
User Interfaces in
VB .NET: Windows Forms
and Custom Controls

MATTHEW MACDONALD

449front.fm Page i Monday, June 10, 2002 9:55 PM

User Interfaces in VB .NET: Windows Forms and Custom Controls
Copyright ©2002 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-044-9

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Gordon Wilmot

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore,
Karen Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager: Sofia Marchant

Copy Editor: Anne Friedman

Production Editor: Kari Brooks

Compositor: Susan Glinert Stevens

Artist: Kurt Krames

Indexer: Nancy Guenther

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

449front.fm Page ii Monday, June 10, 2002 9:55 PM

255

CHAPTER 7

Custom Controls

CUSTOM CONTROLS ARE a key theme in .NET development. They can help your pro-
gramming style by improving encapsulation, simplifying a programming model,
and making user interface more “pluggable” (i.e., making it easier to swap out one
control and replace it with a completely different one without rewriting your form
code). Of course, custom controls can have other benefits, including the ability to
transform a generic window into a state-of-the-art modern interface. Generally,
developers tackle custom control development for one of three reasons:

• To create controls that abstract away unimportant details and are tailored
for a specific type of data. You saw this model in Chapter 6, with custom
ListView and TreeView examples.

• To create controls that provide entirely new functionality, or just combine
existing UI elements in a unique way. An example of this is the directory
browser control developed in this chapter.

• To create controls with a distinct original look, or ones that mimic popular
controls in professional applications (like Microsoft’s Outlook bar) that
aren’t available to the masses. This topic is considered briefly in this chapter,
and returned to in Chapter 13, with GDI+.

Creating custom controls in .NET is far easier than it has been in languages
like C++ or VB, where you typically need to embrace the ActiveX model to create a
truly shareable component. As most developers have found, ActiveX controls can
be difficult to distribute because every version needs to be registered. Creating
ActiveX controls also requires a bit of wizardry, with special care taken to handle
property pages, design-time versus runtime appearance, and state management.

In .NET, creating a custom control is as easy as creating an ordinary class. You
simply inherit from the best possible ancestor and add the specific features you
need. Best of all, you can create a custom control class as part of an existing project,
and then decide later to place it in a separate assembly that can be shared with
other programmers.

This chapter introduces the different types of custom controls, and the types
of problems they can solve. You will look at several key examples, including a
thumbnail image viewer and a masked text box, and consider advanced techniques
like creating multithreaded controls. However, you won’t learn how to make these

449.book Page 255 Wednesday, May 29, 2002 12:29 AM

Chapter 7

256

controls behave happily in Visual Studio .NET. That topic, as well other issues like
control distribution and licensing, are picked up in the next chapter.

Types of Custom Controls

Developers often make a distinction between three or four types of controls:

• User controls are the simplest type of control. They inherit from the
System.Windows.Forms.UserControl class, and follow a model of compo-
sition. Usually, user controls combine more than one control in a logical
unit (like a group of text boxes for entering address information).

• Inherited controls are generally more powerful and flexible. With an inherited
control, you choose the existing .NET control that is closest to what you
want to provide. Then, you derive a custom class that overrides or adds
properties and methods. The examples you’ve looked at so far in this book,
including the custom TreeViews and ListViews, have all been inherited
controls.

• Owner-drawn controls generally use GDI+ drawing routines to generate
their interfaces from scratch. Because of this, they tend to inherit from a
base class like System.Windows.Forms.Control. Owner-drawn controls
require the most work and provide the most customizable user interface.
You’ll see them in Chapter 13.

• Additionally, in this chapter you consider extender providers, which aren’t
necessarily controls at all. These components add features to other controls
on a form, and provide a remarkable way to implement extensible user
interface.

The distinction above is slightly exaggerated. For example, you can create a
user control that uses GDI+ drawing with other contained controls. Similarly,
instead of inheriting from Control, UserControl, or a full-fledged .NET class, you
can inherit from one of the intermediary classes to get a different level of support.
For example, a control that contains other controls but handles its own output
could inherit from ContainerControl, while a control that needs to provide scrolling
might inherit from ScrollableControl.

User Controls

Typically, user controls are created as a group of ordinary controls that are related
in some way. For example, you might include a simple record browser, or related
customer input fields that provide their own validation. The .NET documentation

449.book Page 256 Wednesday, May 29, 2002 12:29 AM

Custom Controls

257257

assumes that user controls are the most common type of custom control project,
although they suffer from some serious drawbacks:

• User controls tend to combine your business logic with an inflexible block of
user interface. For example, if the application programmer doesn’t like the
way individual text boxes are arranged in an address user control, there’s no
way to change it. Similarly, if the underlying business logic needs to change,
the control itself needs to be rebuilt and redistributed. It’s also hard to make
a useful derived control based on an existing user control. In other words,
user controls tend to be fragile.

• Unless you take additional steps, user controls hide all the properties and
methods of their child controls. This is similar to the way ActiveX controls
were created in Visual Basic 6.

That said, user controls are useful for quickly solving certain problems, or just
creating composite controls.

Creating User Controls

 To add a user control to a .NET project, right-click the Solution Explorer window
and select Add User Control. Figure 7-1 shows a user control in the Solution Explorer.

Figure 7-1. A user control at design-time

449.book Page 257 Wednesday, May 29, 2002 12:29 AM

Chapter 7

258

You’ll notice from the designer that a user control is halfway between an
ordinary control and a form. It helps to imagine that a user control is just a
reusable portion of a form—more flexible than the visual inheritance you used in
Chapter 5, but more limiting than inherited controls. In fact, user controls inherit
from all the same base classes as forms, as shown in Figure 7-2.

Figure 7-2. User control inheritance

To add a control, just draw it onto the design surface in the same way as you
would a form. You can (and should) use anchoring and docking with the controls
in your user control. That ensures that they always resize to fit the bounds of their
container. Remember, the size of the user control is dictated by the application
programmer.

If you add a form and a user control to the same project, Visual Studio .NET
thoughtfully adds your user control to the toolbar so that you can drag-and-drop it
onto your form. In many ways, user controls have the most convenient design-
time support, and don’t require any additional work from the programmer. Do
note, however, that as with visual inheritance, if you change the user control you
need to recompile before the change will appear in any form that hosts it. Just
right-click the project in the Solution Explorer and choose Build.

449.book Page 258 Wednesday, May 29, 2002 12:29 AM

Custom Controls

259259

To understand the strengths and limitations of user controls, it helps to consider a
couple of examples.

The Progress User Control

The first user control you’ll consider is a simple coupling of a ProgressBar and
Label control. This control solves a minor annoyance associated with the
ProgressBar—there is no way to show the standard text description about the
percent of work complete. You can easily get around this limitation by adding a
label to every form that uses the ProgressBar, and manually synchronizing the two.
Even better, the Progress user control implements a standard, reusable solution.

To begin, the user control is created with a label and progress bar, as shown in
Figure 7-3.

Figure 7-3. The progress control at design-time

If you try to use the Progress control directly in a project, you’ll discover that
you can’t access the label or the bar. Instead, the only properties and methods that
are available are those of the user control itself, allowing you to modify the default
font and background color (as you can with a form), but not much more. To
actually make the Progress user control functional, you need to replicate all the
important methods and properties. Then, in each method or property procedure
for your user control, you simply call the corresponding method or property pro-
cedure in the label or progress bar.

449.book Page 259 Wednesday, May 29, 2002 12:29 AM

Chapter 7

260

This delegation pattern can add up to a lot of extra code for an advanced
control! Fortunately, when you create a user control you will usually restrict and
simplify the interface so that it is more consistent and targeted for a specific use. In
the Progress user control, for example, don’t worry about allowing the user to set a
font or background color for the label control.

The Progress user control provides access to three properties from the Pro-
gressBar control (Value, Maximum, and Step), and one method (PerformStep).

Public Class Progress

 Inherits System.Windows.Forms.UserControl

 Friend WithEvents Bar As System.Windows.Forms.ProgressBar

 Friend WithEvents lblProgress As System.Windows.Forms.Label

 ' (Designer code omitted.)

 Property Value() As Integer

 Get

 Return Bar.Value

 End Get

 Set(ByVal Value As Integer)

 Bar.Value = Value

 UpdateLabel()

 End Set

 End Property

TIP If your user control contains several controls with the same properties
(like Font), you need to decide whether to provide individual user control
properties (NameFont, AddressFont, etc.) or set them all at once in a single
property procedure. The UserControl class makes your job a little easier. It
defines Font and ForeColor properties that are automatically applied to all the
composite controls unless they specify otherwise. (This is similar to how a form
works.) The UserControl class also provides BackColor and BackImage properties
that configure the actual user control drawing surface.

449.book Page 260 Wednesday, May 29, 2002 12:29 AM

Custom Controls

261261

 Property Maximum() As Integer

 Get

 Return Bar.Maximum

 End Get

 Set(ByVal Value As Integer)

 Bar.Maximum = Value

 End Set

 End Property

 Property [Step]() As Integer

 Get

 Return Bar.Step

 End Get

 Set(ByVal Value As Integer)

 Bar.Step = Value

 End Set

 End Property

 Public Sub PerformStep()

 Bar.PerformStep()

 UpdateLabel()

 End Sub

 Private Sub UpdateLabel()

 lblProgress.Text = ((Bar.Value * 100) \ Bar.Maximum).ToString()

 lblProgress.Text &= "% Done"

 End Sub

End Class

There are a few interesting details in this code:

• Every time the progress bar changes (either by modifying the Value or
invoking the PerformStep() method), the code calls a special private
method, UpdateLabel. This ensures that the label always remains
completely synchronized.

• The word “Step” is a special Visual Basic keyword that can be used in For/Next
loops. Thus, it must be enclosed in square brackets to tell the compiler that
it is just a variable name.

449.book Page 261 Wednesday, May 29, 2002 12:29 AM

Chapter 7

262

Testing this control is easy. All you need is a simple form that hosts the Progress
user control, and increments its value. In this case, a timer is used for this purpose.
Each time the timer fires, the PerformStep() method increments the counter by its
Step value.

Private Sub tmrIncrementBar_Tick(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles tmrIncrementBar.Tick

 Status.PerformStep()

 If Status.Maximum = Status.Value Then tmrIncrementBar.Enabled = False

End Sub

The timer itself is enabled in response to a button click, which also configures
the user control’s initial settings:

Private Sub cmdStart_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles cmdStart.Click

 tmrIncrementBar.Enabled = False

 Status.Value = 0

 Status.Maximum = 20

 Status.Step = 1

 tmrIncrementBar.Enabled = True

End Sub

Figure 7-4 shows the Progress control in the test application.

Figure 7-4. The Progress user control in action

449.book Page 262 Wednesday, May 29, 2002 12:29 AM

Custom Controls

263263

Incidentally, the user can access one back door in the Progress user control:
the Controls collection. If you search for the ProgressBar control by name, and
modify it through the Controls collection, the label will not be refreshed. This
technique relies on a string name, and is therefore not type-safe. It is strongly
discouraged.

When creating any custom control, it helps to remember that you are designing a
genuine class. As with any class, you should decide how it will communicate with
other code, and how it can encapsulate its private data before you begin writing the
code. The best approach is to start by designing the control’s interface. Figure 7-5
presents a UML (Unified Modeling Language) diagram that defines the interface
for the Progress user control.

Figure 7-5. The Progress control in UML

There are no clear rules for designing custom controls. Generally, you should
follow the same guidelines that apply to any type of class in a program. Some of the
basics include the following:

• Always use properties in place of public class variables. Public variables
don’t offer any protection and won’t appear in the Properties window.

• If you provide a property, try to make it both readable and writable, unless
there is a clear reason not to. Make sure that properties that can affect the
control’s appearance trigger a refresh when they are altered.

• Don’t expose your basic control methods. Instead, expose higher-level
methods that call these lower-level methods as required. One difference is
that private methods often need to be used in set ways, while public methods
should be able to work in any order. Hide details that aren’t important or
could cause problems if used incorrectly.

• Wrap errors in custom exception classes that provide additional infor-
mation to the application programmer about the mistake that was made.

449.book Page 263 Wednesday, May 29, 2002 12:29 AM

Chapter 7

264

• Always use enumerations when allowing the user to choose between more
than one option (never fixed constant numbers of strings). Wherever possible,
code so that invalid input can’t be entered.

• When all other aspects of the design are perfect, streamline your control for
performance. This means reducing the memory requirements, adding
threading if it’s appropriate, and applying updates in batches to minimize
refresh times.

The Bitmap Thumbnail Viewer

The next example of user control development is a little more ambitious. It creates
a series of thumbnails that show miniature versions of all the bitmap files found in
a specific directory. This type of control could be created in a more flexible way,
and with much more code, by using the GDI+ drawing features. Instead, this
example uses control composition, and dynamically inserts a PictureBox control
for every image. This makes it easier to handle image clicks and support image
selection. It also previews the techniques you’ll see in Chapter 11, where user
interface is generated out of controls dynamically at runtime.

Possibly the best aspect of the BitmapViewer user control is that it communi-
cates with your program in both directions. You can tailor the appearance of the
BitmapViewer by setting properties, and the BitmapViewer notifies your code
when a picture is selected by raising an event.

The design-time appearance of the BitmapViewer is unremarkable (see
Figure 7-6). It contains a Panel where all the picture boxes will be added. Alterna-
tively, the picture boxes could be added directly to the Controls collection of the
user control, but the Panel allows for an attractive border around the control. It
also allows automatic scrolling support—as long as AllowScroll is set to True,
scrollbars are provided as soon as the image thumbnails won’t fit in the Panel. As
with our previous example, the Panel is anchored to all sides for automatic resizing.

NOTE The size of the user control in the user control designer sets the initial size
that is used when the control is added to a form. This size can be changed by the
user, but think of it as a best recommendation.

449.book Page 264 Wednesday, May 29, 2002 12:29 AM

Custom Controls

265265

Figure 7-6. The BitmapViewer at design-time

Unlike the Progress control, the BitmapViewer cannot just hand off its property
procedures and methods to members in one of the composite controls. Instead, it
needs to retain a fair bit of its own information. The following code shows the key
private variables:

' The directory that will be scanned for image.

Private _Directory As String

' Each picture box will be a square of _Dimension X _Dimension pixels.

Private _Dimension As Integer

' The space between the images and the top, left, and right sides.

Private _Border As Integer = 5

' The space between each image.

Private _Spacing As Integer

' The images that were found in the selected directory.

Private Images As New ArrayList()

Some of the values are user configurable, while some are not. For example, the
collection of images is drawn from the referenced directory. The property proce-
dures for the modifiable values are shown here:

449.book Page 265 Wednesday, May 29, 2002 12:29 AM

Chapter 7

266

Public Property Directory() As String

 Get

 Return _Directory

 End Get

 Set(ByVal Value As String)

 _Directory = Value

 GetImages()

 UpdateDisplay()

 End Set

End Property

Public Property Dimension() As Integer

 Get

 Return _Dimension

 End Get

 Set(ByVal Value As Integer)

 _Dimension = Value

 UpdateDisplay()

 End Set

End Property

Public Property Spacing() As Integer

 Get

 Return _Spacing

 End Get

 Set(ByVal Value As Integer)

 _Spacing = Value

 UpdateDisplay()

 End Set

End Property

Notice that every time a value is modified, the display is automatically regen-
erated by calling the UpdateDisplay() method. A more sophisticated approach
might make this logic depend on a property like AutoRefresh. That way, the user

NOTE For simplicity’s sake, this code doesn’t provide any error-handling logic.
For example, all the integer properties in the BitmapViewer should be restricted
to positive numbers. Ideally, the property procedure code should refuse negative
numbers and raise an error to alert the control user.

449.book Page 266 Wednesday, May 29, 2002 12:29 AM

Custom Controls

267267

could temporarily turn off the refresh, make several changes at once, and then re-
enable it.

The set procedure for the Directory property also calls a special GetImages()
method, which inspects the directory, and populates the Images collection. You
might expect that the Images collection contains Image objects, but this is not the
case. To provide useful event information, the BitmapViewer actually tracks the
file name of every image it displays. To do this, a special NamedImage class is
defined:

Private Class NamedImage

 Public Image As Image

 Public FileName As String

 Public Sub New(ByVal image As Image, ByVal fileName As String)

 Me.Image = image

 Me.FileName = fileName

 End Sub

End Class

The NamedImage class is a private class nested inside the BitmapViewer control
class. This means that NamedImage is used exclusively by the BitmapViewer, and not
made available to the application using the BitmapViewer control.

The GetImages() method uses the standard .NET file and directory classes to
retrieve a list of bitmaps. For each bitmap, a NamedImage object is created, and
added to the Images collection.

Private Sub GetImages()

 If Directory = "" Then Exit Sub

 Dim Dir As New DirectoryInfo(Directory), File As FileInfo

 For Each File In Dir.GetFiles("*.bmp")

 Images.Add(New NamedImage(Bitmap.FromFile(File.Name), File.Name))

 Next

End Sub

The bulk of the work for the BitmapViewer takes place in the UpdateDisplay()
method, which generates the picture boxes, adds them to the panel, and sets
their tag property with the name of the corresponding file for later reference. The
BitmapViewer is filled from left to right, and then row-by-row.

449.book Page 267 Wednesday, May 29, 2002 12:29 AM

Chapter 7

268

Private Sub UpdateDisplay()

 ' Clear the current display.

 pnlPictures.Controls.Clear()

 ' Row and Col will track the current position where pictures are

 ' being inserted. They begin at the top-left corner.

 Dim Row As Integer = _Border, Col As Integer = _Border

 ' Iterate through the Images collection, and create PictureBox controls.

 Dim Image As NamedImage

 For Each Image In Images

 Dim pic As New PictureBox()

 pic.Image = Image.Image

 pic.Tag = Image.FileName

 pic.Size = New Size(_Dimension, _Dimension)

 pic.Location = New Point(Col, Row)

 pic.BorderStyle = BorderStyle.FixedSingle

 ' StrechImage mode gives us the "thumbnail" ability.

 pic.SizeMode = PictureBoxSizeMode.StretchImage

 ' Display the picture.

 pnlPictures.Controls.Add(pic)

 ' Move to the next column.

 Col += _Dimension + _Spacing

 ' Move to next line if no more pictures will fit.

 If (Col + _Dimension + _Spacing + _Border) > Me.Width Then

 Col = _Border

 Row += _Dimension + _Spacing

 End If

 Next

End Sub

449.book Page 268 Wednesday, May 29, 2002 12:29 AM

Custom Controls

269269

This code is also provided to the user through the public RefreshImages()
method. This allows the user to trigger a refresh without needing to modify a
property if the directory contents have changed.

Public Sub RefreshImages()

 GetImages()

 UpdateDisplay()

End Sub

The OnSizeChanged() method is also overriden to ensure that the pictures are
redrawn when the user control size changes. This ensures that the pictures are
automatically adjusted (in rows and columns) to best fit the new size.

Protected Overrides Sub OnSizeChanged(ByVal e As System.EventArgs)

 UpdateDisplay()

 MyBase.OnSizeChanged(e)

End Sub

Figure 7-7 shows a stripped-down UML diagram for the BitmapViewer
control, in keeping with my philosophy of clearly defining the interfaces for
custom controls. This diagram omits private members and members that have
been inherited. It also shows two other class dependencies: the private NamedImage
class and the PictureSelectedEventArgs class, which is introduced shortly as a
means of passing event data to the application that hosts the BitmapViewer.

Figure 7-7. The BitmapViewer in UML

TIP This code could be optimized for speed. For example, all the picture
boxes could be created and then added to the Panel control using the
Controls.AddRange() method, ensuring that the control won’t be updated
and refreshed after each new picture is inserted.

449.book Page 269 Wednesday, May 29, 2002 12:29 AM

Chapter 7

270

Testing the BitmapViewer

To see the final BitmapViewer control, all you need to do is add it to a form and set
the appropriate properties, like Directory, Dimension, and Spacing. In Figure 7-8,
a dimension of 80 and spacing of 10 is used. The BitmapViewer is anchored to the
form so you can change the size and see the image thumbnails being reorganized.

Figure 7-8. The BitmapViewer in action

BitmapViewer Events

To make the BitmapViewer more useful, you can add an event that fires every time a
picture box is selected. Because the BitmapViewer is built entirely from PictureBox
controls, which natively provide a Click event, no hit testing is required. All you
need to do is register to handle the Click even when the picture box is first created
in the UpdateDisplay() method.

AddHandler pic.Click, AddressOf pic_Click

To send an event to the application, the event must first be defined in the user
control class. In this case, the event is named PictureSelected. In true .NET style, it
passes a reference to the event sender and a custom EventArgs object that contains
additional information.

Event PictureSelected(ByVal sender As Object, _

 ByVal e As PictureSelectedEventArgs)

449.book Page 270 Wednesday, May 29, 2002 12:29 AM

Custom Controls

271271

The custom PictureSelectedEventArgs object follows. It provides the file name
of the picture that was clicked, which allows the application to retrieve it directly
for editing or some other task. Note that this class should not be private, as the
client must use it to retrieve the event information.

Public Class PictureSelectedEventArgs

 Inherits EventArgs

 Public FileName As String

 Public Image As Image

 Public Sub New(ByVal fileName As String, ByVal image As Image)

 Me.FileName = fileName

 Me.Image = Image

 End Sub

End Class

The PictureBox.Click event handler changes the border style of the clicked
picture box to make it appear “selected.” If you were using GDI+, you could draw a
more flexible focus cue, like a brightly colored outline rectangle. The PictureBox.Click
event handler then fires the event, with the required information.

Private picSelected As PictureBox

Private Sub pic_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 ' Clear the border style from the last selected picture box.

 If Not picSelected Is Nothing Then

 picSelected.BorderStyle = BorderStyle.FixedSingle

 End If

 ' Get the new selection.

 picSelected = CType(sender, PictureBox)

 picSelected.BorderStyle = BorderStyle.Fixed3D

 ' Fire the selection event.

 Dim Args As New PictureSelectedEventArgs(picSelected.Tag, picSelected.Image)

 RaiseEvent PictureSelected(Me, Args)

End Sub

449.book Page 271 Wednesday, May 29, 2002 12:29 AM

Chapter 7

272

The application can now handle this event. In the example shown here (and
pictured in Figure 7-9), a message box is displayed with the file name information.

Private Sub BitmapViewer1_PictureSelected(ByVal sender As Object, _

 ByVal e As BitmapThumbnailViewer.PictureSelectedEventArgs) _

 Handles BitmapViewer1.PictureSelected

 MessageBox.Show("You chose " & e.FileName)

End Sub

Figure 7-9. A BitmapViewer event

BitmapViewer Enhancements and Threading

If you use the bitmap viewer with a directory that contains numerous large images,
you start to notice a performance slowdown. One of the problems is that in its current
form, the BitmapViewer stores the entire image in memory, even though it only
displays a thumbnail. A better approach would be to scale the image immediately
when it is retrieved. This is accomplished using the Image.GetThumbnail() method.

In the code that follows, the GetImages() method has been rewritten to use
this more memory-friendly alternative.

449.book Page 272 Wednesday, May 29, 2002 12:29 AM

Custom Controls

273273

Private Sub GetImages()

 If Directory = "" Then Exit Sub

 Dim ThumbNail As Image

 Dim Dir As New DirectoryInfo(Directory), File As FileInfo

 For Each File In Dir.GetFiles("*.bmp")

 ThumbNail = Bitmap.FromFile(File.Name).GetThumbnailImage(_

 Dimension, Dimension, Nothing, Nothing)

 Images.Add(New NamedImage(ThumbNail, File.Name))

 Next

End Sub

This technique also frees you up to use a simpler control than the PictureBox
to contain the Image (or even draw it directly on the form surface), because the
control no longer has to perform the scaling. However, it also means that you need
to update the Dimension property procedure to call the GetImages() method—

otherwise, the image objects won’t be the correct size.

Public Property Dimension() As Integer

 Get

 Return _Dimension

 End Get

 Set(ByVal Value As Integer)

 _Dimension = Value

 GetImages()

 UpdateDisplay()

 End Set

End Property

Assuming that the GetImages() method takes a significant amount of time,
you might want to change the BitmapViewer to use multithreading. With this design,
the GetImages() code runs on a separate thread, and then automatically calls the
UpdateDisplay() method when it is completed. That way, the user interface
wouldn’t be tied up in the meantime. The remainder of this section walks you
through the process.

First, change every property procedure that calls GetImages() so that it doesn’t
call UpdateDisplay(). An example is shown here with the Dimension() property.

449.book Page 273 Wednesday, May 29, 2002 12:29 AM

Chapter 7

274

Public Property Dimension() As Integer

 Get

 Return _Dimension

 End Get

 Set(ByVal Value As Integer)

 _Dimension = Value

 GetImages()

 End Set

End Property

Next, modify the GetImages() method so it actually starts the real
ReadImagesFromFile() method on a separate thread.

Private Sub GetImages()

 Dim GetThread As New Threading.Thread(AddressOf ReadImagesFromFile)

 GetThread.Start()

End Sub

Finally, modify the file reading code and place it in the ReadImagesFromFile()
method:

Private Sub ReadImagesFromFile()

 SyncLock Images

 If Directory = "" Then Exit Sub

 Dim ThumbNail As Image

 Dim Dir As New DirectoryInfo(Directory), File As FileInfo

 For Each File In Dir.GetFiles("*.bmp")

 ThumbNail = Bitmap.FromFile(File.Name).GetThumbnailImage(_

 Dimension, Dimension, Nothing, Nothing)

 Images.Add(New NamedImage(ThumbNail, File.Name))

 Next

 End SyncLock

 ' Update the display on the UI thread.

 pnlpictures.Invoke(AddressOf UpdateDisplay)

End Sub

449.book Page 274 Wednesday, May 29, 2002 12:29 AM

Custom Controls

275275

Threading introduces numerous potential pitfalls and isn’t recommended
unless you really need it. When implementing the preceding example, you have to
be careful that the UpdateDisplay() method happens on the user interface thread,
not the ReadImagesFromFile() thread. Otherwise, a strange conflict could emerge in
real-world use. Similarly, the SyncLock statement is required to make sure that no
other part of the control code attempts to modify the Images collection while the
ReadImagesFromFile() method is in progress.

Inherited Controls

Inherited controls are an ideal way to take functionality from the .NET base
classes, and extend it. An inherited control can be dramatically different than its
predecessor, or it may just add a few refinements. The .NET class library is filled
with examples of inherited controls. For example, LinkLabel derives from Label
and CheckedListBox derives from ListBox.

Unlike user controls, there is no design-time support for creating an inherited
control. You simply create a class that derives from your selected control type and
add the features you need. You’ll also find that inherited controls are awkward to
use in Visual Studio .NET. For example, it’s difficult to add inherited controls to a
form except through code. You overcome these difficulties in the next chapter by
creating custom designers.

Inherited controls are generally more powerful than user controls, and more
likely to be used across applications (and even organizations, if you are a tool
vendor), not just between different windows in the same program. Some of the
reasons that programmers develop inherited controls are to set defaults (for
example, a control that automatically configures its appearance in its constructor)
or to add features.

So far in this book, you’ve seen the following examples of inherited controls:

• In Chapter 2, you saw how to make an inherited text box that only accepts
numeric input.

• In Chapter 4, you saw an inherited menu control that handles its own
drawing to allow custom fonts and embedded thumbnail images.

• In Chapter 5, you saw inherited Form controls with visual inheritance.

• In Chapter 6, you saw custom ListView and TreeView examples that support
specific types of data.

In this chapter, I’ll present two more advanced inherited control examples.

449.book Page 275 Wednesday, May 29, 2002 12:29 AM

Chapter 7

276

Inherited Controls or User Controls?

So, how do you know when to create a user control, and when you need a full-
fledged inherited control? It’s not always an easy question to answer, because most
problems can be solved with either approach. However, here are a few pointers
that you should consider before embarking on a custom control project:

• User controls are easier and faster to program. If you don’t anticipate
reusing the control frequently in different scenarios and different programs,
a user control may suffice.

• If your control closely resembles an existing .NET control, it’s probably best
to create an inherited control. With a user control, you may need to spend a
fair amount of effort creating new properties and methods to allow access to
the members of the original control.

• Inherited controls provide a fine-grained level of reuse. User controls typi-
cally provide only a few members, and thus are not as configurable. Tool
vendors who wish to sell their controls will always use inherited controls.

• User controls are well suited if you want to ensure that a block of interface is
recreated exactly in more than one situation. Because a user control usually
provides less flexible configuration, it guarantees a more standardized
appearance.

If you want to integrate more than one control, you have two choices: you can
use composition with a user control, or you can develop two separate inherited
controls. The latter approach gives you the freedom to link controls (like a TreeView
and ListView), but make the links optional. The application programmer can then
use them separately or together, and has complete freedom about how to integrate
them into a user interface. With user controls, however, the application pro-
grammer can only control the size taken by the full user control.

The DirectoryTree Control

The DirectoryTree control inherits from the standard TreeView and adds the fea-
tures needed to display a hierarchical view of directories. .NET does not include
any type of native directory control, so this TreeView is genuinely useful.

Perhaps most important, it fills itself by reading subdirectories “just in time.”
That means that the control operates very quickly, even if the drive has tens of
thousands of subdirectories. Only the expanded directory levels are actually
shown. The collapsed branches all have a dummy node inserted. Every time a

449.book Page 276 Wednesday, May 29, 2002 12:29 AM

Custom Controls

277277

directory branch is expanded, the inherited control checks if a dummy node is
present, and, if it is, the dummy node is removed and the directories are read from
the disk. (You see a variation of this technique to allow efficient data access in
Chapter 9).

The full code listing follows. Notice that the currently selected drive is stored
as a single character string (technically, a Char). Another approach would be to use
an instance of the System.IO.DirectoryInfo class to track or set the currently high-
lighted directory. That approach would provide better control for the application
programmer, but it would complicate design-time support.

Imports System.IO

Public Class DirectoryTree

 Inherits TreeView

 Event DirectorySelected(ByVal sender As Object, _

 ByVal e As DirectorySelectedEventArgs)

 Private _Drive As Char

 Public Property Drive() As Char

 Get

 Return _Drive

 End Get

 Set(ByVal Value As Char)

 _Drive = Value

 RefreshDisplay()

 End Set

 End Property

 ' This is public so a Refresh can be triggered manually.

 Public Sub RefreshDisplay()

 ' Erase the existing tree.

 Me.Nodes.Clear()

 ' Set the first node.

 Dim RootNode As New TreeNode(_Drive & ":\")

 Me.Nodes.Add(RootNode)

 ' Fill the first level and expand it.

 Fill(RootNode)

 Me.Nodes(0).Expand()

 End Sub

449.book Page 277 Wednesday, May 29, 2002 12:29 AM

Chapter 7

278

 Private Sub Fill(ByVal DirNode As TreeNode)

 Dim Dir As New DirectoryInfo(DirNode.FullPath)

 Dim DirItem As DirectoryInfo

 ' An exception could be thrown in this code if you don't

 ' have sufficient security permissions for a file or directory.

 ' You can catch and then ignore this exception.

 For Each DirItem In Dir.GetDirectories

 ' Add node for the directory.

 Dim NewNode As New TreeNode(DirItem.Name)

 DirNode.Nodes.Add(NewNode)

 NewNode.Nodes.Add("*")

 Next

 End Sub

 Protected Overrides Sub OnBeforeExpand(ByVal e As TreeViewCancelEventArgs)

 MyBase.OnBeforeExpand(e)

 ' If a dummy node is found, remove it and read the real directory list.

 If e.Node.Nodes(0).Text = "*" Then

 e.Node.Nodes.Clear()

 Fill(e.Node)

 End If

 End Sub

 Protected Overrides Sub OnAfterSelect(ByVal e As TreeViewEventArgs)

 MyBase.OnAfterSelect(e)

 ' Raise the DirectorySelected event.

 RaiseEvent DirectorySelected(Me, _

 New DirectorySelectedEventArgs(e.Node.FullPath))

 End Sub

End Class

The base class events are handled by overriding the corresponding method
(the recommended approach). The OnAfterSelect event is turned into a more useful
DirectorySelected event, which provides a custom DirectorySelectedEventArgs class.

449.book Page 278 Wednesday, May 29, 2002 12:29 AM

Custom Controls

279279

Public Class DirectorySelectedEventArgs

 Inherits EventArgs

 Public DirectoryName As String

 Public Sub New(ByVal directoryName As String)

 Me.DirectoryName = directoryName

 End Sub

End Class

Testing the DirectoryTree

To test the directory tree, you can programmatically add it to a form. Make sure to
set the initial drive. The following code snippet creates, configures, and displays
the DirectoryTree control on a form. Figure 7-10 shows the results.

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim DirTree As New DirectoryTree()

 DirTree.Size = New Size(Me.Width - 30, Me.Height - 60)

 DirTree.Location = New Point(5, 5)

 DirTree.Drive = "C"

 Me.Controls.Add(DirTree)

End Sub

Another option is to add an ordinary TreeView to your project and
then modify the designer code, so that the reference that defines and
creates the System.Windows.Forms.TreeView becomes a reference to the
[ProjectName].DirectoryTree class. This allows you to see the DirectoryTree
at design time, and even configure it with the Properties window.

449.book Page 279 Wednesday, May 29, 2002 12:29 AM

Chapter 7

280

Figure 7-10. The DirectoryTree in action

The DirectoryTree could have been created as a user control, but the inheritance
approach provides far more flexibility. For example, all the original TreeView
events, properties, and methods are still available to the client code. Images can be
assigned, the Nodes collection can be traversed, and restricted directories could
have their nodes removed. Best of all, you don’t need to write any code to delegate
the properties of your custom control class to an underlying control. Clearly,
inherited controls provide a far greater level of flexibility.

A Masked TextBox Control

The final inherited control example is for a custom masked text box. A masked text
box is one that automatically formats the user’s input into the correct format. For
example, it may add dashes or brackets to make sure it looks like a phone number.
This task is notoriously difficult, and no clear standard has ever been defined. One
useful tool is Microsoft’s masked edit text box, which is provided as an ActiveX
control with previous versions of Visual Studio.

The example of a masked text box is important because it demonstrates how
features (rather than data) might be added to an existing control by subclassing.
The example I provide is still quite limited—notably, it restricts deletions and the
use of the arrow keys. Tracking the cursor position, which is required to allow inline
masked edits, results in a good deal of tedious code that only obscures the point.

449.book Page 280 Wednesday, May 29, 2002 12:29 AM

Custom Controls

281281

Here’s the full class code for the masked text box:

Public Class MaskedTextBox

 Inherits TextBox

 Private _Mask As String

 Public Property Mask() As String

 Get

 Return _Mask

 End Get

 Set(ByVal Value As String)

 _Mask = Value

 Me.Text = ""

 End Set

 End Property

 Protected Overrides Sub OnKeyPress(ByVal e As KeyPressEventArgs)

 If Mask = "" Then Exit Sub

 ' Suppress the typed character.

 e.Handled = True

 Dim i As Integer

 Dim NewText As String = Me.Text

 ' Loop through the mask, adding fixed characters as needed.

 ' If the next allowed character matches what the user has

 ' typed in (a number or letter), that is added to the end.

 For i = Me.SelectionStart To _Mask.Length - 1

 Select Case _Mask.Chars(i)

 Case "#"

 ' Allow the keypress as long as it is a number.

 If Char.IsDigit(e.KeyChar) = True Then

 NewText &= e.KeyChar.ToString()

 Exit For

 Else

 ' Invalid entry; exit and don't change the text.

 Exit Sub

 End If

 Case "."

 ' Allow the keypress as long as it is a letter.

 If Char.IsLetter(e.KeyChar) = True Then

 NewText &= e.KeyChar.ToString()

 Exit For

449.book Page 281 Wednesday, May 29, 2002 12:29 AM

Chapter 7

282

 Else

 ' Invalid entry; exit and don't change the text.

 Exit Sub

 End If

 Case Else

 ' Insert the mask character.

 NewText = NewText & _Mask.Chars(i)

 End Select

 Next

 ' Update the text.

 Me.Text = NewText

 Me.SelectionStart = Me.Text.Length

 End Sub

 Protected Overrides Sub OnKeyDown(ByVal e As KeyEventArgs)

 ' Stop special characters.

 e.Handled = True

 End Sub

End Class

To use the masked control, the application programmer chooses a mask and
applies it to the Mask property of the control. The number sign (#) represents any
number, and the period (.) represents any letter. All other characters in the mask
are treated as fixed characters, and are inserted automatically when needed. For
example, in the phone number mask (###) ###-#### the first bracket is inserted
automatically when the user types the first number. Figure 7-11 shows this mask
in action.

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim txtMask As New MaskedTextBox()

 txtMask.Location = New Point(10, 10)

 txtMask.Mask = "(###) ###-####"

 Me.Controls.Add(txtMask)

End Sub

449.book Page 282 Wednesday, May 29, 2002 12:29 AM

Custom Controls

283283

Figure 7-11. The MaskedTextBox in action

Custom Extender Providers

Extender providers were first introduced in Chapter 4 as interesting components
that extend other controls. Examples are the ToolTipProvider, which displays a
tooltip next to other controls; the ErrorProvider, which displays an error icon; and
the HelpProvider, which invokes context-sensitive Help on a control’s behalf when
the F1 key is pressed. Providers tend to be specialized solutions, and you may
design dozens of custom controls before even contemplating a custom provider.

Nonetheless, custom providers can achieve some remarkable tricks. In this
section, I demonstrate two extender providers, one that mimics the old-fashioned
MFC behavior of menu Help text, and another that displays a clickable
Help icon. Both of these classes are found in the ExtenderProvider project
provided with the online samples. The test applications can be found in the
ExtenderProviderHost project.

TIP To create an extender provider, it’s easiest to create the custom provider
class in a class library project, compile it into a DLL file, and then reference the
DLL file from another project by choosing Customize Toolbox. (In fact, this
approach is generally the easiest way to integrate inherited controls.) When you
add the reference to the extender provider assembly, any associated extender
control automatically appears in the ToolBox.

449.book Page 283 Wednesday, May 29, 2002 12:29 AM

Chapter 7

284

The Menu Text Provider

The MenuTextProvider extends ordinary menus by associating each item with a
unique Help string. When the user hovers over a menu item, the MenuTextProvider
displays the appropriate Help string. This is a common user interface convention
I’ve mentioned before, and while it’s not very useful for the average user, it does
provide a good introduction to extender providers.

Choosing a base class

The first step when creating an extender provider is to create a class that implements
the IExtenderProvider interface and uses the ProvideProperty attribute (both of
these types are found in the System.ComponentModel interface). This can be any
type of class, including a user control, inherited control, or just a basic Component
class that doesn’t derive from any control. The type of class depends on the type of
provider you are creating.

A control-based provider, like the MenuTextProvider, uses a dedicated control
to display information in a specific location on a form. In this example, the
MenuTextProvider inherits from the StatusBar class. This means you can add
the MenuTextProvider to any form, and it will act as an ordinary status bar and
update its display to provide the appropriate text automatically. Another possible
approach would be to derive the provider from the StatusBarPanel class. You could
then add it to an existing status bar.

Choosing the object to extend

Once you’ve decided what type of provider you are creating, your next decision is
to determine the type of object that you are extending. Many providers extend any
type of Windows control, while some are limited to specific classes. To specify the
appropriate type of object, you need to handle the IExtenderProvider.CanExtend()
method. In this method, you look at the supplied type of object, and then make a
decision about whether or not it can be extended by your provider. To make this
decision you can evaluate any information about the target, including the type
(the most common criteria), whether it is hosted in another control or on a form,
and even its name. You return True if the object can be extended.

The MenuTextProvider only extends the MenuItem object. Here’s the code
that enforces this restriction:

449.book Page 284 Wednesday, May 29, 2002 12:29 AM

Custom Controls

285285

Public Class MenuTextProvider

 Inherits StatusBar

 Implements IExtenderProvider

 Public Function CanExtend(ByVal extendee As Object) As Boolean _

 Implements System.ComponentModel.IExtenderProvider.CanExtend

 If extendee Is GetType(MenuItem) Then

 Return True

 Else

 Return False

 End If

 End Function

End Class

Providing an extended property

The next step is to identify the property that will be assigned to all extended controls.
You do this by adding a ProvideProperty attribute just before your class declaration.
The ProvideProperty attribute identifies the property name and the data type.

<ProvideProperty("HelpText", GetType(String))> _

Public Class MenuTextProvider

Once you’ve specified a property in this fashion, you need to provide corre-
sponding Get and Set methods that perform the actual work when the property is
changed. These members are preceded with “Get” or “Set” and use the same name
you identified in the ProvidePoperty attribute. These methods must be public.

Public Sub SetHelpText(ByVal extendee As Object, ByVal value As String)

 ' (Code omitted.)

End Sub

Public Function GetHelpText(ByVal extendee As Object) As String

 ' (Code omitted.)

End Function

449.book Page 285 Wednesday, May 29, 2002 12:29 AM

Chapter 7

286

Note that the GetProperty() method accepts a reference to the target and the
SetProperty() method accepts a reference to the target and a value for the property.
Keep in mind that a single instance of your extender can be reused to extend
dozens of controls (and, conversely, two similar providers can extend the same
control). That means that you need to keep track of all the extended controls in a
collection. Our examples use the Hashtable class for this purpose, because it
allows the object reference to be used as a key. (Remember, MenuItem objects are
not controls, and do not have a unique Name property that can be used as a key).

The completed provider

To complete the MenuTextProvider, create a collection to store the Help text values
for every extended control, and add the implementation logic for the SetHelpText()
and GetHelpText() methods.

When the Help text is set, the provider registers to receive the Select event
from the MenuItem and stores the Help text in the collection under the name of
the control. When the Select event occurs, the Help text is retrieved and displayed
in the status bar panel. We could just as easily monitor different events (like key
presses, as the HelpProvider control does).

Here’s the complete code:

<ProvideProperty("HelpText", GetType(String))> _

Public Class MenuTextProvider

 Inherits StatusBar

 Implements IExtenderProvider

 Private HelpText As New Hashtable()

 Public Function CanExtend(ByVal extendee As Object) As Boolean _

 Implements System.ComponentModel.IExtenderProvider.CanExtend

 If extendee Is GetType(MenuItem) Then

 Return True

 Else

 Return False

 End If

 End Function

449.book Page 286 Wednesday, May 29, 2002 12:29 AM

Custom Controls

287287

 Public Sub SetHelpText(ByVal extendee As Object, ByVal value As String)

 ' Specifying an empty value removes the extension.

 If value = "" Then

 HelpText.Remove(extendee)

 RemoveHandler CType(extendee, MenuItem).Select, AddressOf MenuSelect

 Else

 HelpText(extendee) = value

 AddHandler CType(extendee, MenuItem).Select, AddressOf MenuSelect

 End If

 End Sub

 Public Function GetHelpText(ByVal extendee As Object) As String

 If Not HelpText(extendee) Is Nothing Then

 Return HelpText(extendee).ToString()

 Else

 Return String.Empty

 End If

 End Function

 Private Sub MenuSelect(ByVal sender As System.Object, _

 ByVal e As System.EventArgs)

 Me.Text = HelpText(sender).ToString()

 End Sub

End Class

You can set the Help text for a menu item with the SetHelpText() method (see
Figure 7-12):

MenuTextProvider1.SetHelpText(mnuNew, _

 " Create a new document and abandon the current one.")

NOTE With extender providers, calling a Set method with an empty string is
assumed to mean removing the extension. In the preceding example, this call
causes the MenuHelpProvider to detach its event handler.

449.book Page 287 Wednesday, May 29, 2002 12:29 AM

Chapter 7

288

Figure 7-12. The MenuTextProvider in action

The Help Icon Provider

In many ways, the next example is a more typical provider because it extends
other controls without being a control itself. Instead, it derives from the
System.ComponentModel.Component class.

The HelpIconProvider retrieves a reference to the form that contains the
control and adds a miniature PictureBox control with a question mark icon in it. It
also registers for the DoubleClick event for the picture box. If this occurs, a Help
file is launched, with the specified context identifier for the control. The name of
the Help file is global to the provider, and specified through a standard HelpFile
property. To further refine the control, you could handle more events from the
dynamically generated picture box, perhaps tailoring the mouse cursor when it is
positioned over it.

<ProvideProperty("HelpID", GetType(String))> _

Public Class HelpIconProvider

 Inherits Component

 Implements IExtenderProvider

 Private ContextID As New Hashtable()

 Private Pictures As New Hashtable()

 Private _HelpFile As String

 Public Function CanExtend(ByVal extendee As Object) As Boolean _

 Implements System.ComponentModel.IExtenderProvider.CanExtend

 If extendee Is GetType(Control) Then

 If CType(extendee, Control).FindForm Is Nothing Then

 Return False

449.book Page 288 Wednesday, May 29, 2002 12:29 AM

Custom Controls

289289

 Else

 Return True

 End If

 Else

 Return False

 End If

 End Function

 Public Property HelpFile() As String

 Get

 Return _HelpFile

 End Get

 Set(ByVal Value As String)

 _HelpFile = Value

 End Set

 End Property

 Public Sub SetHelpID(ByVal extendee As Object, ByVal value As String)

 Dim ctrl As Control = CType(extendee, Control)

 ' Specifying an empty value removes the extension.

 If value = "" Then

 ContextID.Remove(extendee)

 ' Remove the picture.

 Dim pic As PictureBox = CType(Pictures(extendee), PictureBox)

 RemoveHandler pic.DoubleClick, AddressOf PicDoubleClick

 pic.Parent.Controls.Remove(pic)

 Pictures.Remove(extendee)

 Else

 ContextID(extendee) = value

 ' Create new icon.

 Dim pic As New PictureBox()

 pic.Image = Image.FromFile("Help.gif")

 ' Store a reference to the related control in the PictureBox.

 pic.Tag = extendee

 pic.Size = New Size(16, 16)

 pic.Location = New Point(ctrl.Right + 10, ctrl.Top)

 ctrl.Parent.Controls.Add(pic)

449.book Page 289 Wednesday, May 29, 2002 12:29 AM

Chapter 7

290

 ' Register for DoubleClick event.

 AddHandler pic.DoubleClick, AddressOf PicDoubleClick

 ' Store a reference to the PictureBox so it can be easily

 removed if needed.

 Pictures(extendee) = pic

 End If

 End Sub

 Public Function GetHelpID(ByVal extendee As Object) As String

 If Not ContextID(extendee) Is Nothing Then

 Return ContextID(extendee).ToString()

 Else

 Return String.Empty

 End If

 End Function

 Public Sub PicDoubleClick(ByVal sender As Object, ByVal e As EventArgs)

 ' Invoke help for control.

 Dim ctrlRelated As Control = CType(CType(sender, Control).Tag, Control)

 Help.ShowHelp(ctrlRelated, _HelpFile, HelpNavigator.Topic, _

 ContextID(ctrlRelated).ToString())

 End Sub

End Class

You will find out much more about the Help class this control uses to invoke
the Help engine in Chapter 14.

To use the HelpIconProvider,, just specify a global Help file for the provider
and set a Help context ID for a specific control. In order to test the control, you
must have a valid help file with a known topic ID, otherwise the ShowHelp()
method will be ignored. In the online samples, the code adds a debug message box
to inform you when the picture is double-clicked and the help should be triggered.

Private Sub HelpIconHost_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 HelpIconProvider1.HelpFile = "myhelp.hlp"

 HelpIconProvider1.SetHelpID(TextBox1, "10001")

 HelpIconProvider1.SetHelpID(TextBox2, "10002")

End Sub

Figure 7-13 shows the HelpIconProvider in action.

449.book Page 290 Wednesday, May 29, 2002 12:29 AM

Custom Controls

291291

Figure 7-13. A HelpIconProvider extending two text boxes

One limitation with this provider is that it reads the image it displays from a
file. That means that every client who uses the provider control also requires the
Help icon picture in the project directory directory. The next chapter demonstrates a
better approach that embeds the picture as a resource, so it can’t be lost.

The Last Word

This chapter considered one of the most important ingredients in advanced user
interfaces: custom controls. You learned how to master user interface controls,
and equip them with useful properties, methods, and events. You also learned
about inherited controls and the different model they provide.

One topic that hasn’t been considered in great detail is Visual Studio .NET’s
sometimes quirky design-time support of custom controls. In order to improve on
this, I take the same collection of controls to the next chapter, and develop the
designers and type editors that allow them to behave properly in the IDE.

449.book Page 291 Wednesday, May 29, 2002 12:29 AM

