
JSP Examples
and Best Practices

ANDREW PATZER

201fmat.qxp 3/22/02 1:37 PM Page i

JSP Examples and Best Practices

Copyright ©2002 by Andrew Patzer

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-020-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: David Czarnecki

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski

Managing Editor: Grace Wong

Project Manager: Alexa Stuart

Copy Editor: Kim Wimpsett

Production Editor: Kari Brooks

Compositor: Impressions Book and Journal Services, Inc.

Indexer: Carol Burbo

Cover Designer: Tom Debolski

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.

Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

201fmat.qxp 3/22/02 1:37 PM Page ii

CHAPTER 5

Development Using
Patterns

A KEY ADVANTAGE TO USING JAVA TECHNOLOGY is that it’s an Object-Oriented (OO)
language. This enables you to write code that is reusable and highly scalable. As
you become more accustomed to OO development, you might recognize a few
best practices that you follow when developing solutions of a particular class. For
instance, you may find that for every data-entry application you work on, you
tend to code the data validation routines in a similar way. If you were to formalize
this best practice and abstract away some of the implementation details, it’s
conceivable that others could use it as a roadmap to jumpstart their own devel-
opment efforts by implementing an already proven technique for data validation.
This eliminates a lot of design effort as well as numerous testing iterations.

Published best practices have come to be known as design patterns. These
originated in the OO world and have been published in various forms specific to
their implementations in C++ and Java, as well as several general studies. In par-
ticular, the book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides (Addison-Wesley, 1995) has become the definitive guide to OO
design patterns. Recently, the concept of design patterns has influenced the J2EE
developer community, prompting Sun to publish a J2EE Patterns Catalog
(http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/).
These patterns address typical design issues and how you can apply the various
J2EE technologies to solve such issues.

This chapter is the first of several that will deal with enterprise design pat-
terns. I’ll discuss the merits of using patterns, review the J2EE Patterns Catalog,
highlight the patterns relevant to the presentation tier (and therefore the subject
matter of this book), and finish with a discussion of the Model-View-Controller
(MVC) pattern upon which most of the J2EE patterns are based.

Why Use Patterns?

I’ll begin the patterns coverage by answering this question: Why should you look
to design patterns for help with your own development efforts? The answer to
this question is simple. Design patterns are proven techniques that can be reused
and applied to many similar problems. They also provide you with a common
vocabulary when discussing application design.

105

201ch05.qxp 3/20/02 10:25 AM Page 105

They’re Proven Techniques

When designing an application, many problems need to be solved. In most cases,
these problems are not unique to the specific application you’re designing. If you
were to design and implement a custom solution to the problem, then that piece
of code will need to undergo perhaps several iterations of testing and subsequent
coding until it’s exactly what you need for your particular application.

If you were to take the previous scenario and use a design pattern instead of
a custom solution, then you would greatly reduce development and testing time.
The design pattern has already undergone many iterations of testing and devel-
opment to produce an industry-wide best practice. Obviously, you’ll still need to
do some custom development to implement the pattern, but now you only need
to test the implementation-specific code and not the entire piece of functionality.

They’re Reusable

In the spirit of OO design, enterprise design patterns are intended to be reused
across projects. Each pattern provides a proven solution for a specific class of
problems. These problems tend to exist in many different applications. Rather
than reinvent the wheel each time, it makes more sense to apply a design pattern
requiring minimal modifications.

It’s a Common Vocabulary

When speaking of application design, it helps to have a common vocabulary to
communicate your options to the rest of the development team. For instance,
a common OO design pattern is the factory pattern. This pattern is useful when
an object needs to be instantiated at runtime, but the class of that object is not
known at compile-time. So, when discussing design options, you might say
something such as, “Well, if we implement a factory pattern in the reporting
module, we can add new reports in the future without modifying the application
framework.” If everyone on the team understands the factory pattern, they can
all envision the solution based on the given statement.

Introducing the J2EE Patterns Catalog

The architects at Sun have compiled a series of design patterns and published
them as the J2EE Patterns Catalog available at the Java Developer Connection
website (http://developer.java.sun.com). These patterns address common

106

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 106

application problems through the application of J2EE technologies. The patterns
catalog groups the various patterns into the following tiers:

• Presentation tier: Whatever is required to present application data and
user interface elements to the user is inside of the presentation tier of the
application. Key technologies in use are JavaServer Pages (JSP) and
Java Servlets.

• Business tier: The business tier is where all the business processing takes
place. The primary J2EE technologies in use for this tier are Enterprise
JavaBeans (EJBs).

• Integration tier: The integration tier provides connections to the resource
tier. The resource tier includes things such as message queues, databases,
and legacy systems. The J2EE technologies in use at the integration tier are
the Java Message Service (JMS), Java Database Connectivity (JDBC),
and the Java Connector Architecture (JCA).

Because this is a JSP book, I’ll mostly present those patterns that deal with
the presentation tier. I won’t attempt to describe each pattern in detail; the pat-
terns catalog does a fine job of that. The goal of this book is to provide best
practices and examples. To that end, I’ll provide enough definition to enable
you to apply these patterns to common development tasks using JSP pages
and Java servlets.

Looking at Presentation Design Patterns

The patterns I’ll discuss in this book are commonly known as the Decorating
Filter, Front Controller, Dispatcher View, and View Helper patterns. There are
a few more presentation patterns in the J2EE catalog that I won’t discuss. These
four patterns are sufficient to illustrate the examples and best practices that
I’ll cover.

These patterns each cover a different layer of the presentation logic. As the
request comes in, it can pass through a filter prior to the actual processing of
the request (Decorating Filter pattern). It could then go to a centralized servlet to
be processed (Front Controller Pattern). Once it has been processed, the servlet
could then dispatch the results to a specific JSP page (Dispatch View Pattern).
Finally, the JSP page could make use of custom tags or JavaBeans to help include
the data in the HTML output (View Helper Pattern). Figure 5-1 illustrates the
relationship between these patterns.

107

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 107

Here’s a preview of each pattern I’ll be discussing:

• Decorating filter: This pattern applies a kind of filter to either the request
or response object as it passes in and out of the web container. You can use
filters as a common place to log transactions, authenticate users, and even
format data.

• Front Controller pattern: The Front Controller pattern is built upon the
concept of the MVC pattern (see the next section). This pattern suggests
the use of a single servlet to handle each and every request as opposed to
embedding controller code inside of each JSP page.

• Dispatcher view: Inside of the controller, a piece of code exists that deter-
mines where the processed request should go to be displayed. In other
words, it applies some kind of strategy to figure out which view, or JSP
page, to use to display the current data.

• View helper: Once the specific view has been chosen, the JSP makes use of
several “helpers” to adapt the data to the final outputted content. These
helpers consist of either custom tags or JavaBeans.

108

Chapter 5

Filter

Custom Tag

HTTP Request

HTTP Response

Servlet Controller

Dispatcher

View
Custom Tag

JavaBean

JavaBean

Decorating
Filter
Pattern

Front Controller
Pattern

Dispatcher
View Pattern

View Helper
Pattern

Figure 5-1. Presentation patterns

201ch05.qxp 3/20/02 10:25 AM Page 108

Understanding Model-View-Controller (MVC)

The presentation patterns in the J2EE catalog are all based upon the MVC archi-
tecture. MVC is applied to software development projects in an effort to separate
the application data from the presentation of the data. This separation enables the
interface, or view, to take many different forms with little modification to
the application code. For instance, using an MVC pattern, a user interface can be
presented as both an HTML page (for web browsers) and a WML page (for mobile
devices), depending on the device requesting the page. The controller would rec-
ognize the source of the request and apply the application data to the
appropriate view (see Figure 5-2).

The idea of separating presentation logic from the data and managing it with
a controller has its roots in graphical user interface (GUI) development. Take, for
instance, a user interface consisting of many different user controls. These con-
trols contain the data, the formatting instructions, and the code that fires an
event when the control is activated. This makes the user interface platform-
specific and coupled with the application code itself. By applying an MVC
pattern and separating each of these components, the user interface becomes
lightweight, pluggable, and transportable across platforms. The Java Swing API
illustrates this best.

You can apply the MVC pattern to other areas of software development
besides client/server GUIs. Web development has benefited from this idea by
clearly separating presentation code from the application data and the controller
code that ties the two together. Let’s take, for example, a simple web application
that displays catalog pages. Typically, this would consist of a search page,
a results page, and an item detail page. Each page has the responsibility of
authenticating the user, retrieving user preferences, retrieving the requested
data, and managing page navigation (see Figure 5-3).

109

Development Using Patterns

ControllerRequest

Model

View

Response

Figure 5-2. MVC architecture

201ch05.qxp 3/20/02 10:25 AM Page 109

Looking at this application, it’s easy to see that a lot of redundant code is
being used to display each page. Not only does this introduce the potential for
errors, but it also ties the application to the presentation by including many non-
presentation functions inside of the presentation code. When you apply an MVC
pattern to this application, the common functions move to a controller on the
server. The presentation code is now only responsible for rendering the appli-
cation data in a format that’s appropriate for a particular device (typically a web
browser). See Figure 5-4 for an MVC approach to this application.

110

Chapter 5

JSP Page

Security

View

Data Retrieval

Personalization

Page Navigation

JSP Page

Security

View

Data Retrieval

Personalization

Page Navigation

JSP Page

Security

View

Data Retrieval

Personalization

Page Navigation

Search Catalog View Results View Item Detail

Figure 5-3. Simple catalog application (without MVC)

Controller
(Servlet)

Security

Personalization

Data Retrieval

Navigation

Model
(JavaBean)

View
ViewView

(JSP)

Request & Response

Figure 5-4. Simple catalog application (with MVC)

201ch05.qxp 3/20/02 10:25 AM Page 110

Seeing MVC in Action

To illustrate the MVC pattern, you’re going to build a simple web application that
collects data and stores it in a database. The data you’ll be collecting is health
information that will be stored in the customer table of our quoting database. In
addition to collecting the data, the application will require the user to login to the
system before accessing any of the pages.

This example is a simple one, but it illustrates some of the benefits of using
an MVC architecture. You’ll see how to centralize application security by giving
the user a single access point into the application. You’ll also standardize and
share the database connection using a connection pooling mechanism built into
the application server. In the next few chapters, I’ll use this example (among
others) to introduce new patterns. With that in mind, this example is basic at
this point. You’ll add features such as field validation and improved error
handling later.

The application starts with a login page and then moves to a main servlet
that will act as the controller (see Figure 5-5). The servlet will determine whether
to proceed to the next page based upon the success of the login procedure. Once
the user has logged in, they’ll go to a survey page where they’ll enter their infor-
mation and submit it. Once again, the servlet will interrogate the request and
move the user to the next page. If the data is successfully recorded, the user is
taken to a confirmation page.

Another benefit of using a servlet as a single entry point is that it enables you
to hide your JSP pages from the outside world. This helps to secure the system by
not allowing direct access to your application. The only page the user can access
directly is the login page. If they were to type in the name of another page, the
server would return a 404 error (“not found”). You accomplish this by “hiding”

111

Development Using Patterns

Hidden Pages

User
Login

Main
Servlet

Login
Failed

(1) Survey
Page

(2)

Confirmation
Page

(3)

Figure 5-5. Simple survey application

201ch05.qxp 3/20/02 10:25 AM Page 111

your JSP pages inside of the \WEB-INF directory. By definition, everything under-
neath this directory is inaccessible by direct access from the user. However, the
servlet that acts as our controller can access this directory and therefore is
allowed to forward requests to pages that reside there. Here’s what your directory
structure will look like when you’re done with this example:

webapps\jspBook\ch5\login.jsp

webapps\jspBook\ch5\myError.jsp

webapps\jspBook\ch5\myHeader.htm

webapps\jspBook\ch5\myFooter.htm

webapps\jspBook\ch5\images\logo.gif

webapps\jspBook\WEB-INF\jsp\ch5\census.jsp

webapps\jspBook\WEB-INF\jsp\ch5\thankyou.jsp

Setting Up the Application

Before you begin coding, you need to add a table to the database and then
modify your application server configuration to accommodate the use of
DataSources. The table you need to add is a user table containing the user ID,
password, and a customer ID. The customer ID creates a customer record that
corresponds to the user. Ideally, this field would be dynamically generated, but
for these purposes you’re just going to hard-code this value. Here’s the script to
update the database:

createUsers.sql (c:\mysql quoting < createUsers.sql)

DROP TABLE IF EXISTS user;

CREATE TABLE user (id varchar(10) not null, pwd varchar(10), cust_id int);

INSERT INTO user VALUES (‘apatzer’, ‘apress’, 6);

The next task you need to do is modify your configuration to use
DataSources. The J2EE specification allows a DataSource to be defined inside of
the application server itself. Servlets and JSP pages can locate and use these
DataSources using Java Naming and Directory Interface (JNDI). A key advantage
to accessing a database this way is that the connection information is stored in
one place outside of the application code. Also, most application servers have
a built-in connection pooling mechanism you can take advantage of by accessing
your database using a DataSource. To set this up, you’ll need to be sure your

112

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 112

application server supports this capability. Before modifying the appropriate
configuration files, be sure to add your database drivers to a directory accessible
to the application server (for Tomcat 4.0.1, put the drivers in the \common\lib
directory). To create a DataSource in your application server, you’ll need to add
a description of it to the server.xml file. This description goes inside of your con-
text definition like the one seen in Listing 5-1 (see the J2EE specification for
more details).

Listing 5-1. server.xml
<Context path=”/jspBook”

docBase=”jspBook”

crossContext=”false”

debug=”0”

reloadable=”true” >

<Logger className=”org.apache.catalina.logger.FileLogger”

prefix=”localhost_jspBook_log.” suffix=”.txt”

timestamp=”true”/>

<Resource name=”jdbc/QuotingDB” auth=”SERVLET”

type=”javax.sql.DataSource”/>

<ResourceParams name=”jdbc/QuotingDB”>

<parameter>

<name>driverClassName</name>

<value>org.gjt.mm.mysql.Driver</value>

</parameter>

<parameter>

<name>driverName</name>

<value>jdbc:mysql://localhost:3306/quoting</value>

</parameter>

</ResourceParams>

</Context>

Now that you’ve described the DataSource to the application server, you need
to tell your application about it. You do this by adding a resource entry into your
web.xml file. Listing 5-2 shows what should go into this file (inside of your
<web-app> tags).

113

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 113

Listing 5-2. web.xml
<resource-ref>

<description>

Resource reference to a factory for java.sql.Connection

instances that may be used for talking to a particular

database that is configured in the server.xml file.

</description>

<res-ref-name>

jdbc/QuotingDB

</res-ref-name>

<res-type>

javax.sql.DataSource

</res-type>

<res-auth>

SERVLET

</res-auth>

</resource-ref>

Finally, to use the DataSource, you need to replace any code that gets a data-
base connection with the following piece of code (in this example’s servlet you
execute this code once inside of your init method):

try {

Context initCtx = new InitialContext();

Context envCtx = (Context) initCtx.lookup(“java:comp/env”);

DataSource ds = (DataSource) envCtx.lookup(“jdbc/QuotingDB”);

dbCon = ds.getConnection();

}

catch (javax.naming.NamingException e) {

System.out.println(“A problem occurred retrieving a DataSource object”);

System.out.println(e.toString());

}

catch (java.sql.SQLException e) {

System.out.println(“A problem occurred connecting to the database.”);

System.out.println(e.toString());

}

Defining the Model

Before walking through the controller or the views, you need to define the model.
The model is responsible for storing data that will be displayed by one or more
views. Typically, a model exists as an Enterprise JavaBean (EJB) or simply a

114

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 114

regular JavaBean. For this example, you’ll just use a JavaBean. You might recall
from Chapter 3 that you used a JavaBean to model the customer data. You’ll reuse
some of that and add a few additional methods to suit these purposes.

Aside from removing some unnecessary code, you’ll need to add two new
methods to the CustomerBean you built back in Chapter 3. The first method
you’ll add is the populateFromParameters method. This method takes an
HttpServletRequest object as a parameter. The method is responsible for reading
the input fields from the request object and populating the bean properties with
their values. Also, the user ID is pulled out of the user’s session and stored in the
bean for later use. The other new method you’ll be adding to this bean is
the submit method. This method takes a Connection object as a parameter and
is responsible for updating the database with the stored data residing in the
properties (fields) of the bean. Listing 5-3 shows the updated code for
the CustomerBean.

Listing 5-3. CustomerBean.java
package jspbook.ch5;

import java.util.*;

import java.sql.*;

import javax.servlet.http.*;

public class CustomerBean implements java.io.Serializable {

/* Member Variables */

private String lname, fname, sex;

private int age, children;

private boolean spouse, smoker;

/* Helper Variables */;

private String uid ;

/* Constructor */

public CustomerBean() {

/* Initialize properties */

setLname(“”);

setFname(“”);

setSex(“”);

setAge(0);

setChildren(0);

setSpouse(false);

setSmoker(false);

}

115

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 115

public void populateFromParms(HttpServletRequest _req) {

// Populate bean properties from request parameters

setLname(_req.getParameter(“lname”));

setFname(_req.getParameter(“fname”));

setSex(_req.getParameter(“sex”));

setAge(Integer.parseInt(_req.getParameter(“age”)));

setChildren(Integer.parseInt(_req.getParameter(“children”)));

setSpouse((_req.getParameter(“married”).equals(“Y”)) ? true : false);

setSmoker((_req.getParameter(“smoker”).equals(“Y”)) ? true : false);

// Get session and populate uid

HttpSession session = _req.getSession();

uid = (String) session.getAttribute(“uid”);

}

/* Accessor Methods */

/* Last Name */

public void setLname(String _lname) {lname = _lname;}

public String getLname() {return lname;}

/* First Name */

public void setFname(String _fname) {fname = _fname;}

public String getFname() {return fname;}

/* Sex */

public void setSex(String _sex) {sex = _sex;}

public String getSex() {return sex;}

/* Age */

public void setAge(int _age) {age = _age;}

public int getAge() {return age;}

/* Number of Children */

public void setChildren(int _children) {children = _children;}

public int getChildren() {return children;}

/* Spouse ? */

public void setSpouse(boolean _spouse) {spouse = _spouse;}

public boolean getSpouse() {return spouse;}

/* Smoker ? */

public void setSmoker(boolean _smoker) {smoker = _smoker;}

public boolean getSmoker() {return smoker;}

116

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 116

public boolean submit(Connection _dbCon) {

Statement s = null;

ResultSet rs = null;

String custId = “”;

StringBuffer sql = new StringBuffer(256);

try {

// Check if customer exists (use uid to get custID)

s = _dbCon.createStatement();

rs = s.executeQuery(“select * from user where id = ‘“ + uid + “‘“);

if (rs.next()) {

custId = rs.getString(“cust_id”);

}

rs = s.executeQuery(“select * from customer where id = “ + custId);

if (rs.next()) {

// Update record

sql.append(“UPDATE customer SET “);

sql.append(“lname=’”).append(lname).append(“‘, “);

sql.append(“fname=’”).append(fname).append(“‘, “);

sql.append(“age=”).append(age).append(“, “);

sql.append(“sex=’”).append(sex).append(“‘, “);

sql.append(“married=’”).append((spouse) ? “Y” : “N”).append(“‘, “);

sql.append(“children=”).append(children).append(“, “);

sql.append(“smoker=’”).append((smoker) ? “Y” : “N”).append(“‘“);

sql.append(“where id=’”).append(custId).append(“‘“);

}

else {

// Insert record

sql.append(“INSERT INTO customer VALUES(“);

sql.append(custId).append(“,’”);

sql.append(lname).append(“‘, ‘“);

sql.append(fname).append(“‘, “);

sql.append(age).append(“, ‘“);

sql.append(sex).append(“‘, ‘“);

sql.append((spouse) ? “Y” : “N”).append(“‘, “);

sql.append(children).append(“, ‘“);

sql.append((smoker) ? “Y” : “N”).append(“‘)”);

}

s.executeUpdate(sql.toString());

}

117

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 117

catch (SQLException e) {

System.out.println(“Error saving customer: “

+ custId + “ : “ + e.toString());

return false;

}

return true;

}

}

Setting the View

The presentation logic of the application is stored in three JSP files. The first one,
login.jsp, is accessible to the public, and the other two are only accessible from
the controller servlet. The login page is a simple user and password entry screen
that submits its data to the Main servlet. You’ll notice that you add a parameter to
the servlet called action. This tells the servlet what it needs to do. In this case, the
action is login. If there’s an error while attempting to log in, the servlet will add
an attribute to the session indicating a problem and then return the user to the
login page. Because of this, the login page checks the session for the appropriate
attribute and displays corresponding error message if it finds it. Listing 5-4 shows
the complete listing of the login page.

Listing 5-4. login.jsp (\webapps\jspBook\ch5\login.jsp)
<%@ page

errorPage=”myError.jsp?from=login.jsp”

%>

<html>

<head>

<title>Quoting System Login</title>

</head>

<body bgcolor=”#FFFF99”>

<%@ include file=”myHeader.html” %>

<form method=”post” action=”Main?action=login”>

118

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 118

<p align=”center”>

<i>Login to Quoting System</i>

</p>

<p> </p>

<% String loginError = (String) session.getAttribute(“loginError”);

if (loginError != null && loginError.equals(“y”)) {

%>

<center>

Invalid login, please try again.

</center>

<% }

%>

<table width=”199” border=”0” align=”center” cellpadding=”5”>

<tr>

<td>

User ID:

</td>

<td><input type=”text” name=”UID”></td>

</tr>

<tr>

<td>Password:</td>

<td><input type=”password” name=”PWD”></td>

</tr>

<tr align=”center”>

<td colspan=”2”><input type=”submit” name=”Submit” value=”Login”></td>

</tr>

</table>

</form>

<%@ include file=”myFooter.html” %>

</body>

</html>

Figure 5-6 shows the login page.

119

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 119

The survey page (census.jsp) collects data from the user and submits it to
the Main servlet. The action parameter is set to submit to indicate to the servlet
that you want to submit data to the database. This page is a good example of
one that needs to be enhanced to include field validation and error handling.
You’ll do this in future chapters as you explore other presentation patterns. See
Listing 5-5 for the complete code of the simple data collection page.

Listing 5-5. census.jsp (\WEB-INF\jsp\ch5\census.jsp)
<!-- JSP Directives -->

<%@ page

errorPage=”myError.jsp?from=census.jsp”

%>

<html>

<head>

<title>Insurance Quoting System</title>

</head>

<body bgcolor=”#FFFF99”>

<basefont face=”Arial”>

120

Chapter 5

Figure 5-6. Login page

201ch05.qxp 3/20/02 10:25 AM Page 120

<%@ include file=”/ch5/myHeader.html” %>

<form action=”Main?action=submit” method=”post”>

<% String submitError = (String) session.getAttribute(“submitError”);

if (submitError != null && submitError.equals(“y”)) {

%>

<center>

Error recording survey data, please try again.

</center>

<% }

%>

<center>Enter personal information:</center>

<table cellspacing=”2” cellpadding=”2” border=”0” align=”center”>

<tr>

<td align=”right”>First Name:</td>

<td><input type=”Text” name=”fname” size=”10”></td>

</tr>

<tr>

<td align=”right”>Last Name:</td>

<td><input type=”Text” name=”lname” size=”10”></td>

</tr>

<tr>

<td align=”right”>Age:</td>

<td><input type=”Text” name=”age” size=”2”></td>

</tr>

<tr>

<td align=”right”>Sex:</td>

<td>

<input type=”radio” name=”sex” value=”M” checked>Male</input>

<input type=”radio” name=”sex” value=”F”>Female</input>

</td>

</tr>

<tr>

<td align=”right”>Married:</td>

<td><input type=”Text” name=”married” size=”2”></td>

</tr>

<tr>

121

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 121

<td align=”right”>Children:</td>

<td><input type=”Text” name=”children” size=”2”></td>

</tr>

<tr>

<td align=”right”>Smoker:</td>

<td><input type=”Text” name=”smoker” size=”2”></td>

</tr>

<tr>

<td colspan=”2” align=”center”><input type=”Submit” value=”Submit”></td>

</tr>

</table>

</form>

<%@ include file=”/ch5/myFooter.html” %>

</body>

</html>

Figure 5-7 shows the survey page.

122

Chapter 5

Figure 5-7. Survey page

201ch05.qxp 3/20/02 10:25 AM Page 122

Finally, once the data has been submitted, the request is forwarded to a con-
firmation page (thankyou.jsp). This is a simple page confirming that the data has
been accepted. If there were an error trying to submit the data, control would
return to the survey page (census.jsp) and an error message would appear at the
top (similar to what you did with the login page). See Listing 5-6 for the confir-
mation page.

Listing 5-6. thankyou.jsp (\WEB-INF\jsp\ch5\thankyou.jsp)
<!-- JSP Directives -->

<%@ page

errorPage=”myError.jsp?from=thankyou.jsp”

%>

<html>

<head>

<title>Insurance Quoting System</title>

</head>

<body bgcolor=”#FFFF99”>

<basefont face=”Arial”>

<%@ include file=”/ch5/myHeader.html” %>

<center>

Your survey answers have been recorded.

Thank you for participating in this survey.

</center>

<%@ include file=”/ch5/myFooter.html” %>

</body>

</html>

See Figure 5-8 for the confirmation page that’s displayed upon successfully
recording the survey data.

123

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 123

Building the Controller

You’ll be using a servlet as your controller (Main). To make this accessible, add the
following entry to your web.xml file (inside of the <web-app> tags):

<servlet>

<servlet-name>

Main

</servlet-name>

<servlet-class>

jspbook.ch5.Main

</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>

Main

</servlet-name>

<url-pattern>

/ch5/Main

</url-pattern>

</servlet-mapping>

124

Chapter 5

Figure 5-8. Confirmation page

201ch05.qxp 3/20/02 10:25 AM Page 124

The init method obtains your database connection using the DataSource
you created earlier. This database connection is closed in the destroy method at
the end of the servlet’s lifecycle. Each request is serviced by the doPost method.
Inside of there, the action is determined by checking the parameter action. The
first time through, the login action directs the servlet to the authenticate
method. If the login is successful, the user is taken to the census.jsp page.

The important thing to point out is that all security, database connectivity,
and navigational control is centralized inside of this one servlet. You reuse code
in several places. For instance, the navigational code goes into the gotoPage
method. If you need to change this functionality, you only need to do it in one
place. You’ll see as you explore other patterns how useful this architecture really
is. The goal of this example is simply to illustrate the basic idea of an MVC pat-
tern. See Listing 5-7 for the controller servlet.

Listing 5-7. Main.java
package jspbook.ch5;

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

import jspbook.ch5.CustomerBean;

public class Main extends HttpServlet {

DataSource ds;

HttpSession session;

/* Initialize servlet. Use JNDI to look up a DataSource */

public void init() {

try {

Context initCtx = new InitialContext();

Context envCtx = (Context) initCtx.lookup(“java:comp/env”);

ds = (DataSource) envCtx.lookup(“jdbc/QuotingDB”);

}

catch (javax.naming.NamingException e) {

System.out.println(

125

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 125

“A problem occurred while retrieving a DataSource object”);

System.out.println(e.toString());

}

}

public void doPost (HttpServletRequest _req, HttpServletResponse _res)

throws ServletException, IOException {

/* Refresh session attributes */

session = _req.getSession();

session.removeAttribute(“loginError”);

session.removeAttribute(“submitError”);

String action = _req.getParameter(“action”);

/* Authenticate user if request comes from login page */

if (action.equals(“login”)) {

String uid = _req.getParameter(“UID”);

String pwd = _req.getParameter(“PWD”);

if (authenticate(uid, pwd)) {

session.setAttribute(“validUser”, “y”);

session.setAttribute(“loginError”, “n”);

session.setAttribute(“uid”, uid);

gotoPage(“/WEB-INF/jsp/ch5/census.jsp”, _req, _res);

}

/* If the user login fails, then return them to the login page to retry */

else {

loginError(_req, _res);

}

}

/* Record the survey data if the request comes from the survey form */

else if (action.equals(“submit”)) {

/* Make sure the user has logged in before recording the data */

String validUser = (String) session.getAttribute(“validUser”);

if (validUser.equals(“y”)) {

if (recordSurvey(_req)) {

/* Reset validUser flag and forward to ThankYou page */

session.removeAttribute(“validUser”);

gotoPage(“/WEB-INF/jsp/ch5/thankyou.jsp”, _req, _res);

}

126

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 126

else {

session.setAttribute(“submitError”, “y”);

gotoPage(“/ch5/login.jsp”, _req, _res);

}

}

/* If the user did not login, then send them to the login page */

else {

loginError(_req, _res);

}

}

}

/* Send request to a different page */

private void gotoPage(String _page, HttpServletRequest _req,

HttpServletResponse _res)

throws IOException, ServletException {

RequestDispatcher dispatcher = _req.getRequestDispatcher(_page);

if (dispatcher != null)

dispatcher.forward(_req, _res);

}

/* Set error attributes in session and return to Login page */

private void loginError(HttpServletRequest _req, HttpServletResponse _res)

throws IOException, ServletException {

session.setAttribute(“validUser”, “n”);

session.setAttribute(“loginError”, “y”);

gotoPage(“/ch5/login.jsp”, _req, _res);

}

/* Check if the user is valid */

private boolean authenticate(String _uid, String _pwd) {

Connection dbCon = null;

ResultSet rs = null;

try {

dbCon = ds.getConnection();

Statement s = dbCon.createStatement();

rs = s.executeQuery(“select * from user where id = ‘“

127

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 127

+ _uid + “‘ and pwd = ‘“ + _pwd + “‘“);

return (rs.next());

}

catch (java.sql.SQLException e) {

System.out.println(“A problem occurred while accessing the database.”);

System.out.println(e.toString());

}

finally {

try {

dbCon.close();

}

catch (SQLException e) {

System.out.println(“A problem occurred while closing the database.”);

System.out.println(e.toString());

}

}

return false;

}

/* Using the CustomerBean, record the data */

public boolean recordSurvey(HttpServletRequest _req) {

Connection dbCon = null;

try {

dbCon = ds.getConnection();

CustomerBean cBean = new CustomerBean();

cBean.populateFromParms(_req);

return cBean.submit(dbCon);

}

catch (java.sql.SQLException e) {

System.out.println(“A problem occurred while accessing the database.”);

System.out.println(e.toString());

}

finally {

try {

dbCon.close();

}

catch (SQLException e) {

System.out.println(“A problem occurred while closing the database.”);

System.out.println(e.toString());

}

}

128

Chapter 5

201ch05.qxp 3/20/02 10:25 AM Page 128

return false;

}

public void destroy() {

}

}

Summary

This chapter introduced you to the idea of using patterns to design your appli-
cations. Patterns are industry-wide best practices that have been tested and
proven by many different developers. The J2EE Patterns Catalog contains several
design patterns for enterprise Java development. This book covers four specific
presentation-tier patterns that help to describe several best practices for
JSP development.

Each of these patterns assumes an MVC architecture, which organizes your
web application into three logical pieces. The model stores the application data,
the view displays the application data, and the controller manages requests and
handles navigation through the application. The next few chapters will explore
J2EE patterns that extend each of these areas and applies strategies to maximize
the efficiency of developing MVC-based web applications.

129

Development Using Patterns

201ch05.qxp 3/20/02 10:25 AM Page 129

201ch05.qxp 3/20/02 10:25 AM Page 130

Index

297

Numbers and Symbols
404 error message, 111
<%! and %> tags, for declaring variables

and methods, 13

A
Action interface

creating, 156–157
defining, 160

ActionFactory, code example, 157, 161,
250

Action.java, code example, 248–249
Ant tasks, using to account for different

platforms when building
scripts, 229

Ant tool
advantages of using to build proce-

dures, 229
from the Apache-Jakarta Project,

215–216
automating the build process with,

220–230
built-in tasks for operations on the

file system, 221
creating a framework’s build script

with, 255–257
integrating CVS with, 225–226
for Java development, 219

Apache-Jakarta Project
Ant build tool by, 215–216
downloading Tomcat server from, 16

AppConstants.java, code example,
237–238

application deployment techniques,
215–230

application frameworks, 231–258
adding unit tests to, 207–210
designing, 231–232

application server
choosing to host your JSP and servlet

applications, 16–17
popular commercial vendors for, 16
setting up for online catalog, 263–264
as web application component, 3–4

application-specific behaviors, imple-
menting, 161–163

applications, testing for performance,
210–214

assertTrue method, code example,
207–210

AuthenticationFilter.java, code example
for, 241–244

automated build procedure, 219
automated unit tests, 203

B
BEA WebLogic

choosing as your application server,
16

J2EE-compliant application server, 5
best practice, defined by a development

pattern, 7
body tag, seeing one in action, 93–97
BodyContent object, obtaining

a JspWriter through, 92
BodyTag, example of a custom JSP tag

using, 91–92
BodyTag interface

default implementation, 84
lifecycle methods and return values

for, 85
use of, 84

bodyTagExample.jsp, code example,
96–97

BodyTagSupport, default implemen-
tation for BodyTag interface,
84

Bugzilla, website address, 219
build procedure, automated, 219
build process, automating with Ant,

220–230
build script

creating a simple script with Ant,
220–223

global variable you can use in, 221
build_cvs.xml file, for moving source code

into a working directory, 226
build.xml file

code example, 255–257
for compiling all of the source code

for this book, 222–223
naming your project in, 220

201indx.qxp 3/20/02 11:23 AM Page 297

build.xml file (continued)
script for building your online cata-

log application, 266–267
business tier, in J2EE Patterns Catalog,

107
ByteArrayPrintWriter class, enclosure of

writer and stream within, 144

C
CartAction class, for accessing the

online catalog shopping cart,
286–288

CartAction.java, code example, 286–288
CartBean class, code example, 289–292
CartBean.java, code example, 289–292
cart.jsp, code example for displaying the

shopping cart, 292–294
catalog application, simple with and

without MVC, 110
catalog database, creating and adding

records, 53–54
CatalogBean class, for scrolling through

and accessing catalog items,
274–279

CatalogBean.java, code example,
274–279

CatalogDB DataSource, code example
for using, 238

CatalogItem.java, code example,
282–286

catalogtags.tld, code example, 281
census.jsp, code example, 120–122,

174–175
change management, using bug track-

ing facilities for, 219
checkout argument, using with the cvs

command, 224–225
code example

ActionFactory, 157
ActionFactory.java, 161, 250
Action.java, 160, 248–249
for add method routine, 206
for adding a resource entry into your

web.xml file, 113–114
for adding records to a catalog data-

base, 54
AppConstants.java, 237–238
for AuthenticationFilter.java, 241–244
of base methods Action interface

defines, 156–157
for basic concepts of input form, 38
for bodyTagExample.jsp, 96–97
for build script to compile and deploy

a framework, 255–257
for building a URL, 207
for building the controller, 124

for building the ProductBean table, 63
build.xml file, 255–257
CartAction.java, 286–288
CartBean class, 289–292
cart.jsp page, 292–294
for casting request or response

objects to HTTP equivalents,
135

for catalog item tag handler, 282–286
CatalogBean.java, 274–279
CatalogItem.java, 282–286
catalogtags.tld, 281
census.jsp, 172–174
for changing the edit link, 68–69
for connecting to the ProductBean

database, 56
Controller.java, 169–171, 245–247
for converting Windows syntax to

Unix-style syntax, 229–230
for creating a catalog database, 54
for creating a directory and copying

files into it, 221
for creating, adding tables to, and

exiting a database, 18
for creating database tables, 18
for creating navigational links, 63
of a custom JSP tag using a BodyTag,

91–92
for custom tag for formatting dates

and numbers, 251–254
CustomerBean.java, 70–76, 165–168
for customerDetail.jsp, 77–80
customers.jsp file after adding page

directive, 30–32
customers.jsp file with try-catch

blocks, 23–25
for cvs command for a Windows and

Unix system, 224
of cvs commands and tasks, 225
for DBHelper.java, 239–240
of declarations followed by XML syn-

tax, 13
for declaring a JavaBean, 62
for declaring a ResultSet object, 21
for declaring a tag library descriptor,

179–180
for declaring and referencing

a JavaBean, 179
for declaring the FileOutputStream at

the class level, 140
for executing the doFilter method of

the FilterChain, 141
for expressions, 14
FormatHelper.jsp, 187–189
FormatTag.java, 184–187, 251–254
FormattingModel.java, 183–184

298

Index

201indx.qxp 3/20/02 11:23 AM Page 298

for a forward tag, 41
for generating rows of customers,

22–23
for getting JavaBean properties, 51
for the GrocerOrder tag handler,

100–102
GroceryItem.java, 99–100
groceryList.jsp, 102–103
hello.jsp, 51–52
helpers.tld file, 182–183
for HomeAction class for online cata-

log system, 271–274
home.jsp page, 279–280
of how a controller servlet might

look, 153–154
HtmlUtils.java, 94–95
of include directive, 13, 33
of including a file at runtime, 35
of including a file with parameters at

runtime, 36
for the interface all action objects

must implement, 248–249
for isErrorPage page directive, 28
Java filter object basic template, 136
<jsp:usebean> tag, 50
ListHelper.jsp, 197–199
for ListTag.java, 195–197
login action, 162–163
for login page, 118–119
login.jsp, 171–172, 270–271
Main.java, 125–129
MenuHelper.jsp page, 193–194
MenuModel.java, 190–191
MenuTag.java, 191–192
for a minimal request helper strategy,

155–156
for moving source code into a work-

ing directory, 226
myFooter.html, 34
myHeader.html, 34, 268
for obtaining a JspWriter through the

BodyContent object, 92
for overriding jspInit() and

jspDestroy() methods, 12
of page directive, 12–13
for populating databases, 18–19
for populating the ProductBean

cache, 56–57, 62
for ProductBean.java, 58–61
for productList.jsp, 63–65
for putting your JSP environment all

together, 23–25
for reading the content using

a Reader, 92
for referencing a tag inside of a JSP

page, 180

for removing an attribute from
a session, 43

for request handling, 245–250
of request helper object, 159
RequestLoggingFilter class, 141–143
ReqUtility.java, 247–248
ResponseLoggingFilter.java, 145–147
to retrieve contents of a last_name

input field, 37
for retrieving and storing customer

table records, 21
for retrieving job field and hobbies

list field, 39–40
for retrieving the name of an error

page, 28
server.xml, 113
for sessionExample.html, 44
for sessionExample.jsp, 44–45
for sessionExamplePage1.jsp, 45
for sessionExamplePage2.jsp, 45
for setting a JavaBean property, 50–51
for a simple error page, 28–29
of a simple scriplet followed by its

XML equivalent, 15
SimpleBean.Java, 49
simpleTagExample.jsp, 90–91
for SimpleTag.java, 87–88
simple.tld, 88–89
for skeleton code for a TestCase,

204–206
SubmitAction.java, 164–165
for <tag> entries, 98
for target, 221
for test code for add method routine,

206
thankyou.jsp, 123, 174–175
of a typical J2EE web application

directory and WAR file, 227
for updating the survey application

database, 112
for using a Factory pattern inside

a request helper, 156
for using a request object inside of

the doPost method, 155
for using getParameterNames

method, 37
for using getParameterValues

method, 37
using getSession method for obtain-

ing a session, 43
using Java reflection to create a new

action class instance, 249–250
for using the CatalogDB DataSource,

238
of using the cvs command with argu-

ments, 224

299

Index

201indx.qxp 3/20/02 11:23 AM Page 299

code example (continued)
utils.tld file, 93–94
of a war task, 227
web.xml file, 89, 93
for writing an attribute to a session,

43
for writing the session attribute and

displaying hyperlinks, 44–45
code reviews

example of code review form for, 218
importance of, 217–218

command and controller strategy,
156–158

commit argument, using with cvs com-
mand to commit changes,
224–225

confirmation page
code example, 123
displayed after recording of survey

data, 124
controller, code example for building,

124
controller servlet

code example for, 125–129
code example of how it might look,

153–154
Controller.java

code example, 245–247
code example for building the con-

troller, 169–171
conversion.jsp file, calling, 36
createCatalogDB.sql script, adding user

and product tables to a data-
base with, 261–262

createProducts.sql script, for adding
records to a catalog database,
54

custom filter strategies, disadvantages
of, 133

custom list formats, creating, 194–199
custom tag helper strategy, code exam-

ple for declaring a tag library
descriptor, 179–180

custom tags
looking at a simple example, 86–91
processing at runtime, 85
for reading a list of link items and

outputting a list of hyperlinks,
190–191

role separation with, 83–103
using, 83–86

CustomerBean.java
code example, 70-76, 165–168
defining a model in, 114–118

customerDetail.jsp file, code example,
77–80

customerList.jsp file
changing the edit link in, 68–69
example code, 34–35

customers.jsp file
after adding page directive and

removing try-catch blocks,
30–32

code example for, 23–25
modifying to include standard

header and footer, 34–35
CVS

integrating with Ant, 225–226
website address for downloading,

223–224
cvs command

code example for a Windows and
Unix system, 224

code example of using with argu-
ments, 224

using checkout argument with,
224–225

using import argument with, 224
CVS repository

creating, 224–225
setting up for your code, 223–224

cvs task
code example, 225
using to interact with the CVS reposi-

tory, 223–224
cvsRoot argument, specifying the

location of the CVS repository
with, 225

D
daemons, 3–4
database

creating for your online catalog,
260–261

running after creating, 19
selecting for your JSP environment,

17–19
database connection, establishing, 21
database helper, building, 237–240
database management (JDBC), defined

by J2EE specification, 5
Database Management Systems

(DBMS), selecting for your JSP
environment, 17–19

database server, as web application
component, 3–4

datacollection page, code example,
120–122

DataSources
code changes needed to use, 113–114
creating in your application server,

112–113

300

Index

201indx.qxp 3/20/02 11:23 AM Page 300

DBHelper.java, code example for,
239–240

debug messages, logging, 235–237
declarations, 13
declaring, filters, 137
Decorating Filter, presentation design

pattern, 107–108
Decorating Filter pattern, 131–150

applying, 134–150
defining, 132
strategies for applying, 133–134

deployment techniques, 215–230
Design Patterns (Gamma, Helm,

Johnson, Vlissides), definitive
guide to OO design patterns,
105

design patterns
published best practices known as,

105
reasons to use for development

efforts, 105–106
development environment, choosing

when setting up a JSP envi-
ronment, 15–16

development framework, defined,
216–217

development patterns, for web appli-
cations, 7–9

development process, managing,
216–219

directives. See JSP directives
directory structure, creating in Tomcat,

17
Dispatcher View, presentation design

pattern, 107–108
distributed object handling (RMI-IIOP),

defined by J2EE specification,
5

documenting web application frame-
work, 233–234

doFilter method
code example for wrapping

a response inside of, 144
executing to continue processing

remaining filters, 140–141

E
edit link, code example for changing,

68–69
EJB containers. See also Enterprise

JavaBean (EJB) containers
provided by a J2EE-compliant appli-

cation server, 5
understanding, 6–7

Enhydra, open-source J2EE-compliant
application server, 5

Enterprise JavaBean (EJB) containers.
See EJB containers

enterprise patterns, introduction to, 9
error and debug messages, logging,

235–237
error handling, for JSP pages, 27–32
error messages, logging, 235–237
error page

creating, 27–29
creating for your online catalog

system, 268
errorPage page directive, code example,

29
evaluation copies, availability of for

application servers, 16
exceptions, coding pages to forward all

uncaught, 29–32
expressions

defined, 14
XML syntax for, 14

F
Factory pattern

adding new behavior to your request-
handling code with, 156–158

code example for using inside
a request helper, 156

function of, 7
FileOutputStream, declaring at the class

level, 140
filter chain, code that executes after

return from processing, 144
filter class

creating, 135–136
implementing the javax.servlet.Filter

interface to write, 140
filter manager, requests passed through,

132
filter strategies

developing custom, 133
filtering with J2EE, 135
using standard, 134

filters
declaring, 137
entering form data to test, 147–149
for logging HTTP parameters, 138
mapping to a URL, 137
potential uses for, 132
for pre-processing of HTTP requests,

132
using for integrated security, 131
using to log HTTP requests, 137–143
using to log HTTP responses, 143–150
using with the Front Controller pat-

tern, 175
form data, processing, 36–40

301

Index

201indx.qxp 3/20/02 11:23 AM Page 301

form handling
building the JavaBean for, 69–76
creating the solution, 67–68
implementing a solution, 68–80
patterns for, 36
standardizing, 66–82
steps required to process form data,

68
using the solution, 80–82
validating input, 80–82

FormatHelper.jsp, code example,
187–189

FormatTag.java, code example, 184–187,
251–254

formatting text, 182–183
FormattingModel.java, code example,

183–184
forward tag, code example for, 41
framework packages, for building a web

application framework, 233
frameworks. See also application frame-

works
creating build scripts for, 255–257
deploying, 255–258
designing, 231–232
using, 258

Front Controller, presentation design
pattern, 107–108

Front Controller pattern
applying, 158–175
defining, 151–152
developing strategies, 152–158
using filters with, 175

G
GET request, function of, 2
getEnclosingWriter method, obtaining

a JspWriter through the
BodyContent object with, 92

getParameter() method, retrieving the
name of an error page with,
28

getParameterNames method, code
example for using, 37

getParameterValues method, returning
a array of values with, 37

getReader method, getting content
returned as a Reader
with, 92

getSession method, code example for
obtaining a session, 43

GroceryItem tags, contained in
GroceryOrder tag, 98

GroceryItem.java, code example for,
99–100

groceryList.jsp, code example for,
102–103

GroceryOrder tag, GroceryItem tags
contained in, 98

GroceryOrder tag handler, code example
for, 100–102

H
hello.jsp, code example, 51–52
helpers, advantages of using, 178
helpers.tld file

code example, 182–183
full tag descriptor for, 193

HomeAction.java, code example,
272–274

home.jsp page, code example, 279–280
HTML form

for accepting a single field containing
a person’s name, 43–46

using to collect data, 36
HTML header, creating for your online

catalog system, 268
HtmlUtils tag handler

writing, 94–95
writing the JSP for, 96–97

HtmlUtils.java, code example, 94–95
HTTP (HyperText Transfer Protocol),

understanding, 2–3
HTTP requests, using filters to log,

137–143
HTTP responses

manipulating content of, 143
using filters to log, 143–150

HTTP sessions, using to manage user
data, 42–46

HTTP sniffer, examining the contents
and headers of a response
object with, 137–138

HTTP tracer program, log file example, 3
HttpServletResponseWrapper, using,

144

I
IBM WebSphere, J2EE-compliant appli-

cation server, 5
IllegalStateException, reasons thrown,

43
include directive, code example, 13, 33
input form

code example of basic concepts, 38
example of, 39

insurance quoting system, building
a simple, 19–25

integration tier, in J2EE Patterns Catalog,
107

302

Index

201indx.qxp 3/20/02 11:23 AM Page 302

Intercepting Filter pattern, defining, 132
isErrorPage page directive, code exam-

ple, 28

J
J2EE architecture, 5
J2EE compliant, definition of, 5
J2EE-compliant application, structure

of, 7
J2EE-compliant application servers,

popular, 5
J2EE Patterns Catalog (Sun)

for detailed pattern definitions, 131
introduction to, 106–107
website address for, 105

J2EE specification services, 5
J2EE web applications, developing, 5–7
<jar> tag, running the Jar utility with, 222
Java code, using Macromedia HomeSite

to insert, 15
Java Developer Connection website,

J2EE Patterns Catalog avail-
able at, 106–107

Java filter object, basic template of, 136
Java Integrated Development

Environment (IDE), choosing
for JavaBeans, Servlets, and
EJBs, 16

Java Servlets, function of, 5–6
JavaBean, code example for declaring

and referencing, 179
JavaBean properties

code example for getting, 51
code example for setting, 50–51

JavaBeans
accessing properties, 50–52
building a simple, 48–49
code example for declaring, 62
conversion of datatypes within, 51
creating for caching data, 53–54
creating one containing a hashtable

of link items, 190–191
handling large sets of data within

a single page, 53–66
introduction to, 47–52
and JSP, 48
role separation with, 47–82
using in a JSP page, 50

<javac> tag, running the Java compiler
with, 222

Javadoc comments, formatting of,
233–234

Javadoc syntax, code example for
descriptive comments,
233–234

java.net.URL object, using to connect to
the URL, 207

JavaServer Pages (JSP). See JSP
(JavaServer Pages)

javax.servlet.Filter interface, methods
defined by, 135

JBoss
for hosting EJBs, 16
open-source J2EE-compliant appli-

cation server, 5
JDBC. See database management

(JDBC)
JDBC driver, obtaining to access your

database, 19
jEdit, website address, 16
JMeter load testing tool

from the Apache Group, 210–214
viewing the graph results, 213–214
website address for downloading, 210

JMeter start screen, 211
JMS, JavaMail. See messaging (JMS,

JavaMail)
JNDI. See naming services (JNDI)
JSP (JavaServer Pages)

foundations, 1–25
function of, 6
handling errors, 27–32
and JavaBeans, 48
learning the basics of, 10–15
processing, 10–12
processing steps, 11
structure of, 12–15
using, 27–46

JSP (JavaServer Pages) applications
building simple, 19–25
choosing an application server for,

16–17
JSP directives, function of, 12–13
JSP environment

choosing a development environ-
ment, 15–16

puttting it all together, 23–25
setting up, 15–19

<jsp:forward> tag vs. <jsp:include> tag, 41
JSP front vs. servlet front strategy,

153–155
JSP Model 1, moving to, 8
JSP Model 2, moving to, 9
JSP pages

building to implement the form han-
dler, 76–80

code example for FormatHelper.jsp,
187–189

creating for your online catalog,
259–260

303

Index

201indx.qxp 3/20/02 11:23 AM Page 303

JSP pages (continued)
designing, 20
establishing a database connection, 21
including a file at compile-time vs.

runtime, 32
including files at compile-time, 33–35
including files at runtime, 35–36
modifying for your controller,

171–175
precompiling, 228–229
refreshing the model, 57–61
session ID created on the server at

first request for, 42
tools for development, 15–16
using a JavaBean in, 50
using your tag library in, 90–91
writing for the HtmlUtils tag handler,

96–97
JSP Quick Reference card, website

address for, 25
JSP tags

example using a BodyTag, 91–92
using Macromedia HomeSite to

insert, 15
jspc tool

provided by Tomcat server, 228–229
running to convert a JSP file, 228

jspDestroy() method, overriding, 11–12
<jsp:getProperty> tag, getting

a JavaBean property with, 51
<jsp:include> tag vs. <jsp:forward> tag,

41
jspInit() method

loading of, 11
overriding, 11–12

_jspService() method, function of, 11
<jsp:setProperty> tag, setting JavaBean

properties with, 50–51
<jsp:usebean> tag, code example, 50
JTA. See transaction management (JTA)
JUnit architecture, 203–204
JUnit package

using, 203–206
website address for, 203

L
list helper example, showing formatted

lists, 199
listeners. See daemons
ListHelper.jsp, code example, 197–199
ListTag.java, code example for, 195–197
load testing, applications for perfor-

mance, 210–214
log file

for response filter, 149–150
for request filter, 148–149

log4j package, from Apache Group,
235–237

Logger.java file, wrapping of the log4j
functionality in, 235–237

logging, error and debug messages,
235–237

Logical Resource Mapping strategy,
function of, 158

login page
code example, 118–119
creating for your online catalog

system, 269–271
LoginAction.java, code example,

162–163
login.jsp, code example, 118–119,

171–172, 270–271

M
Macromedia Dreamweaver, using to

develop a JSP page, 15–16
Macromedia HomeSite, code editor, 15
Main.java, code example, 125–129
manual unit test, use of in regression

testing, 202–203
mapping, filters to a URL, 137
Menu helper example, 193
MenuHelper.jsp page, code example,

193–194
MenuModel.java, code example,

190–191
menus, creating, 190–194
MenuTag.java, code example, 191–192
messaging (JMS, JavaMail), defined by

J2EE specification, 5
MIME type, 3
model, defining for your survey appli-

cation, 114–118
model separation strategy, implement-

ing, 181–182
Model-View-Controller (MVC) architec-

ture, 109
role of JavaBeans in, 48
understanding, 109–129

Model-View-Controller (MVC) pattern,
implementation of by JSP
model 2, 9

Multiplexed Resource Mapping strategy,
function of, 158

MVC pattern. See also Model-View-
Controller (MVC)
architecture

revisiting, 158–175
seeing it in action, 111–112

myError.jsp, code example, 28–29, 268
myFooter.html, code example, 34
myHeader.html, code example, 34, 268

304

Index

201indx.qxp 3/20/02 11:23 AM Page 304

MySQL
creating a database and adding some

tables to, 18
downloading, 17

MySQL website, downloading the JDBC
driver from, 19

N
naming services (JNDI), defined by J2EE

specification, 5
navigational links, code example for

creating, 63
network resources, limiting access to, 4

O
online catalog system

creating a simple catalog system with
learned techniques, 259–295

illustration of, 260
online catalog with shopping cart

accessing the shopping cart, 286–288
adding the user and product tables

to, 261–262
changing the startup script for, 265
code for describing CatalogItem tag,

281
creating application resources for,

267–268
creating login page for, 269–271
creating the database for, 260–261
designing the application, 259–260
directory structure for, 266
displaying the shopping cart,

292–294
HomeAction.java code for, 272–274
home.jsp page, 279–280
installing and configuring the frame-

work, 264–265
logging in to the application, 269–271
modifying the startup script for, 265
setting up the application, 260–268
setting up the application server,

263–264
setting up the development environ-

ment, 266–267
viewing the home page for, 271–274

OO design patterns, definitive guide to,
105

outlineTag, code example for accessing,
97

P
page directive

code example using XML syntax, 13
for importing java.sql package for

database code, 21

page navigation, controlling with JSP,
40–41

parent tag, obtaining an instance of, 98
patterns. See development patterns; web

application development;
web development patterns

development using, 105–129
Front Controller, 151–176
reasons to use for development

efforts, 105–106
Physical Resource Mapping strategy,

function of, 158
platform differences, accounting for

when building scripts,
229–230

populate method, using to populate the
ProductBean cache, 62

ports, specifying in a URL, 4
POST request, function of, 2
presentation design patterns, looking at,

107–108
presentation layer, using helpers when

developing, 178
presentation patterns, relationships

between, 108
presentation tier, in J2EE Patterns

Catalog, 107
ProductBean

code example for building the table,
63

code example for connecting to the
database, 56

creating, 54–55
declaring the class and imple-

menting the Serializable
interface, 55

declaring the fields in, 55
initializing properties for, 55
providing accessor methods for

fields, 55
ProductBean class, using to page

through a set of records,
65–66

ProductBean.java, code example,
58–61

productList.jsp, code example, 63–65
prop.file.dir system property, modifying

the Tomcat server startup
script to specify, 238–239

<property> tag, for defining properties
in a build script, 221

R
regression testing

breaking into units, 202–203
understanding, 202

305

Index

201indx.qxp 3/20/02 11:23 AM Page 305

removeAttribute method, for removing
an attribute from a session,
43

repeatable process, for software devel-
opment, 215

request filter, log file for, 148–149
request handling, simplified, 244–250
request-handling framework

defining a standard path for the
request to follow, 152–153

using Front Controller pattern to
build, 151–176

request helper object, building a simple,
159

request helper strategy, 155–156
request object

using inside of the doPost method,
155

using methods on, 37
RequestLoggingFilter, web.xml file that

describes and maps,
138–140

RequestLoggingFilter class, code exam-
ple, 141–143

ReqUtility.java, code example,
247–248

ReqUtil.java, code example, 159
resource mapping strategies, functions

of, 157–158
ResponseLoggingFilter.java, code exam-

ple, 145–147
ResultSet object, declaring in a JSP dec-

laration tag, 21
RMI-IIOP. See distributed object han-

dling (RMI-IIOP)
role separation

with custom tags, 83–103
with JavaBeans, 47–82

rows of customers, generating, 22–23

S
scriplets, use of in JSP, 14–15
scripting, a build procedure, 219
server-side programs, processing data

with, 36
servers, chaining of through port map-

ping, 4
server.xml, code example, 113
server.xml file, modifying for your online

catalog, 263–264
servlet applications, choosing an appli-

cation server for, 16–17
servlet controller, accessing, 154–155
servlet front vs. JSP front strategy,

153–155

servlet model, introduction to, 8
session ID, created on the server at first

request for a JSP page, 42
sessionExample.html, code example for,

44
sessionExample.jsp, code example for,

44–45
sessionExamplePage1.jsp, code example

for, 45
sessionExamplePage2.jsp, code example

for, 45
setAttribute method, code example for

writing an attribute to
a session, 43

SimpleBean class
code example illustrating use of,

51–52
using in a JSP page, 52

SimpleBean.Java, code example, 49
simpleForm.html, code example, 38
simpleForm.jsp, code example, 39–40
simpleTagExample.jsp, code example,

90
SimpleTag.java, code example, 87–88
simple.tld, code example, 88–89
sniffer. See HTTP sniffer
software development process, impor-

tance of source code control
in, 217

source code control
importance of in software develop-

ment process, 217
integrating with Ant, 223–226

standard filter strategies, advantages of,
134

static model, containing a hashtable of
link items, 190–191

stub, inserting wherever dynamic data is
required, 20

submit action, code example,
164–165

survey application
setting up, 112–114
simple using MVC architecture,

111–112
survey page (census.jsp), data collected

by, 120–122

T
tag descriptor

for creating custom list formats,
194–195

for helpers.tld file, 193
<tag> entries, code example for, 98
tag handler, locating in your JSP, 84

306

Index

201indx.qxp 3/20/02 11:23 AM Page 306

tag handler class
definition, 87–88
implementing, 86–88

Tag interface
lifecycle methods and return values

for, 85
use of, 84

tag library
declaring, 89
using in a JSP page, 90–91

tag library descriptor file
creating, 88–89, 93–94
modifying, 93

taglib directive
declaring a tag with, 180
function of, 13
locating the tag handler in your JSP

with, 84
tags, nesting, 97–103
target, code example, 221
target tag, for defining a set of actions to

be performed, 220–221
TCP/IP, used by HTTP, 2
template text, defined, 12
TestCase, skeleton code for, 204–206
testing, importance of, 201–203
testing techniques, 201–214
thankyou.jsp, code example, 123,

174–175
thread group

adding a test to, 212
adding to the test plan, 212

ThreadGroup node, adding a web test
to, 212–213

Tomcat
setting up, 16–17
using as a web container, 16–17

Tomcat server, jspc tool provided by,
228–229

toString() method, for converting
an object value to a string,
29

transaction management (JTA), defined
by J2EE specification, 5

<tstamp> tag, creating a timestamp
with, 222

U
unit tests

adding to your application frame-
work, 207–210

building a framework for, 203–210
use of in regression testing,

202–203
URL, code example for building, 207

user authentication, code example for,
241–244

users, authenticating, 241–244
utils.tld file, code example, 93–94

V
variable declarations, commenting, 234
View Helper

for formatting text, 182–189
presentation design pattern, 107–108

View Helper pattern
applying to your application, 182–199
defining, 177–178
implementing strategies for, 179–182

W
WAR files, building, 227
war task

code example, 227
website address for information

about building WAR files, 227
web application development, patterns

for, 7–9
web application framework

building, 232–254
building a database helper in,

237–240
commenting variable declarations,

234
designing, 232–233
documenting, 233–234
logging error and debug messages in,

235–237
web applications

architecture of, 4
components of, 3–4
developing, 1–4

web containers
provided by a J2EE-compliant appli-

cation server, 5
understanding, 5–6

web development patterns, system level
best practice provided by, 7–8

web server, as web application compo-
nent, 3–4

\webapps directory, creating a directory
structure underneath, 17

website address
for Bugzilla bug tracking program,

219
for downloading CVS, 223–224
for downloading MySQL DBMS, 17
for downloading the JDBC driver, 19
for downloading the Tomcat servlet

container, 16

307

Index

201indx.qxp 3/20/02 11:23 AM Page 307

website address (continued)
for information on using Javadoc to

document your code, 234
for a J2EE Patterns Catalog (Sun), 105
for Java Servlet specification, 7
for jEdit development tool, 16
for Sun JSP Quick Reference card, 25

web.xml file
adding a resource definition to,

263–264

code example, 89, 93
code example for adding a resource

entry into, 113–114
code example for displaying

GroceryOrder tag items in
a table, 98

configuration information contained
in, 7

for declaring the tag library, 89
modifying, 93

308

Index

201indx.qxp 3/20/02 11:23 AM Page 308

