
Practical Python

MAGNUS LIE HETLAND

066FM 7/15/02 5:16 PM Page i

Practical Python
Copyright ©2002 by Magnus Lie Hetland

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-006-6

Printed and bound in the United States of America 12345678910
Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Editorial Directors: Dan Appleman, Gary Cornell, Jason Gilmore, Karen Watterson
Marketing Manager: Stephanie Rodriguez
Technical Reviewers: Jason Gilmore and Alex Martelli
Project Managers: Erin Mulligan and Tory McLearn
Copy Editor: Nancy Rapoport
Production Editor: Tory McLearn
Compositor: Impressions Book and Journal Services, Inc.
Indexer: Carol Burbo
Cover Designer: Kurt Krames

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112
Heidelberg, Germany
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

066FM 7/15/02 5:16 PM Page ii

CHAPTER 5

Conditionals,
Loops, and

Some Other Statements

BY NOW, I’M SURE you are getting a bit impatient. All right—all these data types are
just dandy, but you can’t really do much with them, can you?

Let’s crank up the pace a bit. You’ve already encountered a couple of state-
ment types (print statements, import statements, assignments). Let’s first take
a look at some more ways to use these before diving into the world of condition-
als and loops. Then, you’ll see how list comprehensions work almost like
conditionals and loops, even though they are expressions, and finally you take
a look at pass, del, and exec.

More About print and import

As you learn more about Python, you may notice that some aspects of Python
that you thought you knew have hidden features just waiting to pleasantly sur-
prise you. Let’s take a look at a couple of such nice features in print and import.

Printing with Commas

You’ve seen how print can be used to print an expression, which is either a string
or is automatically converted to one. But you can actually print more than one
expression, as long as you separate them with commas:

>>> print ‘Age:’, 42

Age: 42

As you can see, a space character is inserted between each argument.

95

066ch05 7/12/02 11:14 AM Page 95

If you add a comma at the end, your next print statement will continue
printing on the same line. For instance, the statements

print ‘Hello,’,

print ‘world!’

print out Hello, world!

This behavior can be very useful if you want to combine text and variable
values without using the full power of string formatting:

>>> name = ‘Gumby’

>>> salutation = ‘Mr.’

>>> greeting = ‘Hello,’

>>> print greeting, salutation, name

Hello, Mr. Gumby

96

Chapter 5

NOTE The arguments of print do not form a tuple, as one
might expect:

>>> 1, 2, 3

(1, 2, 3)

>>> print 1, 2, 3

1 2 3

>>> print (1, 2, 3)

(1, 2, 3)

NOTE If the greeting string had no comma, how would you
get the comma in the result? You couldn’t just use

print greeting, ‘,’, salutation, name

because that would introduce a space before the comma. One
solution would be the following:

print greeting + ‘,’, salutation, name

Here the comma is simply added to the greeting.

066ch05 7/12/02 11:14 AM Page 96

Importing Something as Something Else

Usually when you import something from a module you either use

import somemodule

or

from somemodule import somefunction

or

from somemodule import *

The latter should only be used when you are certain that you want to import
everything from the given module. But what if you have two modules each contain-
ing a function called open, for instance—what do you do then? You could simply
import the modules using the first form, and then use the functions as follows:

module1.open(...)

module2.open(...)

But there is another option: You can add an as clause to the end and supply
the name you want to use, either for the entire module:

>>> import math as foobar

>>> foobar.sqrt(4)

2.0

or for the given function:

>>> from math import sqrt as foobar

>>> foobar(4)

2.0

For the open functions you might use the following:

from module1 import open as open1

from module2 import open as open2

97

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 97

Assignment Magic

The humble assignment statement also has a few tricks up its sleeve.

Sequence Unpacking

You’ve seen quite a few examples of assignments, both for variables and for parts
of data structures (such as positions and slices in a list, or slots in a dictionary),
but there is more. You can perform several different assignments simultaneously:

>>> x, y, z = 1, 2, 3

>>> print x, y, z

1 2 3

Doesn’t sound useful? Well, you can use it to switch the contents of
two variables:

>>> x, y = y, x

>>> print x, y, z

2 1 3

Actually, what I’m doing here is called “sequence unpacking”—I have
a sequence of values, and I unpack it into a sequence of variables. Let me be
more explicit:

>>> values = 1, 2, 3

>>> values

(1, 2, 3)

>>> x, y, z = values

>>> x

1

This is particularly useful when a function or method returns a tuple; let’s say
that you want to retrieve (and remove) a random key-value pair from a dictionary.
You can then use the popitem method, which does just that, returning the pair as
a tuple. Then you can unpack the returned tuple directly into two variables:

>>> scoundrel = {‘name’: ‘Robin’, ‘girlfriend’: ‘Marion’}

>>> key, value = scoundrel.popitem()

>>> key

98

Chapter 5

066ch05 7/12/02 11:14 AM Page 98

‘girlfriend’

>>> value

‘Marion’

This allows functions to return more than one value, packed as a tuple, easily
accessible through a single assignment. The sequence you unpack must have
exactly as many items as the targets you list on the left of the = sign; otherwise
Python raises an exception when the assignment is performed.

Chained Assignments

Chained assignments are used as a shortcut when you want to bind several vari-
ables to the same value. This may seem a bit like the simultaneous assignments
in the previous section, except that here you are only dealing with one value:

x = y = somefunction()

is the same as

y = somefunction()

x = y

Note that the statements above may not be the same as

x = somefunction()

y = somefunction()

For more information, see the section about the identity operator (is), later
in this chapter.

Augmented Assignments

Instead of writing x = x + 1 you can just put the expression operator (in this case
+) before the assignment operator (=) and write x += 1.This is called an aug-
mented assignment, and it works with all the standard operators, such as *, /, %,
and so on:

>>> x = 2

>>> x += 1

>>> x *= 2

>>> x

6

99

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 99

It also works with other data types:

>>> fnord = ‘foo’

>>> fnord += ‘bar’

>>> fnord

‘foobar’

Augmented assignments can make your code more compact and concise, yet
some argue that it can also make it harder to read.

100

Chapter 5

TIP In general, you should not use += with strings, espe-
cially if you are building a large string piece by piece in a loop
(see the section “Loops” later in this chapter for more infor-
mation about loops). Each addition and assignment needs to
create a new string, and that takes time, making your pro-
gram slower. A much better approach is to append the small
strings to a list, and use the string method join to create the
big string when your list is finished.

Blocks: The Joy of Indentation

This isn’t really a type of statement but something you’re going to need when you
tackle the next two sections.

A block is a group of statements that can be executed if a condition is true
(conditional statements), or executed several times (loops), and so on. A block is
created by indenting a part of your code; that is, putting spaces in front of it.

NOTE You can use tab characters to indent your blocks as
well. Python interprets a tab as moving to the next tab stop,
with one tab stop every eight spaces, but the standard and
preferable style is to use spaces only, no tabs, and specifically
four spaces per each level of indentation.

Each line in a block must be indented by the same amount. The following is
pseudocode (not real Python code) but shows how the indenting works:

this is a line

this is another line:

this is another block

continuing the same block

066ch05 7/12/02 11:14 AM Page 100

The following values are considered by the interpreter to mean false:

None 0 “” () [] {}

That is, the standard value None, numeric zero of all types (including float,
long, and so on), all empty sequences (such as empty strings, tuples, and lists),
and empty dictionaries. Everything else is interpreted as true. Laura Creighton
describes this as discerning between something and nothing, rather than true
and false.

the last line of this block

phew, there we escaped the inner block

In many languages a special word or character (for example, “begin” or “{”) is
used to start a block, and another (such as “end” or “}”) is used to end it. In
Python, a colon (“:”) is used to indicate that a block is about to begin, and then
every line in that block is indented (by the same amount). When you go back to
the same amount of indentation as some enclosing block, you know that the cur-
rent block has ended.

Now I’m sure you are curious to know how to use these blocks. So, without
further ado, let’s have a look.

Conditions and Conditional Statements

Until now you’ve only written programs in which each statement is executed, one
after the other. It’s time to move beyond that and let your program choose
whether or not to execute a block of statements.

So That’s What Those Boolean Values Are For

Now you are finally going to need those truth values we’ve been bumping into
repeatedly.

101

Conditionals, Loops, and Some Other Statements

NOTE If you’ve been paying close attention, you noticed the
sidebar in Chapter 1, “Sneak Peek: The if Statement,” which
describes the if statement. I haven’t really introduced it for-
mally until now, and as you’ll see, there is a bit more to it
than what I’ve told you so far.

066ch05 7/12/02 11:14 AM Page 101

Conditional Execution and the if Statement

Truth values can be combined (which you’ll see in a while), but let’s first see what
you can use them for. Try running the following script:

name = raw_input(‘What is your name? ‘)

if name.endswith(‘Gumby’):

print ‘Hello, Mr. Gumby’

This is the if statement, which lets you do conditional execution. That means
that if the condition (the expression after if but before the colon) evaluates to
true (as defined previously), the following block (in this case, a single print state-
ment) is executed. If the condition is false, then the block is not executed (but
you guessed that, didn’t you?).

Got it? This means that every value in Python can be interpreted as a truth
value, which can be a bit confusing at first, but it can also be extremely useful.
And even though you have all these truth values to choose from, the “standard”
truth values are 0 (for false) and 1 (for true).

102

Chapter 5

NOTE In Python 2.3 a separate Boolean type is introduced,
with the values True and False, which are basically equiva-
lent to 1 and 0, but will eventually replace them as “standard”
truth values.

NOTE In the sidebar “Sneak Peek: The if Statement” in
Chapter 1, the statement was written on a single line. That is
equivalent to using a single-line block, as in the preceding
example.

else Clauses

In the example from the previous section, if you enter a name that ends with
“Gumby,” the method name.endswith returns 1, making the if statement enter
the block, and the greeting is printed. If you want, you can add an alternative,
with the else clause (called a “clause” because it isn’t really a separate statement,
just a part of the if statement):

066ch05 7/12/02 11:14 AM Page 102

name = raw_input(‘What is your name? ‘)

if name.endswith(‘Gumby’):

print ‘Hello, Mr. Gumby’

else:

print ‘Hello, stranger’

Here, if the first block isn’t executed (because the condition evaluated to
false), you enter the second block instead. This really makes you see how easy it is
to read Python code, doesn’t it? Just read the code aloud (from if) and it sound
just like a normal (or perhaps not quite normal) sentence.

elif Clauses

If you want to check for several conditions, you can use elif, which is short for
“else if.” It is a combination of an if clause and an else clause—an else clause
with a condition:

num = input(‘Enter a number: ‘)

if num > 0:

print ‘The number is positive’

elif num < 0:

print ‘The number is negative’

else:

print ‘The number is zero’

Nesting Blocks

Let’s throw in a few bells and whistles. You can have if statements inside other if
statement blocks, as follows:

name = raw_input(‘What is your name? ‘)

if name.endswith(‘Gumby’):

if name.startswith(‘Mr.’):

print ‘Hello, Mr. Gumby’

elif name.startswith(‘Mrs.’):

print ‘Hello, Mrs. Gumby’

else:

print ‘Hello, Gumby’

else:

print ‘Hello, stranger’

103

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 103

Here, if the name ends with “Gumby,” you check the start of the name as
well—in a separate if statement inside the first block. Note the use of elif here.
The last alternative (the else clause) has no condition—if no other alternative is
chosen, you use the last one. If you want to, you can leave out either of the else
clauses. If you leave out the inner else clause, names that don’t start with either
“Mr.” or “Mrs.” are ignored (assuming the name was “Gumby”). If you drop the
outer else clause, strangers are ignored.

More Complex Conditions

That’s really all there is to know about if statements. Now let’s return to the con-
ditions themselves because they are the really interesting part of conditional
execution.

Comparison Operators

Perhaps the most basic operators used in conditions are the comparison opera-
tors. They are used (surprise, surprise) to compare things. The comparison
operators are summed up in Table 5-1.

Table 5-1. The Python Comparison Operators

EXPRESSION DESCRIPTION

x == y x equals y

x < y x is less than y

x > y x is greater than y

x >= y x is greater than or equal to y

x <= y x is less than or equal to y

x != y x is not equal to y

x is y x and y are the same object

x is not y x and y are different objects

x in y x is a member of the container (e.g., sequence) y

x not in y x is not a member of the container (e.g., sequence) y

Comparisons can be chained in Python, just like assignments—you can put
several comparison operators in a chain, like this: 0 < age < 100.

104

Chapter 5

066ch05 7/12/02 11:14 AM Page 104

Some of these operators deserve some special attention and will be
described in the following sections.

The Equality Operator

If you want to know if two things are equal, you use the equality operator, written
as a double equality sign, ==:

>>> “foo” == “foo”

1

>>> “foo” == “bar”

0

Double? Why can’t you just use a single equality sign, like they do in mathe-
matics? I’m sure you’re clever enough to figure this out for yourself, but let’s try it:

>>> “foo” = “foo”

SyntaxError: can’t assign to literal

The single equality sign is the assignment operator, which is used to change
things, which is not what you want to do when you compare things.

is: The Identity Operator

The is operator is interesting. It seems to work just like ==, but it doesn’t:

>>> x = y = [1, 2, 3]

>>> z = [1, 2, 3]

>>> x == y

1

>>> x == z

1

>>> x is y

1

>>> x is z

0

105

Conditionals, Loops, and Some Other Statements

TIP When comparing things, you can also use the built-in
function cmp as described in Chapter 2.

066ch05 7/12/02 11:14 AM Page 105

Until the last example, this looks fine, but then you get that strange result,
that x is not z even though they are equal. Why? Because is tests for identity,
rather than equality. The variables x and y have been bound to the same list,
while z is simply bound to another list that happens to contain the same values
in the same order. They may be equal, but they aren’t the same object.

Does that seem unreasonable? Consider this example:

>>> x = [1, 2, 3]

>>> y = [2, 4]

>>> x is not y

1

>>> del x[2]

>>> y[1] = 1

>>> y.reverse()

In this example, I start with two different lists, x and y. As you can see, x is
not y (just the inverse of x is y), which you already know. I change the lists
around a bit, and though they are now equal, they are still two separate lists:

>>> x == y

1

>>> x is y

0

Here it is obvious that the two lists are equal but not identical.
To summarize: Use == to see if two objects are equal, and use is to see if they

are identical (the same object).

106

Chapter 5

CAUTION Avoid the use of is with basic, immutable values
such as numbers and strings. The result is unpredictable
because of the way Python handles these internally.

in: The Membership Operator

I have already introduced the in operator (in Chapter 2, in the section
“Membership”). It can be used in conditions, just like all the other comparison
operators:

name = raw_input(‘What is your name? ‘)

if ‘s’ in name:

066ch05 7/12/02 11:14 AM Page 106

print ‘Your name contains the letter “s”.’

else:

print ‘Your name does not contain the letter “s”.’

Comparing Strings and Sequences

Strings are compared according to their order when sorted alphabetically:

>>> “alpha” < “beta”

1

If you throw in capital letters, things get a bit messy. (Actually, characters are
sorted by their ordinal values. The ordinal value of a letter can be found with the
ord function, whose inverse is chr.) To avoid this, use the string methods upper
or lower:

>>> ‘FnOrD’.lower() == ‘Fnord’.lower()

1

Other sequences are compared in the same manner, except that instead of
letters you have other types of elements:

>>> [1, 2] < [2, 1]

1

If the sequences contain lists as elements, the same rule applies to these
sublists:

>>> [2, [1, 4]] < [2, [1, 5]]

1

Boolean Operators

Now, you’ve got plenty of things that return truth values. (Given the fact that all
values can be interpreted as truth values, all expressions return them.) But you
may want to check for more than one condition. For instance, let’s say you want
to write a program that reads a number and checks whether it’s between 1 and 10
(inclusive). You can do it like this:

number = input(‘Enter a number between 1 and 10: ‘)

if number <= 10:

107

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 107

if number >= 1:

print ‘Great!’

else:

print ‘Wrong!’

else:

print ‘Wrong!’

This will work, but it’s clumsy. The fact that you have to write print ‘Wrong!’
in two places should alert you to this clumsiness. Duplication of effort is not
a good thing. So what do you do? It’s so simple:

if number <= 10 and number >= 1:

print ‘Great!’

else:

print ‘Wrong!’

108

Chapter 5

NOTE In this example, you could (and quite probably
should) have made this even simpler by using the following
chained comparison:

1 <= number <= 10

The and operator is a so-called Boolean operator (named after George Boole,
who did a lot of smart stuff on truth values, also called logical or Boolean values).
It takes two truth values, and returns true if both are true, and false otherwise. You
have two more of these operators, or and not. With just these three, you can com-
bine truth values in any way you like:

if ((cash > price) or customer_has_good_credit) and not out_of_stock:

give_goods()

066ch05 7/12/02 11:14 AM Page 108

Short-Circuit Logic

The Boolean operators have one interesting property: They only evaluate
what they need to. For instance, the expression x and y requires both
x and y to be true; so if x is false, the expression returns false immediately,
without worrying about y. Actually, if x is false, it returns x—otherwise it
returns y. (Can you see how this gives the expected meaning?) This behavior
is called short-circuit logic: the Boolean operators are often called logical
operators, and as you can see, the second value is sometimes “short-
circuited.” This works with or, too. In the expression x or y, if x is true, it is
returned, otherwise y is returned. (Can you see how this makes sense?)

So, how is this useful? Let’s say a user is supposed to enter his or her
name, but may opt to enter nothing, in which case you want to use the
default value ‘<unknown>’. You could use an if statement, but you could also
state things very succinctly:

name = raw_input(‘Please enter your name: ‘) or ‘<unknown>’

In other words, if the return value from raw_input is true (not an empty
string) it is assigned to name (nothing changes); otherwise, the default
‘<unknown>’ is assigned to name.

This sort of short-circuit logic can be used to implement the so-called
“ternary operator” (or conditional operator), found in languages such as
C and Java. For a thorough explanation, see Alex Martelli’s recipe on the sub-
ject in the Python Cookbook (http://aspn.activestate.com/ASPN/Cookbook/
Python/Recipe/52310).

Assertions

There is a useful relative of the if statement, which works more or less like this
(pseudocode):

if not condition:

crash program

Now, why on earth would you want something like that? Simply because it’s
better that your program crashes when an error condition emerges than at
a much later time. Basically, you can require that certain things be true. The key-
word used in the statement is assert:

>>> age = 10

>>> assert 0 < age < 100

>>> age = -1

109

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 109

>>> assert 0 < age < 100

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

AssertionError

It can be useful to put the assert statement in your program as a checkpoint,
if you know something has to be true for your program to work correctly.

A string may be added after the condition, to explain the assertion:

>>> age = -1

>>> assert 0 < age < 100, ‘The age must be realistic’

Traceback (most recent call last):

File “<stdin>”, line 1, in ?

AssertionError: The age must be realistic

Loops

Now you know how to do something if a condition is true (or false), but how do
you do something several times? For instance, you might want to create a pro-
gram that reminds you to pay the rent every month, but with the tools we have
looked at until now, you’d have to write the program like this (pseudocode):

send mail

wait one month

send mail

wait one month

send mail

wait one month

(...and so on)

But what if you wanted it to continue doing this until you stopped it?
Basically, you want something like this (again, pseudocode):

while we aren’t stopped:

send mail

wait one month

Or, let’s take a simpler example. Let’s say that you want to print out all the
numbers from 1 to 100. Again, you could do it the stupid way:

print 1

print 2

print 3

110

Chapter 5

066ch05 7/12/02 11:14 AM Page 110

…and so on. But you didn’t start using Python because you wanted to do stupid
things, right?

while Loops

In order to avoid the cumbersome code of the preceding example, it would be
useful to be able to do something like this:

x = 1

while x <= 100:

print x

x += 1

Now, how do you do that in Python? You guessed it—you do it just like that.
Not that complicated is it? You could also use a loop to ensure that the user enters
a name, as follows:

name = ‘’

while not name:

name = raw_input(‘Please enter your name: ‘)

print ‘Hello, %s!’ % name

Try running this, and then just pressing the Enter key when asked to enter
your name: the question appears again because name is still an empty string,
which evaluates to false.

111

Conditionals, Loops, and Some Other Statements

TIP What would happen if you entered just a space charac-
ter as your name? Try it. It is accepted because a string with
one space character is not empty, and therefore not false. This
is definitely a flaw in our little program, but easily corrected:
just change while not name to while name.isspace().

for Loops

The while statement is very flexible. It can be used to repeat a block of code while
any condition is true. While this may be very nice in general, sometimes you may
want something tailored to your specific needs. One such need is to perform
a block of code for each element of a set (or, actually, sequence) of values. You can
do this with the for statement:

066ch05 7/12/02 11:14 AM Page 111

words = [‘this’, ‘is’, ‘an’, ‘ex’, ‘parrot’]

for word in words:

print word

Or...

range = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

for number in range:

print number

Because iterating (another word for “looping”) over a range of numbers is
a common thing to do, there is a built-in function to make ranges for you:

>>> range(0, 10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Ranges work like slices. They include the first limit (in this case 0), but not
the last (in this case 10). Quite often, you want the ranges to start at 0, and this is
actually assumed if you only supply one limit (which will then be the last):

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

112

Chapter 5

TIP There is also another function called xrange that works
just like range in loops, but where range creates the whole
sequence at once, xrange creates only one number at a time.
This can be useful when iterating over huge sequences more
efficiently, but in general you needn’t worry about it.

The following program writes out the numbers from 1 to 100:

for number in range(1,101):

print number

Notice that this is much more compact than the while loop I used earlier.

066ch05 7/12/02 11:14 AM Page 112

Iterating over Dictionaries

To loop over the keys of a dictionary, you can use a plain for statement, just as
you can with sequences:

d = {‘x’: 1, ‘y’: 2, ‘z’: 3}

for key in d:

print key, ‘corresponds to’, d[key]

In Python versions before 2.2, you would have used a dictionary method
such as keys to retrieve the keys (since direct iteration over dictionaries wasn’t
allowed). If only the values were of interest, you could have used d.values instead
of d.keys. You may remember that d.items returns key-value pairs as tuples. One
great thing about for loops is that you can use sequence unpacking in them:

for key, value in d.items():

print key, ‘corresponds to’, value

To make your iteration more efficient, you can use the methods iterkeys
(equivalent to the plain for loop), itervalues, or iteritems. (These don’t
return lists, but iterators. Iterators are explained in Chapter 9, “Magic Methods
and Iterators.”)

113

Conditionals, Loops, and Some Other Statements

TIP If you can use a for loop rather than a while loop, you
should probably do so.

NOTE As always, the order of dictionary elements is unde-
fined. In other words, when iterating over either the keys or
the values of a dictionary, you can be sure that you’ll process
all of them, but you can’t know in which order. If the order is
important, you can store the keys or values in a separate list
and sort it before iterating over it.

066ch05 7/12/02 11:14 AM Page 113

Parallel Iteration

Sometimes you want to iterate over two sequences at the same time. Let’s say
that you have the following two lists:

names = [‘anne’, ‘beth’, ‘george’, ‘damon’]

ages = [12, 45, 32, 102]

If you want to print out names with corresponding ages, you could do
the following:

for i in range(len(names)):

print names[i], ‘is’, ages[i], ‘years old’

Here I use i as a standard variable name for loop indices (as these things are
called).

A useful tool for parallel iteration is the built-in function zip, which “zips”
together the sequences, returning a list of tuples:

>>> zip(names, ages)

[(‘anne’, 12), (‘beth’, 45), (‘george’, 32), (‘damon’, 102)]

Now I can unpack the tuples in my loop:

for name, age in zip(names, ages):

print name, ‘is’, age, ‘years old’

The zip function works with as many sequences as you want. It’s important
to note what zip does when the sequences are of different lengths: it stops when
the shortest sequence is “used up”:

>>> zip(range(5), xrange(100000000))

[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

I wouldn’t recommend using range instead of xrange in the preceding exam-
ple—although only the first five numbers are needed, range calculates all the
numbers, and that may take a lot of time. With xrange, this isn’t a problem
because it calculates only those numbers needed.

114

Chapter 5

066ch05 7/12/02 11:14 AM Page 114

Breaking Out of Loops

Usually, a loop simply executes a block until its condition becomes false, or until
it has used up all sequence elements—but sometimes you may want to interrupt
the loop, to start a new iteration (one “round” of executing the block), or to sim-
ply end the loop.

break

To end (break out of) a loop, you use break. Let’s say you wanted to find the
largest square (an integer that is the square of another integer) below 100. Then
you start at 100 and iterate downwards to 0. When you’ve found a square, there’s
no need to continue, so you simply break out of the loop:

from math import sqrt

for n in range(99, 0, -1):

root = sqrt(n)

if root == int(root):

print n

break

If you run this program, it will print out 81, and stop. Notice that I’ve added
a third argument to range—that’s the step, the difference between every pair of
adjacent numbers in the sequence. It can be used to iterate downwards as I did
here, with a negative step value, and it can be used to skip numbers:

>>> range(0, 10, 2)

[0, 2, 4, 6, 8]

continue

The continue statement is used less often than break. It causes the current itera-
tion to end, and to “jump” to the beginning of the next. It basically means “skip
the rest of the loop body, but don’t end the loop.” This can be useful if you have
a large and complicated loop body and several possible reasons for skipping it—
in that case you can use continue as follows:

for x in seq:

if condition1: continue

if condition2: continue

if condition3: continue

115

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 115

do_something()

do_something_else()

do_another_thing()

etc()

In many cases, however, simply using an if statement is just as good:

for x in seq:

if not (condition1 or condition2 or condition3):

do_something()

do_something_else()

do_another_thing()

etc()

Even though continue can be a useful tool, it is not essential. The break state-
ment, however, is something you should get used to because it is used quite often
in concert with while 1, as explained in the next section.

The while 1/break Idiom

The while and for loops in Python are quite flexible, but every once in a while
you may encounter a problem that makes you wish you had more functionality.
For instance, let’s say you want to do something while a user enters words at
a prompt, and you want to end the loop when no word is provided. One way of
doing that would be

word = ‘dummy’

while word:

word = raw_input(‘Please enter a word: ‘)

do something with the word:

print ‘The word was ‘ + word

Here is an example session:

Please enter a word: first

The word was first

Please enter a word: second

The word was second

Please enter a word:

116

Chapter 5

066ch05 7/12/02 11:14 AM Page 116

The while 1 part gives you a loop that will never terminate by itself. Instead
you put the condition in an if statement inside the loop, which calls break when
the condition is fulfilled. Thus you can terminate the loop anywhere inside the
loop instead of only at the beginning (as with a normal while loop). The if/break
line splits the loop naturally in two parts: The first takes care of setting things up
(the part that would be duplicated with a normal while loop), and the other part
makes use of the initialization from the first part, provided that the loop con-
dition is true.

Although you should be wary of using break too often (because it can make
your loops harder to read), this specific technique is so common that most
Python programmers (including yourself) will probably be able to follow your
intentions.

This works just like you want it to. (Presumably you’d do something more
useful with the word than print it out, though.) However, as you can see, this code
is a bit ugly. To enter the loop in the first place, you have to assign a dummy
(unused) value to word. Dummy values like this are usually a sign that you aren’t
doing things quite right. Let’s try to get rid of it:

word = raw_input(‘Please enter a word: ‘)

while word:

do something with the word:

print ‘The word was ‘ + word

word = raw_input(‘Please enter a word: ‘)

Here the dummy is gone, but I have repeated code (which is also a bad
thing): I have to use the same assignment and call to raw_input in two places.
How can I avoid that? I can use the while 1/break idiom:

while 1:

word = raw_input(‘Please enter a word: ‘)

if not word: break

do something with the word:

print ‘The word was ‘ + word

117

Conditionals, Loops, and Some Other Statements

NOTE An idiom is a common way of doing things that people
who know the language are assumed to know.

066ch05 7/12/02 11:14 AM Page 117

else Clauses in Loops

When you use break statements in loops, it is often because you have “found”
something, or because something has “happened.” It’s easy to do something
when you break out (like print n), but sometimes you may want to do something
if you didn’t break out. But how do you find out? You could use a Boolean vari-
able, set it to 0 before the loop, and set it to 1 when you break out. Then you can
use an if statement afterwards to check whether you did break out or not:

broke_out = 0

for x in seq:

do_something(x)

if condition(x):

broke_out = 1

break

do_something_else(x)

if not broke_out:

print “I didn’t break out!”

A simpler way is to add an else clause to your loop—it is only executed if you
didn’t call break. Let’s reuse the example from the preceding section on break:

from math import sqrt

for n in range(99, 81, -1):

root = sqrt(n)

if root == int(root):

print n

break

else:

print “Didn’t find it!”

Notice that I changed the lower (exclusive) limit to 81 to test the else clause.
If you run the program, it prints out “Didn’t find it!” because (as you saw in the
section on break) the largest square below 100 is 81. You can use continue, break,
and else clauses both with for loops and while loops.

List Comprehension—Slightly Loopy

List comprehension is a way of making lists from other lists (similar to set com-
prehension, if you know that term from mathematics). It works in a way similar to
for loops, and is actually quite simple:

118

Chapter 5

066ch05 7/12/02 11:14 AM Page 118

>>> [x*x for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The list is composed of x*x for each x in range(10). Pretty straightforward?
What if you only want to print out those squares that are divisible by 3? Then you
can use the modulo operator—y % 3 returns zero when y is divisible by 3. (Note
that x*x is divisible by 3 only if x is divisible by 3.) You put this into your list com-
prehension by adding an if part to it:

>>> [x*x for x in range(10) if x % 3 == 0]

[0, 9, 36, 81]

You can also add more for parts:

>>> [(x, y) for x in range(3) for y in range(3)]

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

This can be combined with an if clause, just like before:

>>> girls = [‘alice’, ‘bernice’, ‘clarice’]

>>> boys = [‘chris’, ‘arnold’, ‘bob’]

>>> [b+’+’+g for b in boys for g in girls if b[0] == g[0]]

[‘chris+clarice’, ‘arnold+alice’, ‘bob+bernice’]

This gives the pairs of boys and girls who have the same initial letter in their
first name.

A Better Solution

The boy/girl pairing example isn’t particularly efficient because it checks
every possible pairing. There are many ways of solving this problem in
Python. The following was suggested by Alex Martelli:

girls = [‘alice’, ‘bernice’, ‘clarice’]

boys = [‘chris’, ‘arnold’, ‘bob’]

letterGirls = {}

for girl in girls:

letterGirls.setdefault(girl[0], []).append(girl)

print [b+’+’+g for b in boys for g in letterGirls[b[0]]]

This program constructs a dictionary called letterGirl where each entry has
a single letter as its key and a list of girls’ names as its value. (The setdefault
dictionary method is described in the previous chapter.) After this dictionary

119

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 119

has been constructed, the list comprehension loops over all the boys and
looks up all the girls whose name begins with the same letter as the current
boy. This way the list comprehension doesn’t have to try out every possible
combination of boy and girl and check whether the first letters match.

And Three for the Road

To end the chapter, let’s take a quick look at three more statements: pass, del,
and exec.

Nothing Happened!

Sometimes you need to do nothing. This may not be very often, but when it hap-
pens, it’s good to know that you have the pass statement:

>>> pass

>>>

Not much going on here.
Now, why on earth would you want a statement that does nothing? It can be

useful as a placeholder while you are writing code. For instance, you may have
written an if statement and you want to try it, but you lack the code for one of
your blocks. Consider the following:

if name == ‘Ralph Auldus Melish’:

print ‘Welcome!’

elif name == ‘Enid’:

Not finished yet...

elif name == ‘Bill Gates’:

print ‘Access Denied’

This code won’t run because an empty block is illegal in Python. To fix this,
simply add a pass statement to the middle block:

if name == ‘Ralph Auldus Melish’:

print ‘Welcome!’

elif name == ‘Enid’:

Not finished yet...

pass

120

Chapter 5

066ch05 7/12/02 11:14 AM Page 120

Deleting with del

In general, Python deletes objects that you don’t use anymore:

>>> scoundrel = {‘age’: 42, ‘first name’: ‘Robin’, ‘last name’: ‘of Locksley’}

>>> robin = scoundrel

>>> scoundrel

{‘age’: 42, ‘first name’: ‘Robin’, ‘last name’: ‘of Locksley’}

>>> robin

{‘age’: 42, ‘first name’: ‘Robin’, ‘last name’: ‘of Locksley’}

>>> scoundrel = None

>>> robin

{‘age’: 42, ‘first name’: ‘Robin’, ‘last name’: ‘of Locksley’}

>>> robin = None

At first, robin and scoundrel both contain (or “point to”) the same dictionary.
So when I assign None to scoundrel, the dictionary is still available through robin.
But when I assign None to robin as well, the dictionary suddenly floats around in
the memory of the computer with no name attached to it. There is no way I can
retrieve it or use it, so the Python interpreter (in its infinite wisdom) simply
deletes it. (This is called “garbage collection.”) Note that I could have used any
value other than None as well. The dictionary would be just as gone.

Another way of doing this is to use the del statement (which we used to
delete sequence and dictionary elements in Chapters 2 and 4, remember?). This
not only removes a reference to an object, it also removes the name itself:

>>> x = 1

>>> del x

>>> x

Traceback (most recent call last):

elif name == ‘Bill Gates’:

print ‘Access Denied’

121

Conditionals, Loops, and Some Other Statements

NOTE An alternative to the combination of a comment and
a pass statement is to simply insert a string. This is especially
useful for unfinished functions (see Chapter 6) and classes
(see Chapter 7) because they will then act as “docstrings”
(explained in Chapter 6).

066ch05 7/12/02 11:14 AM Page 121

File “<pyshell#255>”, line 1, in ?

x

NameError: name ‘x’ is not defined

This may seem easy, but it can actually be a bit tricky to understand at times.
For instance, in the following example, x and y refer to the same list:

>>> x = [“Hello”, “world”]

>>> y = x

>>> y[1] = “Python”

>>> x

[‘Hello’, ‘Python’]

You might assume that by deleting x, you would also delete y, but that is not
the case:

>>> del x

>>> y

[‘Hello’, ‘Python’]

Why is this? x and y referred to the same list, but deleting x didn’t affect y at
all. The reason for this is that you only delete the name, not the list itself (the
value). In fact, there is no way to delete values in Python (and you don’t really
need to because the Python interpreter does it by itself whenever you don’t use
the value anymore).

Executing and Evaluating Strings with exec
and eval

Sometimes you may want to create Python code “on the fly” and execute it as
a statement or evaluate it as an expression. This may border on dark magic at
times—consider yourself warned.

122

Chapter 5

CAUTION In this section, you learn to execute Python code
stored in a string. This is a potential security hole of great
dimensions. If you execute a string where parts of the con-
tents have been supplied by a user, you have little or no
control over what code you are executing. This is especially
dangerous in network applications, such as CGI scripts,
which you will learn about in Chapter 19.

066ch05 7/12/02 11:14 AM Page 122

exec

The statement for executing a string is exec:

>>> exec “print ‘Hello, world!’”

Hello, world!

However, using this simple form of the exec statement is rarely a good thing; in
most cases you want to supply it with a namespace, a place where it can put its vari-
ables. You want to do this so that the code doesn’t corrupt your namespace (that is,
change your variables). For instance, let’s say that the code uses the name sqrt:

>>> from math import sqrt

>>> exec “sqrt = 1”

>>> sqrt(4)

Traceback (most recent call last):

File “<pyshell#18>”, line 1, in ?

sqrt(4)

TypeError: object is not callable: 1

Well, why would you do something like that in the first place, you ask? The
exec statement is mainly useful when you build the code string on the fly. And if
the string is built from parts that you get from other places, and possibly from the
user, you can rarely be certain of exactly what it will contain. So to be safe, you
give it a dictionary, which will work as a namespace for it.

123

Conditionals, Loops, and Some Other Statements

NOTE The concept of namespaces, or scopes, is a very impor-
tant one. You will look at it in depth in the next chapter, but
for now you can think of a namespace as a place where you
keep your variables, much like an invisible dictionary. So
when you execute an assignment like x = 1, you store the key
x with the value 1 in the current namespace, which will often
be the global namespace (which we have been using, for the
most part, up until now), but doesn’t have to be.

066ch05 7/12/02 11:14 AM Page 123

You do this by adding in scope, where scope is some dictionary that will
function as the namespace for your code string:

>>> from math import sqrt

>>> scope = {}

>>> exec ‘sqrt = 1’ in scope

>>> sqrt(4)

2.0

>>> scope[‘sqrt’]

1

Now you have full control over the variables that are changed by the code
because they are all kept inside scope. If you try to print out scope, you see that it
contains a lot of stuff because the dictionary called __builtins__ is automatically
added and contains all built-in functions and values:

>>> len(scope)

2

>>> scope.keys()

[‘sqrt’, ‘__builtins__’]

eval

A built-in function that is similar to exec is eval (for “evaluate”). Just as exec exe-
cutes a series of Python statements, eval evaluates a Python expression (written in
a string) and returns the value. (exec doesn’t return anything because it is a state-
ment itself.) For instance, you can use the following to make a Python calculator:

>>> eval(raw_input(“Enter an arithmetic expression: “))

Enter an arithmetic expression: 6 + 18 * 2

42

124

Chapter 5

NOTE The expression eval(raw_input(...)) is, in fact, equiva-
lent to input(...).

066ch05 7/12/02 11:14 AM Page 124

You can supply a namespace with eval, just as with exec, although
expressions rarely rebind variables in the way statements usually do.

125

Conditionals, Loops, and Some Other Statements

CAUTION Even though expressions don’t rebind variables as
a rule, they certainly can (for instance by calling functions
that rebind global variables). Therefore, using eval with an
untrusted piece of code is no safer than using exec. For
a more secure alternative, see the standard library modules
rexec and Bastion, mentioned in Chapter 10.

Priming the Scope

When supplying a namespace for exec or eval, you can also put some
values in before actually using the namespace:

>>> scope = {}

>>> scope[‘x’] = 2

>>> scope[‘y’] = 3

>>> eval(‘x * y’, scope)

6

In the same way, a scope from one exec or eval call can be used again in
another one:

>>> scope = {}

>>> exec ‘x = 2’ in scope

>>> eval(‘x*x’, scope)

4

Actually, exec and eval are not used all that often, but they can be nice tools
to keep in your back pocket (figuratively, of course).

A Quick Summary

In this chapter you’ve seen several kinds of statements:

Printing. You can use the print statement to print several values by sepa-
rating them with commas. If you end the statement with a comma, later
print statements will continue printing on the same line.

066ch05 7/12/02 11:14 AM Page 125

Importing. Sometimes you don’t like the name of a function you want to
import—perhaps you’ve already used the name for something else. You
can use the import...as... statement, to locally rename a function.

Assignments. You’ve seen that through the wonder of sequence unpacking
and chained assignments, you can assign values to several variables at once,
and that with augmented assignments you can change a variable in place.

Blocks. Blocks are used as a means of grouping statements through inden-
tation. They are used in conditionals and loops, and as you see later in the
book, in function and class definitions, among other things.

Conditionals. A conditional statement either executes a block or not,
depending on a condition (Boolean expression). Several conditionals can
be strung together with if/elif/else.

Assertions. An assertion simply asserts that something (a Boolean
expression) is true, optionally with a string explaining why it has to be so. If
the expression happens to be false, the assertion brings your program to
a halt (or actually raises an exception—more on that in Chapter 8). It’s bet-
ter to find an error early than to let it sneak around your program until you
don’t know where it originated.

Loops. You either can execute a block for each element in a sequence (such
as a range of numbers) or continue executing it while a condition is true.
To skip the rest of the block and continue with the next iteration, use the
continue statement; to break out of the loop, use the break statement.
Optionally, you may add an else clause at the end of the loop, which will
be executed if you didn’t execute any break statements inside the loop.

List comprehension. These aren’t really statements—they are expressions
that look a lot like loops, which is why I grouped them with the looping
statements. Through list comprehension you can build new lists from old
ones, applying functions to the elements, filtering out those you don’t
want, and so on. The technique is quite powerful, but in many cases using
plain loops and conditionals (which will always get the job done) may be
more readable.

pass, del, exec, and eval. The pass statement does nothing, which can be
useful as a placeholder, for instance. The del statement is used to delete
variables or parts of a datastructure, but cannot be used to delete values.
The exec statement is used to execute a string as if it were a Python
program. The built-in function eval evaluates an expression written in
a string and returns the result.

126

Chapter 5

066ch05 7/12/02 11:14 AM Page 126

New Functions in This Chapter

FUNCTION DESCRIPTION

chr(n) Returns a one-character string with ordinal n

(0 ≤ n ≤ 256)

eval(source[, globals[, locals]]) Evaluates a string as an expression and returns

the value

ord(c) Returns the integer ordinal value of a one-

character string

range([start,] stop[, step]) Creates a list of integers

xrange([start,] stop[, step]) Creates an xrange object, used for iteration

zip(seq1, seq2,...) Creates a new sequence suitable for parallel

iteration

What Now?

Now you’ve cleared the basics. You can implement any algorithm you can dream
up; you can read in parameters and print out the results. In the next couple of
chapters, you learn about something that will help you write larger programs
without losing the big picture. That something is called abstraction.

127

Conditionals, Loops, and Some Other Statements

066ch05 7/12/02 11:14 AM Page 127

