagonal, _

 Color.Black, _

 Color.Cyan)

 Dim P As Pen = New Pen(h, 20)

 e.Graphics.Clear(Color.AliceBlue)

 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias

 e.Graphics.DrawLine(P, 80, 90, 80, 200)

 e.Graphics.FillEllipse(h, 50, 50, 50, 30)

 P.Dispose()

 h.Dispose()

 End Sub

The result of this program is shown in Figure 5-2.

035c05.fm Page 175 Sunday, May 19, 2002 4:54 PM

Chapter 5

176

Figure 5-2. HatchBrush example

It is easy to see a wide range of possibilities for this brush. There are two other
brushes that have to do with color blending. I consider these to be the coolest of
the brushes. I explain them in detail in the next section.

Blending Colors

There are basically two types of blending in GDI+: blending and alpha blending.
Alpha blending is the process of creating a Pen, Brush, or Image that has attributes
that determine its transparency. Blending is the process of drawing a line or filling
a shape with a color that starts out at one end of the spectrum and ends at the other.

An example of alpha blending would be creating an image on the screen and
then drawing a shape on top of the image that still allows the image to show through.
You would perhaps do this in an architecture program that layers successive detail
on a base drawing.

An example of blending would be drawing an ellipse that is filled starting with
blue and ending with red. Where would you use this? Well, you could use it in a
thermal imaging program that shows the temperature of an object as red in the
center and fades to blue at the edges.

035c05.fm Page 176 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

177177

Alpha Blending

It is possible to create a brush that blends its color with that of the background.
The same goes for a Pen or an Image. You will need to become familiar with the
following terms and ideas before you can start using this feature effectively:

• Alpha factor

• Compositing mode

• Gamma correction

The alpha factor determines the transparency of the color. This is an 8-bit
value that ranges from 0 to 255. Zero represents a fully transparent color and 255
represents a completely opaque color. So far in this book, all the colors you have
used have had an alpha factor of 255; they have all been solid colors.

The compositing mode is slightly different from the alpha factor. It has to do
with how images are blended in a transparent manner rather than single colors.
The Graphics class has an enumeration called Graphics.CompositingMode. This
enumeration has two values:

• CompositingMode.SourceCopy defines that the source image completely
overwrites the background colors.

• CompositingMode.SourceOver defines that the source image is blended
with the background image, depending on the alpha blending factor.

Often the compositing mode is used in conjunction with the alpha factor. The
compositing mode is used as a switch to turn on or off the transparency of the
source image.

The MSDN help for .NET defines gamma correction as describing the shape of
the brightness transfer function for one or more stages in an imaging pipeline.
What?! In English, gamma correction refers to the brightness of the image. Useful
values can range from 0.1 to about 5.0, but normal values are between 1.0 and 2.2.
A value of 1.0 is “standard.” The lower the gamma value, the brighter the image.

So now that you know some terms, how about an example? This example will
not be as simple as previous ones. It includes the following aspects of a .NET program:

• A couple of controls with delegates assigned to the events

• Variables that are local to the class itself

035c05.fm Page 177 Sunday, May 19, 2002 4:54 PM

Chapter 5

178

• Initialization code for constituent controls

• Disposal of class-local objects

• Try-Finally block for handling disposal of local objects

Open a new Windows Forms project in either C# or VB. I called mine Blend.
Place two horizontal scroll bars on the form. Call one AlphaScroll and call the
other one GammaScroll. Do not worry about placement right now, as you will
write code to place these scroll bars correctly.

Once you have placed the scroll bars on the screen, double-click each one to
force the code wizard to generate the scroll delegate for you. You could change the
name of the delegate, or even combine both into one, but for now just accept what
the wizard made for you.

This example contains code that reads an image from the disk. I chose the
color bars hatch image because it shows a multitude of distinct colors without

being fuzzy when expanded. I put this image in the root of my D: drive to make it
easy to get to. You can find this image in the samples that come with .NET.

Listing 5-4 shows the code necessary for this example. I do not include the
“Windows Form Designer generated code” section. Be sure to include the
System.Drawing, System.Drawing.Drawing2D, and System.Drawing.Imaging
namespaces.

Listing 5-4a. Alpha Blend, Compositing, and Gamma Correction Example in C#

using System;

using System.Drawing;

using System.Drawing.Imaging;

using System.Drawing.Drawing2D;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace Blend_c

{

NOTE It is, of course, entirely possible to write the code for all the
examples in this book without adding references to namespaces.
However, you would need to fully qualify every method and class,
which can lead to overly verbose code and confusion.

035c05.fm Page 178 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

179179

 public class Form1 : System.Windows.Forms.Form

 {

 private System.Windows.Forms.HScrollBar AlphaScroll;

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.Container components = null;

 private int AlphaFactor = 255;

 private float GammaFactor = 1.0f;

 private Rectangle R = new Rectangle(40, 20, 100, 100);

 private Image I = Image.FromFile("d:\\Colorbars.jpg");

 private int ImWidth;

 private int ImHeight;

 private System.Windows.Forms.HScrollBar GammaScroll;

 private ImageAttributes Ia = new ImageAttributes();

 public Form1()

 {

 //

 // Required for Windows Form Designer support

 //

 InitializeComponent();

 AlphaScroll.Minimum = 20;

 AlphaScroll.Maximum = 245;

 AlphaScroll.SmallChange = 5;

 AlphaScroll.LargeChange = 5;

 AlphaScroll.Left = R.Left;

 AlphaScroll.Width = R.Width;

 AlphaScroll.Top = R.Bottom;

 GammaScroll.Minimum=1;

 GammaScroll.Maximum = 50;

 GammaScroll.SmallChange=1;

 GammaScroll.LargeChange=5;

 GammaScroll.Left = R.Left;

 GammaScroll.Top = R.Top - GammaScroll.Height;

 GammaScroll.Width = R.Width;

 ImWidth = I.Width;

 ImHeight = I.Height;

035c05.fm Page 179 Sunday, May 19, 2002 4:54 PM

Chapter 5

180

 AlphaScroll.Value = (AlphaScroll.Maximum-AlphaScroll.Minimum)/2;

 GammaScroll.Value = (GammaScroll.Maximum-GammaScroll.Minimum)/2;

 AlphaFactor = AlphaScroll.Value;

 GammaFactor = (float)GammaScroll.Value / 10;

 }

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 if (I != null)

 I.Dispose();

 if (Ia != null)

 Ia.Dispose();

 }

 base.Dispose(disposing);

 }

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new Form1());

 }

 private void Form1_Load(object sender, System.EventArgs e)

 {

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 AlphaBlend(e.Graphics);

 base.OnPaint(e);

 }

035c05.fm Page 180 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

181181

 private void AlphaBlend(Graphics G)

 {

 //AlphaFactor is variable depeneding upon scroll bars

 Pen P = new Pen(Color.FromArgb (AlphaFactor, 200, 0, 100), 20);

 Bitmap bmp = new Bitmap(120, 120);

 Graphics G2 = Graphics.FromImage(bmp);

 Brush B = new SolidBrush(Color.FromArgb(AlphaFactor, 50, 200, 50));

 try

 {

 // Set the brightness while rendering image

 Ia.SetGamma(GammaFactor);

 G.DrawImage(I, R, 0, 0, ImWidth, ImHeight, GraphicsUnit.Pixel, Ia);

 //Draw transparent line on top of image

 G.DrawLine(P, 10, 100, 200, 100);

 // Draw inside the image contained in memory

 G2.FillEllipse(B, 0, 0, 75, 75);

 G.DrawImage(I, new Rectangle(140, 140, 120, 120));

 G.CompositingQuality = CompositingQuality.GammaCorrected;

 G.CompositingMode = CompositingMode.SourceOver;

 G.DrawImage(bmp, new Rectangle(150, 150, 150, 150));

 }

 finally

 {

 if (bmp != null)

 bmp.Dispose();

 if (G2 != null)

 G2.Dispose();

 if (B != null)

 B.Dispose();

 if (P != null)

 P.Dispose();

 }

 }

 private void AlphaScroll_Scroll(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 AlphaFactor = AlphaScroll.Value;

 this.Refresh();

 }

035c05.fm Page 181 Sunday, May 19, 2002 4:54 PM

Chapter 5

182

 private void GammaScroll_Scroll(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 GammaFactor = (float)GammaScroll.Value / 10;

 this.Refresh();

 }

 }

}

Listing 5-4b. Alpha Blend, Compositing, and Gamma Correction Example in VB

Option Strict On

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Drawing.Imaging

Public Class Form1

 Inherits System.Windows.Forms.Form

 Private AlphaFactor As Int32 = 255

 Private GammaFactor As Single = 1.0F

 Private R As Rectangle = New Rectangle(40, 20, 100, 100)

 Private I As Image = Image.FromFile("d:\\Colorbars.jpg")

 Private ImWidth As Int32

 Private ImHeight As Int32

 Private Ia As ImageAttributes = New ImageAttributes()

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 AlphaScroll.Minimum = 20

 AlphaScroll.Maximum = 245

 AlphaScroll.SmallChange = 5

 AlphaScroll.LargeChange = 5

 AlphaScroll.Left = R.Left

 AlphaScroll.Width = R.Width

 AlphaScroll.Top = R.Bottom

035c05.fm Page 182 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

183183

 GammaScroll.Minimum = 1

 GammaScroll.Maximum = 50

 GammaScroll.SmallChange = 1

 GammaScroll.LargeChange = 5

 GammaScroll.Left = R.Left

 GammaScroll.Top = R.Top - GammaScroll.Height

 GammaScroll.Width = R.Width

 ImWidth = I.Width

 ImHeight = I.Height

 AlphaScroll.Value = CType((AlphaScroll.Maximum - AlphaScroll.Minimum) / 2, _

 Int32)

 GammaScroll.Value = CType((GammaScroll.Maximum - GammaScroll.Minimum) / 2, _

 Int32)

 AlphaFactor = AlphaScroll.Value

 GammaFactor = CType(GammaScroll.Value, Single) / 10

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 If Not I Is Nothing Then I.Dispose()

 If Not Ia Is Nothing Then Ia.Dispose()

 End If

 MyBase.Dispose(disposing)

 End Sub

 Friend WithEvents GammaScroll As System.Windows.Forms.HScrollBar

 Friend WithEvents AlphaScroll As System.Windows.Forms.HScrollBar

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

…

#End Region

035c05.fm Page 183 Sunday, May 19, 2002 4:54 PM

Chapter 5

184

 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 AlphaBlend(e.Graphics)

 End Sub

 Private Sub AlphaBlend(ByVal G As Graphics)

 'AlphaFactor is variable depeneding upon scroll bars

 Dim P As Pen = New Pen(Color.FromArgb(AlphaFactor, 200, 0, 100), 20)

 Dim bmp As Bitmap = New Bitmap(120, 120)

 Dim G2 As Graphics = Graphics.FromImage(bmp)

 Dim B As Brush = New SolidBrush(Color.FromArgb(AlphaFactor, 50, 200, 50))

 Try

 ' Set the brightness while rendering image

 Ia.SetGamma(GammaFactor)

 G.DrawImage(I, R, 0, 0, ImWidth, ImHeight, GraphicsUnit.Pixel, Ia)

 'Draw transparent line on top of image

 G.DrawLine(P, 10, 100, 200, 100)

 ' Draw inside the image contained in memory

 G2.FillEllipse(B, 0, 0, 75, 75)

 G.DrawImage(I, New Rectangle(140, 140, 120, 120))

 G.CompositingQuality = CompositingQuality.GammaCorrected

 G.CompositingMode = CompositingMode.SourceOver

 G.DrawImage(bmp, New Rectangle(150, 150, 150, 150))

 Finally

 If Not bmp Is Nothing Then bmp.Dispose()

 If Not G2 Is Nothing Then G2.Dispose()

 If Not B Is Nothing Then B.Dispose()

 If Not P Is Nothing Then P.Dispose()

 End Try

 End Sub

035c05.fm Page 184 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

185185

 Private Sub GammaScroll_Scroll(ByVal sender As System.Object, _

 ByVal e As System.Windows.Forms.ScrollEventArgs) _

 Handles GammaScroll.Scroll

 GammaFactor = CType(GammaScroll.Value / 10, Single)

 Me.Refresh()

 End Sub

 Private Sub AlphaScroll_Scroll(ByVal sender As System.Object, _

 ByVal e As System.Windows.Forms.ScrollEventArgs) _

 Handles AlphaScroll.Scroll

 AlphaFactor = AlphaScroll.Value

 Me.Refresh()

 End Sub

End Class

Compile and run the program. You should start out with a screen that looks
like the one shown in Figure 5-3. Once you see this, start scrolling the scroll bars.
The top one is the gamma correction for the top image and the bottom one is the
alpha blend for the line.

Figure 5-3. Alpha and gamma images

035c05.fm Page 185 Sunday, May 19, 2002 4:54 PM

Chapter 5

186

If you scroll the top bar all the way to the left, the top image will be almost
invisible, as the brightness will be very high. Scrolling it all the way to the right
makes the image darker.

If you scroll the bottom bar all the way to the left, the line will be almost
invisible, as will the circle in the lower image. This is because the opacity of both
will be almost zero. If you scroll the bottom bar all the way to the right you will see
the line get more opaque in the top image and the circle get more opaque in the
lower image. Figure 5-4 shows the form with both scroll bars all the way to the right.

Figure 5-4. Form showing maximum opacity and brightness

Now it is time to dissect the code a little.
The form’s constructor contains code that sets up the scroll bars and positions

them on the screen at the top and bottom of the top image. Once this is done, I set
both scroll bars’ positions to the middle. I also set the gamma and alpha values to
the mid ranges. What this does is make the bar half opaque and the top image
normal brightness.

The OnPaint method for the form calls the AlphaBlend() method for the
example. After this, it calls the base class’ OnPaint method. You will need to call
the base OnPaint method because you have overridden it here. There may be
some extra painting or housecleaning that goes on in the base method that you are
not aware of.

Every time the upper scroll bar is moved, its delegate GammaScroll_Scroll
gets called. Inside this method I make the GammaFactor variable equal to potion
of the scroll bar divided by ten. This gives me a fine-grained change of the gamma

035c05.fm Page 186 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

187187

factor. Once this is done, I call the form’s OnPaint method. Doing this, of course,
calls the overridden OnPaint method, at which point I repaint the screen with
objects based on the new values.

The lower scroll bar is essentially the same as the upper one except that it
changes the alpha blend factor for both the line and the circle. When the OnPaint
method is called, the CompositingMode is set to SourceOver, which blends the
image being drawn with the background of the space it is drawn on. If I had set the
CompositingMode to SorceCopy, the image of the circle would have completely
overlaid the background image of the color bars. Try it if you don’t believe me!

The last thing I do in this example is run code in the form’s Dispose method
that calls the Dispose methods of the class-local Image and ImageAttributes
objects. I suppose it is not strictly necessary in this example, as the memory will
get reclaimed as soon as the program ends, but I feel it is always wise to clean up
after yourself.1

You will notice that in both the C# and VB code examples I used a Try-Finally
block to contain the drawing code. The Finally block has code that tests the objects

to see if they are real, and then calls the Dispose method on each. This is the way
your code should look at all times. As I mentioned in a previous chapter, C# has a
Using statement that can take the place of the Finally block of code. I chose not to
do this here so you could compare the C# code to the VB code.

My Friend Flicker

I think it is a good time to go over another aspect of painting shapes on forms. I am
talking about speed. As you no doubt noticed, there was a problem in viewing the
last example. As you moved the pointer on the scroll bar, you saw a lot of flicker on
the screen. This is not pretty.

Up to this point you have seen only the simplest way to force the form to
repaint. This is accomplished calling the Refresh method of the form. Most other
controls also have a Refresh method. All you VB programmers know that this
method very well. It is a part of most of the constituent VB 6.0 controls.

It is not uncommon in VB 6.0 to call a control’s Refresh method to force some-
thing to appear on the screen. As you have seen, I have also been calling the
Refresh method for the form every time I need to show something on the screen.
There is a problem, however, with calling the form’s Refresh method.

Calling a form’s Refresh method forces a repaint of everything on that form. If
you have a complex form with quite a few painted shapes, calling the Refresh
method on the whole form when only one area needs repainting is a waste of time

1. I keep hearing my mother say this: “Clean up after yourself!”

035c05.fm Page 187 Sunday, May 19, 2002 4:54 PM

Chapter 5

188

and quite often results in flicker. So the question is, how do you repaint only the
area of the form that needs it? What you do is invalidate a certain area of the form.

Invalidating Regions

There is an Invalidate method for every control, including the form. This Invalidate
method has six overloaded forms:

• Invalidate(): Causes the whole control to be repainted

• Invalidate(boolean): Causes the whole control to be repainted and
optionally any child controls

• Invalidate(Rectangle): Causes the area of the control contained within the
rectangle to be repainted

• Invalidate(Rectangle, boolean): Causes the area of the control contained
within the rectangle to be repainted and optionally any child controls

• Invalidate(Region): Causes the area of the control contained within the
region to be repainted

• Invalidate(Region, boolean): Causes the area of the control contained within
the region, and optionally any child controls, to be repainted

You can see that there are three basic ways to invalidate a form. Using a rectangle
or a region allows you to be very specific about the area you invalidate. Calling
Invalidate with no arguments is essentially the same as calling Refresh. Invali-
dating a region is the finest control you have in deciding which part of a form to
repaint. As you discovered in Chapter 4, a region can consist of a graphics path,
which can itself be any shape you can think of. If you like, you can invalidate a
portion of the screen shaped like a heart.

Suppose you had a form with all kinds of shapes on it and you changed the fill
color of just one of those shapes. Here are the steps to repaint just that shape on
the form. This is just one way to accomplish this goal.

1. Create the shapes and note the coordinates and size of each shape on
the form.

2. Make a change to the fill color of one of the shapes.

035c05.fm Page 188 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

189189

3. Make a rectangle with the noted coordinates and size.

4. Call the form’s Invalidate method and pass in the rectangle.

These steps will result in the single shape (and anything else inside the bounding
rectangle) being redrawn while the rest of the form is left alone. Consider the
following snippet of code:

VB

 Me.Invalidate(New Rectangle(New Point(10, 10), _

 New Size(50, 50)))

 Invalidate(New Rectangle(10, 10, 50, 50))

 Me.Invalidate(New Region(New Rectangle(10, 10, 50, 50)))

C#

 this.Invalidate(new Rectangle(new Point(10, 10),

 new Size(50, 50)));

 Invalidate(new Rectangle(10, 10, 50, 50));

 this.Invalidate(new Region(new Rectangle(10, 10, 50, 50)));

Each of these calls to the Invalidate event does the same thing: It invalidates a
rectangle that starts at 10, 10 and whose width and height are 50 pixels. You can
also see from this code that you do not need to qualify the Invalidate event with
the form’s identity. Calling Invalidate is the same as calling Me.Invalidate for VB or
this.Invalidate for C#.

So is this it? Will this eliminate flicker? Like most things, the answer is maybe.
If you have a small enough invalid region and what you are doing is not complex,
then this may eliminate flicker. However, while this method goes a long way to
solving the problem, there is more that you can do to smooth out the drawing process.

Using Control Styles to Reduce Flicker

The ControlStyles enumeration is a set of bit fields whose bitwise combination
defines how the screen is painted. Table 5-2 shows the bit fields and their meanings.
There are quite a few members of this enumeration, and only those that have to do
with painting are shown in Table 5-2.

035c05.fm Page 189 Sunday, May 19, 2002 4:54 PM

Chapter 5

190

If the AllPaintingInWmPaint bit is set, the control’s OnPaint and
OnPaintBackground methods are called directly from the WM_PAINT
message. This can greatly reduce flicker.

Double buffering is probably the best way to reduce flicker. All painting is
done in a background buffer that mimics the screen’s buffer. After the painting is
done in the background, the information is blasted to the foreground.2 To fully
enable double buffering, you must set the AllPaintingInWmPaint, DoubleBuffer,
and UserPaint control bits.

The method for setting these bits is through the SetStyle and GetStyle
members of a control class. The following piece of code shows how this is done:

VB

 Dim a As Boolean = Me.GetStyle(ControlStyles.AllPaintingInWmPaint)

 Dim b As Boolean = Me.GetStyle(ControlStyles.DoubleBuffer)

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 Me.SetStyle(ControlStyles.DoubleBuffer, True)

Table 5-2. ControlStyles Enumeration Members

Name Description

AllPaintingInWmPaint WM_ERASEBKGND message is ignored to reduce

flicker.

CacheText Control keeps a copy of text instead of getting it

from the text handle.

DoubleBuffer Drawing is done in the background buffer and

then sent to the screen.

Opaque Control is drawn opaque. Background is not

redrawn.

ResizeRedraw Control is redrawn when it is resized.

SupportsTransparentBackColor Control accepts a BackColor whose alpha is less

than 255.

UserPaint Control paints itself rather than the operating

system.

2. Usually during the vertical blanking interrupt.

035c05.fm Page 190 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

191191

C#

 bool a = this.GetStyle(ControlStyles.AllPaintingInWmPaint);

 bool b = this.GetStyle(ControlStyles.DoubleBuffer);

 this.SetStyle (ControlStyles.AllPaintingInWmPaint, true);

 this.SetStyle (ControlStyles.DoubleBuffer, true);

The next example shows control styles in action.

Painting the Background

There is one last thing you can do to help eliminate flicker. It is possible to paint
just the background of a form without touching the foreground images. Why do
this? Suppose you needed to change the color of the background based on a user
preference. You can do this using the OnPaintBackground method.

This method can be overridden like the OnPaint delegate, and it also takes the
same PaintEventArgs argument. This method is not, however, a real event. There is
no PaintBackgound event, and a derived class is not required to call the base class’
OnPaintBackground method.

So how do you invoke this method? You need to call the control’s
InvokePaintBackgound method:

this.InvokePaintBackground(this, e);

So this is it for speeding up your painting process. In Chapter 6 I show another
process for speeding up drawing: bit block transfer.

Blending

You probably think of color blending as adding blue to yellow and coming up with
green. While you can do that in .NET (as you shall soon see), the true power of
blending is where you start out filling a shape with a particular color and ending
the fill with another color. The entire fill in between the start and end colors are

NOTE This ControlStyles enumeration is valid only for those objects
that derive from the System.Windows.Forms.Control class. Yes,
Windows Forms do derive from this class and therefore have the
SetStyle and GetStyle members available.

035c05.fm Page 191 Sunday, May 19, 2002 4:54 PM

Chapter 5

192

even steps of color. For instance, a light blue to red fill would go through all the
shades of blue, through purple, and all the way to red.

The two classes that deal with setting up color blends are as follows:

• Blend

• ColorBlend

The two classes that use the blend objects are as follows:

• LinearGradientBrush

• PathGradientBrush

Using these four classes, you can create some truly impressive drawings.

New Blends

The LinearGradientBrush is a brush that has a start color and an end color. It also
has a repeat pattern defined by a start point and an end point on the screen. The
LinearGradientBrush has eight overloaded constructors that allow you to specify
the start and end points as either a rectangle or Point structures. Each of these con-
structors also allows you to specify the start and end colors.

The linear gradient part of the brush means that the color is interpolated linearly
between the start color and the end color along the length of the repeat pattern.
The repeat pattern is defined for the whole graphics container. What this means is
that a shape drawn with a LinearGradientBrush will have its start color be the
same as the color of the brush’s color at that point in the repeat pattern. Are you
confused yet?

In other words, suppose you made a brush that started out blue at point 0, 0
and ended up red at point 100, 100. Now say you drew a rectangle using that brush
that started at 50, 50. The first color of your rectangle would be some shade of
purple. This is because you started the rectangle at the point where the brush was
changing from blue to red.

Well, this is kind of neat, but suppose you wanted to use three or more colors
before the pattern repeated? Suppose you wanted to determine where along the
pattern the brushes changed colors? A couple of methods in the LinearGradientBrush
class allow you to do just that:

• Blend

• InterpolationColors

035c05.fm Page 192 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

193193

The Blend method takes as an argument a Blend object. This object is made
up of a set of blending factors and blending positions.

A blending factor is the percentage of the starting and ending colors that are
used at the corresponding blending positions.

Blending positions are floating-point values that relate to a percentage of distance
along the gradient line. The combination of blending factors and blending positions
allows you to create a staircase gradient that goes from a start color to an end color
in discrete steps.

InterpolationColors is a method that gets or sets a ColorBlend object that
defines how the gradient is formed. The ColorBlend object includes a set of colors
and positions. The ColorBlend object is similar to the Blend object, except that
instead of defining color factors it defines actual colors to be used at the positions
provided. Using InterpolationColors nullifies any colors and positions previously
defined for the brush.

The following example is fairly complicated and demonstrates how do to
several things, such as

• Use a LinearGradientBrush with default values

• Skew a linear gradient brush

• Draw several shapes along the gradient path

• Shows the complete gradient path

• Change a two-color gradient path

• Change alpha values for a LinearGradientBrush

• Use the Invalidate method to speed up redraw

• Use ControlStyles to speed up redraw

• Use a ColorBlend object to define a set of gradient colors and positions

• Change the gradient using the InterpolationColors method

• Use event handling for scroll bars

035c05.fm Page 193 Sunday, May 19, 2002 4:54 PM

Chapter 5

194

Okay, now start a new VB or C# Windows project. Mine is called GradientBlend.
Perform the following steps:

1. Size the form to be 400×400.

2. Set the form’s start-up position to be center screen.

3. Add a horizontal scroll bar. Name it BlendWidth. Placement is not critical.

4. Add a horizontal scroll bar. Name it Skew. Placement is not critical.

5. Add a button. Name it cmdDoubleBuffer. Placement is not critical.

The controls will be moved via code, so it does not matter where you put them
on the form.

Next, double-click the controls to get the wizard-generated scroll and button
click event handlers. For my C# code, I changed the handler for the Skew control
to SkewColor. The handler for the BlendWidth control is called BlendChange.
I accepted the default handlers for the VB code. Now go into the code pane and
enter the code shown in Listing 5-5. The code shown here is for the whole program
except for the form’s InitializeComponent method. This is generated by the wizard
and was not touched.

Listing 5-5a. LinearGradientBrush Example in VB

Option Strict On

Imports System

Imports System.Drawing

Imports System.Drawing.Imaging

Imports System.Drawing.Drawing2D

Public Class Form1

 Inherits System.Windows.Forms.Form

 Private BlWidth As Int32

 Private SkewVal As Int32

 Private EL1Rect As Rectangle

 Private EL2Rect As Rectangle

 Private EL1Region As Region

 Private EL2Region As Region

 Private EL3Region As Region

035c05.fm Page 194 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

195195

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 'Set up rectangles to draw ellipses in

 EL1Rect = New Rectangle(10, 10, 150, 50)

 EL2Rect = EL1Rect

 'I could make a new rectangle but I can offset without knowing

 'anything about the previous rectangle.

 EL2Rect.Offset(200, 0)

 'Set up Regions for invalidation

 EL1Region = New Region(EL1Rect)

 EL2Region = New Region(EL2Rect)

 EL3Region = New Region(New Rectangle(New Point(0, 65), _

 New Size(Me.Width, 50)))

 'Set up the blend scroll bar

 BlendWidth.Top = 120

 BlendWidth.Left = CType(Me.Width / 3, Int32)

 BlendWidth.Width = CType(Me.Width / 3, Int32)

 BlendWidth.Minimum = 10

 BlendWidth.Maximum = 200

 BlendWidth.SmallChange = 1

 BlendWidth.LargeChange = 10

 BlendWidth.Value = BlendWidth.Minimum

 'Set up the Skew Scroll Bar

 Skew.Top = 145

 Skew.Left = CType(Me.Width / 3, Int32)

 Skew.Width = CType(Me.Width / 3, Int32)

 Skew.Minimum = 10

 Skew.Maximum = 40

 Skew.SmallChange = 1

 Skew.LargeChange = 10

 Skew.Value = Skew.Minimum

035c05.fm Page 195 Sunday, May 19, 2002 4:54 PM

Chapter 5

196

 'Set up the double buffer button

 cmdDoubleBuffer.Top = Skew.Top + Skew.Height + 5

 cmdDoubleBuffer.Width = Skew.Width

 cmdDoubleBuffer.Left = Skew.Left

 cmdDoubleBuffer.Text = "Allow Flicker"

 BlWidth = BlendWidth.Value

 SkewVal = Skew.Value

 ' Set up for double buffering.

 'This, along with invalidating only those areas that need it, TOTALLY

 'eliminates flicker in this program

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 Me.SetStyle(ControlStyles.DoubleBuffer, True)

 Me.SetStyle(ControlStyles.UserPaint, True)

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 'Dispose of our own objects

 EL1Region.Dispose()

 EL2Region.Dispose()

 EL3Region.Dispose()

 End If

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 Friend WithEvents cmdDoubleBuffer As System.Windows.Forms.Button

 Friend WithEvents Skew As System.Windows.Forms.HScrollBar

 Friend WithEvents BlendWidth As System.Windows.Forms.HScrollBar

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 …

 …

 End Sub

035c05.fm Page 196 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

197197

#End Region

 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 e.Graphics.SmoothingMode = SmoothingMode.AntiAlias

 StandardGradient(e.Graphics)

 e.Graphics.DrawLine(Pens.Black, 0, cmdDoubleBuffer.Bottom + 10, Me.Width, _

 cmdDoubleBuffer.Bottom + 10)

 InterpolateGradient(e.Graphics)

 MyBase.OnPaint(e)

 End Sub

 Private Sub StandardGradient(ByVal G As Graphics)

 'This brush defines how the color is distributed across the whole

 'graphics container. Any filled object that gets drawn in the container

 'will pick up the color starting with the color gradient at that

 'particular point on the screen.

 Dim B As LinearGradientBrush = New LinearGradientBrush(New PointF(0, 20), _

 New PointF(BlWidth, SkewVal), _

 Color.Blue, _

 Color.Red)

 'Draw an image inside the second rectangle

 G.DrawImage(Image.FromFile("D:\\Colorbars.jpg"), EL2Rect)

 'Draw a line across the screen with the brush

 'to show the repeating pattern

 Dim P As Pen = New Pen(B, 15)

 G.DrawLine(P, 0, 75, Me.Width, 75)

 'Draw a filled ellipse to show how the colors are used

 G.FillEllipse(B, EL1Rect)

035c05.fm Page 197 Sunday, May 19, 2002 4:54 PM

Chapter 5

198

 'Change the starting and ending colors

 'Set the alpha so the image below shows through

 Dim c() As Color = {Color.FromArgb(100, Color.LightBlue), _

 Color.FromArgb(100, Color.DarkBlue)}

 B.LinearColors = c

 P.Brush = B

 G.DrawLine(P, 0, 100, Me.Width, 100)

 G.FillEllipse(B, EL2Rect)

 'Reclaim some memory

 c = Nothing

 If Not P Is Nothing Then

 P.Dispose()

 End If

 If Not B Is Nothing Then

 B.Dispose()

 End If

 End Sub

 Private Sub InterpolateGradient(ByVal G As Graphics)

 'Make a set of colors to use in the blend

 Dim EndColors() As Color = {Color.Green, _

 Color.Yellow, _

 Color.Yellow, _

 Color.Blue, _

 Color.Red, _

 Color.Red}

 'These are the positions of the colors along the Gradient line

 Dim ColorPositions() As Single = {0.0F, 0.2F, 0.4F, 0.6F, 0.8F, 1.0F}

 'Fill the blend object with the colors and their positions

 Dim C_Blend As ColorBlend = New ColorBlend()

 C_Blend.Colors = EndColors

 C_Blend.Positions = ColorPositions

 'Make the linear brush and assign the custom blend to it

 Dim B As LinearGradientBrush = New LinearGradientBrush(New Point(10, 110), _

 New Point(140, 110), _

 Color.White, _

 Color.Black)

 B.InterpolationColors = C_Blend

035c05.fm Page 198 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

199199

 'Make a graphics path that we can fill and show custom blended fill

 Dim Pth As GraphicsPath = New GraphicsPath()

 Pth.AddEllipse(20, 210, 120, 50)

 Pth.AddString("Filled String", New FontFamily("Impact"), _

 CType(FontStyle.Italic, Int32), 30, New Point(200, 220), _

 StringFormat.GenericDefault)

 G.FillPath(B, Pth)

 Dim P As Pen = New Pen(B, 20)

 G.DrawLine(P, 0, 300, Me.Width, 300)

 If Not P Is Nothing Then

 P.Dispose()

 End If

 If Not B Is Nothing Then

 B.Dispose()

 End If

 If Not Pth Is Nothing Then

 Pth.Dispose()

 End If

 End Sub

 Private Sub BlendWidth_Scroll(ByVal sender As System.Object, ByVal e As

 System.Windows.Forms.ScrollEventArgs) Handles BlendWidth.Scroll

 BlWidth = BlendWidth.Value

 'Redraw the first ellipse

 Me.Invalidate(EL1Region)

 'Redraw the second ellipse

 Me.Invalidate(EL2Region)

 'Redraw the lines

 Me.Invalidate(EL3Region)

 End Sub

 Private Sub Skew_Scroll(ByVal sender As System.Object, _

 ByVal e As _

 System.Windows.Forms.ScrollEventArgs) _

 Handles Skew.Scroll

035c05.fm Page 199 Sunday, May 19, 2002 4:54 PM

Chapter 5

200

 SkewVal = Skew.Value

 'Redraw the first ellipse

 Me.Invalidate(EL1Region)

 'Redraw the second ellipse

 Me.Invalidate(EL2Region)

 'Redraw the lines

 Invalidate(EL3Region)

 End Sub

 Private Sub cmdDoubleBuffer_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles cmdDoubleBuffer.Click

 If Me.GetStyle(ControlStyles.AllPaintingInWmPaint) And _

 Me.GetStyle(ControlStyles.DoubleBuffer) And _

 Me.GetStyle(ControlStyles.UserPaint) Then

 cmdDoubleBuffer.Text = "Eliminate Flicker"

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, False)

 Me.SetStyle(ControlStyles.DoubleBuffer, False)

 Else

 cmdDoubleBuffer.Text = "Allow Flicker"

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 Me.SetStyle(ControlStyles.DoubleBuffer, True)

 End If

 End Sub

End Class

Listing 5-5b. LinearGradientBrush Example in C#

using System;

using System.Drawing;

using System.Drawing.Imaging;

using System.Drawing.Drawing2D;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

035c05.fm Page 200 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

201201

namespace GradientBlend_c

{

 /// <summary>

 /// Summary description for Form1.

 /// </summary>

 public class Form1 : System.Windows.Forms.Form

 {

 private System.Windows.Forms.HScrollBar BlendWidth;

 private System.ComponentModel.Container components = null;

 private System.Windows.Forms.HScrollBar Skew;

 private System.Windows.Forms.Button cmdDoubleBuffer;

 private int BlWidth;

 private int SkewVal;

 private Rectangle EL1Rect;

 private Rectangle EL2Rect;

 private Region EL1Region;

 private Region EL2Region;

 private Region EL3Region;

 public Form1()

 {

 //

 // Required for Windows Form Designer support

 //

 InitializeComponent();

 //Set up rectangles to draw ellipses in

 EL1Rect = new Rectangle(10, 10, 150, 50);

 EL2Rect = EL1Rect;

 //I could make a new rectangle but I can offset without knowing

 //anything about the previous rectangle.

 EL2Rect.Offset(200, 0);

 //Set up Regions for invalidation

 EL1Region = new Region(EL1Rect);

 EL2Region = new Region(EL2Rect);

 EL3Region = new Region(new Rectangle(new Point(0, 65),

 new Size(this.Width, 50)));

035c05.fm Page 201 Sunday, May 19, 2002 4:54 PM

Chapter 5

202

 //Set up the blend scroll bar

 BlendWidth.Top = 120;

 BlendWidth.Left = this.Width/3;

 BlendWidth.Width = this.Width/3;

 BlendWidth.Minimum = 10;

 BlendWidth.Maximum = 200;

 BlendWidth.SmallChange = 1;

 BlendWidth.LargeChange = 10;

 BlendWidth.Value = BlendWidth.Minimum;

 //Set up the Skew Scroll Bar

 Skew.Top = 145;

 Skew.Left = this.Width/3;

 Skew.Width = this.Width/3;

 Skew.Minimum = 10;

 Skew.Maximum = 40;

 Skew.SmallChange = 1;

 Skew.LargeChange = 10;

 Skew.Value = Skew.Minimum;

 //Set up the double buffer button

 cmdDoubleBuffer.Top = Skew.Top + Skew.Height + 5;

 cmdDoubleBuffer.Width = Skew.Width;

 cmdDoubleBuffer.Left = Skew.Left;

 cmdDoubleBuffer.Text = "Allow Flicker";

 BlWidth = BlendWidth.Value;

 SkewVal = Skew.Value;

 // Set up for double buffering.

 //This, along with invalidating only those areas that need it, TOTALLY

 //eliminates flicker in this program

 this.SetStyle (ControlStyles.AllPaintingInWmPaint, true);

 this.SetStyle (ControlStyles.DoubleBuffer, true);

 this.SetStyle (ControlStyles.UserPaint, true);

 }

035c05.fm Page 202 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

203203

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 //Dispose of our own objects

 EL1Region.Dispose();

 EL2Region.Dispose();

 EL3Region.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.BlendWidth = new System.Windows.Forms.HScrollBar();

 this.Skew = new System.Windows.Forms.HScrollBar();

 this.cmdDoubleBuffer = new System.Windows.Forms.Button();

 this.SuspendLayout();

 //

 // BlendWidth

 //

 this.BlendWidth.Location = new System.Drawing.Point(32, 224);

 this.BlendWidth.Name = "BlendWidth";

 this.BlendWidth.Size = new System.Drawing.Size(192, 16);

 this.BlendWidth.TabIndex = 0;

 this.BlendWidth.Scroll += new

 System.Windows.Forms.ScrollEventHandler

 (this.BlendChange);

035c05.fm Page 203 Sunday, May 19, 2002 4:54 PM

Chapter 5

204

 //

 // Skew

 //

 this.Skew.Location = new System.Drawing.Point(192, 272);

 this.Skew.Name = "Skew";

 this.Skew.Size = new System.Drawing.Size(104, 16);

 this.Skew.TabIndex = 1;

 this.Skew.Scroll += new

 System.Windows.Forms.ScrollEventHandler

 (this.SkewColor);

 //

 // cmdDoubleBuffer

 //

 this.cmdDoubleBuffer.Location = new System.Drawing.Point(40, 304);

 this.cmdDoubleBuffer.Name = "cmdDoubleBuffer";

 this.cmdDoubleBuffer.Size = new System.Drawing.Size(248, 24);

 this.cmdDoubleBuffer.TabIndex = 2;

 this.cmdDoubleBuffer.Text = "button1";

 this.cmdDoubleBuffer.Click += new

 System.EventHandler

 (this.cmdDoubleBuffer_Click);

 //

 // Form1

 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.ClientSize = new System.Drawing.Size(392, 373);

 this.Controls.AddRange(new System.Windows.Forms.Control[]

 {this.cmdDoubleBuffer, this.Skew,

 this.BlendWidth});

 this.Name = "Form1";

 this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;

 this.Text = "Form1";

 this.Load += new System.EventHandler(this.Form1_Load);

 this.ResumeLayout(false);

 }

 #endregion

035c05.fm Page 204 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

205205

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new Form1());

 }

 private void Form1_Load(object sender, System.EventArgs e)

 {

 }

 protected override void OnPaint (PaintEventArgs e)

 {

 e.Graphics.SmoothingMode=SmoothingMode.AntiAlias;

 StandardGradient(e.Graphics);

 e.Graphics.DrawLine(Pens.Black, 0, cmdDoubleBuffer.Bottom+10, this.Width,

 cmdDoubleBuffer.Bottom+10);

 InterpolateGradient(e.Graphics);

 base.OnPaint(e);

 }

 private void StandardGradient(Graphics G)

 {

 //This brush defines how the color is distributed across the whole

 //graphics container. Any filled object that gets drawn in the container

 //will pick up the color starting with the color gradient at that

 //particular point on the screen.

 LinearGradientBrush B = new LinearGradientBrush(new PointF(0, 20),

 new PointF(BlWidth, SkewVal),

 Color.Blue,

 Color.Red);

 //Draw an image inside the second rectangle

 G.DrawImage(Image.FromFile("D:\\Colorbars.jpg"), EL2Rect);

 //Draw a line across the screen with the brush

 //to show the repeating pattern

 Pen P = new Pen(B, 15);

 G.DrawLine (P, 0, 75, this.Width, 75);

 //Draw a filled ellipse to show how the colors are used

 G.FillEllipse(B, EL1Rect);

035c05.fm Page 205 Sunday, May 19, 2002 4:54 PM

Chapter 5

206

 //Change the starting and ending colors

 //Set the alpha so the image below shows through

 Color[] c = {Color.FromArgb(100, Color.LightBlue),

 Color.FromArgb(100, Color.DarkBlue)};

 B.LinearColors = c;

 P.Brush = B;

 G.DrawLine (P, 0, 100, this.Width, 100);

 G.FillEllipse(B, EL2Rect);

 //Reclaim some memory

 c = null;

 P.Dispose();

 B.Dispose();

 }

 private void InterpolateGradient (Graphics G)

 {

 //Make a set of colors to use in the blend

 Color[] EndColors = {Color.Green,

 Color.Yellow,

 Color.Yellow,

 Color.Blue,

 Color.Red,

 Color.Red};

 //These are the positions of the colors along the Gradient line

 float[] ColorPositions = {0.0f, .20f, .40f, .60f, .80f, 1.0f};

 //Fill the blend object with the colors and their positions

 ColorBlend C_Blend = new ColorBlend();

 C_Blend.Colors = EndColors;

 C_Blend.Positions = ColorPositions;

 //Make the linear brush and assign the custom blend to it

 LinearGradientBrush B = new LinearGradientBrush (new Point(10, 110),

 new Point(140, 110),

 Color.White,

 Color.Black);

 B.InterpolationColors = C_Blend;

035c05.fm Page 206 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

207207

 //Make a graphics path that we can fill and show custom blended fill

 GraphicsPath Pth = new GraphicsPath();

 Pth.AddEllipse(20, 210, 120, 50);

 Pth.AddString("Filled String", new FontFamily("Impact"),

 (int)FontStyle.Italic, 30, new Point(200, 220),

 StringFormat.GenericDefault);

 G.FillPath(B, Pth);

 Pen P = new Pen(B, 20);

 G.DrawLine (P, 0, 300, this.Width, 300);

 if (P != null)

 P.Dispose();

 if (B != null)

 B.Dispose();

 if (Pth != null)

 Pth.Dispose();

 }

 private void BlendChange(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 BlWidth = BlendWidth.Value;

 //Redraw the first ellipse

 this.Invalidate(EL1Region);

 //Redraw the second ellipse

 this.Invalidate(EL2Region);

 //Redraw the lines

 this.Invalidate(EL3Region);

 }

 private void SkewColor(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 SkewVal = Skew.Value;

 //Redraw the first ellipse

 this.Invalidate(EL1Region);

 //Redraw the second ellipse

 this.Invalidate(EL2Region);

 //Redraw the lines

 Invalidate(EL3Region);

 }

035c05.fm Page 207 Sunday, May 19, 2002 4:54 PM

Chapter 5

208

 private void cmdDoubleBuffer_Click(object sender, System.EventArgs e)

 {

 if (this.GetStyle(ControlStyles.AllPaintingInWmPaint) &&

 this.GetStyle(ControlStyles.DoubleBuffer) &&

 this.GetStyle(ControlStyles.UserPaint))

 {

 cmdDoubleBuffer.Text = "Eliminate Flicker";

 this.SetStyle (ControlStyles.AllPaintingInWmPaint, false);

 this.SetStyle (ControlStyles.DoubleBuffer, false);

 }

 else

 {

 cmdDoubleBuffer.Text = "Allow Flicker";

 this.SetStyle (ControlStyles.AllPaintingInWmPaint, true);

 this.SetStyle (ControlStyles.DoubleBuffer, true);

 }

 }

 }

}

This seems like a big program for such a limited example. Or is it? I could have
written the standard “draw a simple static shape using defaults” example. I believe,
however, you will learn a lot more than just some GDI programming from this
example. It also teaches you how to weave quite a few concepts together. This is
just as important, I think, as the concepts themselves.

By the way, if you want, you can download the code from Downloads section
of the Apress Web site (http://www.apress.com) if you do not want to enter it
manually.3

So what does this example look like when it runs? Figure 5-5 shows the screen
as it starts up.

As you can see, there are quite a few things on the screen. The screen is also
divided into two sections. First of all, look at the top part of the screen. The upper
scroll bar changes the repeat distance of the color pattern. The lower scroll bar
changes the skew of the pattern. The pattern is skewed to the left. The button
below the scroll bars changes some of the painting parameters to prevent flicker.

Try running the program and playing with the scroll bars and antiflicker
button. Pretty cool stuff. You will see that the top right-hand ellipse has an alpha
component to it and is drawn as a transparent image on top of the color bars’
picture. Figure 5-6 shows this screen with the blend scroll bar to the right and the
skew as vertical. The blend repeat pattern is much longer.

3. I encourage you to enter as much as you can. You will learn so much more from making
mistakes than not trying.

035c05.fm Page 208 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

209209

Figure 5-5. Starting screen of the LinearGradientBrush example

Figure 5-6. Longer blend repeat pattern and no skew

035c05.fm Page 209 Sunday, May 19, 2002 4:54 PM

Chapter 5

210

Turn off the antiflicker and you will see the top half of the screen flicker as you
move the scroll bars. You will also notice that the bottom images do not flicker.
This is because you are invalidating only those portions of the screen that are
affected by the scroll bars. Turn on the antiflicker and the painting will be very
smooth. No tearing or flicker.

The bottom half of the screen is painted only once. It is a LinearGradientBrush
that has four colors for its pattern. Also, the pattern repeats at odd intervals to
create an interesting gradient. The string and ellipse are part of the same path.
When this path is filled, both the ellipse and the string get filled at the same time
using just one call.

The antiflicker is accomplished by setting the ControlStyles properties to
enable double buffering. As you can see, this is very effective.

Creating a PathGradientBrush

I said I would talk about the last two brushes, and so far I have only mentioned one
of them: the LinearGradientBrush. The last one is called the PathGradientBrush.

Where a LinearGradientBrush started out with one color at the start point and
ended with another color at the end point, the PathGradientBrush starts with a
color at the center of a path and ends with another color at the outer edge of the path.

The classic example is comparing a line that starts out as blue and ends with
red to a circle whose center is blue and whose outer edges end with red. Both kinds
of brushes can have an unlimited number of colors between the start and end
colors and they can place those colors anywhere along the gradient path.

My personal opinion is that the PathGradientBrush is the cooler of the two
brushes, and the next two examples will show you just one application of this brush.
For now, though, I think it is best to explain the behavior of this brush in detail.

The PathGradientBrush has five overloaded constructors. All the constructors
take either a path or an array of points. Since a path can be made up of an array
of points, in this case, they are the same. Two of the constructors take an extra
argument called a WrapMode.

What is a WrapMode? Basically, it is a way of telling the drawing method how a
gradient is to be tiled when the object lies outside the gradient area. As you will see,
the gradient path has a size that can be different from the size of the shape you
are filling.

035c05.fm Page 210 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

211211

Table 5-3 shows the WrapMode enumeration and describes what each
member means.

The default value for WrapMode is Clamp. This means that if the gradient fill
area is less than the shape you are drawing, any part of the shape that is outside of
the gradient area will not be shown. This is very much like a clipping region.

Perhaps a small example is in order. Figure 5-7 shows a rectangle that defines
the size of the PathGradientBrush. Inside this rectangle is a small circle whose
color gradient starts in the middle and flows out evenly to the edges of the circle.
Outside of the rectangle is a large circle. The fill of the large circle shows the path
gradient in a tiled fashion.

Figure 5-7. Tiled WrapMode for a PathGradientBrush

Table 5-3. WrapMode Enumeration

Name Description

Clamp Clamps the gradient to the edges of the filled shape

Tile Tiles the gradient

TileFlipX Reverses the gradient in the X axis, and then tiles the gradient

TileFlipY Reverses the gradient in the Y axis, and then tiles the gradient

TileFlipXY Reverses the gradient in both axes, and then tiles the gradient

035c05.fm Page 211 Sunday, May 19, 2002 4:54 PM

Chapter 5

212

The constructor I am using for this brush has a WrapMode set to WrapMode.Tile.
The C# code for this small example is shown in Listing 5-6. This is all done in the
OnPaint method of a blank form.

Listing 5-6. C# Code for Demonstrating a Tiled WrapMode

 protected override void OnPaint(PaintEventArgs e)

 {

 GraphicsPath Path = new GraphicsPath();

 Rectangle R = new Rectangle(10, 10, 50, 50);

 e.Graphics.DrawRectangle(Pens.Black,R);

 Path.AddRectangle(R);

// PathGradientBrush B = new PathGradientBrush(Path.PathPoints);

 PathGradientBrush B = new PathGradientBrush(Path.PathPoints,

 WrapMode.Tile);

 Color[] c = { Color.Blue, Color.Aqua, Color.Red };

 B.CenterColor = Color.White;

 B.SurroundColors = c;

 //Small circle inside gradient path

 e.Graphics.FillEllipse(B, 15, 15, 30, 30);

 //Large circle outside gradient path

 e.Graphics.FillEllipse(B, 50, 50, 150, 150);

 }

Comment out the constructor for the PathGradientBrush and uncomment the
one in Listing 5-6. Now run the program again and you should see just the small
circle. The WrapMode is defaulted to WrapMode.Clamp and anything outside the
gradient area is not shown.

As you have no doubt surmised, the PathGradientBrush is used to fill objects
from the center on out. The PathGradientBrush has enough intelligence to figure
out the centroid of a path. After all, not everything is a rectangle or an ellipse. Some
paths can be quite complex indeed. Think of the computation needed to figure the
center of a path made up of a line of text!4

Let’s look at some more detail regarding the PathGradientBrush. For one
thing, it needs more setup than can be provided by constructor arguments. This is
very different from all the pens and brushes you have dealt with so far. They can all
be constructed using just one line of code. The PathGradientBrush needs at least

4. Well, I could, but why bother?

035c05.fm Page 212 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

213213

two more pieces of information: the center color and the color array that leads to
the outer color.

Several properties to this brush can greatly change the way it behaves:

• Blend

• CenterColor

• CenterPoint

• FocusScales

• InterpolationColors

• Rectangle

• SurroundColors

• Transform

• WrapMode

You have already seen WrapMode. You also know about CenterColor from the
example in Listing 5-6. Transform is a subject you will deal with a little later in this
chapter.

The Blend object and InterpolationColors were explained in the previous
section about the LinearGradientBrush.

The Rectangle object defines the rectangle that surrounds the gradient path.
Even though the path may be complex and convoluted, this method returns the
rectangle structure that surrounds that path. Often this rectangle is called the
bounding rectangle.

SurroundColors is an array of colors that corresponds with the array of points
that make up the path.

The CenterPoint is calculated by the object itself from the path given at con-
struction. This property can be written to as well. You can change the center point
to be anywhere in world coordinate space. Yes, this means that the center of the
gradient path can be outside of the path itself. You will take advantage of this fact
in the next example.

The FocusScales property is interesting indeed. It acts as a lens on the center
of the gradient. It creates a scaled path inside the original gradient path whose
color is the center color. The FocusScales property is a PointF structure whose first
value is the scaling factor in the X direction. The second value is the scaling factor
in the Y direction. Both values are normalized and range from 0 to 1.

035c05.fm Page 213 Sunday, May 19, 2002 4:54 PM

Chapter 5

214

Using the FocusScales property, you can create a cat’s eye by defining a hori-
zontal ellipse whose FocusScales property is larger in the Y direction than in the X
direction. The MSDN help on PathGradients has a good example of using this
property.

Now you know all the theory behind a PathGradientBrush. I have given you a
small, static example of drawing a shape outside the gradient to see what happens.
As you have probably guessed, though, I am not a big fan of static examples. You
are not about to go drawing simple pictures your whole career. You also need to
know how to use some of what I am talking about in an interactive program. The
LinearGradientBrush example was interactive and showed you how you could use
OnPaint method effectively in a real situation.

The next example is also interactive. It will, however, be somewhat more dif-
ficult. Because of this, it will also be very cool. This example contains two shape
objects. One of those objects will be contained in its own class. This is what the
C++ guys call a “wrapper.”

Why wrap a shape in a class? One of the points to object-oriented programming is

information hiding. This class will accomplish some complicated things and it will
also know how to draw itself on the screen. All this functionality is hidden behind
a very simple interface. This shape object will move around the screen and respond to
mouse events. The shape that is not wrapped in a class is static. I draw it on the
screen in the same place all the time. Only some of the properties change. No need
for a class here.

So, let’s begin. Here are some features you will see in this program:

• Your own class

• Overloaded constructors

• Read/Write properties

• ReadOnly properties

• Class methods

• Mouse events

• Mouse tracking

• PathGradientBrush

• AntiFlicker redraw

• Changes in the centroid of a shape object

035c05.fm Page 214 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

215215

Start a new VB or C# project. My examples are called PathBlend-c and
PathBlend-vb. There are no controls for this form, so accept the defaults and go
straight into the code pane.

The next step is to add a new class. There are several ways to do this—here is
one way:

1. Right-click the project name in the Solution Explorer.

2. Choose Add and then choose Add Class.

3. Name the class Centroid.

This procedure is the same for VB and for C#.

Your Solution Explorer should have one form and one class. It should look like
Figure 5-8.

Figure 5-8. Solution Explorer for Listing 5-7

The VB classes will have an extension of .vb.
Bring up the Centroid class and enter the code shown in Listing 5-7a. This

class is a wrapper for a circle that will act as the centroid for a much larger circle.

NOTE I encourage you to enter the code for both language versions of
this example. This example brings out some of the disparate syntax
between both languages. It is interesting to see how C# and VB
accomplish the same thing.

035c05.fm Page 215 Sunday, May 19, 2002 4:54 PM

Chapter 5

216

Listing 5-7a. Code for the Centroid Wrapper Class

C#

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

namespace PathBlend_c

{

 /// <summary>

 /// This class acts a centroid for another shape

 /// There is no Dispose() method for this class

 /// because it consumes

 /// no resources

 /// </summary>

 public class Centroid

 {

 const int w = 20;

 const int h = 20;

 private int m_StartX; // Top left X

 private int m_StartY; // Top left Y

 private Rectangle r; // Rectangle that holds the circle

 #region Constructors / Destructors

 public Centroid()

 {

 m_StartX = 10;

 m_StartY = 10;

 r.X = 10;

 r.Y = 10;

 r.Width = w;

 r.Height = h;

 }

 public Centroid(int X, int Y)

 {

 m_StartX = X;

 m_StartY = Y;

 r.X = X;

 r.Y = Y;

 r.Width = w;

 r.Height = h;

 }

035c05.fm Page 216 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

217217

 #endregion

 #region Properties

 public int X

 {

 get { return m_StartX; }

 set

 {

 m_StartX = value;

 r.X = value;

 }

 }

 public int Y

 {

 get { return m_StartY; }

 set

 {

 m_StartY = value;

 r.Y = value;

 }

 }

 public Rectangle Rect

 {

 get { return r; }

 }

 public Point Center

 {

 get { return (new Point((r.Left+r.Width/2), r.Top+r.Height/2)); }

 }

 #endregion

 #region Methods

 public void Draw(Graphics G)

 {

 G.FillEllipse(Brushes.Aqua, r);

 }

035c05.fm Page 217 Sunday, May 19, 2002 4:54 PM

Chapter 5

218

 public bool Relocate(System.Windows.Forms.MouseEventArgs e)

 {

 if (e.Button == System.Windows.Forms.MouseButtons.Left)

 {

 if ((e.X > r.Left) && (e.X < r.Right) &&

 (e.Y > r.Top) && (e.Y < r.Bottom))

 {

 //Must make the center of the rectangle = x,y

 //If you don't you will lose track of the ball

 r.X = e.X - r.Width/2;

 m_StartX = r.X;

 r.Y = e.Y - r.Height/2;

 m_StartY = r.Y;

 return(true);

 }

 }

 return(false);

 }

 #endregion

 }

}

VB

Option Strict On

Imports System

Imports System.Drawing

Imports System.Drawing.Drawing2D

Public Class Centroid

 Const w As Int32 = 20

 Const h As Int32 = 20

 Private m_StartX As Int32 ' Top left X

 Private m_StartY As Int32 ' Top left Y

 Private r As Rectangle ' Rectangle that holds the circle

035c05.fm Page 218 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

219219

#Region "Constructor/Destructor"

 Public Sub New()

 m_StartX = 10

 m_StartY = 10

 r.X = 10

 r.Y = 10

 r.Width = w

 r.Height = h

 End Sub

 Public Sub New(ByVal X As Int32, ByVal Y As Int32)

 m_StartX = X

 m_StartY = Y

 r.X = X

 r.Y = Y

 r.Width = w

 r.Height = h

 End Sub

#End Region

#Region "Properties"

 Public Property X() As Int32

 Get

 Return m_StartX

 End Get

 Set(ByVal Value As Int32)

 m_StartX = Value

 End Set

 End Property

 Public Property Y() As Int32

 Get

 Return m_StartY

 End Get

 Set(ByVal Value As Int32)

 m_StartY = Value

 End Set

 End Property

 Public ReadOnly Property Center() As PointF

 Get

 Return (New PointF((r.Left + CInt(r.Width / 2)), _

 r.Top + CInt(r.Height / 2)))

 End Get

 End Property

035c05.fm Page 219 Sunday, May 19, 2002 4:54 PM

Chapter 5

220

 Public ReadOnly Property Rect() As Rectangle

 Get

 Return r

 End Get

 End Property

#End Region

#Region "Methods"

 Public Sub Draw(ByVal G As Graphics)

 G.FillEllipse(Brushes.Aqua, r)

 End Sub

 Public Function Relocate(ByVal e As System.Windows.Forms.MouseEventArgs) _

 As Boolean

 If e.Button = System.Windows.Forms.MouseButtons.Left Then

 If ((e.X > r.Left) And (e.X < r.Right) And _

 (e.Y > r.Top) And (e.Y < r.Bottom)) Then

 'Must make the center of the rectangle = x,y

 'If you don't you will lose track of the ball

 r.X = e.X - CInt(r.Width / 2)

 m_StartX = r.X

 r.Y = e.Y - CInt(r.Height / 2)

 m_StartY = r.Y

 Return (True)

 End If

 End If

 Return (False)

 End Function

#End Region

End Class

This class has two overloaded constructors. The default one makes the centroid at
a fixed place on the screen. The second one takes x and y coordinates to make the
centroid anywhere on the screen you want.

This class also has several accessor properties and two methods. One of the
methods tells the object to relocate itself on the screen according to mouse coor-
dinates and the other method tells the object to draw itself.

Once you are able to compile this code, switch back to the form’s code pane.
This is where all the action happens. Listing 5-7b shows the code for this form. All
the code, including the wizard code, is shown here.

035c05.fm Page 220 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

221221

Listing 5-7b. Code for the Main Form

C#

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace PathBlend_c

{

 public class Form1 : System.Windows.Forms.Form

 {

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.Container components = null;

 private Point CenterPoint;

 private Rectangle R;

 private Centroid Moon = new Centroid(50, 50);

 public Form1()

 {

 InitializeComponent();

 Graphics G = Graphics.FromHwnd(this.Handle);

 G.SmoothingMode=SmoothingMode.AntiAlias;

 this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);

 this.SetStyle(ControlStyles.DoubleBuffer, true);

 this.SetStyle(ControlStyles.UserPaint, true);

 //Rectangle R holds the ellipse

 R = new Rectangle(this.Width/6, this.Height/6,

 this.Width/3*2, this.Height/3*2);

 CenterPoint.X = Moon.X;

 CenterPoint.Y = Moon.Y;

 }

035c05.fm Page 221 Sunday, May 19, 2002 4:54 PM

Chapter 5

222

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 //

 // Form1

 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);

 this.ClientSize = new System.Drawing.Size(292, 273);

 this.MinimizeBox = false;

 this.Name = "Form1";

 this.SizeGripStyle = System.Windows.Forms.SizeGripStyle.Hide;

 this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen;

 this.Text = "Moon Over Mars";

 this.Load += new System.EventHandler(this.Form1_Load);

 this.MouseMove += new

 System.Windows.Forms.MouseEventHandler(this.GetCoord);

 }

 #endregion

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

035c05.fm Page 222 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

223223

 {

 Application.Run(new Form1());

 }

 private void Form1_Load(object sender, System.EventArgs e)

 {

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 GraphicsPath path = new GraphicsPath();

 path.AddEllipse(R);

 // Use the path to construct a path gradient brush.

 PathGradientBrush B = new PathGradientBrush(path);

 B.CenterColor = Color.Aqua;

 B.CenterPoint = CenterPoint;

 Color[] c = {Color.Red};

 B.SurroundColors = c;

 // Fill the path with the path gradient brush.

 e.Graphics.FillPath(B, path);

 Moon.Draw(e.Graphics);

 }

 private void GetCoord(object sender, System.Windows.Forms.MouseEventArgs e)

 {

 this.Invalidate(Moon.Rect);

 if (Moon.Relocate(e))

 {

 CenterPoint = Moon.Center;

 //Redraw the centroid

 this.Invalidate(Moon.Rect);

 //Redraw the main ellipse

 this.Invalidate(R);

 }

 }

 }

}

035c05.fm Page 223 Sunday, May 19, 2002 4:54 PM

Chapter 5

224

VB

Option Strict On

Imports System

Imports System.Drawing

Imports System.Drawing.Drawing2D

Public Class Form1

 Inherits System.Windows.Forms.Form

 Private CenterPoint As PointF

 Private R As Rectangle

 Private Moon As Centroid = New Centroid(50, 50)

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 Dim G As Graphics = Graphics.FromHwnd(Me.Handle)

 G.SmoothingMode = SmoothingMode.AntiAlias

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 Me.SetStyle(ControlStyles.DoubleBuffer, True)

 Me.SetStyle(ControlStyles.UserPaint, True)

 'Rectangle R holds the ellipse

 R = New Rectangle(CInt(Me.Width / 6), CInt(Me.Height / 6), _

 CInt(Me.Width / 3 * 2), CInt(Me.Height / 3 * 2))

 CenterPoint.X = Moon.X

 CenterPoint.Y = Moon.Y

 End Sub

 'Form overrides dispose to clean up the component list.

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)

 If disposing Then

 If Not (components Is Nothing) Then

 components.Dispose()

 End If

 End If

035c05.fm Page 224 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

225225

 MyBase.Dispose(disposing)

 End Sub

 'Required by the Windows Form Designer

 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer

 'It can be modified using the Windows Form Designer.

 'Do not modify it using the code editor.

 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()

 '

 'Form1

 '

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.ClientSize = New System.Drawing.Size(292, 273)

 Me.Name = "Form1"

 Me.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen

 Me.Text = "Moon Over Mars"

 End Sub

#End Region

 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim path As GraphicsPath = New GraphicsPath()

 path.AddEllipse(R)

 ' Use the path to construct a path gradient brush.

 Dim B As PathGradientBrush = New PathGradientBrush(path)

 B.CenterColor = Color.Aqua

 B.CenterPoint = CenterPoint

 Dim c() As Color = {Color.Red}

 B.SurroundColors = c

 ' Fill the path with the path gradient brush.

 e.Graphics.FillPath(B, path)

 Moon.Draw(e.Graphics)

 End Sub

035c05.fm Page 225 Sunday, May 19, 2002 4:54 PM

Chapter 5

226

 Public Sub GetCoord(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.MouseEventArgs) _

 Handles MyBase.MouseMove

 Me.Invalidate(Moon.Rect)

 If Moon.Relocate(e) Then

 CenterPoint = Moon.Center

 'Redraw the centroid

 Me.Invalidate(Moon.Rect)

 'Redraw the main ellipse

 Me.Invalidate(R)

 End If

 End Sub

End Class

This form’s code sets up the painting parameters so redrawing the form

will be very fast. It also draws a large red circle on the form that is filled with a
PathGradientBrush. This brush has its center defined by the center of the moon.
The moon is, of course, the object constructed by the new class you made.

You can move the moon by pressing the left mouse key while inside the moon
boundary and dragging the moon to another position. While you are dragging the
moon, the centroid of the PathGradientBrush is changed and the large circle is
repainted to reflect this. The effect you get is a reflection of the satellite object on
the stationary object.

Compile and run the program. Figure 5-9 shows the form as it first comes up.

Figure 5-9. Starting position of the centroid example

035c05.fm Page 226 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

227227

Try grabbing the moon and moving it slowly around and through the large
circle. You will see the color gradient change according to the center point of the
path. Figure 5-10 shows the form after moving the satellite just to the outside of
the circle.

Figure 5-10. Gradient after the satellite is moved

Isn’t this example better than just a plain old static one? While it’s kind of neat
in itself, you may not see right away some of the applications. Eventually, when
you start programming for real, you’ll need to do things on a common basis such as

• Find the center of an object

• Respond to mouse events based on several parameters

• Move an object around the screen5

• Draw smoothly on the screen

5. This is probably one of the most common things you will do in graphics programming.

035c05.fm Page 227 Sunday, May 19, 2002 4:54 PM

Chapter 5

228

More Transforms

Remember the cool movie called The Matrix? This section covers the mathe-
matical matrix as it relates to transforms in graphics space. It has nothing to do
with the movie.6

A matrix is a set of numbers arranged in m rows and n columns. GDI+ uses a
3×3 matrix to store values that correspond to a rotation of a shape and a trans-
lation of that shape.

How about a little matrix math? A linear transformation is known as rotation.
This is defined by multiplying a point structure by a 2×2 matrix. A translation is
defined by adding a point structure to a 1×2 matrix. Suppose you had a point at (20, 45)
and you wanted to rotate it by 90 degrees. The math would look like Figure 5-11.

Figure 5-11. Matrix equation for multiplying a 1×2 matrix by a 2×2 matrix

The single point (20, 45) can be thought of as a 1×2 matrix. The transformation
is a 2×2 matrix. Multiplying the two gives you a transformed point. So, how do you
do this multiplication? Use a calculator . . . just kidding.

You take the dot product which is taking the Ith row of the A matrix and multi-
plying it by the jth column of the B matrix. The number of columns in the A matrix
must equal the number of rows in the B matrix. I learned this in school. Here is
what it means in plain English:

• First of all, if you are multiplying a matrix m by another matrix p, the number of
columns in m must equal the number of rows in p. For the previous example, m
has two columns and p has two rows.

• Multiply each of the numbers in the m column by its corresponding row in
the p row.

• Add the resulting row × column entries to get the resulting matrix.

6. The Matrix was one of my favorite movies. I await the sequels with great anticipation.

20 45
0
-1

1
0x = -45 20

035c05.fm Page 228 Thursday, May 23, 2002 5:15 PM

Advanced Graphics

229229

So the dot product of the previous example is (20×0)+(45×∠1), (20×1)+(45×0) =
(–45, 20).

Okay. Now you know how to transform a point. How about translating a point?
What is translation anyway? Translation is moving a point in the X and/or Y
direction. You have done translation already in a few examples in Chapter 4. A
matrix translation is not done by multiplication, but by addition of the individual
element of a matrix.

A point is a 1×2 matrix. Translating that point to another point consists of
adding another point to it. Suppose you had a point of (4, 5). If you added another
point to it of (3, 0) you would end up with a point of (7, 5). You have translated the
original point by 3 in the X direction.

Linear transformation (multiplication) and translation (addition) are the two
things you can do to a point in the GDI+ space. The combination of a transform
and a translation is called an affine transformation.

It would be nice to be able to represent an affine transformation by one
matrix. GDI+ has the Matrix object, which is a 3×3 matrix representing an affine

transformation.
So, you ask, how can a 3×3 matrix represent a 1×2 matrix multiplied by a 2×2

matrix and added to another 1×2 matrix? Well, a point in the plane needs to be
stored in a 1×3 matrix with a dummy third coordinate. Making the third coordinate
of the original point and the third coordinate of the translation point equal to 1
does this.

Take the point of (20, 45). This is represented by a matrix of [20 45 1], with 1
being the dummy third coordinate. Now suppose you wanted to transform it by 90
degrees and translate it by 7 in the X direction and by 12 in the Y direction. The
affine transformation would look like Figure 5-12.

Figure 5-12. Affine transformation of point (20, 45)

Adding the third dummy coordinate ensures that the number of columns in
the first matrix equals the number of rows in the second matrix. The third column
of an affine matrix will always contain the numbers (0, 0, 1).

It stands to reason that you would want to make several transformations in
series. For instance, you could transform a point by 60 degrees, scale it by a factor

20 45 1
0
-1
7

1
0
12

0
0
1

x = -38 32

035c05.fm Page 229 Thursday, May 23, 2002 5:15 PM

Chapter 5

230

of 3 in the Y direction, and then translate it by 32 in the X direction. This sequence of
transformation can all be multiplied together to make a singe 3×3 matrix. What this
means is that a sequence of transformations can also be stored in the Matrix object.

The Matrix class has several methods that allow you to do certain things to a
point structure. Some of these methods are as follows:

• Multiply

• Rotate

• RotateAt

• Scale

• Shear

• TransformVectors

• TranslatePoints

I bet you thought you would have to do this matrix math yourself. The matrix
math I have shown you only touches on the subject of linear algebra. I feel that it is
good, however, to know something about what is going on behind the scenes.

The TransformVectors method applies the 3×3 matrix multiply to affect only
the transform. Remember, a transform consists of rotation and scaling, not trans-
lation. It does this by ignoring the third coordinate. The TransformPoints method
applies the 3×3 matrix multiply to affect both a transform and translation of a
point. Consider the following example, which applies an affine transform to sim-
ulate the formula shown in Figure 5-12. This example transforms the point (20, 45)
by 90 degrees and translates it by 7 in the X direction and 12 in the Y direction.

Create a new console application, either in VB or C#. Mine is called Matrix.
Once you have created this application, set a reference in the Solution Explorer to
System.Drawing. You will need this so you can import the System.Drawing and
System.Drawing.Drawing2d namespaces. Listing 5-8 shows the code for this example.

Listing 5-8a. C# Code Showing an Affine Transform

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

namespace Matrix_c

{

035c05.fm Page 230 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

231231

 class Class1

 {

 [STAThread]

 static void Main(string[] args)

 {

 Matrix m = new Matrix();

 m.Rotate(90, MatrixOrder.Append);

 m.Translate(7, 12, MatrixOrder.Append);

 Point[] p = {new Point(20, 45)};

 Console.WriteLine(p.GetValue(0).ToString());

 m.TransformPoints(p);

 Console.WriteLine(p.GetValue(0).ToString());

 Console.ReadLine();

 }

 }

}

Listing 5-8b. VB Code Showing an Affine Transformation

Option Strict On

Imports System.Drawing

Imports System.Drawing.Drawing2D

Module Module1

 Sub Main()

 Dim m As Matrix = New Matrix()

 m.Rotate(90, MatrixOrder.Append)

 m.Translate(7, 12, MatrixOrder.Append)

 Dim p() As Point = {New Point(20, 45)}

 Console.WriteLine(p.GetValue(0).ToString())

 m.TransformPoints(p)

 Console.WriteLine(p.GetValue(0).ToString())

 Console.ReadLine()

 End Sub

End Module

The first thing you do is make a matrix whose elements are set to rotate a point
by 90 degrees and translate it by (7, 12). Once this is done, you write out the original
points to the screen, tell the Matrix object to transform the points, and write out
the results of the transformation. The results of running this example are as follows:

035c05.fm Page 231 Sunday, May 19, 2002 4:54 PM

Chapter 5

232

{X=20,Y=45}

{X=-38,Y=32}

No need for any math on your part. So now you know about matrix math and
the Matrix class. What can you do with it? The following list details some of the
classes that use the Matrix object:

• Pen.Transform

• Pen.MultiplyTransform

• Graphics.MultiplyTransform

• Graphics.Transform

• GraphicsPath.Flatten

• GraphicsPath.GetBounds

• GraphicsPath.Warp

• GraphicsPath.Widen

• LinearGradientBrush.Transform

• LinearGradientBrush.MultiplyTransform

• PathGradientBrush.Transform

• PathGradientBrush.MultiplyTransform

• TextureBrush.Transform

• TextureBrush.MultiplyTransform

• Region.Transform

How about another example showing how to use a Matrix object in a drawing
situation? Open up a new project in either VB or C#. Mine is called MatrixDraw.

Place a vertical scroll bar on the right side of the form and call it “xlate”. Place
a horizontal scroll bar at the bottom of the form and call it “rotate”. Your screen
should look like the one shown in Figure 5-13.

035c05.fm Page 232 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

233233

Figure 5-13. MatrixDraw form setup

Next, double-click each of the scroll bars to get the event handler generated
for you. The default handler is okay here.

Go into the code pane and enter the code from Listing 5-9. The VB code
includes only the constructor code from the wizard-generated code. The rest of
the wizard code is not changed, so I did not include it here. The C# code does not
include any of the wizard-generated code.

Listing 5-9a. C# Code for the MatrixDraw Example

using System;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace MatrixDraw_c

{

 public class Form1 : System.Windows.Forms.Form

 {

 internal System.Windows.Forms.HScrollBar rotate;

 internal System.Windows.Forms.VScrollBar xlate;

 /// <summary>

 /// Required designer variable.

 /// </summary>

035c05.fm Page 233 Sunday, May 19, 2002 4:54 PM

Chapter 5

234

 private System.ComponentModel.Container components = null;

 int XlateY;

 float Angle;

 Rectangle DrawingRect = new Rectangle(25, 25, 225, 225);

 public Form1()

 {

 //

 // Required for Windows Form Designer support

 //

 InitializeComponent();

 Angle = 0;

 XlateY = 0;

 xlate.Minimum = -50;

 xlate.Maximum = 50;

 xlate.SmallChange = 1;

 xlate.LargeChange = 5;

 xlate.Value = 0;

 rotate.Minimum = -180;

 rotate.Maximum = 180;

 rotate.SmallChange = 1;

 rotate.LargeChange = 10;

 rotate.Value = 0;

 this.SetStyle(ControlStyles.AllPaintingInWmPaint, true);

 this.SetStyle(ControlStyles.DoubleBuffer, true);

 this.SetStyle(ControlStyles.UserPaint, true);

 }

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

035c05.fm Page 234 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

235235

 #region Windows Form Designer generated code

…

…

#end region

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.Run(new Form1());

 }

 private void Form1_Load(object sender, System.EventArgs e)

 {

 }

 protected override void OnPaint(PaintEventArgs e)

 {

 Graphics G = e.Graphics;

 G.SmoothingMode = SmoothingMode.AntiAlias;

 // Create a graphics path, add a rectangle, set colors

 GraphicsPath Path = new GraphicsPath();

 Path.AddRectangle(new Rectangle(75, 100, 100, 75));

 PointF[] Pts = Path.PathPoints;

 PathGradientBrush B = new PathGradientBrush(Pts);

 B.CenterColor = Color.Aqua;

 Color[] SColor = {Color.Blue};

 B.SurroundColors = SColor;

 //We will translate the brush! NOT the rectangle!

 Matrix m = new Matrix();

 m.Translate(0, XlateY, MatrixOrder.Append);

 m.RotateAt(Angle, B.CenterPoint, MatrixOrder.Append);

 B.MultiplyTransform(m, MatrixOrder.Append);

 G.FillRectangle(B, DrawingRect);

 m.Dispose();

 B.Dispose();

 Path.Dispose();

 }

035c05.fm Page 235 Sunday, May 19, 2002 4:54 PM

Chapter 5

236

 private void xlate_Scroll(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 XlateY = xlate.Value;

 this.Invalidate(DrawingRect);

 }

 private void rotate_Scroll(object sender,

 System.Windows.Forms.ScrollEventArgs e)

 {

 Angle = rotate.Value;

 this.Invalidate(DrawingRect);

 }

 }

}

Listing 5-9b. VB Code for the MatrixDraw Example

Option Strict On

Imports System.Drawing

Imports System.Drawing.Drawing2D

Public Class Form1

 Inherits System.Windows.Forms.Form

 Dim XlateY As Int32

 Dim Angle As Single

 Dim DrawingRect As Rectangle = New Rectangle(25, 25, 225, 225)

#Region " Windows Form Designer generated code "

 Public Sub New()

 MyBase.New()

 'This call is required by the Windows Form Designer.

 InitializeComponent()

 Angle = 0

 Xlatey = 0

 xlate.Minimum = -50

 xlate.Maximum = 50

 xlate.SmallChange = 1

 xlate.LargeChange = 5

 xlate.Value = 0

035c05.fm Page 236 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

237237

 rotate.Minimum = -180

 rotate.Maximum = 180

 rotate.SmallChange = 1

 rotate.LargeChange = 10

 rotate.Value = 0

 Me.SetStyle(ControlStyles.AllPaintingInWmPaint, True)

 Me.SetStyle(ControlStyles.DoubleBuffer, True)

 Me.SetStyle(ControlStyles.UserPaint, True)

 End Sub

…

…

#End Region

 Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim G As Graphics = e.Graphics

 G.SmoothingMode = SmoothingMode.AntiAlias

 ' Create a graphics path, add a rectangle, set colors

 Dim Path As New GraphicsPath()

 Path.AddRectangle(New Rectangle(75, 100, 100, 75))

 Dim Pts As PointF() = Path.PathPoints

 Dim B As New PathGradientBrush(Pts)

 B.CenterColor = Color.Aqua

 Dim SColor As Color() = {Color.Blue}

 B.SurroundColors = SColor

 'We will translate the brush! NOT the rectangle!

 Dim m As New Matrix()

 m.Translate(0, Xlatey, MatrixOrder.Append)

 m.RotateAt(Angle, B.CenterPoint, MatrixOrder.Append)

 B.MultiplyTransform(m, MatrixOrder.Append)

 G.FillRectangle(B, DrawingRect)

035c05.fm Page 237 Sunday, May 19, 2002 4:54 PM

Chapter 5

238

 m.Dispose()

 B.Dispose()

 Path.Dispose()

 End Sub

 Private Sub xlate_Scroll(ByVal sender As System.Object, _

 ByVal e As System.Windows.Forms.ScrollEventArgs) _

 Handles xlate.Scroll

 Xlatey = xlate.Value

 Me.Invalidate(DrawingRect)

 End Sub

 Private Sub rotate_Scroll(ByVal sender As System.Object, _

 ByVal e As System.Windows.Forms.ScrollEventArgs) _

 Handles rotate.Scroll

 Angle = rotate.Value

 Me.Invalidate(DrawingRect)

 End Sub

End Class

Compile and run the program. You should get a screen like the one shown in
Figure 5-14.

Figure 5-14. MatrixDraw start-up screen

035c05.fm Page 238 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

239239

The vertical scroll bar translates the image in the Y direction; the horizontal
scroll bar transforms the image by rotating it between –180 and +180 degrees. The
center point for the rotation is the center of the PathGradientBrush.

Try moving the scroll bars. If at first you move the vertical one you will see the
image go up and down. Rotate the image using the horizontal bar and then move
it using the vertical bar. You will see the image move in the rotated Y direction.
Figure 5-15 shows this effect after rotating the image 45 degrees and moving it up.

Figure 5-15. Rotated and translated MatrixDraw image

Why am I making a big deal about this? Because I am not moving the image at
all! Take a close look at the code and you will see that the matrix is applied to the
PathGradientBrush, not the shapes’ rectangle. It is the brush’s rectangle that I am
changing. The rectangle that I am filling never has its coordinates changed. Wrap
your brain around that!

Miscellaneous Extras

I have taken you through most of the complicated drawing that you will need to
know. What follows in this section are some of the miscellaneous methods and
classes that round out this chapter. There are not too many of them, but they do
come in handy:

• GetNearestColor method

• ColorTranslator class

035c05.fm Page 239 Sunday, May 19, 2002 4:54 PM

Chapter 5

240

• GraphicsPathIterator

• RegionData

The GetNearestColor method returns a Color structure that is the nearest
system color to the color that you have specified. For instance, you might specify a
color like this:

 Color MyColor = Color.FromArgb(255, 100, 100 , 100);

Now suppose you want to get the next color up that was a known system color.
You would do this:

 Color ActualColor = e.Graphics.GetNearestColor(MyColor);

Translating Colors

The ColorTranslator class has the following public methods:

• FromHtml

• FromOle

• FromWin32

• ToHtml

• ToOle

• ToWin32

As you can probably guess, this class allows you to go from one type of color
definition to another. When would you use this? How about when you are
accessing a COM object using the COM Interop with a .NET class? This COM
object hands you a color that it wants your .NET client to use in rendering a form.
The ColorTranslator.FromOle method would be used here. This is because
colors in the COM world are defined as OLECOLOR.

Tracing a Path

Okay, you have generated this complicated path made up of all kinds of shapes.
Now you want to traverse that path. To do this, you use the GraphicsPathIterator

035c05.fm Page 240 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

241241

class. The next example generates a path and uses the GraphicsPathIterator
class to display some information about that path. This is only one use of the
GraphicsPathIterator class.

Make a new VB or C# program. Mine is called Misc2D. Make the form 300?400
and then drop a list box and three labels on the form. Accept the default names. All
the code for this project is done inside the OnPaint method. Listing 5-10 shows the
OnPaint method for both VB and C#. Don’t forget to add the namespaces
System.Drawing and System.Drawing2D.

Listing 5-10a. VB Code for the Misc2D Example

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim G As Graphics = e.Graphics

 Dim p As GraphicsPath = New GraphicsPath()

 Dim pts() As PointF = {New PointF(50.0F, 50.0F), _

 New PointF(150.0F, 25.0F), _

 New PointF(200.0F, 50.0F)}

 p.AddCurve(pts)

 p.AddRectangle(New Rectangle(60, 60, 50, 50))

 p.AddPie(100, 100, 80, 80, 0, 35)

 G.DrawPath(Pens.Black, p)

 Dim iter As GraphicsPathIterator = New GraphicsPathIterator(p)

 label1.Text = "Num pts in path = " + iter.Count.ToString()

 label2.Text = "Num subpaths in path = " + iter.SubpathCount.ToString()

 label3.Text = "Path has curve = " + iter.HasCurve().ToString()

 Dim StartIndex As Int32

 Dim EndIndex As Int32

 Dim i As Int32

 Dim IsClosed As Boolean

 ' Rewind the Iterator.

 iter.Rewind()

 ' List the Subpaths.

 For i = 0 To iter.SubpathCount - 1

 iter.NextSubpath(StartIndex, EndIndex, IsClosed)

 listBox1.Items.Add("Start: " + StartIndex.ToString() + _

 " End: " + EndIndex.ToString() + _

 " IsClosed: " + IsClosed.ToString())

 Next

 End Sub

035c05.fm Page 241 Sunday, May 19, 2002 4:54 PM

Chapter 5

242

Listing 5-10b. C# Code for the Misc2D Example

 protected override void OnPaint(PaintEventArgs e)

 {

 Graphics G = e.Graphics;

 GraphicsPath p = new GraphicsPath();

 PointF[] pts = { new PointF(50, 50),

 new PointF(150, 25),

 new PointF(200, 50)};

 p.AddCurve(pts);

 p.AddRectangle(new Rectangle(60, 60, 50, 50));

 p.AddPie(100, 100, 80, 80, 0, 35);

 G.DrawPath(Pens.Black,p);

 GraphicsPathIterator iter = new GraphicsPathIterator(p);

 label1.Text = "Num pts in path = " + iter.Count.ToString();

 label2.Text = "Num subpaths in path = " + iter.SubpathCount.ToString();

 label3.Text = "Path has curve = " + iter.HasCurve().ToString();

 int StartIndex;

 int EndIndex;

 int i;

 bool IsClosed;

 // Rewind the Iterator.

 iter.Rewind();

 // List the Subpaths.

 for(i=0;i<iter.SubpathCount;i++)

 {

 iter.NextSubpath(out StartIndex, out EndIndex, out IsClosed);

 listBox1.Items.Add("Start: " + StartIndex.ToString() +

 " End: " + EndIndex.ToString() +

 " IsClosed: " + IsClosed.ToString());

 }

 }

Compile and run the program. Your output should match that shown in
Figure 5-16.

035c05.fm Page 242 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

243243

Figure 5-16. Result of the Misc2D example

As you can see from this example, you generate a GraphicsPath that is made
up of three shapes. Each of these shapes is referred to as a subpath. You will also
see that the iterator tells you if the shape is closed and what the start and end
indexes are.

There is quite a bit more you can do with the GraphicsPathIterator class. I have
shown you just a little here. Walking a path is something you will probably need to
do at some time. I suggest you familiarize yourself more with this class via the
MSDN documents.

Looking at Your Region’s Data

Remember the clipping regions from Chapter 4? You used them to encapsulate
drawing to a particular area of the screen. You have also used regions in this
chapter to speed up the drawing process by invalidating regions of the screen.

You can get information about any region that you have created by using the
RegionData class. This class has one member: Data. This member returns an array
of bytes that describe the region. The following snippet of code demonstrates how
to use it:

035c05.fm Page 243 Sunday, May 19, 2002 4:54 PM

Chapter 5

244

 Rectangle regionRect = new Rectangle(20, 20, 100, 100);

 Region myRegion = new Region(regionRect);

 RegionData Rd = myRegion.GetRegionData();

 int RdLength = Rd.Data.Length;

You can keep the RegionData object in memory, fiddle with the data itself, and
create a new region from this data.

Summary

Well, you have learned quite a bit in this chapter. In Chapter 4, I showed you some
of the basic drawing functionality. This chapter extended that by demonstrating
more of the depth of GDI+. Here is a summary of what you learned:

• Pen and brush end caps: These end caps represent a new way to change the
shape of a line.

• HatchBrush: This brush is made up of repeating hatch patterns.

• Alpha blend: This is about transparency in shapes, colors, and images.

• Gamma correction: This refers to the brightness and contrast of images and
how to change them.

• Flicker: I spent quite a bit of time on how to paint with no flicker, including
using the ControlStyles enumeration and invalidating regions.

• LinearGradientBrush: This brush is made up of colors that change gradually
from a start color to an end color in a linear fashion.

• PathGradientBrush: This brush is made up of colors that change from a
center point out to another color at the edges of a shape. I supplied examples
on wrapping and changing the centroid of a gradient.

• Transforms: I covered the 3×3 matrix called an affine transformation. This
allows you to rotate, scale, and translate an image or a brush.

• GraphicsPathIterator: This class allows you to walk a graphics path and find
information about that path.

035c05.fm Page 244 Sunday, May 19, 2002 4:54 PM

Advanced Graphics

245245

This chapter contained a lot of information to digest. Hopefully, I have provided
you with enough examples to make it clear not only how to use some of this func-
tionality, but also how you could use it.

The next chapter is about imaging. This is where you will learn about bitmaps,
JPEG files, and so forth, and how to manipulate them. Remember the satellite over
the planet example? The next chapter will show you how to speed up this program
even more.

035c05.fm Page 245 Sunday, May 19, 2002 4:54 PM

