2. 幂等元的提升

2.2. 设 \mathcal{O} 是一个离散赋值环使得 $k=\mathcal{O}/J(\mathcal{O})$ 是特征为 p 的域, 其中 $J(\mathcal{O})$ 是 \mathcal{O} 的根基, 并且 \mathcal{O} 的分式域 \mathcal{K} 是为特征零的域. 也就是说, 有一个满射的群同态 $\vartheta:\mathcal{K}^*\to\mathbb{Z}$ 使得

2.2.1
$$\{\lambda \in \mathcal{K}^* \mid \vartheta(\lambda) \ge 0\} = \mathcal{O} - \{0\};$$

特别是, 有 $\pi \in \mathcal{O}$ 使得 $J(\mathcal{O}) = \pi\mathcal{O}$. 请注意, 如果 \mathcal{K}' 是 \mathcal{K} 的 Galois 扩张, 那么从范数映射 $\mathfrak{N}:\mathcal{K}'^* \to \mathcal{K}^*$ 不难定义一个满射的群同态 $\vartheta':\mathcal{K}'^* \to \mathbb{Z}$; 进一步, 不难证明下面的集合

2.2.2
$$\{\lambda' \in \mathcal{K}'^* \mid \mathfrak{N}(\lambda') \in \mathcal{O}\} \cup \{0\}$$

就是 K' 中 O 上的整元构成的 环 O'; 也就是说, O' 也是离散 赋值环.

2.3. 设 $\{\lambda_n\}_{n\in\mathbb{N}}$ 是一个 K 的元素的序列; 如果 存在 $\lambda \in K$ 使得对任意 $n \in \mathbb{N}$ 有 $\lambda - \lambda_n \in \pi^{n+1}\mathcal{O}$,那么我们说 $\{\lambda_n\}_{n\in\mathbb{N}}$ 有极限 λ ,并且我们记 $\lambda = \lim_{n\to\infty} \{\lambda_n\}$ (请注意,这个条件比通常以收敛条件更强). 例子: 如果文件 反致条件更强). 例子: 如果文件序列当然有极限 λ . 有极限 λ .

2. Lifting Idempotents

2.1. In order to lift idempotents from characteristic p to characteristic zero, the safest method is to work over a complete discrete valuation ring of characteristic zero with a residue field of characteristic p. Yet, as a matter of fact, the completeness is a sufficient but not necessary condition. In this section, we will discuss on this question.

2.2. Let \mathcal{O} be a discrete valuation ring such that $k = \mathcal{O}/J(\mathcal{O})$ is a field of characteristic p, where $J(\mathcal{O})$ denotes the radical of \mathcal{O} , and that its field of quotients \mathcal{K} has characteristic zero. That is to say, we have a surjective group homomorphism $\vartheta \colon \mathcal{K}^* \to \mathbb{Z}$ fulfilling

in particular, there is $\pi \in \mathcal{O}$ such that $J(\mathcal{O}) = \pi \mathcal{O}$. Note that, if \mathcal{K}' is a Galois extension of \mathcal{K} , then from the norm map $\mathfrak{N}: \mathcal{K}'^* \to \mathcal{K}^*$ it is not difficult to define a surjective group homomorphism $\vartheta' \colon \mathcal{K}'^* \to \mathbb{Z}$; moreover, it is easy to check that the set

coincides with the integral closure \mathcal{O}' of \mathcal{O} in \mathcal{K}' ; in other words, \mathcal{O}' still is a discrete valuation ring.

2.3. Let $\{\lambda_n\}_{n\in\mathbb{N}}$ be a sequence of elements of \mathcal{K} ; whenever there is $\lambda \in \mathcal{K}$ such that we have $\lambda - \lambda_n \in \pi^{n+1}\mathcal{O}$ for any $n \in \mathbb{N}$, we say that the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ has the $limit\ \lambda$, and we write $\lambda = \lim_{n\to\infty} \{\lambda_n\}$ (note that this condition is stronger than the usual one). For instance, if for any $n \in \mathbb{N}$ we have $\lambda_n = \lambda$, this sequence obviously has the limit λ . The sequences having a limit fulfill the so-called Cauchy condition; in particular, for any

特别是, 对任意 $n \in \mathbb{N}$ 有

 $n \in \mathbb{N}$, we have

this set fulfill

(cf. 2.2.1).

$$\lambda_{n+1} - \lambda_n \in \pi^{n+1} \mathcal{O}$$

(事实上,上面的条件比 Cauchy 条件更强). 反过来,如果满足这个条件的 K-序列都有极限,那么我们说 K 和 O 是完备的.

2.4. 不难造一个包含 \mathcal{K} 的 完备域 $\hat{\mathcal{K}}$. 我们在所有满足条件 2.3.1 的 \mathcal{K} -序列里考虑下面的等价关系: 如果该集合里的两个序列 $\{\lambda_n\}_{n\in\mathbb{N}}$ 和 $\{\mu_n\}_{n\in\mathbb{N}}$ 满足

就说这两个序列是等价的. 例 子: 固定 $\ell \in \mathbb{N}$, 如果 $\mu_n = \lambda_\ell$ 或 λ_n 当 $n \leq \ell$ 或 $n \geq \ell$, 那么这两个序列是等价的; 又, $\{\lambda_{\ell+n}\}_{n\in\mathbb{N}}$ 也满足条件 2.3.1 并 $\{\lambda_n\}_{n\in\mathbb{N}}$ 和它是等价的. 请 注意,如果 $\{\lambda_n\}_{n\in\mathbb{N}}$ 没有极 限 0 ,那么对适当的 ℓ , λ_ℓ 不属 于 $\pi^{\ell+1}\mathcal{O}$; 此时,从条件 2.3.1 可推出 $\vartheta(\lambda_{\ell+n}) = \vartheta(\lambda_\ell)$,其中 $n \in \mathbb{N}$ (cf. 2.2.1).

2.5. 设 \hat{K} 是所有满足条件 2.3.1 的 K-序列的等价类的集合;显然,序列的加热在 \hat{K} 里决定一个交换群结构. 而且,设 $\hat{\lambda} = \{\lambda_n\}_{n \in \mathbb{N}}$ 与 $\hat{\mu} = \{\mu_n\}_{n \in \mathbb{N}}$ 是 \hat{K} 的两个非等意 $n \in \mathbb{N}$ 有 $\vartheta(\lambda_n) = \vartheta(\lambda_o)$ 为 $\vartheta(\mu_n) = \vartheta(\mu_o)$; 取 $\ell \in \mathbb{N}$ 满足一 $\vartheta(\lambda_0) \leq \ell$ 与一 $\vartheta(\lambda_0) \leq \ell$; 此时,因为下面的差

(actually, this condition is stronger than Cauchy's condition). Conversely, if all the \mathcal{K} -sequences fulfilling this condition have a limit then we say that \mathcal{K} and \mathcal{O} are *complete*.

plete field \mathcal{K} containing \mathcal{K} . We consider the

following equivalence relationship in the set

of all the sequences fulfilling condition 2.3.1:

if two sequences $\{\lambda_n\}_{n\in\mathbb{N}}$ and $\{\mu_n\}_{n\in\mathbb{N}}$ of

2.4. It is not difficult to construct a com-

we say that they are equivalent. For instance, fixing $\ell \in \mathbb{N}$, if $\mu_n = \lambda_\ell$ or λ_n according to $n \leq \ell$ or $n \geq \ell$ then these sequences are equivalent; moreover, $\{\lambda_{\ell+n}\}_{n\in\mathbb{N}}$ also fulfills condition 2.3.1 and clearly is equivalent to $\{\lambda_n\}_{n\in\mathbb{N}}$. Note that, if $\{\lambda_n\}_{n\in\mathbb{N}}$ has not the limit 0 then, for a suitable ℓ , λ_ℓ does not belong to $\pi^{\ell+1}\mathcal{O}$; thus, from condition

2.3.1 we get $\vartheta(\lambda_{\ell+n}) = \vartheta(\lambda_{\ell})$ for any $n \in \mathbb{N}$

2.5. Let $\hat{\mathcal{K}}$ be the set of equivalent classes of sequences of \mathcal{K} which fulfill condition 2.3.1; clearly, the usual sum of sequences determines a structure of commutative group in $\hat{\mathcal{K}}$. Moreover, let $\hat{\lambda} = \{\widehat{\lambda_n}\}_{n \in \mathbb{N}}$ and $\hat{\mu} = \{\widehat{\mu_n}\}_{n \in \mathbb{N}}$ be two nonzero elements of $\hat{\mathcal{K}}$; by the remarks above, we may assume that, for any $n \in \mathbb{N}$, we have $\vartheta(\lambda_n) = \vartheta(\lambda_0)$ and $\vartheta(\mu_n) = \vartheta(\mu_0)$; choose ℓ fulfilling $-\vartheta(\lambda_0) \leq \ell$ and $-\vartheta(\mu_0) \leq \ell$; at that point, since the difference

2.5.1 $\lambda_{n+1}\mu_{n+1} - \lambda_n\mu_n = \lambda_{n+1}(\mu_{n+1} - \mu_n) + (\lambda_{n+1} - \lambda_n)\mu_n$,

显然属于 $\pi^{n+1-\ell}O$, 所以序列 $\{\lambda_{\ell+n}\,\mu_{\ell+n}\}_{n\in\mathbb{N}}$ 满足 2.3.1; 那 么, 不难验证 $\{\lambda_{\ell+n} \mu_{\ell+n}\}_{n \in \mathbb{N}}$ 的等价类,记 $\hat{\lambda}\mu$,不依赖我们的 选择.

这个乘法远算在 $\hat{\mathcal{K}} - \{0\}$ 里决定一个交换群结 构; 确实, 不难验证结合律. 另 一方面, 令 v 记 $\vartheta(\lambda_o)$ 与 0 中较 大的数;不难验证有

$$\lambda_{v+n} = \lambda_v (1 + \sum_{i=1}^n \delta_i \pi^i)$$

其中 $n \in \mathbb{N}$ 与 $\delta_i \in \mathcal{O}$; 用归 纳法我们能定义下面的序列 $\{\mu_n\}_{n\in\mathbb{N}}$

$$2.6.2 \mu_n = 1 + \sum_{i=1}^n \varepsilon_i \pi^i \,,$$

因为对任意 $i \in \mathbb{N}$ 有 $\varepsilon_i \in \mathcal{O}$, 所以它满足条件 2.3.1; 此时, 不难验证其等价类乘以 λ_n^{-1} 常 数序列的等价类就是 $\hat{\lambda}$ 的逆 元素.

2.7. 当然, 我定义 $0\hat{\lambda} =$ $0 = \hat{\lambda}0$; 那么不难验证分配律. 这样,就证明了户是一个域,而 只要把 $\lambda \in \mathcal{K}$ 与 λ 常数序列 的等价类等同一致, 化就是一个 \hat{K} 的子域. 在 \hat{K} 里, 设 \hat{O} 是所 有 O-序列的等价类的集合; 显 然, \hat{O} 是 $\hat{\mathcal{K}}$ 的子环, 并且它包 含 0.

2.8. 而且, 我们能把 K 的 离散赋值 $\theta: \mathcal{K}^* \to \mathbb{Z}$ 扩张为 一个 $\hat{\mathcal{K}}$ 的离散赋值 $\hat{\vartheta}$ 如下:设 $\hat{\lambda} = \{\lambda_n\}_{n \in \mathbb{N}} \not\in -\uparrow \hat{\mathcal{K}}^*$ 的 元素; 别忘了, 我们能假定对任

belongs to $\pi^{n+1-\ell}\mathcal{O}$, $\{\lambda_{\ell+n} \mu_{\ell+n}\}_{n\in\mathbb{N}}$ fufills 2.3.1; then, it is not difficut to check that the equivalent class of $\{\lambda_{\ell+n} \mu_{\ell+n}\}_{n\in\mathbb{N}}$, noted $\hat{\lambda}\hat{\mu}$, does not depend on our choice.

2.6. This operation determines a commutative group structure in $\hat{\mathcal{K}} - \{0\}$; indeed, the associativity is easily checked. On the other hand, denote by v the biggest of $\vartheta(\lambda_0)$ and 0; we clearly have

where $n \in \mathbb{N}$ and $\delta_i \in \mathcal{O}$; arguing by induction, we can define the following sequence $\{\mu_n\}_{n\in\mathbb{N}}$

$$\mu_n = 1 + \sum_{i=1}^n \varepsilon_i \pi^i, \quad \varepsilon_i = -\delta_i - \sum_{j=1}^{i-1} \delta_j \varepsilon_{i-j};$$

since we have $\varepsilon_i \in \mathcal{O}$ for any $i \in \mathbb{N}$, this sequence fulfills condition 2.3.1; thus, it is easy to check that its equivalent class multiplied by the equivalent class of the constant sequence λ_v^{-1} is the inverse of $\hat{\lambda}$.

2.7. Obviously, we set $0\hat{\lambda} = 0 = \hat{\lambda} 0$; now, it is not difficult to check the distributivity. Hence, we have proved that $\hat{\mathcal{K}}$ is a field, and it suffices to identify $\lambda \in \mathcal{K}$ with the equivalent class of the constant sequence λ to get \mathcal{K} as a subfield of $\hat{\mathcal{K}}$. Let $\hat{\mathcal{O}}$ be the subset of $\hat{\mathcal{K}}$ of all the equivalent classes of sequences in \mathcal{O} ; clearly, $\hat{\mathcal{O}}$ is a subring of $\hat{\mathcal{K}}$ which contains \mathcal{O} .

2.8. Moreover, we can extend the discrete valuation $\vartheta \colon \mathcal{K}^* \to \mathbb{Z}$ of \mathcal{K} to a discrete valuation $\hat{\vartheta}$ of $\hat{\mathcal{K}}$ as follows: let $\hat{\lambda} = \{\lambda_n\}_{n \in \mathbb{N}}$ be an element of $\hat{\mathcal{K}}^*$; recall that we may assume that we have $\vartheta(\lambda_n) = \vartheta(\lambda_0)$ for any

意 $n \in \mathbb{N}$ 有 $\vartheta(\lambda_n) = \vartheta(\lambda_o)$; 那么就令 $\hat{\theta}(\hat{\lambda}) = \theta(\lambda_o)$;特别 是, $\hat{\theta}(\hat{\lambda}) > 0$ 当且仅当 $\hat{\lambda} \in \hat{O}$.

2.9. 最后, 我断言 $\hat{\mathcal{K}}$ 和 $\hat{\mathcal{O}}$ 是完备的. 设 $\{\hat{\lambda}_n\}_{n\in\mathbb{N}}$ 是 $\hat{\mathcal{K}}$ 的一个元素的序列使得对任意 $n\in\mathbb{N}$ 有

and only if
$$\hat{\lambda} \in \hat{\mathcal{O}}$$
.
2.9. Finally, we claim that $\hat{\mathcal{K}}$ and $\hat{\mathcal{O}}$ are complete. Let $\{\hat{\lambda}_n\}_{n\in\mathbb{N}}$ be a sequence of

elements of $\hat{\mathcal{K}}$ such that, for any $n \in \mathbb{N}$, we

thus, if $\hat{\lambda}_n = \{\lambda_{n,m}\}_{m \in \mathbb{N}}$ then, for a suitable choice of $\mu_{n,m} \in \mathcal{O}$, where $n, m \in \mathbb{N}$,

 $n \in \mathbb{N}$; in this case, we just set $\hat{\theta}(\hat{\lambda}) = \theta(\lambda_{\circ})$;

in particular, note that we have $\hat{\theta}(\hat{\lambda}) \geq 0$ if

2.9.1
$$\hat{\lambda}_{n+1} - \hat{\lambda}_n \in \pi^{n+1} \hat{\mathcal{O}};$$

这样, 如果 $\hat{\lambda}_n = \{\lambda_{n,m}\}_{m \in \mathbb{N}}$, 对适当的 $\mu_{n,m} \in \mathcal{O}$, 其中 $n,m \in \mathbb{N}$, 还有

2.9.2
$$(\lambda_{n+1,m} - \lambda_{n,m}) - \pi^{n+1} \mu_{n,m} \in \pi^{m+1} \mathcal{O};$$

別忘了, 由 2.4 的子里, 能假定对任意 $m \le n$ 有 $\lambda_{n,m} = \lambda_{n,n+1}$; 此时, 元素 $\lambda_{n+1,m} - \lambda_{n,m}$ 属于 $\pi^{n+1}\mathcal{O}$, 其中 $m,n \in \mathbb{N}$; 因为 这些序列满足条件 2.3.1, 所以 对任意 $n \in \mathbb{N}$ 下面的差

recall that, according to the example in 2.4, we may assume that $\lambda_{n,m} = \lambda_{n,n+1}$ for any $m \leq n$; then, for any $m, n \in \mathbb{N}$, we obtain $\lambda_{n+1,m} - \lambda_{n,m} \in \pi^{n+1}\mathcal{O}$; since all these sequences fulfill condition 2.3.1, for any $n \in \mathbb{N}$, the difference

2.9.3
$$\lambda_{n+1,n+1} - \lambda_{n,n} = \lambda_{n+1,n+1} - \lambda_{n+1,n} + \lambda_{n+1,n} - \lambda_{n,n}$$
;

have

we still have

属于 $\pi^{n+1}\mathcal{O}$; 这样, $\{\lambda_{n,n}\}_{n\in\mathbb{N}}$ 满足 2.3.1, 从而这个序列决定 $\hat{\mathcal{L}}$ 的一个元素 $\hat{\lambda}$.

2.10. 进一步, 对任意 $m, n \in \mathbb{N}$ 只要 $m \ge n$ 就有

belongs to $\pi^{n+1}\mathcal{O}$; thus, $\{\lambda_{n,n}\}_{n\in\mathbb{N}}$ fulfills condition 2.3.1 and therefore determines an element $\hat{\lambda}$ of $\hat{\mathcal{K}}$.

2.10. Moreover, for any $m, n \in \mathbb{N}$, it suffices that $m \geq n$ to get

2.10.1
$$\lambda_{m,m} - \lambda_{n,m} = \sum_{i=n}^{m-1} (\lambda_{i+1,m} - \lambda_{i,m}) \in \pi^{n+1} \mathcal{O};$$

所以,只要把上面的例子应用到序列 $\{\lambda_{m,m}\}_{m\in\mathbb{N}}$,就 $\hat{\lambda}-\hat{\lambda}_n$ 属于 $\pi^{n+1}\hat{O}$,其中 $n\in\mathbb{N}$;也就是说,序列 $\{\hat{\lambda}_n\}_{n\in\mathbb{N}}$ 有极限 $\hat{\lambda}$.请注意,如果 $\{\lambda_n\}_{n\in\mathbb{N}}$ 有极 K中是满足条件 2.3.1 的序列,那么 $\{\lambda_n\}_{n\in\mathbb{N}}$ 的等价类在 \hat{K} 中或是这个序列的极限;所以只要K是完备的,就得到 $\hat{K}=K$.

hence, it suffices to apply the example above to the sequence $\{\lambda_{m,m}\}_{m\in\mathbb{N}}$ to get that $\hat{\lambda}-\hat{\lambda}_n$ belongs to $\pi^{n+1}\hat{\mathcal{O}}$ for any $n\in\mathbb{N}$; that is, the sequence $\{\hat{\lambda}_n\}_{n\in\mathbb{N}}$ has the limit $\hat{\lambda}$. Note that, if $\{\lambda_n\}_{n\in\mathbb{N}}$ is a sequence in \mathcal{K} which fulfills condition 2.3.1, then the element of $\hat{\mathcal{K}}$ determined by the equivalent class of $\{\lambda_n\}_{n\in\mathbb{N}}$ actually is the limit of this sequence; hence, if \mathcal{K} is complete then we simply get $\hat{\mathcal{K}} = \mathcal{K}$.

2.11. 我们总是假定 O-代 数都是有限秩的自由 \mathcal{O} -模. 设 A 是一个 O-代数; 令 J 记 A 的根.已经知道, 如果 O 是 完备的, 那么 A-序列 $\{a_n\}_{n\in\mathbb{N}}$ 只要满足 $a_{n+1} - a_n \in J^{n+1}$, 其中 $n \in \mathbb{N}$,它就有极限;也就 是说, 存在 $a \in A$ 使得对任意 $n \in \mathbb{N}$ 有 $a - a_n \in J^{n+1}$. 确实, 对适当的 $r \in \mathbb{N}$ 有 $J^r \subset \pi.A$, 从而对任意 $n \in \mathbb{N}$ 下面的差

2.11. We always assume that the \mathcal{O} algebras are \mathcal{O} -free \mathcal{O} -modules of finite rank. Let A be an \mathcal{O} -algebra; denote by J the radical of A. It is well-known that if \mathcal{O} is complete then it suffices that a sequence $\{a_n\}_{n\in\mathbb{N}}$ in A fulfills $a_{n+1}-a_n\in J^{n+1}$ for any $n \in \mathbb{N}$, to guarantee that it has a limit; precisely, in that case there is $a \in A$ such that $a - a_n \in J^{n+1}$ for any $n \in \mathbb{N}$. Indeed, we have $J^r \subset \pi.A$ for a suitable $r \in \mathbb{N}$ and therefore, for any $n \in \mathbb{N}$, the difference

11

2.11.1
$$a_{(r+1)(n+1)} - a_{(r+1)n} = \sum_{i=0}^{r} (a_{(r+1)n+i+1} - a_{(r+1)n+i})$$

属于 $J^{(r+1)n+1}$; 因为 A 是有限 秩的自由 O-模并对任意 $n \ge r$ 有 $J^{(r+1)n+1} \subset \pi^{n+1} \cdot A$,所以 存在 $a \in A$ 使得对任意 $n \ge r$ 有

belongs to $J^{(r+1)n+1}$; since A is an \mathcal{O} -free \mathcal{O} -module of finite rank and, for any $n \geq r$, we have $J^{(r+1)n+1} \subset \pi^{n+1} \cdot A$, there is $a \in A$ such that, for any $n \geq r$, we have

2.11.2
$$a - a_{(r+1)n} \in \pi^{n+1} . A \subset J^{n+1}$$
,

从而还有

and therefore we also have

2.11.3
$$a - a_n = a - a_{(r+1)n} + \sum_{i=n+1}^{(r+1)n} (a_i - a_{i-1}) \in J^{n+1};$$

进一步, 对任意 $n \leq r$ 也得到 moreover, for any $n \in \mathbb{N}$, we still obtain

2.11.4
$$a - a_n = a - a_r + \sum_{i=n}^{r-1} (a_{i+1} - a_i) \in J^{n+1}$$
.

2.12. 特别是, 如果 A' 是 O-代数并f是O-代数同态从 A 到 A' 使得对任意 $n \in \mathbb{N}$ 有 $f(a_{n+1}) - f(a_n) \in J'^{n+1}$ 其中 J'是 A' 的根基,那么 $f(a)-f(a_{rn})$ 属于 $\pi^{n+1}.A' \subset J'^{n+1}$, 从而 得到 $f(a) - f(a_n) \in J^{n+1}$; 也就是说, $\{f(a_n)\}_{n\in\mathbb{N}}$ 有极 限 f(a). 而且如果 $r \in J$ 那么 $\{\sum_{\ell=0}^n r^\ell\}_{n\in\mathbb{N}}$ 有极限, 记为 $\sum_{\ell \in \mathbb{N}} r^{\ell}$; 这个极限就是 1-r的逆元素; 从而, A^* 包含 1+J.

2.12. In particular, if A' is an \mathcal{O} -algebra and f an \mathcal{O} -algebra homomorphism from Ato A' such that, for any $n \in \mathbb{N}$, we have $f(a_{n+1}) - f(a_n) \in J'^{n+1}$, where J' is the radical of A', then $f(a) - f(a_{rn})$ belongs to $\pi^{n+1}.A' \subset J'^{n+1}$ and therefore we get $f(a) - f(a_n) \in J^{(n+1)}$; in other terms, $\{f(a_n)\}_{n\in\mathbb{N}}$ has the limit f(a). Moreover, if $r \in J$ then the sequence $\{\sum_{\ell=0}^{n} r^{\ell}\}_{n \in \mathbb{N}}$ has a limit, noted $\sum_{\ell \in \mathbb{N}} r^{\ell}$; this limit actually coincides with the inverse of 1-r; consequently, A^* contains 1+J. Note that,

请注意, 如果 \mathcal{K}' 是 \mathcal{K} 的 Galois 扩张, 并 O' 是 K' 中 O 上的整 元的环O',那么O'与K'也是 完备的.

if \mathcal{K}' is a Galois extension of \mathcal{K} , and \mathcal{O}' is the integral closure of \mathcal{O} in \mathcal{K}' , then \mathcal{O}' and \mathcal{K}' are complete too.

定理 2.13. 假定 ○ 是完备的. 设 A 是一个交换 O-代数并设 I是A的理想. 令J记A的根 基并 $s: A \to A/J$ 记自然的映 射, 再令

Theorem 2.13. Assume that \mathcal{O} is complete. Let A be a commutative \mathcal{O} -algebra and I an ideal of A. Denote by J the radical of Aand by $s: A \to A/J$ the canonical map, and

$$\mathcal{R}^{p^{\aleph}}(I) = \bigcap_{n \in \mathbb{N}} (\{a^{p^n} \mid a \in I\} + J^{n+1}),$$

$$2.13.1$$

$$\mathcal{R}^{p^{\aleph}}(s(I)) = \bigcap_{n \in \mathbb{N}} \{s(a)^{p^n} \mid a \in I\}.$$

那么s决定一个从 $\mathbb{R}^{p^{\aleph}}(I)$ 到 Then, s determines a bijection between $\mathbb{R}^{p^{\aleph}}(s(I))$ 的双射; 而且, 有 $\mathbb{R}^{p^{\aleph}}(I)$ and $\mathbb{R}^{p^{\aleph}}(s(I))$; moreover, we have

$$2.13.2 \qquad \qquad \mathbb{R}^{p^{\aleph}}(I) \cdot \mathbb{R}^{p^{\aleph}}(I) \subset \mathbb{R}^{p^{\aleph}}(I).$$

证明: 请注意, 如果 $a,b \in A$ 满足 s(a) = s(b), 那么对任 意 $n \in \mathbb{N}$ 有 $a^{p^n} - b^{p^n} \in J^{n+1}$;

Proof: First of all, note that if $a, b \in A$ fulfill the equality s(a) = s(b) then, for any $n \in \mathbb{N}$, we have $a^{p^n} - b^{p^n} \in J^{n+1}$; indeed, 确实, 只要使用归纳法, 我们 we argue by induction on n and may as-就能假定 n > 1 并且 c = sume that n > 1 and that the element c = sume that n > 1 $a^{p^{n-1}}-b^{p^{n-1}}$ 属于 J^n ; 显然有 $a^{p^{n-1}}-b^{p^{n-1}}$ belongs to J^n ; clearly, we have

2.13.3
$$a^{p^n} = (b^{p^{n-1}} + c)^p \in b^{p^n} + pJ^n + J^{np} \subset b^{p^n} + J^{n+1}$$
.

与 $r_n, s_n \in J^{n+1}$ 使得

现在,如果 $a,b\in \overline{\mathbb{A}}^{p^{\aleph}}(I)$ 那 Now, if $a,b\in \overline{\mathbb{A}}^{p^{\aleph}}(I)$ then for any $n\in \mathbb{N}$, 么对任意 $n\in \mathbb{N}$ 存在 $a_n,b_n\in I$ we can find $a_n,b_n\in I$ and $r_n,s_n\in J^{n+1}$

2.13.4
$$a = (a_n)^{p^n} + r_n, \quad b = (b_n)^{p^n} + s_n;$$

特别是, ab 属于下面的交 in particular, ab belongs to the intersection

2.13.5
$$\bigcap_{n \in \mathbb{N}} \left((a_n b_n)^{p^n} + J^{n+1} \right);$$

从而 ab 也属于 $\mathbb{R}^{p^{\aleph}}(I)$. 而且, hence, ab still belongs to $\mathbb{R}^{p^{\aleph}}(I)$. Moreover, if 如果有 s(a)=s(b) 那么还有 we have s(a)=s(b) then $s(a_n)^{p^n}=s(b_n)^{p^n}$

[†] The Chinese character 🎏 is pronounced "mi" as in "middle" and means "power" or "exponent".

 $s(a_n)^{p^n} = s(b_n)^{p^n}$,从而 $0 = s(a_n - b_n)^{p^n}$,这是因为 A/J 是特征 p的. 另一方面, 因为 A/J是域的直积所以 $s(a_n) = s(b_n)$;这样, 得到

and therefore we still have $s(a_n - b_n)^{p^n} = 0$ since A/J has characteristic p. On the other hand, since A/J is a direct product of fields, we also get $s(a_n) = s(b_n)$; thus, we obtain

$$2.13.6 a-b \in \bigcap_{m \in \mathbb{N}} J^m \subset \bigcap_{m \in \mathbb{N}} \pi^m \cdot A = \{0\}.$$

所以 s 决定一个单映射从 $\overline{a}^{p}(I)$ 到 $\overline{a}^{p}(s(I))$; 我们要证明这个映射也是满射. 设 \overline{a} 是一个幂p(s(I))的元素; 也就是说, 对任意 $n \in \mathbb{N}$ 存在 $a_n \in I$ 使得 $s(a_n)^{p^n} = \overline{a}$; 特别是, 有

Hence, s determines an injective map from $\mathbb{R}^{p^{\mathbb{N}}}(I)$ to $\mathbb{R}^{p^{\mathbb{N}}}(s(I))$; we will prove that this map is surjective too. Let \bar{a} be an element of $\mathbb{R}^{p^{\mathbb{N}}}(s(I))$; explicitly, this means that, for any $n \in \mathbb{N}$, there is $a_n \in I$ such that $s(a_n)^{p^n} = \bar{a}$; in particular, we get

2.13.7
$$s((a_{n+1})^p)^{p^n} = \bar{a} = s(a_n)^{p^n}$$

仍然因为 A/J 就是特征为 p 的域的直积, 所以我们得到 $s((a_{n+1})^p) = s(a_n)$; 从而, 也得到

and therefore, since A/J is a direct product of fields of characteristic p, we have $s((a_{n+1})^p) = s(a_n)$; consequently, we also obtain

2.13.8
$$(a_{n+1})^{p^{n+1}} - (a_n)^{p^n} = ((a_{n+1})^p)^{p^n} - (a_n)^{p^n} \in J^{n+1}$$
.

那么存在 $a \in I$ 使得对任意 n > 0 有 $a - (a_n)^{p^n} \in J^{n+1}$ (见 2.11), 从而得到

Then, there is $a \in I$ such that, for any $n \in \mathbb{N}$, we have $a - (a_n)^{p^n} \in J^{n+1}$ (see 2.11), and therefore we get

2.13.9
$$s(a) = (s(a_n))^{p^n} = \bar{a};$$

也就是说,s(a) 属于幂 $p^{\aleph}(s(I))$.

that is to say, s(a) belongs to $\Re^{p^{\aleph}}(s(I))$.

推论 2.14. 假定 \mathcal{O} 是完备的. 设 A 是 \mathcal{O} -代数并设 I 是一个A 的理想. 令 J 记 A 的根, 再令s: $A \to \bar{A}$ 为自然的映射, 其中 $\bar{A} = A/J$. 对任意幂等元 $\bar{\imath} \in \bar{I}$, 其中 $\bar{I} = s(I)$, 存在一个幂等元 $i \in A$ 使得 $s(i) = \bar{\imath}$. 而且,如果 $i' \in A$ 是一个幂等元使得 $s(i') = \bar{\imath}$ 有 $a \in A^*$ 使得 $i' = i^a$.

Corollary 2.14. Assume that \mathcal{O} is complete. Let A be an \mathcal{O} -algebra and I an ideal of A. Denote by J the radical of A and by $s:A \longrightarrow \bar{A}$ the canonical map, where $\bar{A} = A/J$. For any idempotent $\bar{\imath} \in \bar{I}$, where $\bar{I} = s(I)$, there exists an idempotent $i \in A$ such that $s(i) = \bar{\imath}$. Moreover, if $i' \in A$ is an idempotent such that $s(i') = \bar{\imath}$, then there exists $a \in A^*$ such that $i' = i^a$.

证明: 显然有 $a \in A$ 使得 $s(a) = \bar{\imath}$; 令 $B = \sum_{n \in \mathbb{N}} \mathcal{O} \cdot a^n$;

Proof: Clearly there is $a \in A$ such that $s(a) = \bar{\imath}$; set $B = \sum_{n \in \mathbb{N}} \mathcal{O} \cdot a^n$; then B is a

那么 B 是 A 的子代数,而有 $B\cap J=J(B)$;所以,只要用 $B,B\cap I$ 分别代替 A,I 就能 假定 A 是交换的. 那么,由定理 2.13,既然 $\overline{\imath}$ 属于幂 $p^{\nu}(s(I))$ 所以 存在 $i\in\mathbb{R}^{p^{\nu}}(I)$ 满足 $s(i)=\overline{\imath}$,还满足 $s(i^2)=\overline{\imath}^2=\overline{\imath}$;仍使用定理 2.13,既然 i^2 也属于幂 $p^{\nu}(I)$,所以 $i^2=i$.最后,如果 $i'\in A$ 是一个幂等元使得 $s(i')=\overline{\imath}$,那么令 a=ii'+(1-i)(1-i');一方面,显然 ia=ai',另一方面有

2.14.1
$$s(a) = \bar{\imath}^2 + (1 - \bar{\imath})^2 = 1$$
,

从而, 还有 $a \in 1 + J \subset A^*$ (见 2.11).

2.15. 一般的说, 因为一个 \mathcal{O} -代数 A是自由 \mathcal{O} -模, 我们能把 $a\in A$ 与 $1\otimes a\in \hat{\mathcal{O}}\otimes_{\mathcal{O}} A$ 或者 $1\otimes a\in \hat{\mathcal{K}}\otimes_{\mathcal{O}} A$ 都等同一致. 而且, 既然 $\mathcal{K}\cap \hat{\mathcal{O}}=\mathcal{O}$ 显然

$$(\mathcal{K} \otimes_{\mathcal{O}} A) \cap (\hat{\mathcal{O}} \otimes_{\mathcal{O}} A) = A.$$

命题 2.16. 设 A 是一个 \mathcal{O} -代数. 如果每一个 $\mathcal{K}\otimes_{\mathcal{O}}A$ 的本原幂等元在 $\hat{\mathcal{K}}\otimes_{\mathcal{O}}A$ 里也是本原的,那么每一个 A 的本原幂等元在 $\hat{\mathcal{O}}\otimes_{\mathcal{O}}A$ 里也是本原的.

2.15.1

证明:设 i 是一个 A 的本原幂等元;只要用iAi代替 A就能假定 A 的单元素是本原的.那么,设 i 是一个 $\hat{A}=\hat{O}\otimes_{\mathcal{O}}A$ 的不等于零幂等元并且设 \hat{J}' 和 \hat{J}'' 是两个 $\hat{\mathcal{C}}\otimes_{\hat{O}}\hat{A}$ 的相互正交本原幂等元的集合使得

$$\sum_{\hat{\jmath} \in \hat{J}'} \hat{\jmath} = \hat{\imath} \,,$$

subalgebra of A and we have $B \cap J = J(B)$; consequently, up to the replacement of A and I by B and $B \cap I$, we may assume that A is commutative. Then, according to Theorem 2.13, since $\bar{\imath}$ belongs to $\Re^{p^{\aleph}}(s(I))$, there exists $i \in \Re^{p^{\aleph}}(I)$ fulfilling $s(i) = \bar{\imath}$, and in particular $s(i^2) = \bar{\imath}^2 = \bar{\imath}$; according to Theorem 2.13 again, since i^2 also belongs to $\Re^{p^{\aleph}}(I)$, we get $i^2 = i$. Finally, if $i' \in A$ is an idempotent fulfilling $s(i') = \bar{\imath}$, then consider the element a = ii' + (1 - i)(1 - i'); on the one hand, we clearly have ia = ai'; on the other hand, we get

and therefore we still get $a \in 1 + J \subset A^*$ (see 2.11).

2.15. As a general rule, since any \mathcal{O} -algebra A is an \mathcal{O} -free \mathcal{O} -module, we can identify $a \in A$ with $1 \otimes a \in \hat{\mathcal{O}} \otimes_{\mathcal{O}} A$, $1 \otimes a \in \mathcal{K} \otimes_{\mathcal{O}} A$ or $1 \otimes a \in \hat{\mathcal{K}} \otimes_{\mathcal{O}} A$. Moreover, since we have $\mathcal{K} \cap \hat{\mathcal{O}} = \mathcal{O}$, we clearly get

Proposition 2.16. Let A be an \mathcal{O} -algebra. If any primitive idempotent of $\mathcal{K} \otimes_{\mathcal{O}} A$ remains primitive in $\hat{\mathcal{K}} \otimes_{\mathcal{O}} A$, then any primitive idempotent of A still remains primitive in $\hat{\mathcal{O}} \otimes_{\mathcal{O}} A$.

Proof: Let i be a primitive idempotent of A; up to the replacement of A by iAi, we may assume that the unity element of A is primitive. Then, let \hat{i} be a nonzero idempotent of $\hat{A} = \hat{\mathcal{O}} \otimes_{\mathcal{O}} A$, and consider two sets \hat{J}' and \hat{J}'' of pairwise orthogonal primitive idempotents such that

$$\sum_{\hat{\jmath} \in \hat{J}'} \hat{\jmath} = \hat{\imath} , \quad \sum_{\hat{\jmath} \in \hat{J}''} \hat{\jmath} = 1 - \hat{\imath} .$$

另一方面,由我们的假设, 一个满足 $\sum_{i\in I} j=1$ 的 $\mathcal{K}\otimes_{\mathcal{O}} A$ 的相互正交本原幂等元的集 合J在 \hat{K} ⊗OA里也是本原幂等 元的集合. 从而, 由下面的引理 2.17. 存在一个双映射 $\tau: J \to \hat{J}$ 其中 $\hat{J} = \hat{J}' \cup \hat{J}''$,和 $(\hat{\mathcal{K}} \otimes_{\mathcal{O}} A)^*$ 的元素 \hat{a} 使得对任意 $j \in J$ 有 $\tau(j) = j^{\hat{a}}$; 令 $J' = (\tau)^{-1}(\hat{J}')$ 与 $i=\sum_{i\in I'}j$,就特别有 $\hat{i}=i^{\hat{a}}$. 事实上, 我们能假定 $\hat{a} \in \hat{A}$; 那 么选择 $h, \ell \in \mathbb{N}$ 使得

On the other hand, from our hypothesis, a set of pairwise orthogonal primitive idempotents of $\mathcal{K} \otimes_{\mathcal{O}} A$ such that $\sum_{j \in I} j = 1$ remains a set of primitive idempotents in $\hat{\mathcal{K}} \otimes_{\mathcal{O}} A$. Moreover, according to Lemma 2.17 below, there are a bijective map $\tau: J \to \hat{J}$, where $\hat{J} = \hat{J}' \cup \hat{J}''$, and an element \hat{a} in $(\hat{\mathcal{K}} \otimes_{\mathcal{O}} A)^*$ such that $\tau(j) = j^{\hat{a}}$ for any $j \in J$; in particular, setting $J' = (\tau)^{-1}(\hat{J}')$ and $i = \sum_{j \in J'} j \,,$ we get $\hat{\imath} = i^{\hat{a}} \,.$ Obviously, we may assume that \hat{a} belongs to \hat{A} ; then, consider $h, \ell \in \mathbb{N}$ such that

$$\hat{a}^{-1} \in \pi^{-h} \cdot \hat{A}, \quad i \in \pi^{-\ell} \cdot A.$$

设 $\{a_n\}_{n\in\mathbb{N}}$ 与 $\{b_n\}_{n\in\mathbb{N}}$ 是 两个A的序列使得

2.16.3
$$\hat{a} = \lim_{n \to \infty} \{a_n\},$$

也就是说,对任意 $n \in \mathbb{N}$ 元素 $\hat{a} - a_n$ 和 $\pi^h \cdot \hat{a}^{-1} - b_n$ 都属于 π^{n+1} · \hat{A} . 特别是, 使 $m \ge 2h + \ell$ 固定, 显然有

Choose two sequences $\{a_n\}_{n\in\mathbb{N}}$ and $\{b_n\}_{n\in\mathbb{N}}$ of elements of A such that

$$\hat{a} = \lim_{n \to \infty} \{a_n\}, \quad \pi^h \cdot \hat{a}^{-1} = \lim_{n \to \infty} \{b_n\};$$

in other terms, for any $n \in \mathbb{N}$, the elements $\hat{a} - a_n$ and $\pi^h \cdot \hat{a}^{-1} - b_n$ belong to $\pi^{n+1} \cdot \hat{A}$. In particular, choosing $m \geq 2h + \ell$, we have

2.16.4
$$1 = (a_m + (\hat{a} - a_m)) (\pi^{-h} \cdot b_m + (\hat{a}^{-1} - \pi^{-h} \cdot b_m))$$
$$= \pi^{-h} \cdot a_m b_m + c$$

 $\mathcal{K} \otimes_{\mathcal{O}} A$, 这是因为 $a_m b_m$ 属 于 A; 从而有

其中c 属于 π^{m+1-h} · \hat{A} , 还属于 where c belongs to π^{m+1-h} · \hat{A} and, at the same time, belongs to $\mathcal{K} \otimes_{\mathcal{O}} A$ since $a_m b_m$ belongs to A; consequently, we have

2.16.5
$$c \in \pi^{m+1-h} \cdot \hat{A} \cap (\mathcal{K} \otimes_{\mathcal{O}} A) = \pi^{m+1-h} \cdot A$$

并且A的元素1-c在A中是 可逆的; 所以 a_m 在 $K \otimes_{\mathcal{O}} A$ 中 也是可逆的, 更精确有

and therefore the element 1-c is inversible in A; hence, a_m is inversible in $\mathcal{K} \otimes_{\mathcal{O}} A$ and explicitly we have

$$(a_m)^{-1} = \pi^{-h} \cdot b_m (1 - c)^{-1}$$

$$= \pi^{-h} \cdot b_m + \sum_{n=1}^{\infty} \pi^{-h} \cdot b_m c^n;$$

这样 $a_m i(a_m)^{-1}$ 属于 $\mathcal{K} \otimes_{\mathcal{O}} A$,同时也属于 \hat{A} ,这是因为

2.16.7
$$\hat{i} - a_m i (a_m)^{-1} = (\hat{a} - a_m) i (\hat{a}^{-1}) + a_m i (\hat{a}^{-1} - (a_m)^{-1});$$

仍由于等式 $\hat{A} \cap (\mathcal{K} \otimes_{\mathcal{O}} A) = A$,这个幂等元 $a_m i(a_m)^{-1}$ 属于 A,从而它是单位元; 所以 \hat{i} 也是单位元.

引理 2.17. 设 \mathcal{L} 是一个域并设 \mathcal{B} 是一个有限维数的 \mathcal{L} -代数. 如果 \mathcal{J} 与 \mathcal{J}' 都是两个相互正交本原幂等元的集合使得 $\sum_{j\in\mathcal{J}}j=1=\sum_{j'\in\mathcal{J}}j'$, 那么存在 $\mathcal{B}\in\mathcal{B}^*$ 使得 $\mathcal{J}'=\mathcal{J}^b$.

hence, since $\hat{A} \cap (\mathcal{K} \otimes_{\mathcal{O}} A) = A$, the idempotent $a_m i (a_m)^{-1}$ belongs to A, and therefore it coincides with the unity element; thus, \hat{i}

thus, $a_m i (a_m)^{-1}$ belongs to $\mathcal{K} \otimes_{\mathcal{O}} A$ and,

simultaneously, it belongs to \hat{A} since

coincides with unity element too.

Lemma 2.17. Let \mathcal{L} be a field and B an \mathcal{L} -algebra of finite dimension. If J and J' are two sets of pairwise orthogonal primitive idempotents of B such that $\sum_{j\in J} j = 1 = \sum_{j'\in J} j'$, then there exists $b\in B^*$ such that $J' = J^b$.

Proof: If the radical of B is zero, it suffices to apply the Wedderburn Theorem to prove the statement. Thus, we may assume that the radical of B is not zero, and then B has a nonzero ideal N such that $N^2 = \{0\}$; set $\bar{B} = B/N$ and denote by \bar{b} the image of $b \in B$; first of all, we claim that if i is a primitive idempotent of B then $\bar{\imath}$ still is primitive; indeed, if we choose $0 \neq \ell \in iBi$ fulfilling $\bar{\ell}^2 = \bar{\ell}$, then we get $0 = (\ell^2 - \ell)^2 = \ell^4 - 2\ell^3 + \ell^2$ according to our choice of N and, from this equality, it is not difficult to check that we have

$$2.17.1 \ell^n = (n-2)\ell^3 - (n-3)\ell^2$$

其中 $n \ge 2$, 还可推出 $3\ell^2 - 2\ell^3$ 是一个幂等元, 从而有 $i = 3\ell^2 - 2\ell^3$. 因为 $\bar{\imath} = 3\bar{\ell}^2 - 2\bar{\ell}^3 = \bar{\ell}$ 所以 $\bar{\imath}$ 也是本原的.

现在, 对维数 $\dim_{\mathcal{L}}(B)$ 使用归纳法; 由上面的结果, \bar{J} 与 \bar{J}' 是两个 \bar{B} 的相互正交本原幂等元的集合使得 $\sum_{\bar{J}\in\bar{J}}\bar{J}=1=\sum_{\bar{J}'\in\bar{J}}\bar{J}'$; 而且, B^* 显然包含 1+N; 所以, 自然映射 $B^*\to\bar{B}^*$ 是满射;

for any $n \geq 2$, which easily implies that $3\ell^2 - 2\ell^3$ is an idempotent and therefore we get $3\ell^2 - 2\ell^3 = i$; since we have $\bar{\imath} = 3\bar{\ell}^2 - 2\bar{\ell}^3 = \bar{\ell}$, $\bar{\imath}$ is a primitive idempotent.

Now, we argue by induction on $\dim_{\mathcal{L}}(B)$; according to the previous argument, \bar{J} and \bar{J}' are two sets of pairwise orthogonal primitive idempotents of \bar{B} such that $\sum_{\bar{\jmath}\in\bar{J}}\bar{\jmath}=1=\sum_{\bar{\jmath}'\in\bar{J}}\bar{\jmath}'$; moreover, B^* clearly contains 1+N; consequently, the canonical map $B^*\to\bar{B}^*$ is surjective;

幂等元的提升

2.17.2

这样, 存在 $b \in B^*$ 和一个 双射 $\tau: J \to J'$ 使得对任意 $j \in J$ 有 $\overline{\tau(j)} = \overline{j^b}$. 那么, 考虑 $c = \sum_{j \in J} jb\tau(j)$; 一方面可得到

we have
$$\overline{\tau(j)}=\overline{j^b}$$
. Then, consider the element $c=\sum_{j\in J}jb\tau(j)$; on the one hand, we have $\bar{c}=\sum_{j\in J}\bar{j}b\,\overline{j^b}=\bar{b}$,

 $j \in J$.

从而 c 是可逆的; 另一方面对任意 $j \in J$ 有 $jc = jb\tau(j) = c\tau(j)$.

推论 2.18. 设 $A \in \mathcal{O}$ -代数. 令 J记 A的根基并 s: $A \to A/J = \bar{A}$ 记自然的映射. 假定 $\mathcal{K} \otimes_{\mathcal{O}} A$ 的每一个本原幂等元在 $\hat{\mathcal{K}} \otimes_{\mathcal{O}} A$ 里也是本原的. 那么对任意 \bar{A} 的幂等元 $\bar{\imath}$ 存在一个幂等元 $i \in A$ 使得 $s(i) = \bar{\imath}$. 而且, 如果 $i' \in A$ 也是一个幂等元使得 $s(i') = \bar{\imath}$, 就存在 $a \in A^*$ 使得 $i' = i^a$

证冥: 设 J 是一个 A 的相互 正交本原幂等元的集合使得 $\sum_{j\in J} j = 1$ 并且设 \bar{J}' 和 \bar{J}'' 是两个 \bar{A} 的相互正交本原幂等元的集合使得

$$\sum_{\bar{\jmath}\in\bar{J}'}\bar{\jmath}=\bar{\imath}\,,$$

由命题 2.16, 对任意 $j \in J$, 幂等元 s(j) 在 \bar{A} 里也是本原的; 那么, 由引理 2.17, 存在双映射 τ : $J \to \bar{J}' \cup \bar{J}''$ 和 $\bar{a} \in \bar{A}^*$ 使得对任意 $j \in J$ 有 $\tau(j) = s(j)^{\bar{a}}$. 可是, 住意满足 $s(a) = \bar{a}$ 的元素 $a \in A$ 是可逆的, 这是因为, 由 Nakayama 引理, 从 $\bar{A}\bar{a} = \bar{A}$ 可推出 Aa = A. 所以有

and therefore c is inversible; on the other hand, we have $jc = jb\tau(j) = c\tau(j)$ for any

thus, there are $b \in B^*$ and a bijective

map $\tau: J \to J'$ such that, for any $j \in J$,

Corollary 2.18. Let A be an \mathcal{O} -algebra. Denote by J the radical of A and by $s: A \to \bar{A} = A/J$ the canonical map. Assume that any primitive idempotent of $K \otimes_{\mathcal{O}} A$ remains primitive in $\hat{K} \otimes_{\mathcal{O}} A$. Then, for any idempotent $\bar{\imath}$ of \bar{A} , there is an idempotent $i \in A$ such that $s(i) = \bar{\imath}$. Moreover, if $i' \in A$ is also an idempotent such that $s(i') = \bar{\imath}$, then there is $a \in A^*$ such that $i' = i^a$.

Proof: Let J be a set of pairwise orthogonal primitive idempotents of A such that $\sum_{j\in J} j=1$, and choose two sets \bar{J}' and \bar{J}'' of pairwise orthogonal primitive idempotents of \bar{A} such that

$$\sum_{\bar{\jmath}\in\bar{J}'}\bar{\jmath}=\bar{\imath}\,,\quad \sum_{\bar{\jmath}\in\bar{J}''}\bar{\jmath}=1-\bar{\imath}\,.$$

According to Proposition 2.16, the idempotent s(j) is also primitive in \bar{A} for any $j \in J$; then, according to Lemma 2.17, there are an element $\bar{a} \in \bar{A}^*$ and a bijective map $\tau\colon J \to \bar{J}' \cup \bar{J}''$ such that we have $\tau(j) = s(j)^{\bar{a}}$ for any $j \in J$. But any element $a \in A$ such that $s(a) = \bar{a}$ is inversible since, according to the Nakayama Lemma, from $\bar{A}\bar{a} = \bar{A}$, we can deduce that Aa = A. Hence, we have

$$2.18.2 s\left(\sum_{j\in(\tau)^{-1}(\bar{J}')} j^a\right) = \bar{\imath}.$$

最后, 如果i与i'是两个A的幂等元使得 $s(i)=\bar{\imath}=s(i')$,那么一方面c=ii'+(1-i)(1-i')也是可逆的,因为从s(c)=1可推出Ac=A;另一方面,显然有ic=ii'=ci'.

Finally, if i and i' are two idempotents of A such that $s(i)=\bar{\imath}=s(i')$ then, on the one hand, c=ii'+(1-i)(1-i') is inversible since s(c)=1 implies that Ac=A; on the other hand, clearly we have ic=ii'=ci'.