
1. Introduction and Overview

This book is about the integration of neural networks and symbolic rules.
While symbolic artificial intelligence assumes that the mind is the focus of
intelligence, and thus intelligent behaviour emerges from complex symbol
processing mechanisms, connectionist artificial intelligence admits that in-
telligence lies in the brain, and therefore tries to model it by simulating its
electrochemical neuronal structures. Clearly, such structures are capable of
learning and performing the higher level cognitive tasks that human beings
are accustomed to, as well as lower level, everyday cognitive activities. In
this framework, the role of symbolic computation is to provide the system
with the background information needed for the learning process, as well
as to provide us with the information needed for understanding the system,
since high-level cognitive tasks are much more clearly digested by human
beings as symbols and operations over symbols rather than in the form of
interconnected neurons.

1.1 Why Integrate Neurons and Symbols?

Human cognition successfully integrates the connectionist and symbolic
paradigms of Artificial Intelligence (AI). Yet the modelling of cognition de-
velops these separately in neural computation and symbolic logic/AI areas.
There is now a movement towards a fruitful mid-point between these ex-
tremes, in which the study of logic is combined with connectionism. It is
essential that these be integrated, thereby enabling a technology for building
better intelligent systems.

The aim of Neural-Symbolic Integration is to explore and exploit the ad-
vantages that each paradigm presents. Among the advantages of artificial
neural networks are massive parallelism, inductive learning and generalisa-
tion capabilities. On the other hand, symbolic systems can explain their in-
ference process, e.g. through automated theorem proving, and use powerful
declarative languages for Knowledge Representation.

In this book, we explore the synergies of neural-symbolic integration from
the following perspective. We use a Neural Network to simulate a given task.

1



2 1. Introduction and Overview

The network is obtained by being programmed (set up) and/or by somehow
adapting and generalising over well-known situations (learning). The net-
work is the mechanism to execute the task, while symbolic logic enables the
necessary interaction between the network and the outside world.

“It is generally accepted that one of the main problems in building Expert
Systems (which are responsible for the industrial success of Artificial Intel-
ligence) lies in the process of knowledge acquisition, known as the Knowl-
edge Acquisition Bottleneck” [LD94]. An alternative is the automation of this
process using Machine Learning techniques (see [Mit97, Rus96]). Symbolic
machine learning methods are usually more effective if they can exploit back-
ground knowledge (incomplete domain theory). In contrast, neural networks
have been successfully applied as a learning method from examples only (data
learning) [TBB+91, SMT91]. As a result, the integration of theory and data
learning in neural networks seems to be a natural step towards more powerful
training mechanisms.[TS94a]

The Inductive Learning task employed in symbolic machine learning is
to find hypotheses that are consistent with a background knowledge to ex-
plain a given set of examples. In general, these hypotheses are definitions of
concepts described in some logical language. The examples are descriptions
of instances and non-instances of the concept to be learned, and the back-
ground knowledge provides additional information about the examples and
the concepts’ domain knowledge [LD94].

In contrast with (symbolic) learning systems, the learning of (numeric)
neural networks implicitly encodes patterns and their generalisations in the
networks’ weights, so reflecting the statistical properties of the trained data
[BL96]. It has been indicated that neural networks can outperform symbolic
learning systems, especially when data are noisy1 [TBB+91]. This result, due
also to the massively parallel architecture of neural networks, contributed de-
cisively to the growing interest in combining, and possibly integrating, neural
and symbolic learning systems (see [Kur97] for a clarifying treatment of the
suitability of neural networks for the representation of symbolic knowledge).

“We believe that neural networks are capable of more than pattern
recognition; they can also perform higher cognitive tasks which are
fundamentally rule-governed. Further, we believe that they can per-
form higher cognitive tasks better if they incorporate rules rather
than eliminate them. A number of well known cognitive models, par-
ticularly of language, have been criticised for going too far in elimi-
nating rules in fundamentally rule-governed domains. We argue that
with a suitable choice of high-level, rule governed task, representa-
tion, processing architecture, and learning algorithm, neural networks

1 We say that data are noisy when some of its variables are corrupted or missing
altogether.



1.2 Strategies of Neural-Symbolic Integration 3

can represent and learn rules involving higher-level categories while
simultaneously learning those categories. The resulting network can
exhibit better learning and task performance than neural networks
that do not incorporate rules, and have capabilities that go beyond
that of purely symbolic rule-learning algorithms.” Paul Smolensky
[MMS92]

According to Minsky, “Both kinds of intelligent computational systems,
symbolic and connectionist, have virtues and deficiencies. It is very impor-
tant to integrate them, through neural-symbolic systems, in order to explore
the capabilities each one possesses”[Min91]. In this sense, the aim of such
integration is twofold: while logic can benefit from neural networks’ success-
ful applications on various knowledge domains, neural network learning and
generalisation processes can be rigorously studied and explained by logic.

“There is still a feeling that something is wrong with agent systems
and artificial intelligence systems even in cases where the system gives
the right answer. There are cases where the ‘human computer’, slow
as it is, gives the correct answer immediately while the agent system
may take some time to find it. Something must be wrong. Why are
we faster? Is it the way we perceive the rules as opposed to the way
we represent them in the agent system? Do we know immediately
which rule to use? We must look for the ‘correct’ representation in
the sense that it mirrors the way we perceive and apply the rules.
Humans use an overall impression to make decisions about how to
go about finding answers to queries. Neural networks are in a better
position to model this capacity. In fact, we believe that every agent
system should have a neural net component.” Dov Gabbay [Gab98]

It would certainly be rewarding if the gap between the study of (symbolic)
artificial intelligence and the study of (numerical) artificial neural networks
could be reduced. This might suggest massively parallel formal systems that
prescribe how to reason, in a certain domain, in a way that is enlightening
from the point of view of actual practice. On the other hand, logic may be a
very useful tool in helping to explain neural networks’ inference process, as
well as in formalising their learning and generalisation mechanisms.

1.2 Strategies of Neural-Symbolic Integration

According to [Hil95], Neural-Symbolic Systems can be divided into: Unifica-
tion Systems and Hybrid Systems (see Figure 1.1). The first category com-
prises connectionist systems that perform some kind of symbolic computa-
tion. The second category contains systems that present a logical as well as
a connectionist component, which interact with each other.



4 1. Introduction and Overview

The principle underlying Unification Strategies is that all the functionality
of symbol processing arises from neuronal structures and processes. Unifica-
tion strategies comprise Neuronal Modelling (or Neuroscience) and Connec-
tionist Logic Systems. The first group investigates the relationship between
specific cognitive tasks and biological reality. By developing computational
models of the cognitive tasks of the brain, it attempts to understand how the
brain works by building on its cellular units: the neurons [OM00]. The sec-
ond group, Connectionist Logic Systems, is concerned about the development
of models of artificial neural networks that can compute complex symbolic
processes in parallel. In this group, the representation of symbolic knowledge
in neural networks can be either localised or distributed . In a localised rep-
resentation, each neuron is a concept, while in a distributed representation,
the most elementary concepts arise from the interaction of many process-
ing elements. In both cases, Connectionist Logic Systems might use either
energy minimisation or propagation of activation as the mechanism of infer-
ence. Examples of Connectionist Logic Systems by energy minimisation are
[Bal86, Pin95, NR92, Vin94]. Among the Connectionist Logic Systems by
propagation of activation are [Sha88, HK92, Sun95, HK94].

Differently from Connectionist Logic Systems, Hybrid Systems, in general,
combine a symbolic component with a connectionist one. Hybrid Systems can
be classified in many different ways: by the application domain; the symbolic
and connectionist models used; the functionality of the symbolic and neural
components of the system; etc. Following Medsker [Med94], we use the degree
of interaction between the symbolic and neural components of the system as
a classification scheme for Hybrid Systems.

1. Stand-Alone Models: There is no interaction between the symbolic and
neural components. Both can be used in the same application in order
to compare efficiency.

2. Loosely Coupled Models: There is a weak interaction between the com-
ponents. Neural and Symbolic modules perform specific tasks within the
system and communicate via data files. We include here, for example,
the systems in which a neural network pre-processes data to be used by
an expert system.

3. Tightly Coupled Models: There is a strong interaction between the com-
ponents. Communications between the neural and symbolic modules of
the system occur via data structures stored in memory.

4. Fully Integrated Models: Data structures and processing are not shared
between the components by function, but are part of a unique system
with a dual (neural and symbolic) nature. Gallant’s Connectionist Ex-
pert System [Gal88] is the seminal work towards fully integrated models.
Other examples include [GO93, Fu91, MR91, KP92, TS94a].



1.3 Neural-Symbolic Learning Systems 5

Neuronal

Modeling
Connectionist

Logic Systems

Hybrid Systems

by Translation

Hybrid Systems

by Function

Hybrid

Systems

Unification

Strategies

Neural-Symbolic

Integration

Fig. 1.1. A classification of neural-symbolic systems.

Stand-Alone, Loosely Coupled and Tightly Coupled models all belong to
the group of Hybrid Systems by Function, according to Hilario’s classification
[Hil95] (see Figure 1.1). Fully Integrated models, on the other hand, fall into
the class of Hybrid Systems by Translation. Similarly to Connectionist Logic
Systems, Hybrid Systems by Translation use, in general, translation methods
from symbolic knowledge (usually production rules) to connectionist mod-
els and vice versa. However, while Connectionist Logic Systems are mainly
concerned about performing (high-level) symbolic computation in massively
parallel models, Hybrid Systems by Translation are concerned about the use
of symbolic knowledge to help the process of (low-level) inductive learning,
by serving either as background knowledge or as an explanation for the learn-
ing method applied. In other words, Connectionist Logic Systems are mainly
concerned about the benefits that Neural Networks can bring to Logic, such
as massive parallelism, while Hybrid Systems by Translation are rather con-
cerned about the benefits that Logic can bring to Neural Networks, such as
learning with background knowledge or rule extraction.

1.3 Neural-Symbolic Learning Systems

In this book, we want to go one step further in the process of neural-symbolic
integration, by exploring some of the features of Connectionist Logic Systems
(CLSs) and Hybrid Systems by Translation (HSTs). While CLSs are, in gen-
eral, provably equivalent to a logical formalism, HSTs lack such a fundamen-
tal property. On the other hand, CLSs present none or very limited learning
capabilities, one of the most important features of HSTs and, indeed, of arti-
ficial neural networks. We argue that one can combine features of CLSs and
HSTs in order to achieve both equivalence and learning capability in a fully
integrated framework. We argue, thus, for the creation of a new category



6 1. Introduction and Overview

Symbolic

Knowledge
Symbolic

Knowledge

Neural

Network

Examples

Learning

Connectionist System

Inference

Machine

Explanation

1

2

3

5

6

4

Fig. 1.2. Neural-symbolic learning systems.

in Hilario’s classification scheme of Figure 1.1, and call it Neural-Symbolic
Learning Systems.

Neural-Symbolic Learning Systems contain six main phases: (1) symbolic
knowledge insertion; (2) inductive learning with examples; (3) massively par-
allel deduction; (4) theory fine-tuning ; (5) symbolic knowledge extraction; and
(6) feedback (see Figure 1.2). In phase (1), a (symbolic) background knowl-
edge is translated into the initial architecture of a neural network by some
Translation Algorithm. In phase (2), such a network should be able to be
trained with examples efficiently, thus refining the initial (incomplete) the-
ory given as background knowledge. For example, differently from most CLSs,
the network could be trained using the Backpropagation learning algorithm.
In phase (3), the network must be able to be used as a massively parallel
computational model of the logical consequences of the theory encoded in it.
This is so because, as opposed to most HSTs, the Translation Algorithm of a
Neural-Symbolic Learning System must be provably correct. In phase (4), the
information obtained with the computation carried out in phase 3 may help
in fine-tuning the network to represent the knowledge domain better. This
mechanism can be used, for example, to solve inconsistencies between the
background knowledge and the training examples. In phase (5), the results
of refining the network should be explained by the extraction of a revised
(symbolic) knowledge from it. As with the insertion of rules, the Extraction
Algorithm of a Neural-Symbolic Learning System must be provably correct,
so that each rule extracted is guaranteed to be encoded in the network. Fi-
nally, in phase (6), the knowledge extracted may be analysed by an expert
to decide whether it should feed the system once more, closing the learning
cycle.



1.4 A Simple Example 7

a b c

x y

h1 h2 h3

Output Vector

Input Vector

Fig. 1.3. Translating a symbolic knowledge into a neural network.

A typical application of Neural-Symbolic Learning Systems is in safety-
critical domains, such as fault diagnosis systems, where the neural network
can detect a fault quickly, triggering safety procedures, while the knowledge
extracted from it can justify the fault later on. If mistaken, the information
can be used to fine tune the learning system.

1.4 A Simple Example

In order to give the reader an overview of the sequence of processes 1 to
6 of Neural-Symbolic Learning Systems (see Figure 1.2), we give a simple
illustrative example.

Phase 1: Let us assume that the following incomplete theory is given as
background knowledge, in the form of a logic program, P = {a∧b→ x; b∧c→
x; b → y}. A way of translating P into a neural network N is to associate
a, b and c with input neurons, and x and y with output neurons. A layer
of hidden neurons is then necessary to allow N to capture the relationships
between {a, b, c} and {x, y} of P. In fact, a hidden neuron of N for each
rule of P is sufficient. The network should look like that of Figure 1.3, where
hidden neuron h1 should represent rule a ∧ b → x, hidden neuron h2 should
represent b→ y, and hidden neuron h3 should represent b ∧ c→ x.

Output neuron y should only be activated if input neuron b is activated.
Similarly, output neuron x should only be activated if a and b are activated,
or if b and c are activated. In other words, the weights of the connections of
the network must be set up such that hidden neuron h1 performs a logical



8 1. Introduction and Overview

a b c

x y

h1 h2 h3

Output Vector

Input Vector

Fig. 1.4. Performing inductive learning with examples.

and between inputs a and b, hidden neuron h2 is activated if, and only if, b

is activated, and hidden neuron h3 performs a logical and between inputs b

and c. Similarly, output neuron x must perform a logical or between h1 and
h3, while y should be activated if, and only if, h2 is activated. If this is the
case, we should be able to show that P and N are, in fact, equivalent.

Phase 2: Our next step is to perform inductive learning with examples in
N . The idea is to change the values of the weights of the network according
to a set of training examples (input and output vectors), using some neural
learning algorithm. In order to do so, we fully connect N as in Figure 1.4,
so that it can learn new relations between {a, b, c} and {x, y} in addition to
the ones already inserted in it by P. In principle, this process also allows the
network to change its background knowledge.

Phase 3: Let us assume that the set of training examples is such that it
does not change the background knowledge, but only expands it. Although
we do not know yet which is the new knowledge encoded in the network,
we should be able to compute its logical consequences in parallel, using the
network. For example, the network might have learned the rule a ∧ c → x.

As a result, x could be derived from a and c, as well as from a and b or from
b and c. Also, y would still be derivable from b.

Phase 4: Now, suppose that having x and y together is not desirable;
that is, suppose that x ∧ y → ⊥ is an integrity constraint of the application
domain. The choice between x and y may depend, though, on extra-logical
considerations. Assume that, as a matter of fact, x is preferred to y. Ne-
glecting, for the time being, many important aspects of theory revision, the
conflict may be adjudicated by evolving the neural network, as depicted in
Figure 1.5. The idea is to add a hidden neuron (h4), responsible for blocking



1.4 A Simple Example 9

a b c

x y

h1 h2 h3

Output Vector

Input Vector

h4

Fig. 1.5. Fine-tuning the network.

the activation of y whenever x is activated. Clearly, the same process could
be used to solve inconsistencies of the form z ∧ ¬z → ⊥.

Phase 5: Our next task is to try to extract the (refined) knowledge en-
coded in the network so that we can explain its answers by inspecting the
symbolic knowledge that it encodes. In the case of binary inputs, an option is
to use brute force, and check all the possible combinations of input vectors.
However, in real-world applications, hundreds of input neurons may be neces-
sary, and the problem may be intractable. The challenge here, therefore, is to
consider a small number of input vectors and still make sure that the extrac-
tion of rules is correct. In order to do so, we need, in general, to decompose
the network into sub-networks, and to extract rules that map {a, b, c} into
{h1, h2, h3, h4}, and {h1, h2, h3, h4} into {x, y}. However, since a network’s
behaviour is not equivalent to the behaviour of its parts grouped together,
and since neurons h1, h2, h3 and h4 do not represent concepts, but rules, we
need to be especially careful when deriving the final set of rules of a trained
network in order to maintain correctness.

We also want to be able to extract rules that reflect the process of gen-
eralisation of the network, which occurs during learning, as opposed to rules
that account for the network’s training set and background knowledge only.
For example, a possible generalisation is the rule a ∧ c→ x, which, together
with rules a ∧ b → x and b ∧ c → x of the background knowledge, could be
simplified to derive 2(abc)→ x, indicating that any two of the concepts a, b

and c would imply x. This so-called M of N rule could be encoded in neuron
h2, as exemplified in Figure 1.6.

Phase 6: When background knowledge is translated into a neural net-
work, it is possible to create a neat network structure. However, when the



10 1. Introduction and Overview

a b c

x

h2

h2

a � b � h2

b � c � h2

a � c � h2

h2 � x

Fig. 1.6. Extracting rules from trained networks.

network is trained with examples, it will most probably lose its well-behaved
structure. The task of rule extraction is supposed to discover the knowledge
refined by the network. As a result, a new neat network structure could be
created by the translation of the new knowledge into the network. In addition,
new examples could be trained in such a network, and so on, thus closing the
cycle of theory refinement.

In this example, for the sake of simplicity, we have neglected many important
aspects of neural-symbolic integration. They will be discussed in detail in the
rest of the book. The purpose of this example was to provide the reader with
an intuitive presentation of Neural-Symbolic Learning Systems, as well as
with an introductory description of the technical material that will follow.

1.5 How to Read this Book

Following a brief presentation of the relevant definitions and results on In-
ductive Learning, Artificial Neural Networks, Logic Programming and Non-
monotonic Reasoning, and Belief Revision, this book is divided into three
parts:

– Knowledge Refinement in Neural Networks;
– Knowledge Extraction from Neural Networks; and
– Knowledge Revision in Neural Networks.

The first part is based on Holldobler and Kalinke’s work on CLSs [HK94,
HKS99] and on Towell and Shavlik’s work on HSTs [Sha96, TS94a, TS94b].
We have carefully chosen the above approaches because Holldobler and



1.5 How to Read this Book 11

Kalinke, differently from most CLSs, use a neat and simple model of neural
networks to compute one of the standard semantics of Logic Programming,
thus facilitating the inclusion of learning capabilities into the model, while
Towell and Shavlik’s Knowledge-based Artificial Neural Networks (KBANN),
and its subsequent developments (e.g. [OS93, Opi95]), have been empirically
shown to be superior to some of the main neural, symbolic and hybrid sys-
tems, being, to the best of our knowledge, the most effective HST to date.

In Part I, we will present important theoretical results on Neural-Symbolic
Learning Systems – such as the proof of soundness of the Translation Algo-
rithm – and empirically investigate their efficiency by applying them to real
world problems of Computational Biology and Fault Diagnosis. We will also
compare results with some of the main neural and symbolic systems of Ma-
chine Learning.

The second part of the book deals with the problem of symbolic knowl-
edge extraction from trained neural networks. The subject has grown beyond
the study of neural-symbolic integration systems and is now a research area
on its own (see, for example, [Cra96, Mai98, Mai97, Set97a, Thr94]). Al-
though knowledge extraction is an integral part of Neural-Symbolic Learning
Systems, we have tried as much as possible to present the subject indepen-
dently from the previous chapters. Our approach builds upon Fu’s extraction
method [Fu94] and some features of KBANN’s M of N method [TS93].

In Part II, we will present new theoretical results on knowledge extraction
from trained neural networks, culminating with the proof of soundness of the
Extraction Algorithm, which we believe should be the minimum requirement
of any method of rule extraction. We will also present empirical evidence of
the performance of the extraction method, by applying it to the problems of
Computational Biology and Fault Diagnosis used in Part I to investigate the
performance of the learning systems.

The third part of this book tackles the problem of theory revision in
neural networks. Theory revision may be necessary as a result of the presence
of inconsistencies between a symbolic theory and the result of learning from
examples. To the best of our knowledge, this book contains the first account
and treatment of the subject.

In Part III, we will present a one-shot learning algorithm, which will allow
neural networks to evolve incrementally from an undesirable stable state into
a new stable state. This method, here called Minimal Learning, can be used to
fine-tune the network’s answers after learning with examples takes place, but,
most importantly, it can be applied to solve inconsistencies in the answers
computed by the network. The study of how to deal with inconsistencies can
be carried out independently of Part II of this book.

We conclude the book by presenting a number of challenges and open
problems of neural-symbolic learning systems.



12 1. Introduction and Overview

1.6 Summary

We have mentioned that the aim of Neural-Symbolic Integration is twofold:
while logic may benefit from the successful application of neural networks
on various knowledge domains, the learning and generalisation processes of
neural networks may be rigorously studied and explained by logic. We should
be able to explore both directions of this “equivalence” relation, taking into
consideration aspects such as learning capability and massively parallel de-
duction and correctness. Notwithstanding this, finding the balance between
what we would like to be able to represent in a neural network and what a neu-
ral network naturally represents and learns is a difficult task. It all depends
on how we want to benefit from the integration of neurons and symbols.

In this monograph, we are committed to high learning performance, for
we believe this is the most important asset of artificial neural networks. Thus
we concentrate on single hidden layer networks and Backpropagation – the
neural learning combination most commonly successfully applied in industry.
We then follow the idea of finding the best symbolic representation for such
a neural model. The closest match was the class of grounded extended logic
programs of Gelfond and Lifschitz [GL91], augmented with the metalevel
superiority relations of Nute’s Defeasible Logic [Nut94]. The use of more ex-
pressive logics, such as first-order logic, would require a proportionally more
complex neural model, which could result in a degradation of learning perfor-
mance. In other words, the limits of synergetic neural-symbolic integration
depend on the objectives of the application. Use it to simplify, not to com-
plicate. Be guided by the application and its needs.




