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4
Multidimensional Scalar Conservation
Laws

Just send me the theorems,
then I shall find the proofs.1

Chrysippus told Cleanthes, 3th century b.c.

Our analysis has so far been confined to scalar conservation laws in one
dimension. Clearly, the multidimensional case is considerably more impor-
tant. Luckily enough, the analysis in one dimension can be carried over to
higher dimensions by essentially treating each dimension separately. This
technique is called dimensional splitting. The final results are very much
the natural generalizations one would expect.

The same splitting techniques of dividing complicated differential equa-
tions into several simpler parts, can in fact be used to handle other
problems. These methods are generally denoted operator splitting methods
or fractional steps methods.

4.1 Dimensional Splitting Methods

We will in this section show how one can analyze scalar multidimensional
conservation laws by dimensional splitting, which amounts to solving one

1Lucky guy! Paraphrased from Diogenes Laertius, Lives of Eminent Philosophers, c.

a.d. 200.
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space direction at a time. To be more concrete, let us consider the two-
dimensional conservation law

ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y). (4.1)

If we let Sf,x
t u0 denote the solution of

vt + f(v)x = 0, v(x, y, 0) = u0(x, y)

(where y is a passive parameter), and similarly let Sg,y
t u0 denote the

solution of

wt + g(w)y = 0, w(x, y, 0) = u0(x, y)

(x is a parameter), then the idea of dimensional splitting is to approximate
the solution of (4.1) as follows:

u(x, y, n∆t) ≈
[
Sg,y

∆t ◦ Sf,x
∆t

]n

u0. (4.2)

♦ Example 4.1 (A single discontinuity).

We first show how this works on a concrete example. Let

f(u) = g(u) =
1
2
u2

and

u0(x, y) =

{
ul for x < y,
ur for x ≥ y,

with ur > ul. The solution in the x-direction for fixed y gives a rar-
efaction wave, the left and right part moving with speeds ul and ur,
respectively. With a quadratic flux, the rarefaction wave is a linear
interpolation between the left and right states. Thus

u1/2 := Sf,x
∆t u0 =


ul for x < y + ul∆t,
(x− y)/∆t for y + ul∆t < x < y + ur∆t,
ur for x > y + ur∆t.

The solution in the y-direction for fixed x with initial state u1/2 will
exhibit a focusing of characteristics. The left state, which now equals
ur, will move with speed given by the derivative of the flux function,
in this case ur, and hence overtake the right state, given by ul, which
moves with smaller speed, namely ul. The characteristics interact at a
time t given by

urt+ x− ur∆t = ult+ x− ul∆t,

or t = ∆t. At that time we are back to the original Riemann problem
between states ul and ur at the point x = y. Thus

u1 := Sg,y
∆t u

1/2 = u0.
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Another application of Sf,x
∆t will of course give

u3/2 := Sf,x
∆t u

1 = u1/2.

So we have that un = u0 for all n ∈ N. Introducing coordinates

ξ =
1√
2

(x+ y) , η =
1√
2
(x− y),

the equation transforms into

ut +
(

1√
2
u2

)
ξ

= 0, u(ξ, η, 0) =

{
ul for η ≤ 0,
ur for η > 0.

We see that u(x, y, t) = u0(x, y), and consequently lim∆t→0 u
n = u0

(where we keep n∆t = t fixed). Thus the dimensional splitting procedure
produces approximate solutions converging to the right solution in this
case. ♦
We will state all results for the general case of arbitrary dimension, while

proofs will be carried out in two dimensions only, to keep the notation
simple. We first need to define precisely what is meant by a weak entropy
solution of the initial value problem

ut +
m∑

j=1

fj(u)xj
= 0, u(x1, . . . , xm, 0) = u0(x1, . . . , xm). (4.3)

Here we adopt the Kružkov entropy condition from Chapter 2, and say
that u is a (weak) Kružkov entropy solution of (4.3) for time [0, T ] if u is
a bounded function that satisfies2∫ T

0

∫
Rm

(
|u− k|ϕt +sign (u− k)

m∑
j=1

(fj(u) − fj(k))ϕxj

)
dx1 · · · dxm dt

+
∫

Rm

(
ϕ|t=0 |u0 − k| − (|u− k|ϕ)|t=T

)
dx1 · · · dxm ≥ 0, (4.4)

for all constants k ∈ R and all nonnegative test functions ϕ ∈ C∞
0 (Rm ×

[0, T ]). It certainly follows as in the one-dimensional case that u is a weak
solution, i.e.,∫ ∞

0

∫
Rm

(
uϕt +

m∑
j=1

fj(u)ϕxj

)
dx1 · · · dxm dt

+
∫

Rm

ϕ|t=0u0 dx1 · · · dxm = 0, (4.5)

for all test functions ϕ ∈ C∞
0 (Rm × [0,∞〉).

2If we want a solution for all time we disregard the last term in (4.4) and integrate t

over [0,∞〉.
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Our analysis aims at two different goals. We first show that the dimen-
sional splitting indeed produces a sequence of functions that converges to
a solution of the multidimensional equation (4.3). Our discussion will here
be based on the more or less standard argument using Kolmogorov’s com-
pactness theorem. The argument is fairly short. To obtain stability in the
multidimensional case in the sense of Theorem 2.13, we show that dimen-
sional splitting preserves this stability. Furthermore, we show how one can
use front tracking as our solution operator in one dimension in combination
with dimensional splitting. Finally, we determine the appropriate conver-
gence rate of this procedure. This analysis strongly uses Kuznetsov’s theory
from Section 3.2, but matters are more complicated and technical than in
one dimension.

We shall now show that dimensional splitting produces a sequence
that converges to the entropy solution u of (4.3); that is, the limit u
should satisfy (4.4). As promised, our analysis will be carried out in the
two-dimensional case only, i.e., for equation (4.1). Assume that u0 is a com-
pactly supported function in L∞(R2) ∩ BV (R2) (consult Appendix A for
a definition of BV (R2)). Let tn = n∆t and tn+1/2 =

(
n+ 1

2

)
∆t. Define

u0 = u0, un+1/2 = Sf,x
∆t u

n, un+1 = Sg,y
∆t u

n+1/2, (4.6)

for n ∈ N0. We shall also be needing an approximate solution for t �= tn.
We want the approximation to be an exact solution to a one-dimensional
conservation law in each interval

[
tj , tj+1/2

]
, j = k/2 and k ∈ N0. The way

to do this is to make “time go twice as fast” in each such interval; i.e., let
u∆t be defined by3

u∆t(x, t) =

{
Sf,x

2(t−tn)u
n for tn ≤ t ≤ tn+1/2,

Sg,y
2(t−tn+1/2)

un+1/2 for tn+1/2 ≤ t ≤ tn+1.
(4.7)

We first show that the sequence {u∆t} is compact. Since both operators
Sf,x and Sg,y take L∞ into itself, u∆t will be uniformly bounded, i.e.,

‖u∆t‖∞ ≤M (4.8)

for some constant M determined by the initial data and not depending on
∆t.

For the solution constructed from dimensional splitting we have

T.V.x,y

(
un+1/2

)
=
∫

T.V.x
(
Sf,x

∆t u
n
)
dy +

∫
T.V.y

(
Sf,x

∆t u
n
)
dx

≤
∫

T.V.x (un) dy +
∫

lim
h→0

1
h

∫ ∣∣∣un+1/2(x, y + h) − un+1/2(x, y)
∣∣∣ dy dx

3We will keep the ratio λ = ∆t/∆x fixed, and thus we index with only ∆t.
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=
∫

T.V.x (un) dy + lim
h→0

1
h

∫∫ ∣∣∣un+1/2(x, y + h) − un+1/2(x, y)
∣∣∣ dx dy

≤
∫

T.V.x (un) dy + lim
h→0

1
h

∫∫
|un(x, y + h) − un(x, y)| dx dy

=
∫

T.V.x (un) dy +
∫

lim
h→0

1
h

∫
|un(x, y + h) − un(x, y)| dy dx

= T.V.x,y (un) , (4.9)

using first the TVD property of Sf,x and Lemma A.1, and subsequently the
L1-stability in the x-direction. The interchange of integrals and limits is jus-
tified using Lebesgue’s dominated convergence. Similarly, T.V.x,y

(
un+1

)
≤

T.V.x,y

(
un+1/2

)
, and thus

T.V.x,y (un) ≤ T.V.x,y (u0)

follows by induction. This extends to

T.V.x,y (u∆t) ≤ T.V.x,y (u0) . (4.10)

We now want to establish Lipschitz continuity in time of the L1-norm, i.e.,

‖u∆t(t) − u∆t(s)‖1 ≤ C |t− s| (4.11)

for some constant C. By repeated use of the triangle inequality it suffices
to show that

‖u∆t((n+ 1)∆t) − u∆t(n∆t)‖1 ≤
∥∥∥un+1 − un+1/2

∥∥∥
1

+
∥∥∥un+1/2 − un

∥∥∥
1

=
∥∥∥Sf,x

∆t u
n − un

∥∥∥
1

(4.12)

+
∥∥∥Sg,y

∆t u
n+1/2 − un+1/2

∥∥∥
1

≤ C∆t.

To this end, assume that

u0 = 0 for |x| ≥ N or |y| ≥ N. (4.13)

Then ∥∥∥Sf,x
∆t u

n − un
∥∥∥

1
=
∫∫ ∣∣∣Sf,x

∆t u
n(x, y) − un(x, y)

∣∣∣ dx dy
≤
∫
|y|≤N+‖g‖Lip∆t

M∆t dy

≤ C∆t,

which proves (4.12) and consequently (4.11).
Using Theorem A.8 we conclude the existence of a convergent subse-

quence, also labeled {u∆t}, and set u = lim∆t→0 u∆t.
Let φ = φ(x, y, t) be a nonnegative test function, and define ϕ by

ϕ(x, y, t) = φ(x, y, t/2 + tn). By defining τ = 2(t − n∆t) we have that for
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each y, the function u∆t is a weak solution in x on the strip t ∈ [tn, tn+1/2]
satisfying the inequality

∫ ∆t

0

∫ (
|u∆t − k|ϕτ + qf (u∆t, k)ϕx

)
dx dτ

≥
∫ ∣∣∣un+1/2 − k

∣∣∣ϕ(∆t) dx−
∫

|un − k|ϕ(0) dx,
(4.14)

for all constants k. Here qf (u, k) = sign (u− k) (f(u) − f(k)). Changing
back to the t variable, we find that

2
∫ tn+1/2

tn

∫ (
1
2
|u∆t − k|φt + qf (u∆t, k)φx

)
dx dt

≥
∫ ∣∣∣un+1/2 − k

∣∣∣φ(tn+1/2) dx−
∫

|un − k|φ(tn) dx. (4.15)

Similarly,

2
∫ tn+1

tn+1/2

∫ (
1
2
|u∆t − k|φt + qg(u∆t, k)φy

)
dy dt

≥
∫ ∣∣un+1 − k

∣∣φ(tn+1) dy −
∫ ∣∣∣un+1/2 − k

∣∣∣φ(tn+1/2) dy. (4.16)

Here qg is defined similarly to qf , using g instead of f . Integrating (4.15)
over y and (4.16) over x and adding the two results and summing over n,
we obtain

2
∫ T

0

∫∫ (
1
2
|u∆t − k|φt +

∑
n

χnq
f (u∆t, k)φx

+
∑

n

χ̃nq
g(u∆t, k)φy

)
dx dy dt

≥
∫∫

(|u∆t − k|φ)|t=T dx dy −
∫∫

|u0 − k|φ(0) dx dy,

where χn and χ̃n denote the characteristic functions of the strips tn ≤ t ≤
tn+1/2 and tn+1/2 ≤ t ≤ tn+1, respectively. As ∆t tends to zero, it follows
that

∑
n

χn
∗
⇀

1
2
,

∑
n

χ̃n
∗
⇀

1
2
.
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Specifically, for continuous functions ψ of compact support we see that∑
n

∫ ∞

0

χnψ dt =
∑

n

∫ tn+1/2

tn

ψ dt

=
∑

n

ψ(t∗n)
∆t
2

=
1
2

∑
n

ψ(t∗n)∆t

→ 1
2

∫
ψ dt as ∆t→ 0

(where t∗n is in [tn, tn+1/2]), by definition of the Riemann integral. The
general case follows by approximation.

Letting ∆t→ 0, we thus obtain∫ T

0

∫∫ (
|u− k|φt + qf (u, k)φx + qg(u, k)φy

)
dx dy dt

+
∫∫

|u0 − k|φ|t=0 dx dy ≥
∫∫

(|u(T ) − k|φ)|t=T dx dy,

which proves that u(x, y, t) is a solution to (4.1) satisfying the Kružkov
entropy condition.

Next, we want to prove uniqueness of solutions of multidimensional
conservation laws. Let u and v be two Kružkov entropy solutions of the
conservation law

ut + f(u)x + g(u)y = 0 (4.17)

with initial data u0 and v0, respectively. The argument in Section 2.4 leads,
with no fundamental changes in the multidimensional case, to the same
result (2.58), namely,

‖u(t) − v(t)‖1 ≤ ‖u0 − v0‖1, (4.18)

thereby proving uniqueness. Observe that we do not need compact support
of u0 and v0, but only that u0 − v0 is integrable. Using the fact that if
every subsequence of a sequence has a further subsequence converging to
the same limit, the whole sequence converges to that (unique) limit, we
find that the whole sequence {u∆t} converges, not just a subsequence. We
have proved the following result.

Theorem 4.2. Let fj be Lipschitz continuous functions, and furthermore,
let u0 be a bounded and compactly supported function in BV (Rm). Define
the sequence of functions {un} by u0 = u0 and

un+j/m = S
fj ,xj

∆t un+(j−1)/m, j = 1, . . . ,m, n ∈ N0.
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Introduce the function (where tr = r∆t for any rational number r) u∆t =
u∆t(x1, . . . , xm, t) by

u∆t(x1, . . . , xm, t) = S
fj ,xj

m(t−tn+(j−1)/m)u
n+(j−1)/m,

for t ∈ [tn+(j−1)/m, tn+j/m]. Fix T > 0, then for any sequence {∆t} such
that ∆t → 0, for all t ∈ [0, T ] the function u∆t(t) converges to the unique
weak solution u(t) of (4.3) satisfying the Kružkov entropy condition (4.4).
The limit is in C([0, T ];L1

loc(R
m)).

To prove stability of the solution with respect to flux functions, we will
show that the one-dimensional stability result (2.71) in Section 2.4 remains
valid with obvious modifications in several dimensions. Let u and v denote
the unique solutions of

ut + f(u)x + g(u)y = 0, u|t=0 = u0,

and

vt + f̃(v)x + g̃(v)y = 0, v|t=0 = v0,

respectively, that satisfy the Kružkov entropy condition. Here we do not
assume compact support of u0 and v0, but only that u0−v0 is integrable. We
want to estimate the L1-norm of the difference between the two solutions.
To this end we first consider∥∥∥un+1/2 − vn+1/2

∥∥∥
1

=
∫∫ ∣∣∣un+1/2 − vn+1/2

∣∣∣ dx dy
≤
∫ (∫

|un − vn| dx

+ ∆tmin{T.V.x (un) ,T.V.x (vn)}‖f − f̃‖Lip

)
dy

= ‖un − vn‖1

+ ∆t‖f − f̃‖Lip

∫
min{T.V.x (un) ,T.V.x (vn)} dy.

Next we employ the trivial, but useful, inequality

a ∧ b+ c ∧ d ≤ (a+ c) ∧ (b+ d), a, b, c, d ∈ R.

Thus∥∥un+1 − vn+1
∥∥

1
=
∫∫ ∣∣un+1 − vn+1

∣∣ dx dy
≤
∫ (∫ ∣∣∣un+1/2 − vn+1/2

∣∣∣ dy
+ ∆tmin

{
T.V.y

(
un+1/2

)
,T.V.y

(
vn+1/2

)}
‖g − g̃‖Lip

)
dx
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≤
∥∥∥un+1/2 − vn+1/2

∥∥∥
1

+ ∆t‖g − g̃‖Lip

∫
min

{
T.V.y

(
un+1/2

)
,T.V.y

(
vn+1/2

)}
dx

≤ ‖un − vn‖1 + ∆tmax
{
‖f − f̃‖Lip, ‖g − g̃‖Lip

}
×
(

min
{∫

T.V.x (un) dy,
∫

T.V.x (vn) dy
}

+ min
{∫

T.V.y (un) dx,
∫

T.V.y (vn) dx
})

≤ ‖un − vn‖1

+ ∆tmax{‖f − f̃‖Lip, ‖g − g̃‖Lip}

× min
{∫

T.V.x (un) dy +
∫

T.V.y (un) dx,∫
T.V.x (vn) dy +

∫
T.V.y (vn) dx

}
= ‖un − vn‖1

+ ∆tmax{‖f − f̃‖Lip, ‖g − g̃‖Lip}min
{

T.V. (un) ,T.V. (vn)
}
,

which implies

‖un − vn‖1 ≤ ‖u0 − v0‖1

+ n∆tmax{‖f − f̃‖Lip, ‖g − g̃‖Lip}min{T.V. (u0) ,T.V. (v0)}. (4.19)

Consider next t ∈ [tn, tn+1/2〉. Then the continuous interpolants defined by
(4.7) satisfy

‖u∆t(t) − v∆t(t)‖L1(R2) =
∥∥∥Sf,x

2(t−tn)u
n − Sf̃ ,x

2(t−tn)v
n
∥∥∥

L1(R2)

≤
∫ [ ∫

|un − vn| dx

+ 2(t− tn) min{T.V.x (un) ,T.V.x (vn)}‖f − f̃‖Lip

]
dy

= ‖un − vn‖L1(R2) (4.20)

+ 2(t− tn)‖f − f̃‖Lip

∫
min{T.V.x (un) ,T.V.x (vn)} dy

≤ ‖u0 − v0‖1

+ tn max{‖f − f̃‖Lip, ‖g − g̃‖Lip}min{T.V. (u0) ,T.V. (v0)}
+ 2(t− tn) min{T.V. (u0) ,T.V. (v0)}max{‖f − f̃‖Lip, ‖g − g̃‖Lip}

≤ ‖u0 − v0‖1 + tmin{T.V. (u0) ,T.V. (v0)}max{‖f − f̃‖Lip, ‖g − g̃‖Lip}.
Observe that the above argument also holds mutatis mutandis in the gen-
eral case of a scalar conservation law in any dimension. We summarize our
results in the following theorem.
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Theorem 4.3. Let u0 be in L1(Rm) ∩ L∞(Rm) ∩ BV (Rm), and let fj be
Lipschitz continuous functions for j = 1, . . . ,m. Then there exists a unique
solution u(x1, . . . , xm, t) of the initial value problem

ut +
m∑

j=1

fj(u)xj = 0, u(x1, . . . , xm, 0) = u0(x1, . . . , xm), (4.21)

that satisfies the Kružkov entropy condition (4.4). The solution satisfies

T.V. (u(t)) ≤ T.V. (u0) . (4.22)

Furthermore, if v0 and g share the same properties as u0 and f , respectively,
then the unique weak Kružkov entropy solution of

vt +
m∑

j=1

gj(v)xj
= 0, v(x1, . . . , xm, 0) = v0(x1, . . . , xm), (4.23)

satisfies

‖u( · , t) − v( · , t)‖1 ≤ ‖u0 − v0‖1 (4.24)
+ tmin{T.V. (u0) ,T.V. (v0)}max

j
{ ‖fj − gj‖Lip }.

Proof. It remains to consider the case where u0 no longer is assumed to
have compact support. Observe that we only used this assumption to prove
(4.11). In particular, the estimate (4.22) carries over with no changes.

Let u0,k be compactly supported functions in L1(Rm) ∩ BV (Rm) such
that

‖u0,k − u0‖1 → 0 when k → ∞.

Furthermore, let u∆t,k and u∆t denote the approximate solution with initial
data uk and u0, respectively, constructed using dimensional splitting. We
know from Theorem 4.2 that u∆t,k → uk, the unique solution with initial
data u0,k, in C([0, T ];L1

loc(R
m)) as ∆t → 0 for each fixed T > 0. From

(4.18) we know that

sup
t

‖uk(t) − u�(t)‖1 ≤ ‖u0,k − u0,�‖1,

and hence uk is a Cauchy sequence in C([0, T ];L1
loc(R

m)) that converges
to some function u as k → ∞. Furthermore, by considering the Kružkov
entropy condition applied to uk and taking the limit k → ∞ we conclude
that u is a weak Kružkov entropy solution. But

‖u∆t(t) − u(t)‖1 ≤ ‖u∆t(t) − u∆t,k(t)‖1 + ‖u∆t,k(t) − uk(t)‖1

+ ‖uk(t) − u(t)‖1

≤ ‖u0 − u0,k‖1 + ‖u∆t,k(t) − uk(t)‖1 + ‖uk(t) − u(t)‖1,

where for the first term we have used (4.20). The first and the third terms
are small by taking k large, while the middle term is small by taking ∆t
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small. We conclude that u∆t(t) → u(t) in L1
loc. Finally, by taking the limit

∆t→ 0 in (4.20), we see that (4.24) holds.

4.2 Dimensional Splitting and Front Tracking

It doesn’t matter if the cat is black or white.
As long as it catches rats, it’s a good cat.

Deng Xiaoping (1904–97)

In this section we will study the case where we use front tracking to
solve the one-dimensional conservation laws. More precisely, we replace the
flux functions f and g (in the two-dimensional case) by piecewise linear
continuous interpolations fδ and gδ, with the interpolation points spaced a
distance δ apart. The aim is to determine the convergence rate towards the
solution of the full two-dimensional conservation law as δ → 0 and ∆t→ 0.

With the front-tracking approximation the one-dimensional solutions will
be piecewise constant if the initial condition is piecewise constant. In order
to prevent the number of discontinuities from growing without bound, we
will project the one-dimensional solution Sfδ,xu onto a fixed grid in the
x, y plane before applying the operator Sgδ,y.

To be more concrete, let the grid spacing in the x and y directions be
given by ∆x and ∆y, respectively, and let Iij denote the grid cell

Iij = {(x, y) | i∆x ≤ x < (i+ 1)∆x, j∆y ≤ y < (j + 1)∆y}.
The projection operator π is defined by

πu(x, y) =
1

∆x∆y

∫∫
Iij

u dx dy for (x, y) ∈ Iij .

Let the approximate solution at the discrete times t� be defined as

un+1/2 = π ◦ Sfδ,x
∆t un and un+1 = π ◦ Sgδ,y

∆t un+1/2,

for n = 0, 1, 2, . . . , with u0 = πu0. We collect the discretization parameters
in η = (δ,∆x,∆y,∆t). In analogy to (4.7), we define uη as

uη(t) =


Sfδ,x

2(t−tn)u
n for tn ≤ t < tn+1/2,

un+1/2 for t = tn+1/2

Sgδ,y
2(t−tn+1/2)

un+1/2 for tn+1/2 ≤ t < tn+1,

un+1 for t = tn+1.

(4.25)

If Figure 4.1 we illustrate how this works. Starting in the upper left corner,
the operator Sfδ,x

∆t takes us to the upper right corner; then we apply π
and move to the lower right corner. Next, Sgδ,y

∆t takes us to the lower left
corner, and finally π takes us back to the upper left corner, this time with
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y

x

y

x

y

x

y

x

un(0) un(∆t)

un+1/2(0)un+1/2(∆t)

Sfδ,x
∆t

π

Sgδ,y
∆t

π n→n + 1

Figure 4.1. Front tracking and dimensional splitting on a 3 × 3 grid.

n incremented by 1. To prove that uη converges to the unique solution
u as η → 0, we essentially mimic the approach we just used to prove
Theorem 4.2. First of all we observe that

‖uη(t)‖∞ ≤
∥∥u0

∥∥
∞, (4.26)

since Sfδ,x, Sgδ,y, and π all obey a maximum principle. On each rectangle
Iij the function uη is constant for t = ∆t. In a desperate attempt to simplify
the notation we write

un
ij = uη(x, y, n∆t) for (x, y) ∈ Iij .

Next we go carefully through one full-time step in this construction, starting
with un

ij . At each step we define a shorthand notation that we will use in
the estimates. When we consider un

ij as a function of x only, we write

un
j (0) = un

ij = uη( · , j∆y, n∆t).

(The argument “0” on the left-hand side indicates the start of the time
variable before we advance time an interval ∆t using Sfδ,x

∆t .) Advancing the
solution in time by ∆t by applying front tracking in the x-variable produces

un
j (∆t) =

(
Sfδ,x

∆t un
j

)
(x).
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(The x-dependence is suppressed in the notation on the left-hand side.) We
now apply the projection π, which yields

u
n+1/2
ij = πun

j (∆t).

After this sweep in the x-variable, it is time to do the y-direction.
Considering un+1/2

ij as a function of y we write

u
n+1/2
i (0) = u

n+1/2
ij = uη

(
i∆x, · ,

(
n+

1
2
)
∆t

)
,

to which we apply the front-tracking solution operator in the y-direction

u
n+1/2
i (∆t) =

(
Sgδ,y

∆t u
n+1/2
i

)
(y).

(The y-dependence is suppressed in the notation on the left-hand side.)
One full time step is completed by a final projection

un+1
ij = πu

n+1/2
i (∆t).

Using this notation we first want to prove the analogue of Lipschitz
continuity in time of the spatial L1-norm as expressed in (4.11). In this
context the result reads

‖uη(tm) − uη(tn)‖1 =
∑
i,j

∣∣um
ij − un

ij

∣∣∆x∆y
≤
(
max{ ‖fδ‖Lip, ‖gδ‖Lip }∆t+ (∆x+ ∆y)

)
× T.V.

(
u0
)
|m− n| . (4.27)

To prove (4.27) it suffices to show that∑
i,j

∣∣un+1
ij − un

ij

∣∣∆x∆y
≤
(
max{ ‖fδ‖Lip, ‖gδ‖Lip }∆t+ (∆x+ ∆y)

)
T.V.

(
u0
)
. (4.28)

We start by writing∣∣un+1
ij − un

ij

∣∣ ≤ ∣∣∣un+1
ij − u

n+1/2
i (∆t)

∣∣∣+ ∣∣∣un+1/2
ij − un

j (∆t)
∣∣∣

+
∣∣∣un+1/2

i (∆t) − u
n+1/2
i (0)

∣∣∣+ ∣∣un
j (∆t) − un

j (0)
∣∣

=
∣∣∣πun+1/2

i (∆t) − u
n+1/2
i (∆t)

∣∣∣+ ∣∣πun
j (∆t) − un

j (∆t)
∣∣

+
∣∣∣un+1/2

i (∆t) − u
n+1/2
i (0)

∣∣∣+ ∣∣un
j (∆t) − un

j (0)
∣∣ .
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Integrating this inequality over R
2 gives

∑
i,j

∣∣un+1
ij − un

ij

∣∣∆x∆y ≤
∫∫ ∣∣∣πun+1/2

i (∆t) − u
n+1/2
i (∆t)

∣∣∣ dx dy
+
∫∫ ∣∣πun

j (∆t) − un
j (∆t)

∣∣ dx dy
+
∫∫ ∣∣∣un+1/2

i (∆t) − u
n+1/2
i (0)

∣∣∣ dx dy
+
∫∫ ∣∣un

j (∆t) − un
j (0)

∣∣ dx dy.
(4.29)

We see that two terms involve the projection operator π. For these terms
we prove the estimate∫∫

|πψ − ψ| dx dy ≤ (∆x+ ∆y) T.V. (ψ) = O (max{∆x,∆y}) . (4.30)

We will prove (4.30) in the one-dimensional case only. Consider (where
Ii = 〈i∆x, (i+ 1)∆x〉)∫

|πψ − ψ| dx =
∑

i

∫
Ii

|πψ(x) − ψ(x)| dx

=
∑

i

∫
Ii

∣∣∣∣ 1
∆x

∫
Ii

ψ(y) dy − ψ(x)
∣∣∣∣ dx

=
1

∆x

∑
i

∫
Ii

∣∣∣∣∫
Ii

(ψ(y) − ψ(x)) dy
∣∣∣∣ dx

≤ 1
∆x

∑
i

∫
Ii

∫
Ii

|ψ(y) − ψ(x)| dy dx

=
1

∆x

∑
i

∫
Ii

∫
−x+Ii

|ψ(x+ ξ) − ψ(x)| dξ dx

≤ 1
∆x

∑
i

∫
Ii

∫ ∆x

−∆x

|ψ(x+ ξ) − ψ(x)| dξ dx

=
1

∆x

∫ ∆x

−∆x

∫
R

|ψ(x+ ξ) − ψ(x)| dx dξ

≤ 1
∆x

∫ ∆x

−∆x

|ξ|T.V. (ψ) dξ

= ∆xT.V. (ψ) . (4.31)

For the two remaining terms in (4.29) we find, using the Lipschitz continuity
in time in the L1 norm in the x-variable (see Theorem 2.14) that
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j (∆t) − un

j (0)
∣∣ dx dy ≤ ∆t ‖fδ‖Lip

∫
T.V.x

(
un

j (0)
)
dy

≤ ∆t ‖fδ‖LipT.V. (un) . (4.32)

Combining this result with (4.30) we conclude that (4.28), and hence also
(4.27), holds.

Finally, we want to show that the total variation is bounded in the sense
that

T.V. (un) ≤ T.V. (u0) . (4.33)

We will show that

T.V.
(
un+1/2

)
≤ T.V. (un) ; (4.34)

an analogous argument gives T.V.
(
un+1

)
≤ T.V.

(
un+1/2

)
, from which we

conclude that

T.V.
(
un+1

)
≤ T.V. (un) ,

and (4.33) follows by induction. By definition

T.V.
(
un+1/2

)
=
∑
i,j

(∣∣∣un+1/2
i+1,j − u

n+1/2
i,j

∣∣∣∆y +
∣∣∣un+1/2

i,j+1 − u
n+1/2
i,j

∣∣∣∆x) ,
(4.35)

while

T.V. (un) =
∑
i,j

(∣∣un
i+1,j − un

i,j

∣∣∆y +
∣∣un

i,j+1 − un
i,j

∣∣∆x) . (4.36)

We first consider∑
i

∣∣∣un+1/2
i+1,j − u

n+1/2
i,j

∣∣∣ = T.V.x
(
πun

j (∆t)
)

≤ T.V.x
(
un

j (∆t)
)
≤ T.V.x

(
un

j (0)
)

=
∑

i

∣∣un
i+1,j − un

i,j

∣∣ , (4.37)

where we first used that T.V. (πφ) ≤ T.V. (φ) for step functions φ, and
then that T.V. (v) ≤ T.V. (v0) for solutions v of one-dimensional conser-
vation laws with initial data v0. For the second term in the definition of
T.V.

(
un+1/2

)
we obtain (cf. (4.9))∑

i,j

∣∣∣un+1/2
i,j+1 − u

n+1/2
i,j

∣∣∣∆x∆y =
∑
i,j

∫
Iij

∣∣∣un+1/2
i,j+1 − u

n+1/2
i,j

∣∣∣ dx dy
=
∑
i,j

∫
Iij

∣∣π (un
j+1(∆t) − un

j (∆t)
)∣∣ dx dy

≤
∑
i,j

∫
Iij

π
(∣∣un

j+1(∆t) − un
j (∆t)

∣∣) dx dy
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=
∑
i,j

∫
Iij

∣∣un
j+1(∆t) − un

j (∆t)
∣∣ dx dy

=
∑
i,j

∆y
∫ (i+1)∆x

i∆x

∣∣un
j+1(∆t) − un

j (∆t)
∣∣ dx

=
∑

j

∆y
∫

R

∣∣un
j+1(x,∆t) − un

j (x,∆t)
∣∣ dx

≤
∑

j

∆y
∫

R

∣∣un
j+1(x, 0) − un

j (x, 0)
∣∣ dx

=
∑
i,j

∣∣un
i,j+1 − un

i,j

∣∣∆x∆y. (4.38)

The first inequality follows from |πφ| ≤ π |φ|; thereafter, we use
∫

Iij
πφ =∫

Iij
φ, and finally we use the L1-contractivity, ‖v − w‖1 ≤ ‖v0 − w0‖1, of

solutions of one-dimensional conservation laws. Multiplying (4.37) by ∆y,
summing over j, dividing (4.38) by ∆x, and finally adding the results, gives
(4.34).

So far we have obtained the following estimates:

(i) Uniform boundedness,

‖uη(t)‖∞ ≤
∥∥u0

∥∥
∞.

(ii) Uniform bound on the total variation,

T.V. (un) ≤ T.V. (u0) .

(iii) Lipschitz continuity in time,

‖uη(tm) − uη(tn)‖1

≤
(
C + O

(
1

∆t
max{∆x,∆y}

))
T.V. (u0) |tm − tn| .

(4.39)

From Theorem A.8 we conclude that the sequence {uη} has a convergent
subsequence as η → 0, provided that the ratio max{∆x,∆y}/∆t remains
bounded. We let u denote its limit. Furthermore, this sequence converges
in C([0, T ];L1

loc(R
2)) for any positive T .

It remains to prove that the limit is indeed an entropy solution of the full
two-dimensional conservation law. We first use that un

j (x, t) (suppressing
the y-dependence) is a solution of the one-dimensional conservation law in
the time interval [tn, tn+1/2]. Hence we know that∫

R

∫ tn+1/2

tn

(
1
2

∣∣un
j (x, t) − k

∣∣φt + qfδ(un
j (x, t), k)φx

)
dt dx

− 1
2

∫
R

∣∣un
j (x, tn+1/2−) − k

∣∣φ(x, tn+1/2) dx
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+
1
2

∫
R

∣∣un
j (x, tn) − k

∣∣φ(x, tn) dx ≥ 0.

Similarly, we obtain for the y-direction∫
R

∫ tn+1

tn+1/2

(
1
2

∣∣∣un+1/2
i (y, t) − k

∣∣∣φt + qGδ(un+1/2
i (y, t), k)φy

)
dt dy

− 1
2

∫
R

∣∣∣un+1/2
i (y, tn+1−) − k

∣∣∣φ(y, tn+1) dy

+
1
2

∫
R

∣∣∣un+1/2
i (y, tn+1/2+) − k

∣∣∣φ(y, tn+1/2) dy ≥ 0.

Integrating the first inequality over y and the second over x and adding
the results as well as adding over n gives, where T = N∆t,∫∫

R2

∫ T

0

(1
2
|uη − k|φt +

∑
n

χnq
fδ(uη, k)φx

+
∑

n

χ̃nq
gδ(uη, k)φy

)
dx dy dt

− 1
2

(∫∫
R2

|uη(x, y, T ) − k|φ(x, y, T ) dx dy

+
∫

R2
|uη(x, y, 0) − k|φ(x, y, 0) dx dy

)
≥ 1

2

2N∑
n=1

∫∫
R2

(∣∣uη(x, y, tn/2) − k
∣∣− ∣∣uη(x, y, tn/2−) − k

∣∣)
× φ(x, y, tn/2) dx dy

=: I,

and χn and χ̃n as before denote the characteristic functions on {(x, y, t) |
t ∈ [tn, tn+1/2]} and {(x, y, t) | t ∈ [tn+1/2, tn+1]}, respectively. Observe
that we have obtained the right-hand side, denoted by I, by using a pro-
jection at each time step. As n → ∞ and ∆t → 0 while keeping T fixed,
we have that

∑
n χn

∗
⇀ 1

2 . To estimate the term I we write

|I| ≤
∑

n

∫∫ ∣∣uη(x, y, tn/2+) − uη(x, y, tn/2−)
∣∣φ(x, y, tn/2) dx dy

≤ ‖φ‖∞
∑

n

∫∫ ∣∣πuη(x, y, tn/2−) − uη(x, y, tn/2−)
∣∣ dx dy

≤ O (max{∆x,∆y}/∆t) ,

using (4.30). In order to conclude that u is an entropy solution, we need
that I → 0; that is, we need to assume that

max{∆x,∆y}/∆t→ 0
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as η → 0. Under this assumption∫∫
R2

∫ T

0

(
|u− k|φt + qf (u, k)φx + qg(u, k)φy

)
dt dx dy

−
∫

R2
|u(x, y, T ) − k|φ(x, y, T ) dx dy

+
∫

R2
|u(x, y, 0) − k|φ(x, y, 0) dx dy ≥ 0,

which shows that u indeed satisfies the Kružkov entropy condition. We
summarize the result.

Theorem 4.4. Let u0 be a compactly supported function in L∞(Rm) ∩
BV (Rm), and let fj be Lipschitz continuous functions for j = 1, . . . ,m.
Construct an approximate solution uη using front tracking by defining

u0 = πu0, un+j/m = π ◦ Sfj,δ,xj

∆t un+(j−1)/m, j = 1, . . . ,m, n ∈ N,

and

uη(x, t) =

{
S

fj,δ,xj

m(t−tn+(j−1)/m)u
n+(j−1)/m, for t ∈ [tn+(j−1)/m, tn+j/m〉,

un+j/m for t = tn+j/m,

where x = (x1, . . . , xm).
For any sequence {η}, with η = (∆x1, . . . ,∆xm,∆t, δ) where η → 0 and

max
j

{∆xj} /∆t→ 0,

we have that {uη} converges to the unique solution u = u(x, t) of the initial
value problem

ut +
m∑

j=1

fj(u)xj
= 0, u(x, 0) = u0(x), (4.40)

that satisfies the Kružkov entropy condition.

4.3 Convergence Rates

Now I think I’m wrong on account
of those damn partial integrations.

I oscillate between right and wrong.

Letter from Feynman to Walton (1936)

In this section we show how fast front tracking plus dimensional split-
ting converges to the exact solution. The analysis is based on Kuznetsov’s
lemma.
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We start by generalizing Kuznetsov’s lemma, Theorem 3.11, to the
present multidimensional setting. Although the argument carries over, we
will present the relevant definitions in arbitrary dimension.

Let the class K consist of maps u : [0,∞〉 → L1(Rm)∩BV (Rm)∩L∞(Rm)
such that:

(i) The limits u(t±) exist.

(ii) The function u is right continuous, i.e., u(t+) = u(t).

(iii) ‖u(t)‖∞ ≤ ‖u(0)‖∞.

(iv) T.V. (u(t)) ≤ T.V. (u(0)).

Recall the following definition of moduli of continuity in time (cf. (3.2)):

νt(u, σ) = sup
|τ |≤σ

‖u(t+ τ) − u(t)‖1, σ > 0,

ν(u, σ) = sup
0≤t≤T

νt(u, σ).

The estimate (3.39) is replaced by

ν(u, σ) ≤ |σ|T.V. (u0) max
j

{ ‖fj‖Lip },

for a solution u of (4.21).
In several space dimensions, the Kružkov form reads

ΛT (u, φ, k) =
∫∫

Rm×[0,T ]

(
|u− k|φt +

∑
j

qfj (u, k)φxj

)
dx1 · · · dxm dt

−
∫

Rm

|u(x, T ) − k|φ(x, T ) dx1 . . . dxm dt

+
∫

Rm

|u0(x) − k|φ(x, 0) dx1 · · · dxm dt.

(4.41)
In this case we use the test function

Ω(x, x′, s, s′) = ωε0(s− s′)ωε(x1 − x′1) · · ·ωε(xm − x′m), (4.42)
x = (x1, . . . , xm), x′ = (x′1, . . . , x

′
m).

Here ωε is the standard mollifier defined by

ωε(xj) =
1
ε
ω
(xj

ε

)
with

0 ≤ ω ≤ 1, suppω ⊆ [−1, 1], ω(−xj) = ω(xj),
∫ 1

−1

ω(z) dz = 1.

When v is the unique solution of the conservation law (4.23), we introduce

Λε,ε0(u, v) =
∫ T

0

∫
Rm

ΛT (u,Ω( · , x′, · , s′), v(x′, s′)) dx′ds′.
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Kuznetsov’s lemma can be formulated as follows.

Theorem 4.5. Let u be a function in K, and v be an entropy solution of
(4.23). If 0 < ε0 < T and ε > 0, then

‖u( · , T−) − v( · , T )‖1 ≤ ‖u0 − v0‖1

+ T.V. (v0)
(
2ε+ ε0 max

j
{ ‖fj‖Lip }

)
+ ν(u, ε0) − Λε,ε0(u, v), (4.43)

where u0 = u( · , 0) and v0 = v( · , 0).

The proof of Theorem 3.11 carries over to this setting verbatim. We want
to estimate

‖S(T )u0 − uη‖1 ≤ ‖S(T )u0 − Sδ(T )u0‖1 + ‖Sδ(T )u0 − uη‖1, (4.44)

where u = S(T )u0 and Sδ(T )u0 denote the exact solutions of the multidi-
mensional conservation law with flux functions f replaced by their piecewise
linear and continuous approximations fδ. The first term can be estimated
by

‖S(T )u0 − Sδ(T )u0‖1 ≤ T max
j

{ ‖fj − fj,δ‖Lip}T.V. (u0) , (4.45)

while we apply Kuznetsov’s lemma, Theorem 4.5, for the second term.
For the function u we choose uη, the approximate solution by using front
tracking along each dimension and dimensional splitting, while for v we use
the exact solution with piecewise linear continuous flux functions fδ and
gδ and u0 as initial data, that is, v = vδ = Sδ(T )u0. Thus we find, using
(4.39), that

ν(uη, ε0) ≤ ε0

(
C + O

(
1

∆t
max

j
{∆xj}

))
T.V. (u0) .

Kuznetsov’s lemma then reads

‖Sδ(T )u0 − uη‖1 ≤
∥∥u0 − u0

∥∥
1

+
[
2ε+ max

j
{‖fj,δ‖Lip} ε0

+ ε0

(
C + O

(max {∆xj}
∆t

))]
T.V. (u0)

− Λε,ε0(uη, vδ), (4.46)

and the name of the game is to estimate Λε,ε0 .
To make the estimates more transparent, we start by rewriting

ΛT (uη, φ, k). Since all the complications of several space dimensions are
present in two dimensions, we present the argument in two dimensions
only, that is, with m = 2, and denote the spatial variables by (x, y). All
arguments carry over to arbitrary dimensions without any change. By def-
inition we have (in obvious notation, qfδ(u) = sign (u− k) (fδ(u) − fδ(k))
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and similarly for qgδ)

ΛT (uη, φ, k) =
∫∫ ∫ T

0

(
|uη − k|φt + qfδ(uη, k)φx + qgδ(uη, k)φy

)
dt dx dy

+
∫∫

|uη − k|φ|t=0+ dx dy −
∫∫

|uη − k|φ|t=T− dx dy

=
N−1∑
n=0

∫∫ (∫ tn+1/2

tn

+
∫ tn+1

tn+1/2

)(
|uη − k|φt

+ qfδ(uη, k)φx + qgδ(uη, k)φy

)
dt dx dy

+
∫∫

|uη − k|φ|t=0+ dx dy −
∫∫

|uη − k|φ|t=T− dx dy

=
N−1∑
n=0

∫∫ ∫ tn+1/2

tn

(
|uη − k|φt + 2qfδ(uη, k)φx

)
dt dx dy

+
∑

n

∫∫ ∫ tn+1

tn+1/2

(|uη − k|φt + 2qgδ(uη, k)φy) dt dx dy

+
N−1∑
n=0

∫∫ (∫ tn+1

tn+1/2

−
∫ tn+1/2

tn

)
qfδ(uη, k)φx dt dx dy

+
N−1∑
n=0

∫∫ (∫ tn+1/2

tn

−
∫ tn+1

tn+1/2

)
qgδ(uη, k)φy dt dx dy

+
∫∫

|uη − k|φ|t=0+ dx dy −
∫∫

|uη − k|φ|t=T− dx dy.

We now use that uη is an exact solution in the x-direction and the y-
direction on each strip [tn, tn+1/2] and [tn+1/2, tn+1], respectively. Thus we
can invoke inequalities (4.15) and (4.16), and we conclude that4

ΛT (uη, φ, k) ≥
N−1∑
n=0

∫∫ (
|uη − k| |t=tn+1/2−φ(tn+1/2)

− |uη − k| |t=tn+φ(tn)
)
dx dy

+
N−1∑
n=0

∫∫ (
|uη − k| |t=tn+1−φ(tn+1)

− |uη − k| |t=tn+1/2+φ(tn+1/2)
)
dx dy

4Observe that because we employ the projection operator π between each pair of
consecutive times we solve a conservation law in one dimension; un+1/2 and un are in

general discontinuous across tn+1/2 and tn, respectively.
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+
N−1∑
n=0

∫∫ (∫ tn+1

tn+1/2

−
∫ tn+1/2

tn

)
qfδ(uη, k)φx dt dx dy

+
N−1∑
n=0

∫∫ (∫ tn+1/2

tn

−
∫ tn+1

tn+1/2

)
qgδ(uη, k)φy dt dx dy

+
∫∫

|uη − k|φ|t=0+ dx dy −
∫∫

|uη − k|φ|t=T− dx dy

= −2
N−1∑
n=0

∫∫ ∫ tn+1/2

tn

qfδ(uη, k)φx dt dx dy

+
∫∫ ∫ T

0

qfδ(uη, k)φx dt dx dy

− 2
N−1∑
n=0

∫∫ ∫ tn+1

tn+1/2

qgδ(uη, k)φy dt dx dy

+
∫∫ ∫ T

0

qgδ(uη, k)φy dt dx dy

+
N−1∑
n=0

∫∫ (
|uη − k|

∣∣∣
t=tn+1/2−

− |uη − k|
∣∣∣
t=tn+1/2+

)
φ(tn+1/2) dx dy

+
N−1∑
n=1

∫∫ (
|uη − k|

∣∣∣
t=tn−

− |uη − k|
∣∣∣
t=tn+

)
φ(tn) dx dy

:= −I1(uη, k) − I2(uη, k) − I3(uη, k) − I4(uη, k). (4.47)

The terms I1 and I2 are due to dimensional splitting, while I3 and I4 come
from the projections.

Choose now for the constant k the function vδ(x′, y′, s′), and for φ we
use Ω given by (4.42). Integrating over the new variables we obtain

Λε,ε0(uη, vδ) =
∫∫ ∫ T

0

ΛT (uη,Ω( · , x′, · , y′, · , s′), vδ(x′, y′, s′)) ds′ dx′dy′

≥ −Iε,ε0
1 (uη, vδ) − Iε,ε0

2 (uη, vδ) − Iε,ε0
3 (uη, vδ) − Iε,ε0

4 (uη, vδ),

where Iε,ε0
j are given by

Iε,ε0
1 (uη, vδ) =

∫∫ ∫ T

0

∫∫ (
2

N−1∑
n=0

∫ tn+1/2

tn

qfδ(uη, vδ)Ωx ds

−
∫ T

0

qfδ(uη, vδ)Ωx ds

)
dx dy ds′ dx′dy′,
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Iε,ε0
2 (uη, vδ) =

∫∫ ∫ T

0

∫∫ (
2

N−1∑
n=0

∫ tn+1

tn+1/2

qgδ(uη, vδ)Ωy ds

−
∫ T

0

qgδ(uη, vδ)Ωy ds

)
dx dy ds′ dx′dy′,

Iε,ε0
3 (uη, vδ) =

N−1∑
n=1

∫∫ ∫ T

0

∫∫ (
|uη − vδ| |s=tn+

− |uη − vδ| |s=tn−
)
Ω dx dy ds′ dx′dy′,

Iε,ε0
4 (uη, vδ) =

N−1∑
n=0

∫∫ ∫ T

0

∫∫ (
|uη − vδ| |s=tn+1/2+

− |uη − vδ| |s=tn+1/2−
)
Ω dx dy ds′ dx′dy′.

We will start by estimating Iε,ε0
1 and Iε,ε0

2 .

Lemma 4.6. We have the following estimate:

|Iε,ε0
1 | + |Iε,ε0

2 | ≤ T max {‖f‖Lip, ‖g‖Lip}T.V. (u0)

×
(∆t
ε0

+
1
ε

(
{‖f‖Lip + ‖g‖Lip}∆t+ ∆x+ ∆y

))
. (4.48)

Proof. We will detail the estimate for |Iε,ε0
1 |. Writing

qfδ(uη(s), vδ(s′)) = qfδ(uη(tn+1/2), vδ(s′))

+
(
qfδ(uη(s), vδ(s′)) − qfδ(uη(tn+1/2), vδ(s′))

)
,

we rewrite Iε,ε0
1 as

Iε,ε0
1 (uη, vδ) =

N−1∑
n=0

[ (
J1(tn, tn+1/2) − J1(tn+1/2, tn+1)

)
+
(
J2(tn, tn+1/2) − J2(tn+1/2, tn+1)

) ]
,

(4.49)

with

J1(τ1, τ2) =
∫∫ ∫ T

0

∫∫ ∫ τ2

τ1

qfδ(uη(x, y, tn+1/2), vδ(x′, y′, s′))

× Ωx(x, x′, y, y′, s, s′) ds dx dy ds′ dx′ dy′,

J2(τ1, τ2) =
∫∫ ∫ T

0

∫∫ ∫ τ2

τ1

(
qfδ(uη(x, y, s), vδ(x′, y′, s′))

− qfδ(uη(x, y, tn+1/2), vδ(x′, y′, s′))
)

× Ωx(x, x′, y, y′, s, s′) ds dx dy ds′ dx′ dy′.
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Here we have written out all the variables explicitly; however, in the fol-
lowing we will display only the relevant variables. All spatial integrals are
over the real line unless specified otherwise. Rewriting

ωε0(s− s′) = ωε0(tn+1/2 − s′) +
∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄,

we obtain

J1(tn, tn+1/2)

=
∫∫ ∫ T

0

∫∫
qfδ(uη(tn+1/2), vδ(s′))Ωε

x

(∫ tn+1/2

tn

ωε0(tn+1/2 − s′) ds

+
∫ tn+1/2

tn

∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄ ds
)
dx dy ds′ dx′ dy′

=
∫∫ ∫ T

0

∫∫
qfδ(uη(tn+1/2), vδ(s′))Ωε

x

(
∆t
2
ωε0(tn+1/2 − s′)

+
∫ tn+1/2

tn

∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄ ds
)
dx dy ds′ dx′ dy′,

where Ωε = ωε(x− x′)ωε(y − y′) denotes the spatial part of Ω.
If we rewrite J1(tn+1/2, tn+1) in the same way, we obtain

J1(tn+1/2, tn+1)

=
∫∫ ∫ T

0

∫∫
qfδ(uη(tn+1/2), vδ(s′))Ωε

x

(
∆t
2
ωε0(tn+1/2 − s′)

+
∫ tn+1

tn+1/2

∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄ ds
)
dx′ dy′ ds′ dx dy,

and hence

J1

(
tn, tn+1/2) − J1(tn+1/2, tn+1

)
=
∫∫ ∫ T

0

∫∫
qfδ(uη(tn+1/2), vδ(s′))Ωε

x

(∫ tn+1/2

tn

∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄ ds

−
∫ tn+1

tn+1/2

∫ s

tn+1/2

ω′
ε0

(s̄− s′) ds̄ ds
)
dx dy ds′ dx′ dy′. (4.50)

Now using the Lipschitz continuity of qfδ we can replace variation in qfδ

by variation in u, and obtain, using
∫∫

ω′
ε0

(x− x′) dx dx′ = 0, that∣∣∣∣∫∫ qfδ(uη(x, y, tn+1/2), vδ(s′))ω′
ε0

(x− x′) dx dx′
∣∣∣∣

=
∣∣∣∣∫∫ ω′

ε0
(x− x′) dx dx′

×
[
qfδ(uη(x, y, tn+1/2), vδ(s′)) − qfδ(uη(x′, y, tn+1/2), vδ(s′))

]∣∣∣∣
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≤ ‖fδ‖Lip

∫∫ ∣∣ω′
ε0

(x− x′)
∣∣

×
∣∣uη(x, y, tn+1/2) − uη(x′, y, tn+1/2)

∣∣ dx dx′
= ‖fδ‖Lip

∫∫ ∣∣uη(x′ + z, y, tn+1/2) − uη(x′, y, tn+1/2)
∣∣ ∣∣ω′

ε0
(z)

∣∣ dx′ dz
≤ ‖fδ‖Lip

∫
1
|z|

∫ ∣∣uη(x′ + z, y, tn+1/2) − uη(x′, y, tn+1/2)
∣∣ dx′

×
∣∣zω′

ε0
(z)

∣∣ dz
≤ ‖fδ‖LipT.V.x

(
uη(tn+1/2)

) ∫ ∣∣zω′
ε0

(z)
∣∣ dz

≤ ‖fδ‖LipT.V.x
(
uη(tn+1/2)

)
,

using that
∫ ∣∣zω′

ε0
(z)

∣∣ dz = 1. We combine this with (4.50) to get∣∣∣J1(tn, tn+1/2) − J1(tn+1/2, tn+1)
∣∣∣

≤ ‖fδ‖Lip

∫∫
T.V.x

(
uη(tn+1/2)

)
ωε0(y − y′)

×
(∫ T

0

∫ tn+1/2

tn

∣∣∣∣∫ s

tn+1/2

∣∣ω′
ε0

(s̄− s′)
∣∣ ds̄∣∣∣∣ ds ds′

+
∫ T

0

∫ tn+1

tn+1/2

∣∣∣∣∫ s

tn+1/2

∣∣ω′
ε0

(s̄− s′)
∣∣ ds̄∣∣∣∣ ds ds′) dy′ dy.

Inserting the estimate∫ T

0

∣∣ω′
ε0

(s̄− s′)
∣∣ ds′ ≤ 1

ε0

∫
|ω′(z)| dz ≤ 2/ε0,

we obtain∣∣∣J1(tn, tn+1/2) − J1(tn+1/2, tn+1)
∣∣∣ ≤ ‖fδ‖Lip(∆t)2

2ε0
T.V.

(
uη(tn+1/2)

)
.

(4.51)
Next we consider the term J2. We first use the Lipschitz continuity of qfδ ,
which yields∣∣∣J2(tn, tn+1/2)

∣∣∣
≤ ‖fδ‖Lip

∫∫ ∫ T

0

∫∫ ∫ tn+1/2

tn

∣∣uη(x, y, s) − uη(x, y, tn+1/2)
∣∣

× |Ωx| ds dx′ dy′ ds′ dx dy

≤ ‖fδ‖Lip

ε

∫ tn+1/2

tn

∫∫ ∣∣uη(x, y, s) − uη(x, y, tn+1/2)
∣∣ ds dx dy

≤ ‖fδ‖Lip

ε

∫ tn+1/2

tn

∫∫ ∣∣uη(x, y, s) − uη(x, y, tn+1/2−)
∣∣ ds dx dy
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+
‖fδ‖Lip∆t

2ε

∫∫ ∣∣uη(x, y, tn+1/2−) − uη(x, y, tn+1/2)
∣∣ dx dy

≤ ‖fδ‖Lip∆t
ε

(‖fδ‖Lip∆t+ ∆x) T.V.
(
uη

(
tn+1/2

))
.

Here we integrated to unity in the variables s′ and y′, and estimated∫
|ω′

ε(x− x′)| dx′ by 2/ε. Finally, we used the continuity in time of the
L1-norm in the x-direction and estimated the error due to the projection.
A similar bound can be obtained for J2(tn+1/2, tn+1), and hence∣∣∣J2(tn, tn+1/2) − J2(tn+1/2, tn+1)

∣∣∣
≤
∣∣J2(tn, tn+1/2)

∣∣+ ∣∣J2(tn+1/2, tn+1)
∣∣

≤ ‖f‖Lip∆t
ε

(2‖f‖Lip∆t+ ∆x+ ∆y) T.V. (uη(tn)) , (4.52)

where we used that T.V.
(
uη(tn+1/2)

)
≤ T.V. (uη(tn)). Inserting estimates

(4.51) and (4.52) into (4.49) yields

|Iε,ε0
1 (uη, vδ)| ≤ ‖fδ‖LipT.V. (uη(0))

×
N−1∑
n=0

(
(∆t)2

2ε0
+

∆t
2ε

(2‖fδ‖Lip∆t+ ∆x+ ∆y)
)

≤ T ‖fδ‖LipT.V. (uη(0))

×
(

∆t
2ε0

+
1
2ε

(2‖fδ‖Lip∆t+ ∆x+ ∆y)
)
,

where we again used that T.V. (uη) is nonincreasing. An analogous argu-
ment gives the same estimate for Iε,ε0

2 . Adding the two inequalities, we
conclude that (4.48) holds.

It remains to estimate Iε,ε0
3 and Iε,ε0

4 . We aim at the following result.

Lemma 4.7. The following estimate holds:

|Iε,ε0
3 | + |Iε,ε0

4 | ≤ T (∆x+ ∆y)2

∆t ε
T.V. (u0) .

Proof. We discuss the term Iε,ε0
3 only. Recall that

Iε,ε0
3 (uη, vδ)

=
N−1∑
n=1

∫∫ ∫ T

0

∫∫ (
|uη(x, y, tn) − vδ(x′, y′, s′)|

− |uη(x, y, tn−) − vδ(x′, y′, s′)|
)

× Ω(x, x′, y, y′, tn, s′) dx′ dy′ ds′ dx dy.
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The function uη(x, y, tn+) is the projection of uη(x, y, tn−), that is,

uη(x, y, tn+) =
1

∆x∆y

∫∫
Iij

uη(x̄, ȳ, tn−) dx̄ dȳ. (4.53)

If we replace
∫∫

R2 by
∑

i,j

∫∫
Iij

and use (4.53), we obtain

Iε,ε0
3 (uη, vδ)

=
N−1∑
n=1

∫∫ ∫ T

0

∑
i,j

∫∫
Iij

[ ∣∣∣∣ 1
∆x∆y

∫∫
Iij

uη(x̄, ȳ, tn−) dx̄ dȳ − vδ(x′, y′, s′)
∣∣∣∣

− |uη(x, y, tn−) − vδ(x′, y′, s′)|
]
Ω(x, x′, y, y′, tn, s′) dx dy ds′ dx′ dy′

=
1

∆x∆y

N−1∑
n=1

∫∫ ∫ T

0

Ω(x, x′, y, y′, tn, s′)

×
∑
i,j

∫∫
Iij

∫∫
Iij

(
|uη(x̄, ȳ, tn−) − vδ(x′, y′, s′)|

− |uη(x, y, tn−) − vδ(x′, y′, s′)|
)
dx̄ dȳ dx dy ds′ dx′ dy′

=
1

2∆x∆y

N−1∑
n=1

∫∫ ∫ T

0

Ω(x, x′, y, y′, tn, s′)

×
∑
i,j

∫∫
Iij

∫∫
Iij

(
|uη(x̄, ȳ, tn−) − vδ(x′, y′, s′)|

− |uη(x, y, tn−) − vδ(x′, y′, s′)|
)
dx̄ dȳ dx dy ds′ dx′ dy′

+
1

2∆x∆y

N−1∑
n=1

∫∫ ∫ T

0

Ω(x̄, x′, ȳ, y′, tn, s′)

×
∑
i,j

∫∫
Iij

∫∫
Iij

(
|uη(x, y, tn−) − vδ(x′, y′, s′)|

− |uη(x̄, ȳ, tn−) − vδ(x′, y′, s′)|
)
dx dy dx̄d ȳ ds′ dx′ dy′

=
1

2∆x∆y

N−1∑
n=1

∫∫ ∫ T

0

(
Ω(x, x′, y, y′, tn, s′) − Ω(x̄, x′, ȳ, y′, tn, s′)

)
×
∑
i,j

∫∫
Iij

∫∫
Iij

(
|uη(x̄, ȳ, tn−) − vδ(x′, y′, s′)|

− |uη(x, y, tn−) − vδ(x′, y′, s′)|
)
dx̄ dȳ dx dy ds′ dx′ dy′.
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Estimating Iε,ε0
3 (uη, vδ) using the inverse triangle inequality we obtain∣∣∣Iε,ε0

3 (uη, vδ)
∣∣∣

≤ 1
2∆x∆y

N−1∑
n=1

∫∫ ∫ T

0

∑
i,j

∫∫
Iij

∫∫
Iij

|uη(x̄, ȳ, tn−) − uη(x, y, tn−)|

× |Ω(x, x′, y, y′, tn, s′) − Ω(x̄, x′, ȳ, y′, tn, s′)| dx̄ dȳ dx dy ds′ dx′ dy′.
(4.54)

The next step is to bound the test functions in (4.54) from above. To this
end we first consider for x, x̄ ∈ 〈i∆x, (i+ 1)∆x〉,∫

|ωε(x− x′) − ωε(x̄− x′)| dx′ =
∫

|ω(z) − ω(z + (x̄− x)/ε)| dz

=
∫ ∣∣∣∣∣

∫ z+(x̄−x)/ε

z

ω′(ξ) dξ

∣∣∣∣∣ dz
≤
∫ ∫ z+(x̄−x)/ε

z

|ω′(ξ)| dξ dz

≤
∫ ∫ ∆x/ε

0

|ω′(α+ β)| dα dβ =
2∆x
ε

.

Integrating the time variable to unity we easily see (really, this is easy!)
that∫∫ ∫ T

0

|Ω(x, x′, y, y′, tn, s′) − Ω(x̄, x′, ȳ, y′, tn, s′)| ds′ dx′dy′

=
∫ T

0

ωε0(s− s′) ds′

×
∫∫

|ωε(x− x′)ωε(y − y′) − ωε(x̄− x′)ωε(ȳ − y′)| dx′dy′

≤
∫∫

|ωε(x− x′) − ωε(x̄− x′)|ωε(y − y′) dx′dy′

+
∫∫

|ωε(y − y′) − ωε(ȳ − y′)|ωε(x̄− x′) dx′dy′

≤
∫

|ωε(x− x′) − ωε(x̄− x′)| dx′ +
∫

|ωε(y − y′) − ωε(ȳ − y′)| dy′

≤ (∆x+ ∆y)
2
ε
. (4.55)

Furthermore,

|uη(x̄, ȳ, tn−) − uη(x, y, tn−)| = |uη(x, ȳ, tn−) − uη(x, y, tn−)|
≤ T.V.〈j∆y,(j+1)∆y〉 (uη(x, · , tn−)) . (4.56)
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Inserting (4.55) and (4.56) into (4.54) yields

|Iε,ε0
3 (uη, vδ)|

≤ 1
2∆x∆y

2(∆x+ ∆y)
ε

×
N−1∑
n=1

∑
i,j

∫∫
Iij

∫∫
Iij

T.V.〈j∆y,(j+1)∆y〉 (uη(x, · , tn−)) dx̄ dȳ dx dy

≤ ∆x+ ∆y
ε∆x∆y

N−1∑
n=1

∆x(∆y)2
∑
i,j

∫ (i+1)∆x

i∆x

T.V.〈j∆y,(j+1)∆y〉 (uη(x, · , tn−))

≤ (∆x+ ∆y)
ε

∆y
N−1∑
n=1

T.V. (uη(tn−))

≤ (∆x+ ∆y)
ε

∆y
T

∆t
T.V. (uη(0)) , (4.57)

where in the final step we used that T.V. (uη(tn−)) ≤ T.V. (uη(0)).
The same analysis provides the following estimate for Iε,ε0

4 (vδ, uη):

|Iε,ε0
4 (uη, vδ)| ≤

(∆x+ ∆y)
ε

∆x
T

∆t
T.V. (uη(0)) . (4.58)

Adding (4.57) and (4.58) proves the lemma.

We now return to the proof of the estimate of Λε,ε0(uη, vδ). Combining
Lemma 4.6 and Lemma 4.7 we obtain

−Λε,ε0(uη, vδ)
≤ |Iε,ε0

1 (uη, vδ)| + |Iε,ε0
2 (uη, vδ)| + |Iε,ε0

3 (uη, vδ)| + |Iε,ε0
4 (uη, vδ)|

≤ T

[(
∆t
ε0

+
1
ε
({‖fδ‖Lip + ‖gδ‖Lip}∆t+ ∆x+ ∆y)

)
× max {‖fδ‖Lip, ‖gδ‖Lip} +

(∆x+ ∆y)2

∆t ε

]
T.V. (u0)

=: T T.V. (u0) Λ(ε, ε0, η). (4.59)

Returning to (4.44), we combine (4.45), (4.46), as well as (4.59), to obtain

‖S(T )u0 − uη(T )‖1

≤ ‖S(T )u0 − Sδ(T )u0‖1 + ‖Sδ(T )u0 − uη(T )‖1

≤ T max{ ‖f − fδ‖Lip, ‖g − gδ‖Lip }T.V. (u0) +
∥∥u0 − u0

∥∥
1

+
(
2ε+ max{ ‖fδ‖Lip, ‖gδ‖Lip }ε0 + ε0

(
C + O

(max{∆x,∆y}
∆t

))
+ T Λ(ε, ε0, η)

)
T.V. (u0) . (4.60)
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Next we take a minimum over ε and ε0 on the right-hand side of (4.60).
This has the form

min
ε,ε0

(
a ε+

b

ε
+ c ε0 +

d

ε0

)
= 2

√
ab+ 2

√
cd.

The minimum is obtained for ε =
√
b/a and ε0 =

√
d/c. We obtain

‖S(T )u0 − uη(T )‖1

≤ T max {‖f − fδ‖Lip, ‖g − gδ‖Lip}T.V. (u0) +
∥∥u0 − u0

∥∥
1

+ O
((

(∆x+ ∆y) + ∆t+
(∆x+ ∆y)2

∆t

)1/2
)

T.V. (u0) . (4.61)

We may choose the approximation of the initial data such that
∥∥u0 − u0

∥∥
1
=

O (∆x+ ∆y) T.V. (u0). Furthermore, if the flux functions f and g are
piecewise C2 and Lipschitz continuous, then

‖f − fδ‖Lip ≤ δ‖f ′′‖∞.
We state the final result in the general case.

Theorem 4.8. Let u0 be a function in L1(Rm) ∩ L∞(Rm) with bounded
total variation, and let fj for j = 1, . . . ,m be piecewise C2 functions that
in addition are Lipschitz continuous. Then

‖u(T ) − uη(T )‖1 ≤ O
(
δ + (∆x+ ∆y)1/2

)
as η → 0 when

∆x = K1∆y = K2∆t

for constants K1 and K2.

It is worthwhile to analyze the error terms in the estimate. We are clearly
making three approximations with the front-tracking method combined
with dimensional splitting. First of all, we are approximating the initial
data by step functions. That gives an error of order ∆x. Secondly, we
are approximating the flux functions by piecewise linear and continuous
functions; in this case the error is of order δ. A third source is the intrinsic
error in the dimensional splitting, which is of order (∆t)1/2, and finally, the
projection onto the grid gives an error of order (∆x)1/2.

The advantage of this method over difference methods is the fact that
the time step ∆t is not bounded by a CFL condition expressed in terms of
∆x and ∆y. The only relation that must be satisfied is (4.25), which allows
for taking large time steps. In practice it is observed that one can choose
CFL numbers5 as high as 10–15 without loss in accuracy. This makes it a
very fast method.

5In several dimensions the CFL number is defined as maxi(
∣∣f ′i

∣∣ ∆t/∆xi).
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4.4 Operator Splitting: Diffusion

The answer, my friend, is blowin’ in the wind,
the answer is blowin’ in the wind.

Bob Dylan, Blowin’ in the Wind (1968)

We show how to use the concept of operator splitting to derive a (weak)
solution of the parabolic problem6

ut +
m∑

j=1

fj(u)xj
= µ

m∑
j=1

uxjxj
(4.62)

by solving

ut + fj(u)xj = 0, j = 1, . . . ,m, (4.63)

and

ut = µ∆u, (4.64)

where we employ the notation ∆u =
∑

j uxjxj . To this end let Sj(t)u0 and
H(t)u0 denotes the solutions of (4.63) and (4.64), respectively, with initial
data u0. Introducing the heat kernel we may write

u(x, t) = (H(t)u0) (x, t)

=
∫

Rm

K(x− y, t)u0(y) dy

=
1

(4πµt)m/2

∫
Rm

exp

(
−|x− y|2

4µt

)
u0(y) dy.

Let ∆t be positive and tn = n∆t. Define

u0 = u0, un+1 = (H(∆t)Sm(∆t) · · ·S1(∆t))un, (4.65)

with the idea that un approximates u(x, tn). We will show that un converges
to the solution of (4.62) as ∆t→ 0.

Lemma 4.9. The following estimates hold :

‖un‖∞ ≤
∥∥u0

∥∥
∞, (4.66)

T.V. (un) ≤ T.V.
(
u0
)
, (4.67)

6Although we have used the parabolic regularization to motivate the appropriate

entropy condition, we have constructed the solution of the multidimensional conservation
law per se, and hence it is logically consistent to use the solution of the conservation law

in combination with operator splitting to derive the solution of the parabolic problem.

A different approach, where we start with a solution of the parabolic equation and
subsequently show that in the limit of vanishing viscosity the solution converges to the

solution of the conservation law, is discussed in Appendix B.
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‖un1 − un2‖L1
loc(R

m) ≤ C
√

|n1 − n2|∆t. (4.68)

Proof. Equation (4.66) is obvious, since both the heat equation and the
conservation law obey the maximum principle.

We know that the solution of the conservation law has the TVD property
(4.67); see (4.22). Thus it remains to show that this property is shared by
the solution of the heat equation. To this end, we have∫

Rm

∣∣∣H(t)u(x+ h) −H(t)u(x)
∣∣∣ dx

≤
∫

Rm

∫
Rm

|K(x+ h− y, t)u(y) −K(x− y, t)u(y)| dy dx

=
∫

Rm

∫
Rm

|K(y, t)u(x+ h− y) −K(y, t)u(x− y)| dy dx

=
∫

Rm

K(y, t) dy
∫

Rm

|u(x+ h) − u(x)| dx

=
∫

Rm

|u(x+ h) − u(x)| dx.

Dividing by |h| and letting h→ 0 we conclude that

T.V. (H(t)u) ≤ T.V. (u) ,

which proves (4.67).
Finally, we consider (4.68). We will first show that the approximate so-

lution obtained by splitting is weakly Lipschitz continuous in time. More
precisely, for each ball Br = {x | |x| ≤ r}, we will show that∣∣∣∣∫Br

(un1 − un2)φ
∣∣∣∣ ≤ Cr |n1 − n2|

(
‖φ‖∞ + max

j
‖φxj

‖∞
)
, (4.69)

for smooth test functions φ = φ(x), where Cr is a constant depending on r.
It is enough to study the case m2 = n1+1, and we set n1 = n. Furthermore,
we can write∣∣∣∣∫ (un+1−un)φdx

∣∣∣∣ ≤ ∣∣∣∣∫ (H(∆t)ũn − ũn)φdx
∣∣∣∣+∣∣∣∣∫ (ũn − un)φdx

∣∣∣∣ (4.70)

where ũn = (Sm(∆t) · · ·S1(∆t))un. This shows that it suffices to prove
this property for the solutions of the conservation law and the heat equa-
tion separately. From Theorem 4.3 we know that the solution of the
one-dimensional conservation law satisfies the stronger estimate

‖S(t)u− u‖1 ≤ C |t| .

This implies that (for simplicity with m = 2)

‖S2(t)S1(t)u− u‖1 ≤ ‖S2(t)S1(t)u− S1(t)u‖1 + ‖S1(t)u− u‖1

≤ C |t| ,
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and hence we infer that the last term of (4.70) is of order ∆t, that is,

‖ũn − un‖1 ≤ C‖φ‖∞ |∆t| .

The first term can be estimated as follows (for simplicity of notation we
assume m = 1). Consider∣∣∣∣∫ (H(t)u0 − u0)φdx

∣∣∣∣ =
∣∣∣∣∫ ∫ t

0

ut dt φ dx

∣∣∣∣ =
∣∣∣∣∫ ∫ t

0

uxx dt φ dx

∣∣∣∣
≤
∫ ∫ t

0

|uxφx| dt dx

≤ ‖φx‖∞
∫ t

0

∫
|ux| dx dt

≤ ‖φx‖∞
∫ t

0

T.V. (u) dt ≤ ‖φx‖∞T.V. (u0) t.

Thus we conclude that (4.69) holds.
From the TVD property (4.67), we have that

sup
|ξ|≤ρ

∫
|un(x+ ξ, t) − un(x, t)| dx ≤ ρT.V. (un) . (4.71)

Using Kružkov’s interpolation lemma (stated and proved right after this
proof) we can infer, using (4.69) and (4.71), that∫

Br

|un1(x) − un2(x)| dx ≤ Cr

(
ε+

|n1 − n2|∆t
ε

)
for all ε ≤ ρ. Choosing ε =

√
|n−m|∆t proves the result.

We next state and prove Kružkov’s interpolation lemma. To do this we
need the multi-index notation. A vector of the form α = (α1, . . . , αm),
where each component is a nonnegative integer, is called a multi-index of
order |α| = α1 + · · · + αm. Given a multi-index α we define

Dαu(x) =
∂|α|u(x)

∂xα1
1 · · · ∂xαm

m
.

Lemma 4.10 (Kružkov interpolation lemma). Let u(x, t) be a bound-
ed measurable function defined in the cylinder Br+r̂ × [0, T ], r̂ ≥ 0. For t ∈
[0, T ] and |ρ| ≤ r̂, assume that u possesses a spatial modulus of continuity

sup
|ξ|≤|ρ|

∫
Br

|u (x+ ξ, t) − u(x, t)| dx ≤ νr,T,r̂(|ρ| ;u), (4.72)
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where νr,T,r̂ does not depend on t. Suppose that for any φ ∈ C∞
0 (Br) and

any t1, t2 ∈ [0, T ],∣∣∣∣∫Br

(
u (x, t2) − u

(
x, t1

))
φ(x) dx

∣∣∣∣
≤ Constr,T

( ∑
|α|≤m

‖Dαφ‖L∞(Br)

)
|t2 − t1| ,

(4.73)

where α denotes a multi-index.
Then for t and t+ τ ∈ [0, T ] and for all ε ∈ 〈0, r̂],∫
Br

|u(x, t+ τ) − u(x, t)| dx ≤ Constr,T

(
ε+ νr,T,r̂(ε;u) +

|τ |
εm

)
. (4.74)

Proof. Let δ ∈ C∞
0 be a function such that

0 ≤ δ(x) ≤ 1, supp δ ⊆ B1,

∫
δ(x) dx = 1,

and define

δε(x) =
1
εm

δ
(x
ε

)
.

Furthermore, write f(x) = u(x, t + τ) − u(x, t) (suppressing the time
dependence in the notation for f),

σ(x) = sign (f(x)) for |x| ≤ r − ε, and 0 otherwise,

and

σε(x) = (σ ∗ δε)(x) =
∫
σ(x− y)δε(y) dy.

By construction, σε ∈ C∞
0 (Rm) and suppσε ⊆ Br. Furthermore, |σε| ≤ 1

and ∣∣∣∣ ∂∂xj
σε

∣∣∣∣ ≤ 1
εm

∫ ∣∣∣∣ ∂∂xj
δ(
x− y

ε
)
∣∣∣∣σ(y) dy

≤ 1
εm+1

∫ ∣∣∣∣δxj
(
x− y

ε
)
∣∣∣∣σ(y) dy ≤ C

ε
.

This easily generalizes to

‖Dασε‖∞ ≤ C

ε|α| .

Next we have the elementary but important inequality∫
Br

|f(x)| dx =
∣∣∣∣∫Br

|f(x)| dx
∣∣∣∣

=
∣∣∣∣∫Br

(|f(x)| − σε(x)f(x) + σε(x)f(x)) dx
∣∣∣∣
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≤
∣∣∣∣∫Br

(|f(x)| − σε(x)f(x)) dx
∣∣∣∣+ ∣∣∣∣∫Br

σε(x)f(x) dx
∣∣∣∣

≤
∫
Br

| |f(x)| − σε(x)f(x)| dx+
∣∣∣∣∫Br

σε(x)f(x) dx
∣∣∣∣

:= I1 + I2.

We estimate I1 and I2 separately. Starting with I1 we obtain

I1 =
∫
Br

| |f(x)| − σε(x)f(x)| dx

=
∫
Br

∣∣∣∣ |f(x)| 1
εm

∫
δ(
x− y

ε
) dy − 1

εm

∫
δ(
x− y

ε
)σ(y) dy f(x)

∣∣∣∣ dx
=

1
εm

∫ ∫
δ(
x− y

ε
) ||f(x)| − σ(y)f(x)| dy dx.

The integrand is integrated over the domain

{(x, y) | |x| ≤ r, |x− y| ≤ ε};

see Figure 4.2. We further divide this set into two parts: (i) |y| ≥ r − ε,

x

y

−r

−r + ε

−r − ε

r

r − ε

r + ε

(i)

(ii)

(i)

Figure 4.2. The integration domain.

and (ii) |y| ≤ r − ε; see Figure 4.2. In case (i) we have

| |f(x)| − σ(y)f(x)| = |f(x)| ,

since σ(y) = 0 whenever |y| ≥ r − ε. In case (ii)

| |f(x)| − σ(y)f(x)| = | |f(x)| − sign (f(y)) f(x)| ≤ 2 |f(x) − f(y)|
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using the elementary inequality

| |a| − sign (b) a| = | |a| − |b| + sign (b) (b− a)|
≤ | |a| − |b| | + |sign (b) (b− a)|
≤ 2 |a− b| .

Thus

I1 ≤ 2
εm

∫
Br

∫
Br−ε

δ(
x− y

ε
) |f(x) − f(y)| dy dx

+
1
εm

∫
Br

∫
|y|≥r−ε

δ(
x− y

ε
) |f(x)| dy dx

≤ 2
∫
Br

∫
B1

δ(z) |f(x) − f(x− εz)| dz dx

+ ‖f‖∞
∫
Br

∫
|y|≥r−ε

δ(
x− y

ε
) dy dx

≤ 2
∫
B1

δ(z) sup
|ξ|≤ε

∫
Br

|f(x) − f(x+ ξ)| dx dz

+ ‖f‖∞
∫
Br+ε\Br−ε

1
εm

∫
Br

δ(
x− y

ε
) dx dy

≤ 2ν(ε; f) + ‖f‖∞vol (Br+ε \ Br−ε)
≤ 2ν(ε; f) + ‖f‖∞Crε.

Furthermore,

ν(ε; f) ≤ 2ν(ε;u).

The second term I2 is estimated by the assumptions of the lemma, namely,

I2 =
∣∣∣∣∫Br

σε(x)f(x) dx
∣∣∣∣ ≤ Constr,T

( ∑
|α|≤m

‖Dασε‖L∞(Br)

)
|τ | ≤ C

|τ |
εm

.

Combining the two estimates we conclude that∫
Br

|u(x, t+ τ) − u(x, t)| dx ≤ Cr

(
ε+ νr,T,r̂(ε;u) +

|τ |
εm

)
.

Next we need to extend the function un to all times. First, define

un+j/(m+1) = Sju
n+(j−1)/(m+1), j = 1, . . . ,m.

Now let

u∆t(x, t) =


Sj((m+ 1)(t− tn+(j−1)/(m+1)))un+(j−1)/(m+1)

for t ∈ [tn+(j−1)/(m+1), tn+j/(m+1)〉,
H((m+ 1)(t− tn+m/(m+1)))un+m/(m+1)

for t ∈ [tn+m/(m+1), tn+1〉.

(4.75)
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The estimates in Lemma 4.9 carry over to the function u∆t. Fix T > 0.
Applying Theorem A.8 we conclude that there exists a sequence of ∆t→ 0
such that for each t ∈ [0, T ] the function u∆t(t) converges to a function
u(t), and the convergence is in C([0, T ];L1

loc(R
m)). It remains to show that

u is a weak solution of (4.62), or∫
Rm

∫ t

0

(uφt + f(u) · ∇φ− εu∆φ) dt dx = 0 (4.76)

for all smooth and compactly supported test functions φ. We have∫
Rm

∫ tn+j/(m+1)

tn+(j−1)/(m+1)

( 1
m+ 1

u∆t φt + f(u∆t) · ∇φ
)
dt dx

=
1

m+ 1

∫
Rm

∫ ∆t

0

(
un+(j−1)/(m+1)(x, t̃)φt

(
x,
t̃− tn+(j−1)/(m+1)

m+ 1

)
+ f(un+(j−1)/(m+1)) · ∇φ

(
x,
t̃− tn+(j−1)/(m+1)

m+ 1

))
dt̃ dx

=
1

m+ 1

∫
Rm

(u∆tφ)
∣∣∣t=tn+j/(m+1)

t=tn+(j−1)/(m+1)

dx, (4.77)

for j = 1, . . . ,m, where we have used that un+(j−1)/(m+1) is a solution of
the conservation law on the strip t ∈ [tn+(j−1)/(m+1), tn+j/(m+1)〉. Similarly,
we find for the solution of the heat equation that∫

Rm

∫ tn+1

tn+m/(m+1)

(
1

m+ 1
u∆tφt + εu∆t∆φ

)
dt dx

=
1

m+ 1

∫
Rm

(
(u∆tφ) |t=tn+m/(m+1) − (u∆tφ) |t=tn+1

)
dx.

(4.78)

Summing (4.77) for j = 1, . . . ,m, and adding the result to (4.78), we obtain∫
Rm

∫ t

0

(
1

m+ 1
u∆tφt + f∆t(u∆t) · ∇φ− εχm+1u∆t∆φ

)
dt dx = 0,

(4.79)
where

f∆t = (χ1f1, . . . , χmfm)

and

χj =

{
1 for t ∈ ∪n[tn+(j−1)/(m+1), tn+j/(m+1)〉,
0 otherwise.

As ∆t → 0, we have χj
∗
⇀ 1/(m+ 1), which proves (4.76). We summarize

the result as follows.

Theorem 4.11. Let u0 be a function in L∞(Rm)∩L1(Rm)∩BV (Rm), and
assume that fj are Lipschitz continuous functions for j = 1, . . . ,m. Define
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the family of functions {u∆t} by (4.65) and (4.75). Fix T > 0. Then there
exists a sequence of ∆t→ 0 such that {u∆t(t)} converges to a weak solution
u of (4.62). The convergence is in C([0, T ];L1

loc(R
m)).

One can prove that a weak solution of (4.62) is indeed a classical solution;
see [112]. Hence, by uniqueness of classical solutions, the sequence {u∆t}
converges for any sequence {∆t} tending to zero.

4.5 Operator Splitting: Source

Experience must be our only guide;
Reason may mislead us.

J. Dickinson, the Constitutional Convention (1787)

We will use operator splitting to study the inhomogeneous conservation
law

ut +
m∑

j=1

fj(u)xj = g(x, t, u), u|t=0 = u0, (4.80)

where the source term g is assumed to be continuous in (x, t) and Lipschitz
continuous in u. In this case the Kružkov entropy condition reads as follows.
The bounded function u is a weak entropy solution on [0, T ] if it satisfies∫ T

0

∫
Rm

(
|u− k|ϕt +sign (u− k)

m∑
j=1

(fj(u) − fj(k))ϕxj

)
dx1 · · · dxm dt

+
∫

Rm

|u0 − k|ϕ|t=0 dx1 · · · dxm −
∫

Rm

(|u− k|ϕ)|t=T dx1 · · · dxm

≥
∫ T

0

∫
Rm

sign (u− k)ϕg(x, t, u) dx1 · · · dxm dt, (4.81)

for all constants k ∈ R and all nonnegative test functions ϕ ∈ C∞
0 (Rm ×

[0, T ]).
To simplify the presentation we consider only the case with m = 1, and

where g = g(u). Thus

ut + f(u)x = g(u). (4.82)

The case where g also depends on (x, t) is treated in Exercise 4.7. Let
S(t)u0 and R(t)u0 denote the solutions of

ut + f(u)x = 0, u|t=0 = u0, (4.83)

and

ut = g(u), u|t=0 = u0, (4.84)
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respectively. Define the sequence {un} by (we still use tn = n∆t)

u0 = u0, un+1 = (S(∆t)R(∆t))un

for some positive ∆t. Furthermore, we need the extension to all times,
defined by7

u∆t(x, t) =

{
S(2(t− tn))un for t ∈ [tn, tn+1/2〉,
R
(
2
(
t− tn+1/2

))
un+1/2 for t ∈ [tn+1/2, tn+1〉,

(4.85)

with

un+1/2 = S(∆t)un, tn+1/2 =
(
n+

1
2

)
∆t.

For this procedure to be well-defined, we must be sure that the ordinary
differential equation (4.84) is well-defined. This is the case if g is uniformly
Lipschitz continuous in u, i.e.,

|g(u) − g(v)| ≤ ‖g‖Lip |u− v| . (4.86)

For convenience, we set γ = ‖g‖Lip. This assumption also implies that the
solution of (4.84) does not “blowup” in finite time, since

|g(u)| ≤ |g(0)| + γ |u| ≤ Cg(1 + |u|), (4.87)

for some constant Cg. Under this assumption on g we have the following
lemma.

Lemma 4.12. Assume that u0 is a function in L1
loc(R), and that u0 is of

bounded variation. Then for n∆t ≤ T , the following estimates hold :

(i) There is a constant M1 independent of n and ∆t such that

‖un‖∞ ≤M1. (4.88)

(ii) There is a constant M2 independent of n and ∆t such that

T.V. (un) ≤M2. (4.89)

(iii) There is a constant M3 independent of n and ∆t such that for t1 and
t2, with 0 ≤ t1 ≤ t2 ≤ T , and for each bounded interval B ⊂ R,∫

B

|u∆t(x, t1) − u∆t(x, t2)| dx ≤M3 |t1 − t2| . (4.90)

Proof. We start by proving (i). The solution operator St obeys a maximum
principle, so that

∥∥un+1/2
∥∥
∞ ≤ ‖un‖∞. Multiplying (4.84) by sign (u), we

find that

|u|t = sign (u) g(u) ≤ |g(u)| ≤ Cg(1 + |u|),

7Essentially replacing the operator H used in operator splitting with respect to

diffusion by R in the case of a source.
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where we have used (4.87). By Gronwall’s inequality (see Exercise 4.5), for
a solution of (4.84), we have that

|u(t)| ≤ eCgt(1 + |u0|) − 1.

This means that∥∥un+1
∥∥
∞ ≤ eCg∆t

(
1 +

∥∥∥un+1/2
∥∥∥
∞

)
− 1 ≤ eCg∆t (1 + ‖un‖∞) − 1,

which by induction implies

‖un‖∞ ≤ eCgtn (1 + ‖u0‖∞) − 1.

Setting

M1 = eCgT (1 + ‖u0‖∞) − 1

proves (i).
Next, we prove (ii). The proof is similar to that of the last case, since

St is TVD, T.V.
(
un+1/2

)
≤ T.V. (un). As before, let u be a solution of

(4.84) and let v be another solution with initial data v0. Then we have
(u− v)t = g(u)− g(v). Setting w = u− v, and multiplying by sign (w), we
find that

|w|t = sign (w) (g(u) − g(v)) ≤ γ |w| .

Then by Gronwall’s inequality,

|w(t)| ≤ eγt |w(0)| .

Hence, ∣∣un+1(x) − un+1(y)
∣∣ ≤ eγ∆t

∣∣∣un+1/2(x) − un+1/2(y)
∣∣∣ .

This implies that

T.V.
(
un+1

)
≤ eγ∆tT.V.

(
un+1/2

)
≤ eγtT.V. (un) .

Inductively, we then have that

T.V. (un) ≤ eγtnT.V. (u0) ,

and setting M2 = eγT concludes the proof of (ii).
Regarding (iii), we know that∫

B

∣∣∣un+1/2(x) − un(x)
∣∣∣ dx ≤ C∆t.
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We also have that∫
B

∣∣∣un+1(x) − un+1/2(x)
∣∣∣ dx =

∫
B

∣∣∣∣∣
∫ ∆t

0

g (u∆t(x, t− tn)) dt

∣∣∣∣∣ dx
≤
∫

B

∫ ∆t

0

|g (u∆t(x, t− tn))| dt dx

≤ Cg

∫ ∆t

0

∫
B

(1 +M1) dx dt

= |B|Cg(1 +M1)∆t,

where |B| denotes the length of B. Setting M3 = C+ |B|Cg(1+M1) shows
that ∫

B

∣∣un+1(x) − un(x)
∣∣ ≤M3∆t,

which implies (iii).

Fix T > 0. Theorem A.8 implies the existence of a sequence ∆t → 0
such that for each t ∈ [0, T ], the function u∆t(t) converges in L1

loc(R)
to a bounded function of bounded variation u(t). The convergence is in
C([0, T ];L1

loc(R
m)). It remains to show that u solves (4.82) in the sense of

(4.81).
Using that u∆t is an entropy solution of the conservation law without

source term (4.83) in the interval [tn, tn+1/2], we obtain8

2
∫ tn+1/2

tn

∫ (
1
2
|u∆t − k|ϕt + sign (u∆t − k) (f(u∆t) − f(k))ϕx

)
dx dt

+
∫

(|u∆t − k|ϕ)
∣∣∣t=tn

t=tn+1/2

dx ≥ 0. (4.91)

Regarding solutions of (4.84), since kt = 0 for any constant k we find that

|u− k|t = sign (u− k) (u− k)t = sign (u− k) g(u).

Multiplying this by a test function φ(t) and integrating over s ∈ [0, t] we
find after a partial integration that∫ t

0

(
|u− k|φs − sign (u− k) g(u)φ

)
ds− uφ|s=t

s=0 = 0.

Since u∆t is a solution of the ordinary differential equation (4.84) on the
interval [tn+1/2, tn+1] (with time running “twice as fast”; see (4.85)), we

8The constants 2 and 1
2

come from the fact that time is running “twice as fast” in

the solution operators S and R in (4.85) (cf. also (4.14)–(4.15)).
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find that

2
∫ tn+1/2

tn

∫ (
1
2
|u∆t − k|ϕt − sign (u∆t − k) g(u∆t)ϕ

)
dx dt

+
∫

(|u∆t − k|ϕ)
∣∣∣t=tn+1/2

t=tn+1

dx = 0.

Adding this and (4.91), and summing over n, we obtain

2
∫ T

0

∫ (
1
2
|u∆t − k|ϕt + χ∆tsign (u∆t − k) (f(u∆t) − f(k))ϕx

− χ̃∆tsign (u∆t − k) g(u∆t)ϕ
)
dx dt

−
∫

(|u∆t − k|ϕ) |t=T
t=0 dx ≥ 0,

where χ∆t and χ̃∆t denote characteristic functions of the sets ∪n[tn, tn+1/2〉
and ∪n[tn+1/2, tn+1〉, respectively. We have that χ∆t

∗
⇀ 1

2 and χ̃∆t
∗
⇀ 1

2 ,
and hence we conclude that (4.81) holds in the limit as ∆t→ 0.

Theorem 4.13. Let f(u) be Lipschitz continuous, and assume that g =
g(u) satisfies the bound (4.86). Let u0 be a bounded function of bounded
variation. Then the initial value problem

ut + f(u)x = g(u), u(x, 0) = u0(x) (4.92)

has a weak entropy solution, which can be constructed as the limit of the
sequence {u∆t} defined by (4.85).

4.6 Notes

Dimensional splitting for hyperbolic equations was first introduced by
Bagrinovskĭı and Godunov [3] in 1957. Crandall and Majda made a com-
prehensive and systematic study of dimensional splitting (or the fractional
steps method) in [38]. In [39] they used dimensional splitting to prove con-
vergence of monotone schemes as well as the Lax–Wendroff scheme and the
Glimm scheme, i.e., the random choice method.

There are also methods for multidimensional conservation laws that are
intrinsically multidimensional. However, we have here decided to use di-
mensional splitting as our technique because it is conceptually simple and
allows us to take advantage of the one-dimensional analysis.

Another natural approach to the study of multidimensional equations
based on the front-tracking concept is first to make the standard front-
tracking approximation: Replace the initial data by a piecewise constant
function, and replace flux functions by piecewise linear and continuous
functions. That gives rise to truly two-dimensional Riemann problems at
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each grid point (i∆x, j∆y). However, that approach has turned out to be
rather cumbersome even for a single Riemann problem and piecewise linear
and continuous flux functions f and g. See Risebro [122].

The one-dimensional front-tracking approach combined with dimensional
splitting was first introduced in Holden and Risebro [69]. The theorem on
the convergence rate of dimensional splitting was proved independently
by Teng [138] and Karlsen [80, 81]. Our presentation here follows Haugse,
Lie, and Karlsen [100]. Section 4.4, using operator splitting to solve the
parabolic regularization, is taken from Karlsen and Risebro [82]. The
Kružkov interpolation lemma, Lemma 4.10, is taken from [87]; see also
[82].

The presentation in Section 4.5 can be found in Holden and Risebro [70],
where also the case with a stochastic source is treated. The convergence
rate in the case of operator splitting applied to a conservation law with a
source term is discussed in Langseth, Tveito, and Winther [93].

Exercises

4.1 Consider the initial value problem

ut + f(u)x + g(u)y = 0, u|t=0 = u0,

where f , g are Lipschitz continuous functions, and u0 is a bounded,
integrable function with finite total variation.

a. Show that the solution u is Lipschitz continuous in time; that
is,

‖u(t) − u(s)‖1 ≤ C T.V. (u0) |t− s| .
b. Let v0 be another function with the same properties as u0. Show

that if u0 ≤ v0, then also u ≤ v almost everywhere, where v is
the solution with initial data v0.

4.2 Consider the initial value problem

ut + f(u)x = 0, u|t=0 = u0, (4.93)

where f is a Lipschitz continuous function and u0 is a bounded,
integrable function with finite total variation. Write

f = f1 + f2

and let Sj(t)u0 denote the solution of

ut + fj(u)x = 0, u|t=0 = u0.

Prove that operator splitting converges to the solution of (4.93).
Determine the convergence rate.
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4.3 Consider the heat equation in R
m,

ut =
m∑

i=1

∂2u

∂x2
i

, u(x, 0) = u0(x). (4.94)

Let Hi
t denote the solution operator for the heat equation in the ith

direction, i.e., we write the solution of

ut =
∂2u

∂x2
i

, u(x, 0) = u0(x),

as Hi
tu0. Define

un(x) =
[
Hm

∆t ◦ · · · ◦H1
∆t

]n
u0(x),

un+j/m(x) = Hj
∆t ◦H

j−1
∆t ◦ · · · ◦H1

∆tu
n(x),

for j = 1, . . . ,m, and n ≥ 0.
For t in the interval [tn + ((j − 1)/m)∆t, tn + (j/m)∆t] define

u∆t(x, t) = Hj
m(t−tn+(j−1)/m)u

n+(j−1)/m(x).

If the initial function u0(x) is bounded and of bounded variation,
show that {u∆t} converges in C([0, T ];L1

loc(R
m)) to a weak solution

of (4.94).

4.4 We consider the viscous conservation law in one space dimension

ut + f(u)x = uxx, u(x, 0) = u0(x), (4.95)

where f satisfies the “usual” assumptions and u0 is in L1 ∩ BV .
Consider the following scheme based on operator splitting:

U
n+1/2
j =

1
2
(
Un

j+1 + Un
j−1

)
− λ

(
f
(
Un

j+1

)
− f

(
Un

j−1

))
,

Un+1
j = U

n+1/2
j + µ

(
U

n+1/2
j+1 − 2Un+1/2

j + U
n+1/2
j−1

)
,

for n ≥ 0, where λ = ∆t/∆x and µ = ∆t/∆x2. Set

U0
j =

1
∆x

∫ (j+1/2)∆x

(j−1/2)∆x

u0(x) dx.

We see that we use the Lax–Friedrichs scheme for the conservation
law and an explicit difference scheme for the heat equation. Let

u∆t(x, t) = Un
j

for
(
j − 1

2

)
∆x ≤ x <

(
j + 1

2

)
∆x and n∆t < t ≤ (n+ 1)∆t.

a. Show that this gives a monotone and consistent scheme,
provided that a CFL condition holds.

b. Show that there is a sequence of ∆t’s such that u∆t converges
to a weak solution of (4.95) as ∆t→ 0.
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4.5 We outline a proof of some Gronwall inequalities.

a. Assume that u satisfies

u′(t) ≤ γu(t).

Show that u(t) ≤ eγtu(0).
b. Assume now that u satisfies

u′(t) ≤ C(1 + u(t)).

Show that u(t) ≤ eCt(1 + u(0)) − 1.
c. Assume that u satisfies

u′(t) ≤ c(t)u(t) + d(t),

for 0 ≤ t ≤ T , where c(t) and d(t) are in L1([0, T ]). Show that

u(t) ≤
(
u(0) +

∫ t

0

d(s) exp
(
−
∫ s

0

c(s̃) ds̃
)
ds

)
exp

(∫ t

0

c(s) ds
)

for t ≤ T .
d. Assume that u is in L1([0, T ]) and that for t ∈ [0, T ],

u(t) ≤ C1

∫ t

0

u(s) ds+ C2.

Show that

u(t) ≤ C2e
C1t.

e. Assume that u, f , and g are in L1([0, T ]), and that g is non-
negative, while f is strictly positive and nondecreasing. Assume
that

u(t) ≤ f(t) +
∫ t

0

g(s)u(s) ds, t ∈ [0, T ].

Show that

u(t) ≤ f(t) exp
(∫ t

0

g(s) ds
)
, t ∈ [0, T ].

4.6 Assume that u and v are entropy solutions of

ut + f(u)x = g(u), u(x, 0) = u0(x),
vt + f(v)x = g(v), v(x, 0) = v0(x),

where u0 and v0 are in L1(R) ∩ BV (R), and f and g satisfy the
assumptions of Theorem 4.13.

a. Use the entropy formulation (4.81) and mimic the arguments
used to prove (2.53) to show that for any nonnegative test
function ψ,
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|u(x, t) − v(x, t)|ψt + q(u, v)ψx

)
dt dx

−
∫

|u(x, T ) − v(x, T )|ψ(x, T ) dx

+
∫

|u0(x) − v0(x)|ψ(x, 0) dx

≥
∫∫

sign (u− v) (g(u) − g(v))ψ dt dx.

b. Define ψ(x, t) by (2.54), and set

h(t) =
∫

|u(x, t) − v(x, t)|ψ(x, t) dx.

Show that

h(T ) ≤ h(0) + γ

∫ T

0

h(t) dt,

where γ denotes the Lipschitz constant of g. Use the previous
exercise to conclude that

h(T ) ≤ h(0)
(
1 + γTeγT

)
.

c. Show that

‖u( · , t) − v( · , t)‖1 ≤ ‖u0 − v0‖1

(
1 + γteγt

)
,

and hence that entropy solutions of (4.92) are unique. Note
that this implies that {u∆t} defined by (4.85) converges to the
entropy solution for any sequence {∆t} such that ∆t→ 0.

4.7 We consider the case where the source depends on (x, t). For u0 ∈
L1

loc ∩BV , let u be an entropy solution of

ut + f(u)x = g(x, t, u), u(x, 0) = u0(x), (4.96)

where g bounded for each fixed u and continuous in t, and satisfies

|g(x, t, u) − g(x, t, v)| ≤ γ |u− v| ,
T.V. (g( · , t, u)) ≤ b(t),

where the constant γ is independent of x and t, for all u and v and
for a bounded function b(t) in L1([0, T ]). We let St be as before, and
let R(x, t, s)u0 denote the solution of

u′(t) = g(x, t, u), u(s) = u0,

for t > s.

a. Define an operator splitting approximation u∆t using St and
R(x, t, s).

b. Show that there is a sequence of ∆t’s such that u∆t converges
in C([0, T ];L1

loc(R)) to a function of bounded variation u.
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c. Show that u is an entropy solution of (4.96).

4.8 Show that if the initial data u0 of the heat equation ut = ∆u is
smooth, that is, u0 ∈ C∞

0 , then

‖u(t) − u0‖1 ≤ C t.

Compare this result with (4.4).




