
Requirements are a ubiquitous part of our lives, so it may seem strange that they
have been singled out for study in computer science. Requirements and communi-
cation are inextricably intertwined. We start making our requirements clear soon
after we are born by crying, usually for food. Parents soon become expert require-
ments engineers in inferring what their children want; but even in the cradle the
dilemma of requirements is exposed. A baby’s cry is ambiguous. Does he or she
want food, warmth or a cuddle? How do we translate our interpretation into the
right food, degree of warmth, or appropriate rocking motion?

The requirements–communication problem stays with us throughout our lives as
we struggle to make our needs known to others. In professional life, requirements
are more closely bound to design. Much human endeavour is directed towards
creating things, be they goods or services. To create, you might be lucky and have
clairvoyant inspiration; for most of us, it is better to start with a more prosaic
definition of what the customer wants. All branches of engineering and manufac-
ture have experienced the requirements problem since the industrial revolution.
Creation, design and requirements have become competitive siblings. In some
cases, design and creativity led requirements to the discovery of new possibilities,
such as when Abraham Darby built the first iron bridge across the River Severn in
1796. Later requirements for cheaper bridges drove the designer of the Tay railway
bridge to design an unsafe structure that led to the disastrous collapse of the bridge
as a train crossed it during a fierce storm. So if requirements have always been with
us, why has computer science discovered the need to make a special study of this
phenomenon? The answer lies in complexity and the nature of software. Computer
systems apply to nearly every walk of life. They appear in domains ranging from
engineering to business, education and leisure. That gives computer scientists a par-
ticular problem. They have to become knowledgeable in many different domains
that are not their immediate areas of expertise; hence, requirements is a special
problem because of the ubiquitous nature of software. Requirements engineering is
the area of computer science that addresses this concern, although it cannot claim
sole ownership. Systems engineering, a product of other design disciplines, also
encounters the requirements problem. I shall return to the wider perspective in the
final chapter.

1.1 Motivation for Requirements Engineering

There are many definitions of requirements engineering (RE); however, they all
share the idea that requirements involves finding out what people want from a com-

1 Introduction

1

text.qxd 16/04/2002 15:32 Page 1

puter system, and understanding what their needs mean in terms of design. RE is
closely related to software engineering, which focuses more on the process of
designing the system that users want. Perhaps the most concise summary comes
from Barry Boehm: requirements are “designing the right thing” as opposed to soft-
ware engineering, which is “designing the thing right” (Boehm, 1981).

Requirements have always been with us in any human act of design; for instance,
the Titanic disaster can be construed as poor requirements analysis, in that the
shipbuilder and ship owner failed to set out the precise specification of what
“unsinkability” meant. The Titanic was correctly built to the requirements that
specified that the hull be subdivided into watertight compartments, with electri-
cally operated doors between the bulkheads that could be closed from the bridge.
The owners and shipbuilders thought this equated to unsinkability, because up to
three contiguous compartments could be flooded and the ship would not sink.
Unfortunately they never thought that an accident would flood four contiguous
compartments, which is what happened as a consequence of the glancing blow from
the iceberg collision. The rest is history. The tragedy also uncovered further mis-
taken requirements such as the false assumption that lifeboats sufficient for all the
passengers and crew would not be necessary. This assumption saved money during
construction, but with terrible consequences.

We have not improved our practice much since 1910, and mistakes in RE still
cause problems. Modern aircraft are controlled by computers. An A320 airbus had
just taken off from Gatwick airport when the pilot discovered the aircraft making
an unexpected turn to the left. The flight crew struggled to control the aircraft and
thought that the aerilons (flight controls on the wings, which alter the angle of
banking as an aircraft turns) were not working correctly, over-compensating for
slight changes in direction. They eventually managed to land the aircraft correctly
having struggled with the emergency flight management procedures. These proved
to be impossible to find via the menu hierarchy in their cockpit VDU displays but
the pilot, luckily, had an old paper manual. The safe return of the aircraft was due
to the skill of the flight crew rather than the system design, which did not diagnose
the problem in the first place and which then hindered their attempts to correct the
failure.

The cause of the near accident was that a maintenance crew had been servicing
the hydraulics that control the wing slats. The wing slats automatically open and
close to equalize pressure on each wing when the aircraft turns. The hydraulics can
be disabled by placing them into service mode, so that damage by manual manipu-
lation of the slats is avoided. When the hydraulics are disabled the slats open and
close with small changes in air pressure leading to instability. Unfortunately, the
maintenance crew left the hydraulics in maintenance mode so the slats did not work
on take-off, and nobody noticed beforehand. The maintenance crew were new,
poorly trained and under time pressure to complete a service on schedule. The
management culture of pressure and inadequate resources led to the window of
opportunity for disaster. The designer had never thought that a requirement for a
warning light showing that the hydraulics were in maintenance mode would ever be
needed; neither did the pre-flight checklist consider this to be a hazard worth
checking.

Computer systems have made the requirements problem worse because we build
systems in many different domains. The requirements engineer (or designer) has to
understand not only what the user wants, but also the implications of the domain

2 User-Centred Requirements Engineering

text.qxd 16/04/2002 15:32 Page 2

and what is achievable. Since gathering requirements inevitably involves communi-
cation between people, and natural language is prone to misinterpretation, require-
ments analysis has been a frequent cause of system failure.

The failure to undertake a thorough requirements analysis is illustrated by many
well-publicized computer system disaster stories. One of the most prominent in
recent years was the London Ambulance Service’s Computer Aided Dispatch System
(Finkelstein and Dowell, 1996; HMSO, 1993). This was intended to replace the man-
ual system of answering emergency telephone calls from members of the public,
finding out where the emergency was and then dispatching one of the available
ambulances to the location of the accident. Superficially this was a simple resource
allocation problem. While nearly every possible mistake in software development
and project management was made in this case, poor RE played its part. The soft-
ware developer was a small systems house with little experience in the domain of
ambulance call-dispatch systems. The systems analysts, nominally in charge of
requirements, were the in-house software development team of the London
Regional Health Authority. The users were the operators in the call-dispatch centres
whose job it was to allocate ambulances to emergency calls, and the ambulance
crews themselves. Little, if any, requirements analysis was carried out with these real
users. The Regional Health Authority development team specified the requirements.
There was no consultation or opportunity for feedback until the system was ready
for deployment. At that stage, performance problems were so bad that just getting
the system to work was an uphill struggle. Poor requirements analysis failed to
detect several problems: radio blackspots where the ambulance crews could not be
contacted, poor user interfaces on the mobile data terminals which resulted in the
ambulance crews not reporting call progress accurately, with the knock-on effect
that the system database became inaccurate, causing the automatic call allocation
program to lose ambulances, dispatch ambulance crews who were not free, send
several ambulances to the same call, and so on.

The London Ambulance Service is not alone in the litany of RE failures. Govern-
ment departments and the armed services in particular have a long track record of
getting it wrong. The UK social services tried to computerize the claims payment
systems in the 1980s, but had to cancel the whole development because the require-
ments could never be stabilized. The updated UK air traffic control system was sup-
posed to have been implemented in 1998 but at the time of writing has yet to go live,
partly because the requirements for the complex 3-D visual displays took so long to
finalize. A similar problem has emerged with Eurocontrol (Europe-wide air traffic
control) where requirements for flight co-ordination have caused endless problems.
In the USA the Pentagon’s systems have also had their share of requirements disas-
ters, ranging from Patriot missile radars that could not see a Scud warhead among
missile debris (missed requirement that Scud missiles were so badly engineered
they fell apart on the way down) to logistics systems that were never implemented
(Potts, 1999).

So the penalty of getting RE wrong is high. Systems may fail, but even if they do
not, their use is sub-optimal or design costs are wasted. Studies of banking systems
showed that users only used 30 per cent of the functions provided (Eason, 1988).
There is plenty of evidence that RE is a difficult task. Stories of spectacular system
failures (e.g. the London Stock Exchange Taurus system and the London Ambulance
call-dispatch system outlined above) point to poor requirements capture or even
failure to make any serious attempt to capture user requirements. So is it just a

1 · Introduction 3

text.qxd 16/04/2002 15:32 Page 3

problem of motivation and education? In spite of several well-publicized disasters
and an invisible legacy of system failures, many systems have been developed suc-
cessfully, and most companies now depend on computerized accounts, payroll, and
stock control systems. The key to the problem is change. If organizations kept to the
same practices and the world stayed the same, then requirements would be easier;
but they don’t. Managers want to improve business practices, governments change
tax laws, businesses have to respond to challenges from competitors. Consequently,
requirements can never be said to be complete and computer system designers are
shooting at a moving target. This problem has been elaborated by Lehman and
Ramil (2000), who point out that most software has to be designed to evolve.

The motivation for RE is simple: to reduce the high cost of misunderstanding
between users and designers, so that computer systems are built to do what the
users want, on time and at a reasonable cost. The high cost of errors incurred during
many system failures can be attributed to mistakes in requirements analysis (Bell
and Thayer, 1976).Although RE only amounts to 10–15 per cent of the overall cost of
system development, the consequences of getting requirements wrong can have a
disproportionately high impact. The longer a mistake remains undetected during
development the more expensive it is to fix. Changing a requirement just takes a bit
of word-processing, changing a design involves undoing the specifications and
checking ramifications of new requirements, but changing code means throwing
away programmers’ time and possibly destabilizing a design. The economic argu-
ments for RE are summarized in Figure 1.1.

4 User-Centred Requirements Engineering

Fig. 1.1 Costs of change and the development cycle.

Edit a
list

Change
a model

Change
several
models

Change
code and
models

CostCost
to fixto fix

Requirements Specification Design Code Test Implement

Life cycle stageLife cycle stage

Decommission system
Change code
Re-implement

Resource effort
during

development

Shifting resource
earlier saves

money

text.qxd 16/04/2002 15:32 Page 4

Investing in RE early will save money later on, but it can be difficult to decide
when requirements analysis should stop. First there is the “fickle user problem”:
people tend to discover new requirements just when the analyst thought everything
they wanted had been captured. Secondly, requirements analysis is difficult because
of the “moving world problem”. All the analyst can do is to get the best possible pic-
ture of the world when capturing requirements, try to anticipate the future, and
then design software so that it is flexible and can adapt to change. While methods
and technology can help with requirements analysis and flexible design, nobody
possesses 20/20 foresight, so anticipating the future is a black art. As we shall see
later, however, there are ways in which designers can frame their ideas about the
future.

1.2 A Little History

Before RE, requirements were subsumed in systems analysis. This area produced
structured development methods such as SA/SD (structured analysis/structured
design: De Marco, 1978); SADT (systems analysis and design technique: Ross and
Schoman, 1977) and SSADM (structured systems analysis and design method:
Downs, Clare and Coe, 1992). These methods all referred in passing to requirements
analysis and generally started with a divide-and-conquer approach of carving a sys-
tem into successively smaller pieces and then defining the functions or goals that
each part of the system was supposed to achieve.

So why was systems analysis not good enough and a whole new sub-discipline of
RE needed? Part of the answer is rooted in academic communities. Systems analysis
belonged to information systems, a community concerned with methodology and
conceptual modelling. It is probably true to say, however, that the concept of
requirements analysis in information systems was suffering from an intellectual
strait-jacket of top-down functional decomposition. Requirements were captured
and listed as users’ goals, then elaborated as a set of functions represented in data
flow diagrams, SADT processes or whatever the analyst’s favourite conceptual mod-
elling language was. The “structured methods” approach to requirements analysis
was challenged in the 1980s with JAD/RAD (joint/rapid applications development)
techniques (DSDM, 1995) which tried to overcome the cumbersome and time-con-
suming process of modelling with the use of workshops, scenarios and brainstorm-
ing sessions to encourage more user involvement in design. The “top-down”
analysis approach of structured methods was also challenged by the object-oriented
community who proposed modelling the domain rather than establishing
goals/functions.

This led to the current generation of structured object-oriented methods: object-
oriented systems engineering (Jacobson et al., 1992); the object modelling tech-
nique (Rumbaugh, 1991); and object oriented analysis/design (Coad and Yourdon,
1991), to cite but a few of the contenders. More recently the object-oriented commu-
nity created a de facto development standard as UML (unified modelling language)
and the unified process (Rational Corporation, 1999), but this has little to say about
requirements analysis apart from advocating use cases and scenarios, which will be
explained later.

The other influence on RE was software engineering, a community who focused
on formal specification and delivery of reliable software products, often for real

1 · Introduction 5

text.qxd 16/04/2002 15:32 Page 5

time telecommunications and safety critical applications. Software engineers found
that in spite of years of formal specification many systems were not accepted by
users or failed in circumstances that had not been anticipated. RE has grown from,
but also contributes to, all these areas. It is related to research in software engineer-
ing and conceptual modelling by sharing models and formal languages drawn from
that research. RE is also concerned with process, although not always in the struc-
tured methods sense. RE research, however, grew from the need for techniques and
tools that complement software engineering methods, so RE can be seen as a collec-
tion of techniques that are recruited to a more general process according to the
users’ and designers’ needs.

The foundations of RE were set out in a collection of papers (Thayer and Dorf-
man, 1990) and special issues of Transactions on Software Engineering (IEEE-TSE,
1991, 1992). These were followed by IEEE symposia and conferences (Finkelstein and
Fickas, 1993; Davies and Hsai, 1994). These events revealed a diversity of research
issues and industrial practice that can be loosely associated with defining what to
build rather than how. Lubars, Potts and Ritcher (1993), in one of the few investiga-
tions of RE practice in industry, reported that ambiguity and changing requirements
were a constant problem and that developers preferred organizational to technological
solutions for RE problems. More recently, field studies of system development
practice (El Emam and Madhavji, 1995) have indicated that changing requirements,
lack of trained manpower and inadequate methods are responsible for system failures.
RE research has tended to be dominated by large customer-driven systems, typically
in the defence sector. In these contexts, requirements are complex and often driven
by a super designer’s vision, whereas market-driven requirements arise out of a more
creative brainstorming approach (Lubars et al., 1993).

1.3 People, Communication and Requirements

Another reason why requirements analysis is hard is because of people. We all have
our own ideas and viewpoints. Many are unconscious attitudes that we only become
aware of when someone challenges our beliefs. Furthermore, we keep some facts and
attitudes to ourselves for a variety of private and political reasons. The upshot of this
is that getting a complete set of unadulterated facts from people is unlikely even with
a set of co-operative, honest and well-motivated users. The practice of requirements
analysis thus has to combat problems of human communication that involve psy-
chology and sociology, such as tacit knowledge, the ambiguity of natural language,
and the role of power and personality that influence attitudes and opinions.

� Tacit knowledge – as we learn any skill or become familiar with a domain, we no
longer think about it in conscious terms. Consider driving. Unless you are a
learner driver you don’t think about changing gear or steering the car; these are
automatic skills acquired years ago. Similarly, you don’t think about your route to
work; you just know it. So when someone comes to ask you about your experi-
ences in getting to work, you are unlikely to tell them about the route in detail or
how you drove your car. The same problem exists in all domains. Users are
experts, so they don’t tell the requirements analyst about the obvious facts, yet
these are often important in understanding how that domain works. And this
doesn’t take into consideration the facts that people want to hide.

6 User-Centred Requirements Engineering

text.qxd 16/04/2002 15:32 Page 6

� Ambiguity – even if we try to report what we do, we frequently do so inaccurately.
English and most other natural languages are wonderfully flexible means of
expressing ideas, but the disadvantage is that expression is not always precise. A
classic example is conjunction in logical procedures; when we say “and” we some-
times mean “both”, sometimes “either”. For instance,“I go to the bank and build-
ing society to get cash” – does this mean I always go to both the bank and the
building society, or sometimes to just one of them? Ambiguity is inherent in log-
ical operators, comparisons (greater, equal to, etc.), as well as imprecise expres-
sions of procedures. Sometimes this is a consequence of poor expression, but it
may also be a symptom of vague thinking, as we discover when following street
directions from a well-meaning but uninformed local inhabitant.

� Attitudes and opinions – people tend to pick up attitudes and opinions from their
family, peers and news media. When asked to justify an objective or goal, they
may give an opinion that has never been thought through. Requirements analysts
therefore have to challenge attitudes to find out which ones have a rational justi-
fication and which are a matter of folklore. When challenged, people may get into
trench warfare based on dogma rather than arguments based on their merits.
Furthermore, opinions are often influenced by internal politics and the power
structure of organizations. Some employees, conscious of job insecurity or an
authoritarian boss, may give false opinions to placate a “party line”. Social factors,
such as power and responsibility, influence the expression of requirements
(Goguen, 1993). People often fear change itself. Requirements analysis exposes
problems and hidden agendas in organizations. Fact gathering has to tackle prob-
lems of public versus private versions of truth which users may, or may not, wish
to communicate (Harker, Eason and Dobson, 1993; Maiden and Rugg, 1994). Elic-
iting true attitudes is one of the most difficult tasks the requirements engineer
has to tackle. Failure to detect political problems can lead to systems being imple-
mented without the consent of all the stakeholders, or to problems remaining
hidden until it is too late. Early detection of false attitudes alerts the analyst to
potential conflicts and the political danger of getting trapped on one side or
another. Reconciling viewpoints to get a consensus view is another difficulty. The
analyst can find him or herself in the middle of an inter-departmental war, for
example between marketing and customer services who have very different high-
level goals and do not understand each other’s point of view.

1.4 A Framework for RE
Several definitions of RE have been given. For instance in terms of the outcome, “a
requirements specification should tell a designer everything he needs to know to
satisfy all the stakeholders – but nothing more” (Sommerville, 1989). Alternatively,
the principal RE issue described by Bubenko (1993) is “how to proceed from infor-
mal, fuzzy individual statements of requirements to a formal specification that is
understood and agreed by all stakeholders”. Dubois, Hagelstein and Rifaut (1989)
used the term to refer to the part of the development life cycle in which the needs
and requirements for the user community are investigated and then abstracted to
create formal specifications. Zave (1995) proposed a more elaborate taxonomy of
problems in requirements engineering that helps to scope the field. Her definition
of RE was “the branch of software engineering concerned with real world goals for,

1 · Introduction 7

text.qxd 16/04/2002 15:32 Page 7

functions of, and constraints on software systems. It is also concerned with the rela-
tionship of these factors to precise specifications of software behaviours, and to
their evolution over time and across software families”.At the top level Zave divided
RE in two dimensions. The first is the problems of requirements engineering,
decomposed into: specifying system behaviour; problems of investigating the goals,
functions and constraints of software systems; and problems of managing the evo-
lution of systems and families of systems. The second dimension is RE solutions: the
type of research in the field, such as state of practice reports, process-oriented solu-
tions (methods), product-oriented (tools), case study application of solutions in the
real world, evaluations of approaches and measurement of success. One of the ten-
sions these definitions reveal is the focus of RE on software or on requirements for
large-scale systems (including people), and how reuse fits into the picture.

Trying to state the objectives (or requirements) of RE reveals some of the dilemmas
that need to be solved. For instance, the following objectives for RE may conflict:

� to capture a complete set of requirements from users;
� to analyze the users’ requirements accurately and understand all the implications

inherent in those requirements;
� to specify how those requirements should be met in a design;
� to complete requirements analysis within acceptable constraints of time and cost.

Given patience and infinite resources it may be theoretically possible to get a set of
near-perfect requirements; however, within the resource and time constraints of the
real world this is unlikely. The adjective “near-perfect” is used because requirements
analysis faces another dilemma: the world keeps changing. When the analyst has
captured a complete set of requirements they inevitably refer to yesterday; mean-
while the world has altered, and users will have changed their minds. Requirements,
therefore, are at best a compromise.

The three dimensions proposed by Pohl (1993) (see Figure 1.2) illustrate three
major problems that RE has to solve: namely modelling the future application in a

8 User-Centred Requirements Engineering

Fig. 1.2 The three dimensions of RE.

text.qxd 16/04/2002 15:32 Page 8

more complete manner, modelling with more formality, and with all the stakehold-
ers agreeing requirements. Input to the process starts with coarse-grained and
ambiguous statements about the users’ requirements for the intended system. Users
may have different visions of requirements or only partial and incomplete ideas
about what they want. Input is characteristically informal in its representation,
imprecise and personal since requirements are initially held by individuals and fre-
quently conflict with one another. However, the desired output from RE is very dif-
ferent. It should be a complete system specification, within the constraints of
available resources, using a formal language, and agreed by all involved.

The thread in Figure 1.2 traces the emerging requirements specification, as it
becomes more complete, accurate and shared. On the specification dimension, RE has
to guide the discovery, refining and validation of requirements as they become more
thoroughly understood and complete. Representation has to support expression of
requirement statements and models in natural language, semi-formal graphical nota-
tions such as data flow diagrams (DFDs) and entity relationship (ER) diagrams, and
formal notations. Finally the agreement dimension has to support trade-offs between
requirements and different stakeholders’ views, negotiation and co-ordination.

Another view of requirements sees the problem of transforming a current system
into a new, desired system. This view focuses our attention on the problem of under-
standing existing systems before we can design the necessary change. The view is
elaborated in the four worlds framework (Jarke et al., 1993) which is useful in
understanding how requirements change and how they can be partitioned into dif-
ferent viewpoints (Figure 1.3).

The first world is where requirements usually start in the usage world of the user.
The usage world describes requirements in their context of a domain and, possibly,
an existing system. Requirements reflect the wishes and objectives of users, or their
problems with a current system that needs fixing. Requirements are elicited or
acquired from users in the usage world, and transferred into the subject world as
models and representations of the domain. This involves abstracting a generalized
picture from the detail in the usage world. Generalized pictures become models and
specifications of the world and the designed system. Notice here the tension
between requirements as single goals and requirements embedded as components
of a model or specification. Should requirements be simple lists of functions or
goals, or do we need models of objects, tasks, and processes to understand them in
context? The answer is probably both, but the relative importance of lists and mod-
elling is more difficult to judge. From the subject world, which represents part of
modelled reality (also referred to as the universe of discourse) requirements are
transformed into the system world. Here requirements become specifications of
what will work in the new designed system. Requirements therefore progress from
“why” questions of users’ goals in the usage world to “what” questions of functional
specifications in the subject world and finally “how” questions in the system world.

However, the progress from requirements to design is not as clear as this frame-
work would suggest. Users frequently do not have a clear vision of what they want. If
they do, their goals may be poorly formed and fuzzy. Furthermore, requirements are
linked to people’s knowledge of what is technically possible. This leads to the
inevitable intertwining of requirements with design, to paraphrase Swartout and
Balzer (1982). Only by creating some vision of the future can we be sure that it
embodies our requirements and even then our understanding will be limited by
how faithfully the current vision (or prototype) represents the final product. Natu-

1 · Introduction 9

text.qxd 16/04/2002 15:32 Page 9

rally, the more users change their minds during requirements analysis, the more the
original vision will depart from the final design. So at the heart of RE there is a par-
adox: users don’t know what they want until they get it, and when they get it they see
how it could be improved or they don’t like it. Trying to overcome this 20/20 fore-
sight problem lies at the heart of RE.

The final world in Figure 1.3 is the development world. This is the realm of the
programmers and software developers. The development world has its own require-
ments such as constraints on design for interoperability, maintainability, reliability,
etc. In addition, software used to develop computer systems imposes another set of
requirements which the requirements engineer has to deal with – for example, can
the application be delivered in Java on client–server architecture, and if so is the
data environment secure?

Having looked at some of the perspectives of RE, it is now necessary to investigate
how different starting points for requirements may affect the process.

10 User-Centred Requirements Engineering

Fig. 1.3 The “four worlds” view of system development.

text.qxd 16/04/2002 15:32 Page 10

1.5 Requirements Types and RE Pathways

Although RE is often assumed to start with top-down decomposition to create goal
hierarchies, it may also start with problems in an existing system rather than inten-
tions to create a new system. Furthermore, user requirements may also be promoted
by examples of other successful systems. Different applications affect the course of
the RE process; for instance, COTS (commercial off-the-shelf) software selection is
different from bespoke development; while information systems and real time
domains make different demands on the RE process. Requirements come in many
different shapes and sizes. Some may be high-level goals while others may be
detailed rules and constraints. To give some idea of the range, the requirements in a
library circulation system could include:

� the need for a complete sub-system or high-level functions: “the system will have
facilities for auditing book stock so that old and redundant stock can be elimi-
nated”;

� specification of a more detailed function: “the circulation control system should
calculate fines on overdue loans”;

� a statement about how a function should work: “fines should be calculated as the
number of days overdue (current date – due date) multiplied by a configurable
fine factor”;

� constraints on how the system should operate: “data on reader fines should be
secure and not publicly accessible”;

� statements about performance: “all search requests must be completed within 30
seconds of submission”;

� implementation constraints: “the system must operate on a Linux platform as
well as Windows NT”.

The above requirements vary in the amount of detail provided, but even ones which
look precise suffer from ambiguity. Take the third requirement in the list. This looks
precise, but it hides further questions. How many configurable parameters are
required, such as separate fine rates for standard readers, old age pensioners, read-
ers who are frequently late, etc.? Many requirements are inaccurate and ambiguous.
The RE process has to clarify what is meant as far as possible.

Not all requirements come from people. Requirements can be imposed on a sys-
tem by laws of physics and facts of nature. For example, in a fly-by-wire avionics
system the computer has to control an aircraft so that it flies at a certain speed,
direction, height and orientation. Failure to do so will cause the aircraft to stall, or
worse still, to become over-stressed and crash. Requirements in this case include the
laws of physics such as gravity, aerodynamics and physical stress limits of the air-
craft. The system must conform to these facts and process events in a specific order.
This problem of requirements emanating from implications of events has been
investigated by Jackson (1995) in several refinements of his method which derived
entity life histories from explicit consideration of real world facts and behaviour. In
more recent papers, the correspondence between real world events and system
behaviour has been expressed in terms of optative requirements to which the sys-
tem must respond (Jackson and Zave, 1993). These are obligations on the system, or
required behaviour that it must carry out to ensure successful operation. According
to Jackson’s approach to RE, it is necessary to distinguish between descriptions of

1 · Introduction 11

text.qxd 16/04/2002 15:32 Page 11

the world as it exists and designations that reflect assumptions about properties of
designed systems. Requirements emerge from understanding how the system
should behave – indicative requirements – and other necessary responses by the sys-
tem to change the world – optative requirements. Requirements are statements of
what machine specifications should do given assumptions about the real world
domain.

Some requirements are imposed externally as constraints on design required by
law, others arise from problems which need fixing, and some are performance qual-
ities rather than functions which might be implemented in software. Roman (1985)
provided the first list of issues in RE and drew attention to the need for modelling
functional and non-functional requirements. There are several taxonomies of
requirements (see Pohl, 1996; Mazza et al., 1994), which will not be elaborated here;
however, it is necessary to explore some fundamental categories. A commonly held
but disputed distinction is between functional and non-functional requirements:

� Functional requirements are statements about what a system should do, how it
should behave, what it should contain, or what components it should have. Func-
tional requirements are initially expressed as goals, e.g. “the search facility will
find books that match the user’s request”; or activities, e.g. “validate order”,
“monitor temperature”. Later, requirements become specifications expressed as
entities, attributes, actions, events or states: the familiar semantics of software
engineering modelling languages. Functions are elaborated processes or proce-
dures which can be implemented as software algorithms and data structures.

� Non-functional requirements (NFRs) are statements of quality, performance and
environment issues with which the system must conform. Some examples are
reliability, maintainability, portability (properties of the design), safety, security,
scalability, accuracy, usability, and performance. NFRs are qualities and perform-
ance criteria that are not directly implementable in software. They can be further
sub-divided into:
– performance criteria such as throughput volumes (system must handle 10,000

transactions per working day), reliability, response time;
– design-related constraints such as maintainability, interoperability (e.g. system

works on both Microsoft and Linux platforms), security, usability.

The distinction between functional and non-functional requirements, when exam-
ined in detail, may crumble. NFRs set standards or benchmarks by which the system
will be assessed but they also have design implications. Refining NFRs involves
decisions about how well a design can meet the required criteria so, rather than
being implemented, NFRs are satisfied to some extent by design. Mylopoulos and
his colleagues (Mylopoulos, Chung and Nixon, 1992; Yu, 1994) describe NFRs as
“soft goals” that, unlike functional requirements, cannot be completely specified in
terms of software; instead, these requirements are “satisfyced” to some extent by
functional requirements in a design. NFRs do not directly refer to what should be
designed; instead they are statements of quality or performance criteria, for
instance “the system shall process 1000 orders per day, with an average time per
order of 20 seconds”. How they are satisfied may involve defining functional
requirements, so the dividing line between the two is not sharp. An example might
be a safety requirement that “the autopilot system will fly the aircraft to ensure no
collisions occur”. This is a bit vague so the designer might unpack what “no colli-

12 User-Centred Requirements Engineering

text.qxd 16/04/2002 15:32 Page 12

sions” means as “the autopilot will detect any aircraft which comes within an enve-
lope of 500 metres and take avoiding action”. However, “avoiding action” has not
been defined. This will become a set of rules or procedures about how to control the
aircraft, such as if an aircraft approaches from behind then speed up, from below
then climb, etc. In this manner a non-functional requirement has become refined
into several functional requirements for monitoring the proximity of other aircraft
and procedures for avoiding action. However, not all NFRs can be unpacked in this
manner. Performance requirements become metrics or benchmarks against which
the system design will be assessed.

One approach to dealing with benchmark-style NFRs (Briand et al., 1995) is the
goals-question-metric technique for software engineering quality assessment, even
though Briand et al. do not explicitly refer to requirements. The essence of their
method is to set goals as quality criteria that are measurable, with a metric linked to
a particular need that is expressed in a question. For example:

Goal: To achieve an acceptable response time of less than 0.02 seconds
for user system interaction.

Questions: How quickly will the system respond to users’ editing operations
with a normal workload?

Metric: Delay from the end of a key press to the appearance of a visible
change on the screen.

Hence NFRs will become refined into functional requirements as well as setting a
necessary and sufficient criterion by which the system can be judged. For example,
safety as an NFR will have design implications for how safety is delivered as well as
being unpacked as a metric to specify what an acceptable level of safety means: in
air traffic control “the system will prevent mid-air collisions, and the near-miss rate,
where two aircraft pass within 1 mile or 500 vertical feet separation of each other,
will be less than 1 per 100,000 aircraft movements”.

1.6 Constraints on Design
Another way of thinking about requirements is to classify users’ needs into goals or
functions, attributes which describe the properties of qualities of the desired system
and constraints that define the limitations on design. To elaborate these categories:

� Goals are functional and non-functional requirements that describe what the
users want the system to do.

� Attributes are qualities or properties of the desired system, which may be func-
tional or non-functional in nature, e.g. the system will be safe, reliable, operate
efficiently, inexpensive, have aesthetic appeal.

� Constraints are conditions or laws that the system will have to obey during
operation or during design, e.g. the system should operate in a temperature range
of 0–30ºC, and fit within a space of 1 cubic metre. Constraints fall into four sub-
classes:
– Constraints on the physical shape and size of the product. In software these

may be megabytes of memory or disc storage space; more generally they are
limits on the size and shape of the product.

1 · Introduction 13

text.qxd 16/04/2002 15:32 Page 13

– Environmental constraints that set out the expected means and ranges of oper-
ating conditions, e.g. temperature, pressure, vibration, different locations, dust,
dirt, noise, etc. While software is shielded from most of these environmental
factors, human operators and other equipment are not, hence these constraints
are important.

– Cost. This is always a key limitation on the designer’s (and users’) ambition.
– Legal constraints that set non-functional requirements for safety, reliability,

usability, security and privacy.

Ideally, requirements would be developed for systems with an infinite budget and
no dependencies on existing systems. Unfortunately such green-field applications
rarely exist, and budgets are never unlimited. Requirements have to be specified
that are realistic and achievable within the costs and constraints of an organization.
Constraints vary from legislation imposed by government that may have implica-
tions for health, safety or working conditions, laws that influence the applications
itself (e.g. tax laws and payroll calculations), to constraints on processes and proce-
dures imposed by company policy (e.g. not offering discounts to poorly paying cus-
tomers). Increasingly, requirements also have to be specified for system upgrades or
for new systems that have to co-exist with previous implementations. Legacy soft-
ware consists of suites of old programs, usually written in COBOL, that most com-
panies possess to run their basic transaction processing applications, i.e. sales order
processing, inventory control, general ledger accounting, etc. Legacy systems are
often critical to a company’s survival, so new systems have to be built as front-ends
to the older systems. New requirements may imply changes to legacy systems which,
given their antiquity, are poorly designed and hard to change. Since requirements
were rarely documented in older systems, deciding requirements for modification
or how new systems should fit within a legacy system can be a challenge.

Requirements can be reverse engineered or recovered from legacy code but the
process is difficult. Programmers are notoriously bad documentors so the analyst is
often left with just the code itself. The research area of reverse engineering (for
overviews see Layzell, Freeman and Benedusi, 1995) deals with this problem of
restructuring old code to make it more maintainable and reliable. If the code is well-
designed with a modular structure then there is some chance of success that the
original designer’s intentions might be discernible; however, most old code has as
much structure as a plate of spaghetti, so reverse engineering requirements can be a
forlorn task. The users’ goals were rarely documented in older systems and guessing
them from algorithms and data structures is a nearly impossible task.

Cost is one of the major constraints on any project. Customers and users, if given
the choice, will create requirements wish lists that could consume many times the
development budget, so the requirements analyst has to prioritize requirements in
collaboration with the users. Processes for doing so will be covered in Chapter 4.
Some applications may not necessitate development of new code; instead the solu-
tion is to purchase COTS software. In this case the constraints are the available prod-
ucts and the range of functionality they provide. The requirements process therefore
becomes a goodness-of-fit optimization, matching customer requirements and
products’ properties within the constraints of costs, delivery time, maintenance sup-
port, etc. A variation on COTS is configurable products, such as Enterprise Resource
Plans (ERPs) from vendors such as SAP and Peoplesoft. These products provide gen-
eralized business application packages such as personnel, payroll, logistics, sales

14 User-Centred Requirements Engineering

text.qxd 16/04/2002 15:32 Page 14

order processing, etc. Such packages can be tailored to the customer’s requirements
within certain limits. They impose fewer constraints than COTS products but more
than in a bespoke development of new software. For ERP products the requirements
process has two phases: first, selecting the ERP vendor and application package;
then, requirements for tailoring the package to the customer’s business. The first
phase follows a COTS-like goodness-of-fit process, while the second phase is con-
strained by the customization facilities provided (see Sutcliffe, 2002).

In summary, the requirements process is constrained by many realities of the
environment in which it takes place: time, costs, laws, standards, and available
resources. The transformation of requirements into design is also constrained by
possibly having to co-exist with legacy systems, and standards for interoperability
on operating systems, networks, etc. Finally, the requirements process might be lim-
ited by what is available in the market place for COTS-style developments. The art of
successful RE is achieving the optimal within the bounds of the possible.

1.7 Documenting Requirements

Requirements are usually written down as natural language statements, but natural
language is prone to misinterpretation. One response has been to advocate use of
formal, mathematically based specification languages which make meaning more
explicit. Unfortunately, formal specifications are not comprehensible to most users,
so formal languages present a communication barrier. There is no easy escape from
the dilemma of easy to understand but ambiguous natural language versus formal
but inaccessible specification languages (see Chapter 3). Requirements need to
express a range of possibilities in general terms during the early stage of the
process, while being more precise later on (Fickas and Feather, 1995).

To avoid documents containing long, dense texts that nobody wants to read,
requirements are formatted into structured lists to help understanding and
retrieval. Structured requirements documents help by classifying and indexing
requirements into categories so they can be found quickly and traced. Each require-
ment is still expressed in natural language but the statement is short and terse to
reduce ambiguity. Structured requirements documents such as the standard
defined by IEEE 830 (Mazza et al., 1994) recommend the following headings:

1. Introduction
1.1 Purpose of the requirements documents
1.2 Scope of the product
1.3 Definitions of acronyms and abbreviations
1.4 References
1.5 Overview of remainder of the document

2. General description
2.1 Product perspective
2.2 Product function
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies

1 · Introduction 15

text.qxd 16/04/2002 15:32 Page 15

3. Specific requirements
(including functional, non-functional and user interface requirements, perform-
ance benchmarks, design and database constraints, system attributes and quality
characteristics)

4. Appendices
5. Index

Requirements document management tools (e.g. RequisitePro, DOORS, CRADLE)
provide configurable classification structures, with defaults based on the IEEE stan-
dard or similar layouts. Requirements as statements and lists need to be accompa-
nied by diagrams and other information that helps their interpretation. Some
authors refer to requirements documents as requirements specifications, by which
they mean requirements statements accompanied by more formal models that can
make the interpretation of natural language more precise. A further means of
recording requirements to reduce ambiguity is to use templates. These provide a
form that links the requirements with associated facts such as who authored (or
captured) the requirements, from whom (the user), when, etc. A good example of
requirements documentation templates (Figure 1.4) is given in the Volere method
(Robertson and Robertson, 1999).

Requirements may represent the views of several different groups of people,
called “stakeholders”. For example, requirements documentation may be created by
the following stakeholders:

� Customers who will be purchasing the system or otherwise financing its develop-
ment. Customers are interested in making sure requirements fit with their objec-
tives to deliver a business or organizational benefit.

16 User-Centred Requirements Engineering

Fig. 1.4 Requirements documentation from the Volere method.

text.qxd 16/04/2002 15:32 Page 16

� Users – people who will actually operate the system. User stakeholders are con-
cerned about more detailed requirements of system functionality and usability.

� Managers – stakeholders who are not direct users but manage the system. Man-
agers may be the same as customers in some systems or may represent the
department that is receiving the new system. They are interested in requirements
as system outcomes to achieve business objectives.

� Software engineers – designers who have to translate requirements into software
designs and code. They need requirements to be as precise as possible.

� System testers and quality assurance – stakeholders who will be responsible for
ensuring that the designed system is reliable and meets with performance crite-
ria. These stakeholders are interested in non-functional requirements and con-
straints.

� System maintainers – people who have to keep the system running when it is in
operation and modify it. Maintenance personnel are rarely consulted in require-
ments analysis yet they depend on accurate requirements documentation more
than most.

Different stakeholders have different views on a requirements document. Some
want detail, others need to check that requirements will fulfil their objectives. In the
early stages of RE there is considerable merit is having incomplete and ambiguous
requirements. Trying to nail everything down in detail too early may constrain
exploration of the problem and cause people to commit too early to a poorly
thought out solution.

As RE is primarily a computer science discipline there is a hidden assumption
that all requirements are about software. This is not true. Many requirements will be
satisfied by management decisions to allocate resources or change human operating
procedures. A useful distinction is between system and software requirements:

� System requirements – requirements in the wider sense that record any particular
need for a new system. These requirements may specify obligations for human
operators, organizational resources, or machinery, as well as implying software
requirements.

� Software requirements – requirements in a narrower sense that pertain to
intended software functions. Software requirements are derived from system
requirements and make assumptions about design, i.e. what is going to be auto-
mated in software.

In conclusion, requirements documents are formatted lists of natural language
statements accompanied by additional text, sketches and diagrams. These docu-
ments are used by several different groups of stakeholders who have different inter-
ests and focuses when they read requirements documents. Interests can be served
by a continuum of representation from information statements in natural language
to more precise specifications, but finding a single lingua franca that can be both
precise and sufficiently flexible to meet the needs of all stakeholders is a difficult
task. Chapter 4 explores how combinations of representations can address this
problem.

1 · Introduction 17

text.qxd 16/04/2002 15:32 Page 17

1.8 Summary

RE has developed to tackle the vexed problem of obtaining the needs for a new sys-
tem as accurately and completely as possible. Failure to carry out effective require-
ments analysis has led to many system disasters, and requirements errors become
progressively more expensive to cure as system development progresses. The subject
area of RE has evolved from information systems, object-oriented development
methods and software engineering. RE is difficult because it has to deal with require-
ments which may never be complete because users discover requirements only when
they experience a design and because the external world changes and creates new
requirements after a system has been implemented. Requirements analysis has to
deal with communication problems and the ambiguity of natural language. People
may not provide correct information because their knowledge is tacit, or for political
and personal motivations to hide sensitive facts. Requirements can be divided into
functional and non-functional requirements. Functional requirements are captured
as user goals and refined into specifications for the design. NFRs become bench-
marks or performance and quality criteria that a design has to achieve, but during
analysis functional requirements are discovered to achieve them. Requirements are
documented in structured lists defined in standards and using templates that record
the authors, stakeholders and associated information. Different stakeholders will
have differing needs and views on requirements documents.

18 User-Centred Requirements Engineering

text.qxd 16/04/2002 15:32 Page 18

