
2. ������ 2. Lifting Idempotents

2.1. ��	����� 2.1. In order to lift idempotents from
p � � � � � � � 
 � � characteristic p to characteristic zero, the
� �, � � � 
 � � � � � safest method is to work over a complete
� � � � � � � � � � � discrete valuation ring of characteristic zero
�  � � � �� � � � � with a residue field of characteristic p . Yet,
���� p ��. ���, �� as a matter of fact, the completeness is a suf-
�
����������. ficient but not necessary condition. In this
��, �������. section, we will discuss on this question.

2.2. � O � ����� 2.2. Let O be a discrete valuation ring
��� k = O/J(O) �� such that k = O/J(O) is a field of charac-
�� p ��, �
 J(O) � O teristic p , where J(O) denotes the radical
���, �� O ��	� K � of O , and that its field of quotients K
������. ���, � has characteristic zero. That is to say,
������	� ϑ:K∗ → Z we have a surjective group homomorphism
�� ϑ:K∗ → Z fulfilling

2.2.1 {λ ∈ K∗ | ϑ(λ) ≥ 0} = O − {0} ;

���, �π ∈ O�� J(O) = in particular, there is π ∈ O such that
πO. �	�, �� K′ � K J(O) = πO . Note that, if K′ is a Galois
� Galois ��, 	�	��� extension of K , then from the norm map
� N:K′∗ → K∗ ��� N:K′∗ → K∗ it is not difficult to define a sur-
�����	� ϑ′:K′∗ → Z ; jective group homomorphism ϑ′:K′∗ → Z ;
��
, �������� moreover, it is easy to check that the set

2.2.2 {λ′ ∈ K′∗ | N(λ′) ∈ O} ∪ {0}

� K′ 
 O �����
� coincides with the integral closure O′ of O
� O′; ���, O′ ���� in K′ ; in other words, O′ still is a discrete
��. valuation ring.

2.3. � {λn}n∈N � �� 2.3. Let {λn}n∈N be a sequence of
K ������ ; ���� elements of K ; whenever there is λ ∈ K
λ ∈ K ����� n ∈ N such that we have λ − λn ∈ πn+1O for
� λ − λn ∈ πn+1O , 	�� any n ∈ N , we say that the sequence
�� {λn}n∈N ��� λ , � {λn}n∈N has the limit λ , and we write
���� λ = limn→∞{λn} λ = limn→∞{λn} (note that this condition is
(�	�, ��
����� stronger than the usual one). For instance,
��
��). ��: ��� if for any n ∈ N we have λn = λ , this se-
�� n ∈ N � λn = λ , �� quence obviously has the limit λ . The se-
������� λ . ��� � quences having a limit fulfill the so-called
������ Cauchy 
�; Cauchy condition; in particular, for any
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���, ��� n ∈ N � n ∈ N , we have

2.3.1 λn+1 − λn ∈ πn+1O

(���, ���
�� Cauchy (actually, this condition is stronger than

��). ���, ���� Cauchy’s condition). Conversely, if all the
��
�� K-������, K-sequences fulfilling this condition have a
	���� K � O ����. limit then we say that K and O are complete.

2.4. ����
 K � 2.4. It is not difficult to construct a com-
��� K̂ . �� � ���� plete field K̂ containing K . We consider the

� 2.3.1 � K-������ following equivalence relationship in the set
������: ��	���� of all the sequences fulfilling condition 2.3.1:
���� {λn}n∈N � {µn}n∈N if two sequences {λn}n∈N and {µn}n∈N of
�� this set fulfill

2.4.1 µn − λn ∈ πn+1O

����������. � we say that they are equivalent. For instance,
�: �� � ∈ N , �� µn = λ� fixing � ∈ N , if µn = λ� or λn according
� λn � n ≤ � � n ≥ � , to n ≤ � or n ≥ � then these sequences
	����������; �, are equivalent; moreover, {λ�+n}n∈N also
{λ�+n}n∈N ���
� 2.3.1 fulfills condition 2.3.1 and clearly is equi-
� {λn}n∈N �
����. � valent to {λn}n∈N . Note that, if {λn}n∈N has
	�, �� {λn}n∈N ��� not the limit 0 then, for a suitable � , λ� does
� 0 , 	����� � , λ� �� not belong to π�+1O ; thus, from condition
� π�+1O ; ��, 	
� 2.3.1 2.3.1 we get ϑ(λ�+n) = ϑ(λ�) for any n ∈ N

��� ϑ(λ�+n) = ϑ(λ�) , �
 (cf. 2.2.1).
n ∈ N (cf. 2.2.1).

2.5. � K̂ ����� 2.5. Let K̂ be the set of equivalent

� 2.3.1 � K-����� classes of sequences of K which fulfill condi-
	���; ��, ����� tion 2.3.1; clearly, the usual sum of sequences
� K̂ � ���������. determines a structure of commutative group


�, � λ̂ = {̃λn}n∈N
� µ̂ = in K̂ . Moreover, let λ̂ = {̃λn}n∈N

and

{̃µn}n∈N
� K̂ ������ µ̂ = {̃µn}n∈N

be two nonzero elements of K̂ ;
���; �������� by the remarks above, we may assume that,
n ∈ N � ϑ(λn) = ϑ(λ◦) � for any n ∈ N , we have ϑ(λn) = ϑ(λ◦)
ϑ(µn) = ϑ(µ◦) ; � � ∈ N �� and ϑ(µn) = ϑ(µ◦) ; choose � fulfilling
−ϑ(λ◦) ≤ � � −ϑ(µ◦) ≤ � ; −ϑ(λ◦) ≤ � and −ϑ(µ◦) ≤ � ; at that point,
��, ������ since the difference

2.5.1 λn+1µn+1 − λnµn = λn+1(µn+1 − µn) + (λn+1 − λn)µn ,
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���� πn+1−�O , ���� belongs to πn+1−�O , {λ�+n µ�+n}n∈N fufills
{λ�+n µ�+n}n∈N ��2.3.1; 	 2.3.1; then, it is not difficut to check that the
�, ��� {λ�+n µ�+n}n∈N equivalent class of {λ�+n µ�+n}n∈N , noted
���	,� λ̂µ̂ ,������ λ̂µ̂ , does not depend on our choice.
��.

2.6. � � � � � 
 � 2.6. This operation determines a com-
K̂−{0}��������� mutative group structure in K̂−{0} ; indeed,
�; ��, ������. � the associativity is easily checked. On the
�
�, � v � ϑ(λ◦) � 0 
� other hand, denote by v the biggest of ϑ(λ◦)
���; ���� and 0 ; we clearly have

2.6.1 λv+n = λv(1 +
n∑

i=1

δiπ
i)

�
 n ∈ N � δi ∈ O ; �� where n ∈ N and δi ∈ O ; arguing by in-
����������� duction, we can define the following sequence
{µn}n∈N {µn}n∈N

2.6.2 µn = 1 +
n∑

i=1

εiπ
i , εi = −δi −

i−1∑
j=1

δjεi−j ;

����� i ∈ N � εi ∈ O , since we have εi ∈ O for any i ∈ N , this
��
��
� 2.3.1; ��, sequence fulfills condition 2.3.1; thus, it is
������	�� λ−1

v � easy to check that its equivalent class multi-

������	� λ̂ �� plied by the equivalent class of the constant
��. sequence λ−1

v is the inverse of λ̂ .

2.7. ��, �� 0λ̂ = 2.7. Obviously, we set 0λ̂ = 0 = λ̂ 0 ;
0 = λ̂ 0 ; 	�������. now, it is not difficult to check the distribu-
��, ��� K̂ ����, 
 tivity. Hence, we have proved that K̂ is a
��� λ ∈ K � λ ���� field, and it suffices to identify λ ∈ K with
���	�	��, K ��� the equivalent class of the constant sequence
K̂ ���. � K̂ �, � Ô �� λ to get K as a subfield of K̂ . Let Ô be the
� O-�����	���; � subset of K̂ of all the equivalent classes of
�, Ô � K̂ ���, ��
  sequences in O ; clearly, Ô is a subring of K̂

 O . which contains O .

2.8. 
�, ���� K � 2.8. Moreover, we can extend the dis-
��� ϑ:K∗ → Z ��� crete valuation ϑ:K∗ → Z of K to a discrete
�� K̂ ���� ϑ̂ ��:� valuation ϑ̂ of K̂ as follows: let λ̂ = {̃λn}n∈N

λ̂ = {̃λn}n∈N
� �� K̂∗ � be an element of K̂∗ ; recall that we may as-

��; ���, ������� sume that we have ϑ(λn) = ϑ(λ◦) for any
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� n ∈ N � ϑ(λn) = ϑ(λ◦) ; n ∈ N ; in this case, we just set θ̂(λ̂) = θ(λ◦) ;
	�� θ̂(λ̂) = θ(λ◦) ; �� in particular, note that we have θ̂(λ̂) ≥ 0 if
�, θ̂(λ̂) ≥ 0 ���� λ̂ ∈ Ô . and only if λ̂ ∈ Ô .

2.9. ��, ��� K̂ � Ô 2.9. Finally, we claim that K̂ and Ô
����. � {λ̂n}n∈N � K̂ � are complete. Let {λ̂n}n∈N be a sequence of
������������ elements of K̂ such that, for any n ∈ N , we
n ∈ N � have

2.9.1 λ̂n+1 − λ̂n ∈ πn+1Ô ;

��, �� λ̂n = {̃λn,m}m∈N
, thus, if λ̂n = {̃λn,m}m∈N

then, for a suit-
� � � � µn,m ∈ O , � 
 able choice of µn,m ∈ O , where n,m ∈ N ,

n,m ∈ N , �� we still have

2.9.2 (λn+1,m − λn,m)− πn+1µn,m ∈ πm+1O ;

���, � 2.4 ���, ���� recall that, according to the example in 2.4,
�� m≤ n�λn,m = λn,n+1 ; we may assume that λn,m = λn,n+1 for any
��, �� λn+1,m−λn,m �� m ≤ n ; then, for any m,n ∈ N , we obtain
πn+1O , �
 m,n ∈ N ; �� λn+1,m − λn,m ∈ πn+1O ; since all these se-
������
� 2.3.1, �� quences fulfill condition 2.3.1, for any n ∈ N ,

��� n ∈ N ���� the difference

2.9.3 λn+1,n+1 − λn,n = λn+1,n+1 − λn+1,n + λn+1,n − λn,n ;

�� πn+1O ; ��, {λn,n}n∈N belongs to πn+1O ; thus, {λn,n}n∈N fulfills
�� 2.3.1, 	
����� condition 2.3.1 and therefore determines an
� K̂ ����� λ̂ . element λ̂ of K̂ .

2.10. � � 
, � � � 2.10. Moreover, for any m,n ∈ N , it
m,n∈N �� m ≥ n � suffices that m ≥ n to get

2.10.1 λm,m − λn,m =
m−1∑
i=n

(λi+1,m − λi,m) ∈ πn+1O ;

��, ���������� hence, it suffices to apply the example above

�� {λm,m}m∈N ,  λ̂− λ̂n to the sequence {λm,m}m∈N to get that λ̂−λ̂n

�� πn+1Ô , �
 n ∈ N ; � belongs to πn+1Ô for any n ∈ N ; that is, the
��, �� {λ̂n}n∈N ��� λ̂ . sequence {λ̂n}n∈N has the limit λ̂ . Note that,
�	�, �� {λn}n∈N � K 
 if {λn}n∈N is a sequence in K which fulfills
���
� 2.3.1 ���, 	 condition 2.3.1, then the element of K̂ de-
� {λn}n∈N ���	� K̂ 
 termined by the equivalent class of {λn}n∈N

��������; ��� actually is the limit of this sequence; hence,
�K����, �
 K̂ = K . if K is complete then we simply get K̂ = K .
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2.11. ������ O-� 2.11. We always assume that the O-
� � � � � � � � � O-�. algebras are O-free O-modules of finite rank.
� A ��� O-��; � J � Let A be an O-algebra; denote by J the
A �� . ���, �� O � radical of A . It is well-known that if O is
���, 	� A-�� {an}n∈N complete then it suffices that a sequence
���� an+1 − an ∈ Jn+1 , {an}n∈N in A fulfills an+1 − an ∈ Jn+1 for
�
 n ∈ N , 
���; � any n ∈ N , to guarantee that it has a limit;
��, �� a ∈ A ����� precisely, in that case there is a ∈ A such
n ∈ N � a− an ∈ Jn+1 . ��, that a − an ∈ Jn+1 for any n ∈ N . Indeed,
���� r ∈ N � Jr ⊂ π.A , we have Jr ⊂ π.A for a suitable r ∈ N and
	
��� n ∈ N ���� therefore, for any n ∈ N , the difference

2.11.1 a(r+1)(n+1) − a(r+1)n =
r∑

i=0

(a(r+1)n+i+1 − a(r+1)n+i)

�� J (r+1)n+1 ; �� A ��� belongs to J (r+1)n+1 ; since A is an O-free

��� O-����� n≥ r O-module of finite rank and, for any n ≥ r ,

� J (r+1)n+1 ⊂ πn+1·A ,�� we have J (r+1)n+1 ⊂ πn+1·A , there is a ∈ A

�� a∈A�����n≥r� such that, for any n ≥ r , we have

2.11.2 a− a(r+1)n ∈ πn+1.A ⊂ Jn+1 ,

	
�� and therefore we also have

2.11.3 a− an = a− a(r+1)n +
(r+1)n∑
i=n+1

(ai − ai−1) ∈ Jn+1 ;

��
, ��� n ≤ r ��
 moreover, for any n ∈ N , we still obtain

2.11.4 a− an = a− ar +
r−1∑
i=n

(ai+1 − ai) ∈ Jn+1 .

2.12. ���, �� A′ � 2.12. In particular, if A′ is an O-algebra
O-��� f �O-��	�	 and f an O-algebra homomorphism from A
A 
 A′ ����� n∈N � to A′ such that, for any n ∈ N , we have
f(an+1)−f(an)∈J ′n+1�
 J ′ f(an+1) − f(an) ∈ J ′n+1 , where J ′ is the
�A′ ���,	� f(a)−f(arn) radical of A′ , then f(a) − f(arn) belongs
�� πn+1.A′ ⊂ J ′n+1, 	
 to πn+1.A′ ⊂ J ′n+1 and therefore we get
�
 f(a) − f(an) ∈ J ′n+1 ; f(a) − f(an) ∈ J ′n+1 ; in other terms,
���, {f(an)}n∈N �� {f(an)}n∈N has the limit f(a) . Moreover,
� f(a) . 
��� r ∈ J 	� if r ∈ J then the sequence {

∑n
�=0 r�}n∈N

{
∑n

�=0 r�}n∈N � � �, � � has a limit, noted
∑

�∈N
r� ; this limit∑

�∈N
r� ; ����� 1− r actually coincides with the inverse of 1 − r ;

����; 	
, A∗ 
 1+J . consequently, A∗ contains 1 + J . Note that,
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�	�, �� K′ � K� Galois if K′ is a Galois extension of K , and
��, � O′ � K′ 
 O ��� O′ is the integral closure of O in K′ , then
��� O′ , 	� O′ � K′ �� O′ and K′ are complete too.
���.

�� 2.13. ��O ����. Theorem 2.13. Assume that O is com-
� A����� O-���� plete. Let A be a commutative O-algebra and
I �A ���. � J � A �� I an ideal of A . Denote by J the radical of A
�� s:A → A/J ����� and by s:A → A/J the canonical map, and
�, �� set †

2.13.1

�
pℵ
(I) =

⋂
n∈N

({apn | a ∈ I}+ Jn+1) ,

�
pℵ(

s(I)
)

=
⋂
n∈N

{s(a)p
n | a ∈ I} .

�� s ����� �
pℵ
(I) � Then, s determines a bijection between

�
pℵ(

s(I)
)
���; ��, � �

pℵ
(I) and �

pℵ(
s(I)

)
; moreover, we have

2.13.2 �
pℵ
(I) ·�pℵ

(I) ⊂�
pℵ
(I) .

��: �	�, �� a, b ∈ A Proof: First of all, note that if a, b ∈ A
�� s(a) = s(b) , 	��� fulfill the equality s(a) = s(b) then, for any
� n ∈ N � ap

n − bp
n ∈Jn+1 ; n ∈ N , we have ap

n − bp
n ∈ Jn+1 ; indeed,

��, �������, �� we argue by induction on n and may as-
��� n > 1 �� c = sume that n > 1 and that the element c =
ap
n−1− bp

n−1
�� Jn ; ��� ap

n−1 − bp
n−1

belongs to Jn ; clearly, we have

2.13.3 ap
n

= (bp
n−1

+ c)p ∈ bp
n

+ pJn + Jnp ⊂ bp
n

+ Jn+1 .

��, �� a, b∈�pℵ
(I)	 Now, if a, b ∈�pℵ

(I) then for any n ∈ N ,

���� n∈N �� an, bn∈I we can find an , bn ∈ I and rn , sn ∈ Jn+1

� rn, sn ∈ Jn+1 �� such that

2.13.4 a = (an)p
n

+ rn , b = (bn)p
n

+ sn ;

���, ab ������ in particular, ab belongs to the intersection

2.13.5
⋂
n∈N

(
(anbn)p

n

+ Jn+1
)
;

	
 ab ��� �
pℵ
(I) . 
�, hence, ab still belongs to �

pℵ
(I) . Moreover, if

��� s(a) = s(b) 	��� we have s(a) = s(b) then s(an)p
n

= s(bn)p
n

† The Chinese character � is pronounced “mi” as in “middle” and means“power”or “exponent”.
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s(an)p
n

= s(bn)p
n

, 	
 0 = and therefore we still have s(an − bn)p
n

= 0
s(an−bn)p

n

, ���� A/J � since A/J has characteristic p . On the other
�� p�. ��
�, ��A/J� hand, since A/J is a direct product of fields,
������ s(an) = s(bn) ; we also get s(an) = s(bn) ; thus, we obtain
��, �


2.13.6 a− b ∈
⋂
m∈N

Jm ⊂
⋂
m∈N

πm·A = {0} .

�� s �������	 Hence, s determines an injective map

�
pℵ
(I) 
 �

pℵ(
s(I)

)
; ��� from �

pℵ
(I) to �

pℵ(
s(I)

)
; we will prove that

����������. � ā this map is surjective too. Let ā be an

����
pℵ(

s(I)
)
���; � element of �pℵ(

s(I)
)
; explicitly, this means

��, ���n∈N �� an∈I that, for any n ∈ N , there is an ∈ I such
�� s(an)p

n

= ā ; ���, � that s(an)p
n

= ā ; in particular, we get

2.13.7 s
(
(an+1)p

)pn= ā = s(an)p
n

���� A/J ���� p and therefore, since A/J is a direct pro-
�����, �����
 duct of fields of characteristic p , we have
s
(
(an+1)p

)
= s(an) ; 	
, � s

(
(an+1)p

)
= s(an) ; consequently, we also

�
 obtain

2.13.8 (an+1)p
n+1 − (an)p

n

=
(
(an+1)p

)pn − (an)p
n ∈ Jn+1 .

	��� a ∈ I ����� Then, there is a ∈ I such that, for any n ∈ N ,

n > 0 � a − (an)p
n ∈ Jn+1 we have a − (an)p

n ∈ Jn+1 (see 2.11), and
(
 2.11), 	
�
 therefore we get

2.13.9 s(a) =
(
s(an)

)pn = ā ;

���, s(a) ���
pℵ(

s(I)
)
. that is to say, s(a) belongs to �

pℵ(
s(I)

)
.

�� 2.14. �� O ����. Corollary 2.14. Assume that O is com-
� A � O-���� I ��� plete. Let A be an O-algebra and I an ideal
A ���. � J �A��, �� of A . Denote by J the radical of A and by
s:A → Ā� �����, � � s:A −→ Ā the canonical map, where
Ā = A/J. ������ ı̄∈ Ī, Ā = A/J . For any idempotent ı̄ ∈ Ī , where
�� Ī =s(I) , ������� Ī = s(I) , there exists an idempotent i ∈ A
i ∈ A�� s(i) = ı̄ .��, � such that s(i) = ı̄ . Moreover, if i′ ∈ A is
� i′ ∈ A �������� an idempotent such that s(i′) = ı̄ , then there
s(i′) = ı̄� a∈A∗�� i′ = ia. exists a ∈ A∗ such that i′ = ia .

� �: � � � a ∈ A � � Proof: Clearly there is a ∈ A such that
s(a) = ı̄ ; �B =

∑
n∈N

O·an ; s(a) = ı̄ ; set B =
∑

n∈N
O·an ; then B is a
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	� B � A ����, 
� subalgebra of A and we have B ∩ J = J(B) ;
B ∩ J = J(B) ; ��, ��� consequently, up to the replacement of A

B, B ∩ I ���� A, I � and I by B and B ∩ I , we may assume
�� A ����. 	�, ��� that A is commutative. Then, according to

2.13,�� ı̄���
pℵ
(s(I))�� Theorem 2.13, since ı̄ belongs to �

pℵ(
s(I)

)
,

�� i ∈�
pℵ
(I) �� s(i) = ı̄ , there exists i ∈ �

pℵ
(I) fulfilling s(i) = ı̄ ,

��� s(i2)= ı̄2 = ı̄ ; ���� and in particular s(i2) = ı̄2 = ı̄ ; according

�2.13, �� i2 ����
pℵ
(I), to Theorem 2.13 again, since i2 also belongs

�� i2 = i . ��, �� i′ ∈ A to �
pℵ
(I) , we get i2 = i . Finally, if i′ ∈ A is

�������� s(i′) = ı̄ , an idempotent fulfilling s(i′) = ı̄ , then con-
	�� a = ii′ +(1− i)(1− i′) ; sider the element a = ii′ + (1 − i)(1 − i′) ;
�
�, �� ia = ai′ , ��
 on the one hand, we clearly have ia = ai′ ;
�� on the other hand, we get

2.14.1 s(a) = ı̄2 + (1− ı̄)2 = 1 ,

	
, �� a ∈ 1 + J ⊂ A∗ and therefore we still get a ∈ 1 + J ⊂ A∗

(
 2.11). (see 2.11).

2.15. ����, ��� 2.15. As a general rule, since any
� O-�� A��� O-�, �� O-algebra A is an O-free O-module, we can
�� a ∈ A � 1⊗ a ∈ Ô ⊗O A identify a ∈ A with 1 ⊗ a ∈ Ô ⊗O A ,

�� 1 ⊗ a ∈ K ⊗O A �� 1 ⊗ a ∈ K ⊗O A or 1 ⊗ a ∈ K̂ ⊗O A . More-
1 ⊗ a ∈ K̂ ⊗O A ��	��. over, since we have K ∩ Ô = O , we clearly

�, �� K ∩ Ô = O �� get

2.15.1 (K ⊗O A) ∩ (Ô ⊗O A) = A .

�� 2.16. � A ��� O-� Proposition 2.16. Let A be an O-algebra.
�. ����� K⊗OA ��� If any primitive idempotent of K ⊗O A

���� K̂ ⊗O A�	��� remains primitive in K̂ ⊗O A , then any
�, ����� A ����� primitive idempotent of A still remains
�� Ô ⊗O A�	����. primitive in Ô ⊗O A .

��: � i ��� A ��
 Proof: Let i be a primitive idempotent of
���; ��� iAi��A A ; up to the replacement of A by iAi , we
��� A ������
�. may assume that the unity element of A is
	�, � ı̂ ��� Â = Ô ⊗O A primitive. Then, let ı̂ be a nonzero idempo-
����������� Ĵ ′ tent of Â = Ô ⊗O A , and consider two sets
� Ĵ ′′ ��� K̂ ⊗Ô Â ��� Ĵ ′ and Ĵ ′′ of pairwise orthogonal primitive
��
�������� idempotents such that

2.16.1
∑
̂∈Ĵ′

̂ = ı̂ ,
∑
̂∈Ĵ′′

̂ = 1− ı̂ .
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��
�, ������, On the other hand, from our hypothesis,
����

∑
j∈J j=1�K⊗OA a set of pairwise orthogonal primitive idem-

�����
����� potents of K ⊗O A such that
∑

j∈J j = 1

� J � K̂⊗OA����
�� remains a set of primitive idempotents in
����. 	
, ������ K̂⊗OA . Moreover, according to Lemma 2.17
2.17, ������� τ :J→ Ĵ below, there are a bijective map τ :J → Ĵ ,

�
 Ĵ = Ĵ ′∪Ĵ ′′, � (K̂⊗OA)∗ where Ĵ = Ĵ ′ ∪ Ĵ ′′ , and an element â in
��� â ����� j ∈ J (K̂⊗OA)∗ such that τ(j) = jâ for any j ∈ J ;
� τ(j)=jâ ; � J ′=(τ)−1(Ĵ ′) in particular, setting J ′ = (τ)−1(Ĵ ′) and
� i=

∑
j∈J′ j ,��� ı̂= iâ. i =

∑
j∈J′ j , we get ı̂ = iâ . Obviously, we

���, ����� â ∈ Â ; 	 may assume that â belongs to Â ; then, con-
��� h, � ∈ N �� sider h, � ∈ N such that

2.16.2 â−1 ∈ π−h·Â , i ∈ π−�·A .

�{an}n∈N � {bn}n∈N � Choose two sequences {an}n∈N and
�� A ����� {bn}n∈N of elements of A such that

2.16.3 â = lim
n→∞

{an} , πh·â−1 = lim
n→∞

{bn} ;

���, ��� n ∈ N �� in other terms, for any n ∈ N , the elements
â − an � πh·â−1 − bn ��� â−an and πh·â−1− bn belong to πn+1·Â . In

πn+1·Â . ���, � m≥2h+� particular, choosing m ≥ 2h + � , we have
��, ���

2.16.4
1 =

(
am + (â− am)

)(
π−h·bm + (â−1 − π−h·bm)

)
= π−h·ambm + c

�
 c �� πm+1−h·Â , ��� where c belongs to πm+1−h·Â and, at the
K ⊗O A , ���� ambm � same time, belongs to K ⊗O A since ambm
� A ; 	
� belongs to A ; consequently, we have

2.16.5 c ∈ πm+1−h·Â ∩ (K ⊗O A) = πm+1−h·A

�� A ��� 1− c �A
� and therefore the element 1 − c is inversible
���; �� am �K ⊗O A
 in A ; hence, am is inversible in K ⊗O A and
�����, ��� explicitly we have

2.16.6

(am)−1 = π−h·bm(1− c)−1

= π−h·bm +
∞∑
n=1

π−h·bmcn ;
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�� am i (am)−1 ��K⊗OA , thus, am i (am)−1 belongs to K ⊗O A and,
	���� Â , ���� simultaneously, it belongs to Â since

2.16.7 ı̂− am i (am)−1 = (â− am) i (â−1) + am i
(
â−1 − (am)−1

)
;

����	 Â∩(K⊗OA) = A , hence, since Â∩ (K⊗O A) = A , the idempo-
����� am i (am)−1 � tent am i (am)−1 belongs to A , and therefore
� A , 	

����; �� ı̂ it coincides with the unity element; thus, ı̂

�����. coincides with unity element too.

�� 2.17. � L � ���� Lemma 2.17. Let L be a field and B an
� B �������� L-� L-algebra of finite dimension. If J and J ′

�. �� J 
 J ′ ����� are two sets of pairwise orthogonal primitive
������������� idempotents of B such that

∑
j∈J j = 1 =∑

j∈J j = 1 =
∑

j′∈J j′ , ��
∑

j′∈J j′ , then there exists b ∈ B∗ such that
�� b ∈ B∗ �� J ′ = Jb . J ′ = Jb .

��: �� B �����	 Proof: If the radical of B is zero, it suf-
�, ���� Wedderburn � fices to apply the Wedderburn Theorem to
�, �
��. ��, �� prove the statement. Thus, we may assume
� B �����, 	��� that the radical of B is not zero, and then B
� B ����� N �� has a nonzero ideal N such that N2 = {0} ;
N2 = {0} ; � B̄ = B/N , set B̄ = B/N and denote by b̄ the image
�� b̄ � b ∈ B ��; �� of b ∈ B ; first of all, we claim that if i is
��, �� i � B ��
� a primitive idempotent of B then ı̄ still is
��, 	� ı̄ ���
�; � primitive; indeed, if we choose 0 �= � ∈ iBi

� ��, �� 0 �= � ∈ iBi fulfilling �̄2 = �̄ , then we get 0 = (�2− �)2 =
� � �̄2 = �̄ , 	 � � 
 �4 − 2�3 + �2 according to our choice of N

0 = (�2 − �)2 = �4 − 2�3 + �2 , and, from this equality, it is not difficult to

�����	���� check that we have

2.17.1 �n = (n− 2)�3 − (n− 3)�2

�
 n ≥ 2 , ���� 3�2−2�3 for any n ≥ 2 , which easily implies that
������, 	
� i = 3�2 − 2�3 is an idempotent and therefore
3�2−2�3 . �� ı̄=3�̄2−2�̄3 = �̄ we get 3�2 − 2�3 = i ; since we have ı̄ =
�� ı̄ ���
�. 3�̄2 − 2�̄3 = �̄ , ı̄ is a primitive idempotent.

��, ��� dimL(B) � Now, we argue by induction on
� ���; ������, J̄ dimL(B) ; according to the previous argu-
� J̄ ′ � � � B̄ � � �  ment, J̄ and J̄ ′ are two sets of pairwise or-
� � 
 � �� � � � � � thogonal primitive idempotents of B̄ such∑

̄∈J̄ ̄ = 1 =
∑

̄′∈J̄ ̄′ ; 
�, that
∑

̄∈J̄ ̄ = 1 =
∑

̄′∈J̄ ̄′ ; moreover,
B∗ ��
 1 + N ; ��, B∗ clearly contains 1 + N ; consequently,
���� B∗ → B̄∗���; the canonical map B∗ → B̄∗ is surjective;
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��, �� b ∈ B∗ ��� thus, there are b ∈ B∗ and a bijective
�� τ :J → J ′ ����� map τ :J → J ′ such that, for any j ∈ J ,

j ∈ J � τ(j) = jb . 	�, �� we have τ(j) = jb . Then, consider the ele-
c =

∑
j∈J jbτ(j) ; �
�� ment c =

∑
j∈J jbτ(j) ; on the one hand, we

�
 have

2.17.2 c̄ =
∑
j∈J

̄ b̄ jb = b̄ ,

	
 c ����; ��
�� and therefore c is inversible; on the other
�� j ∈ J � jc = jbτ(j) = hand, we have jc = jbτ(j) = cτ(j) for any
cτ(j) . j ∈ J .

�� 2.18. �A�O-��. � Corollary 2.18. Let A be an O-algebra.
J �A���� s:A→A/J = Denote by J the radical of A and by
Ā������. �� K ⊗OA s:A→ Ā = A/J the canonical map. Assume
���������� K̂⊗OA that any primitive idempotent of K ⊗O A

�	����. ����� Ā remains primitive in K̂ ⊗O A . Then, for any
���� ı̄ ������� idempotent ı̄ of Ā , there is an idempotent
i∈A �� s(i) = ı̄ . ��, �� i ∈ A such that s(i) = ı̄ . Moreover, if i′ ∈ A
i′ ∈ A 	�������� is also an idempotent such that s(i′) = ı̄ ,

s(i′) = ı̄ , 	�� a∈A∗ �� then there is a ∈ A∗ such that i′ = ia .
i′ = ia

��: � J � �� A ��� Proof: Let J be a set of pairwise ortho-
��
�������� gonal primitive idempotents of A such that∑

j∈J j = 1 ��� J̄ ′ � J̄ ′′ ∑
j∈J j = 1 , and choose two sets J̄ ′ and J̄ ′′

� �� Ā �����
� of pairwise orthogonal primitive idempotents
������� of Ā such that

2.18.1
∑
̄∈J̄′

̄ = ı̄ ,
∑
̄∈J̄′′

̄ = 1− ı̄ .

�� 2.16, ��� j ∈ J , According to Proposition 2.16, the idem-
��� s(j) � Ā ����
 potent s(j) is also primitive in Ā for any
�; 	�, ��� 2.17, ��� j ∈ J ; then, according to Lemma 2.17,
�� τ :J → J̄ ′ ∪ J̄ ′′ � ā∈ Ā∗ there are an element ā ∈ Ā∗ and a bijec-
����� j ∈ J � τ(j) = tive map τ :J → J̄ ′ ∪ J̄ ′′ such that we have
s(j)ā. ��, ���� s(a)= ā τ(j) = s(j)ā for any j ∈ J . But any ele-
��� a ∈A ����, �� ment a ∈ A such that s(a) = ā is inversible
� �, � Nakayama � �, 	 since, according to the Nakayama Lemma,
Āā = Ā ��� Aa = A . � from Āā = Ā , we can deduce that Aa = A .

�� Hence, we have

2.18.2 s
( ∑

j∈(τ)−1(J̄′)

ja
)

= ı̄ .
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��, �� i � i′ ��� A Finally, if i and i′ are two idempotents
������ s(i)= ı̄= s(i′) , of A such that s(i) = ı̄ = s(i′) then, on the
	��
� c= ii′+(1−i)(1−i′) one hand, c = ii′ +(1− i)(1− i′) is inversible
�����, ��	 s(c) = 1 since s(c) = 1 implies that Ac = A ; on the
��� Ac = A ; ��
�, � other hand, clearly we have ic = ii′ = ci′ .
�� ic = ii′ = ci′ .


