
Chapter 5

An Introduction to C#

5.1 Introduction

C# is a new programming language. There have only been a few programming languages intro-
duced in the last 10 years that have had the impact that C# has had: Java, another object-oriented
language, is the obvious example. In this chapter I will try to provide some background on the C#
language, what the motivations behind C# are and how it fits into the grand scheme of things (from
Microsoft’s point of view as well as with respect to existing languages).

5.2 Background

First we need to (briefly) consider the .NET environment. .NET is Microsoft’s new environment for
software development on Windows-based machines. Some have pushed it as an environment for
developing Web-based services (which it certainly is), but it is more than that: it is a new way for
Windows applications to be designed, built, deployed and run. Rather than just updating the
existing tools and languages (and so making them even more complex),Microsoft has started from
the ground up with .NET. The aim was to create a development environment within which most
programming tasks can be easily accomplished. A major component of .NET is the C# program-
ming language.

C# (pronounced C-Sharp, just like in musical notation) is a new language for software devel-
opment on Windows-based machines. It is heavily integrated with the .NET environment and
is intended as an alternative to the main previous languages, Visual C++ and VB. It builds very
heavily on Visual C++ and (let’s be honest) Java. It is, however, its own language, and whilst
borrowing from both adds new features (and again let’s be honest: nothing is new under the
Sun!).

Of course, one thing that has counted against Microsoft in the past has been its tendency to
try to make everything it produces proprietary, and to restrict access to the inner details of its
world. Possibly to counter this Microsoft has put the key .NET technologies forward as a stan-
dard. As part of this, C# was submitted for standardization to ECMA in late 2000. The ECMA

47



(http://www.ecma.ch/), founded in 1961, is a vendor-neutral international standards organi-
zation committed to driving industry-wide adoption of information and communications
technologies. The idea behind this (at least from the standards organization’s point of view) is
that this should make it possible for anybody who wishes to implement C# programming tools
on any platform to do so. Microsoft has also submitted a subset of the Microsoft .NET Frame-
work, called the Common Language Infrastructure (CLI), to ECMA. This could also make it
possible for other vendors to implement the CLI on a variety of platforms (whether this actu-
ally happens or not we shall have to wait and see). The C# Language Specification and the
Common Language Infrastructure were approved by the ECMA General Assembly on 13
December 2001 (see http://www.ecma.ch/ecma1/STAND/ecma-334.htm and http://
www.ecma.ch/ecma1/STAND/ecma-335.htm.

An interesting point to note is that when C# and the Common Language Infrastructure were
submitted they were actually submitted by Hewlett-Packard and Intel Corporation as well as
by Microsoft.

5.3 What Is C#?

C# can be viewed from a number of perspectives; in this it differs from many other programming
languages, which can only be viewed as a programming language and nothing else. However, C# is
more than just a programming language. Below we consider some of the ways to classify C#:

• An object-oriented programming language C# certainly provides the syntax and semantics of
an object-oriented language. It is supported by a compiler that takes programs written in C#
and produces code that can be executed by the .NET runtime environment (more on this later).
As for the C# language itself, it is rather compact,unlike languages such as Ada,which are very
large.

• A programming environment I refer here to the presence of the system-provided classes (of-
ten referred to as the .NET Classes) rather than any particular development environment. Un-
like many languages (including traditional C++), C# has associated with it a large (and fairly
standard) set of classes.These classes make C# very powerful and promote a standard develop-
ment style. You spend most of your time extending the “system” rather than programming
from scratch. In a number of cases, these classes provide facilities that are considered part of
the language in Ada, C and Pascal. The result is that C# is anything but a small programming
system.

• An operating environment The operating environment is the Common Language Runtime
(CLR) in which all C# programs execute (actually it goes wider than C# and incorporates the
other .NET languages as well). This is C#’s run-time environment, which handles memory al-
location and deallocation, references, flow of control, interaction with other .NET elements
etc.

• The language of Web Services C# (and .NET) have received huge hype as the language which
will bring the .NET framework and the associated Web Services alive. However, in many ways
C# is just an object-oriented language. There is no particular reason why C# should be any
better as a Web language than Smalltalk or any other interpreted object-oriented language,
such as Objective-C or Eiffel. Indeed, Visual Basic or Visual C++ could just as easily be made

48 Guide to C# and Object Orientation



the language to leverage the .NET framework (and indeed Microsoft has extended each to
work with the .NET framework, creating VB.NET and Managed C++). However, C# has been
designed specifically with the .NET framework in mind, and hence is very well structured for
writing code that will be compiled for .NET. It is also a green field language, in that it did not
need to take into account any previous incarnations that might lead to the incorporation of
legacy features in the language. It could also learn a few tricks from Java and C++ which it
could use to its advantage (see later).

Thus it is quite possible to say that C# is a programming language, a set of extensible classes, an
operating environment or even a Web development tool. It is, in fact, all of these.

5.4 Objects in C#

Almost everything in C# is an object; for example,strings,arrays,windows and even exceptions can
be objects. Objects, in turn, are examples of classes of things; for example, the string “John Hunt” is
an object of the class String. Thus, to program in C#, you define classes, create instances and apply
operations to classes and objects.

However, unlike languages such as Smalltalk, which are considered pure object-oriented
languages, C# also has standard types (such as ints, floats and bools) and procedural
programming statements. This hybrid approach can make the transition to object orientation
simpler. In some languages, such as C++, this can be a disadvantage, as the developer can avoid
the object-oriented nature of the language. However, C# has no concept of a procedural
program; instead, everything is held within an object (even the procedural elements).

5.5 Commercial Versions of C#

At present the only vendor of a C# compiler is Microsoft itself; however, there is no reason why this
should be the case. Indeed, there is already a project to take C# and port it to Linux. This is very
exciting and would mean that C# programs would have the potential to be cross-platform.In theory,
there is no reason why this should not be the case (C# compiles to an intermediate language which,
like Java,could be interpreted by run-time environments ported to different platforms).However,in
practice, because C# can exploit the whole of the .NET framework and the .NET classes, this would
mean that the .NET framework would need to be ported to a new operating system (hardly some-
thing that Microsoft will be pushing!). The result is that it is likely that C# will make the move, but I
suspect .NET will not (at least not in any major way).

5.6 The C# Environment

C# is different from other previous Microsoft languages that you may have used in that, when you
write C# code, it does not execute on your host machine, even when it is compiled. Instead, it

5 · An Introduction to C# 49



executes in a virtual machine,which in turn executes on your host computer.This is because your C#
code is compiled into an Intermediate Language (IL). This IL code is then run using a JIT run-time.
A JIT is a Just-In-Time compiler that converts the IL code into an executable form the first time that
code is encountered.All subsequent calls to that code can then use the dynamically generated native
code.

This can look a little confusing at first sight, as the C# compiler (csc) appears to generate a
.exe file. However, if you refer to these executables as “managed executables” that will be
“managed” by your run-time environment then you are not far off the mark.

As an example of what is actually going on, take a look at Figure 5.1. In this figure we compile
our C# program into the IL form using the C# compiler (called csc). When we execute this a JIT
run-time system is used to run it on the host machine.

5.7 Comparing C# to Java and C++

Although if you read any of the material from Microsoft you will not find any reference to Java there,
C# owes a very big debt to both Java and C++. Many of the ideas in C# can be found in these
languages. Indeed, C# uses the same syntax as Java for comments, flow of control commands and
exception handling, while 46 of its 50 keywords and 47 of its 56 operators are similar or identical to
their Java counterparts.However,this does not mean that C# is Java or indeed that it is just an exten-
sion to C++. As an exercise of interest to the reader, the similarities with C++ and Java are listed in
Table 5.1. Note that in the table, C++ relates to the original C++ language and not to the extensions
provided by Microsoft for C++ in the .NET framework.

As stated earlier C# is not Java and it is not C++; indeed, C# introduces a number of new
concepts itself, summarized in Table 5.2.

Each of the features described in this section relating to C# will be explained in more detail
later in this book. However, what you should take from this is that C# has things in common
with both C++ and Java, as well as introducing some new features.

50 Guide to C# and Object Orientation

*.cs
compiles into

*.exe

JIT runtime

run by

Host
Machine

runs on

Figure 5.1 C# run-time environment.



5.8 C# Keywords

Table 5.3 presents all the C# keywords.Do not worry about what they mean too much at the moment;
we will be covering all of them during the course of this book.

5 · An Introduction to C# 51

Feature Java C# C++

Object-oriented programming language Yes Yes Yes

Single inheritance Yes Yes No

Single class hierarchy root Yes Yes No

Automatic memory management Yes Yes No

Reusable components and information on how to use and deploy Yes Yes No

A large library of base components Yes Yes No

Web page development framework Yes Yes No

Database access framework Yes Yes No

Middleware and application integration Yes Yes No

Inner/nested classes Yes Yes No

Interfaces Yes Yes No

Templates No No Yes

Goto statement No Yes Yes

Enumerated types No Yes Yes

Operator overloading No Yes Yes

Destructors No Yes Yes

Compiler directives No Yes Yes

Header files No No Yes

Table 5.1 Comparison of features in Java, C# and C++.

Features Description

Unified type system Primitive data types inherit from parent object, dispensing with need for wrapper classes like
Int for integers or Double for doubles.

Rich parameter-passing
syntax

in,out,ref and params allow for easier interfacing with other languages and systems.

Delegate functions References to functions are. made type-safe and secure

Structs Similar to classes, except that they cannot inherit and they are value types. Structs are used to
optimize code performance.

Properties Simplify the syntax of getting and setting single-field values in a class.

Indexers Simplify the syntax for getting at an array of object values.

Attributes Assign run-time values based on compilation steps.

Table 5.2 New features in C#.



5.9 Where to Get More Information

There are numerous places on the Web that can provide useful information for the C# developer.
Some of these are:

• http://msdn.microsoft.com/vstudio/technical/articles/Csharpintro.asp
• http://www.microsoft.com/net/default.asp: .NET Platform home site
• http://www.csharphelp.com/: CSharpHelp.Com
• http://www.c-sharpcorner.com/: C# Corner
• http://www.csharptoday.com/: CSharpToday.Com
• http://www.codehound.com/csharp/: Code Hound C# Search Engine
• http://www.csharp-station.com/: C# Station
• http://www.cshrp.net/: CShrp.Net
• http://www.csharpindex.com/: CSharpIndex.Com

52 Guide to C# and Object Orientation

abstract base bool break byte

case catch char checked class

const continue decimal default delegate

do double else enum event

explicit extern false finally fixed

float for foreach goto if

implicit in int interface internal

is lock long namespace new

null object operator out override

params private protected public readonly

ref return sbyte sealed short

sizeof static string struct switch

this throw true try typeof

uint ulong unchecked unsafe ushort

using virtual void while

Table 5.3 C# keywords.


