
.NET Development for
Java Programmers

PAUL GIBBONS

384FM  6/18/02  4:30 PM  Page i



.NET Development for Java Programmers
Copyright ©2002 by Paul Gibbons

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-038-4

Printed and bound in the United States of America 1 2 3 4 5 6 7 8 9 10

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: David Pollak
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Simon Hayes,
Karen Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Alexa Stuart
Copy Editor: Kim Wimpsett
Production Editor: Janet Vail
Composition: Impressions Book and Journal Services, Inc.
Indexer: Shane-Armstrong Information Services
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

384FM  6/18/02  4:30 PM  Page ii



CHAPTER 6

Exploring ADO.NET

ACTIVEX DATA OBJECTS for the .NET Framework (ADO.NET) is your database inter-
face in .NET, the equivalent of Java’s Java Database Connectivity (JDBC). This
chapter covers database access using ADO.NET and how it differs from JDBC. It
closely looks at the DataSet object, which is the core of the ADO.NET discon-
nected model and how to use data binding to WinForms controls and ASP.NET
controls, in particular the DataGrid controls. First, you will discover the tools pro-
vided by Visual Studio .NET to assist with database development.

Using Visual Studio .NET Database Features

Although not strictly ADO.NET, this is an ideal time to touch on the Visual Studio
.NET tools that facilitate database development. After all, you need to set up
a database to develop and run the examples in this chapter. These tools are
geared to Microsoft SQL Server development. However, Visual Studio .NET
includes a copy of Microsoft SQL Server 2000 Desktop Engine (MSDE), which is
what I used to develop these examples.

You might be used to using SQL Enterprise Manager and SQL Query Analyzer
to administer SQL Server, but some functions are readily performed from within
Visual Studio .NET, making it unnecessary to launch a different tool. It is also
important to realize you cannot do everything from the Integrated Development
Environment (IDE).

By default, the Server Explorer is a separate tab in the same slide-out panel
that holds the Toolbox. You can use the Server Explorer to connect to SQL Server
instances on the local or remote systems. Once connected, you can manipulate
databases, tables, and stored procedures, providing you have permission 
to do so.

You cannot modify permissions using the Visual Studio .NET Server Explorer.
You will need to launch SQL Enterprise Manager to manipulate these.

117

384ch06.qxd  6/17/02  4:15 PM  Page 117



Creating Databases

To create a new database, select the SQL Server instance. In this case, choose the
local MSDE instance, which will be called VSDOTNET. Right-click the node to open
the context menu and select New Database, as shown in Figure 6-1.

When the Create Database dialog box appears, as in Figure 6-2, supply
a name for the database. In this case, enter chapter6 in the New Database Name
box, and click OK. Note that although this is convenient for development pur-
poses, you are not able to control any aspect other than the name. Everything
else such as the location, log location, and so on used their default values.

118

Chapter 6

Figure 6-1. Creating a new database

384ch06.qxd  6/17/02  4:15 PM  Page 118



Creating Tables

The first step to create a table is to expand the new database node. You will see
a Tables node. Open the context menu for the Tables node and select New Table,
as in Figure 6-3.

119

Exploring ADO.NET

Figure 6-2. Naming a new database

Figure 6-3. Creating a new table

384ch06.qxd  6/17/02  4:15 PM  Page 119



You will then be placed in the design view for a table. This enables you to
specify the characteristics for the rows and specify any indexes or constraints.
Figure 6-4 shows the rows for a table to hold details of .NET languages.

Up to this point, the table has been assigned a dummy name, in this case
Table1. When you save the table, you will be prompted to enter a name, as shown
in Figure 6-5. For this example, enter the name dotnetlanguages.

Now you have created the table, you need to enter some data. Select the table
and open its context menu. Select Retrieve Data from Table, as shown in 
Figure 6-6.

120

Chapter 6

Figure 6-4. Designing a table

Figure 6-5. Naming a new table

384ch06.qxd  6/17/02  4:15 PM  Page 120



This opens a DataGrid control, which allows you to insert, edit, and delete
rows from the table. At this point you need to enter some rows. Providing you
correctly set the default for the id column to newid() as shown in Figure 6-4, you
can just enter data into the name and vendor columns. As you enter each row, it
appears to vanish, but if you rerun the query, by selecting Query ➢ Run or by
pressing the toolbar button with the red exclamation mark (!), you will see that
the rows are part of the table. If you make a mistake, press the Esc key to abandon
entry into a cell or type over your error. If you create a row you do not want, right-
click in the left column and select Delete. You should end up with something
similar to Figure 6-7.

121

Exploring ADO.NET

Figure 6-6. Retrieving data from a table

384ch06.qxd  6/17/02  4:15 PM  Page 121



If you need to restrict the rows, select View ➢ Panes ➢ SQL to open a panel,
which allows you to enter SQL much as you would in the SQL Query Analyzer.
When you run the query, the results are shown in the DataGrid control. Figure 6-8
shows the dotnetlanguages table without the id field, which is an easier way to
enter data in this case.

Developing Stored Procedures

Creating and editing stored procedures is also made easy using the Server
Explorer. Select the Stored Procedures node and open its context menu. Then
select New Stored Procedure, as shown in Figure 6-9.

122

Chapter 6

Figure 6-7. Editing rows in a table

Figure 6-8. Using the SQL pane

384ch06.qxd  6/17/02  4:15 PM  Page 122



You will be given the following skeleton stored procedure to start from in an
edit panel:

CREATE PROCEDURE dbo.StoredProcedure1

/*

(

@parameter1 datatype = default value,

@parameter2 datatype OUTPUT

)

*/

AS

/* SET NOCOUNT ON */

RETURN

You can then edit this template to create your procedure. Create the follow-
ing from the template:

CREATE PROCEDURE dbo.ListLanguagesForVendor

(

@vendor nvarchar(50)

)

AS

SELECT name

FROM dotnetlanguages

WHERE vendor = @vendor

RETURN

123

Exploring ADO.NET

Figure 6-9. Creating a new stored procedure

384ch06.qxd  6/17/02  4:15 PM  Page 123



Now save it by selecting File ➢ Save. If you have not changed the procedure
name from the one suggested in the template, you will be prompted to enter one
at this time.

To test the new procedure, open its context menu and select Run Stored
Procedure. A dialog box will prompt you for any parameters, in this case @vendor.
The Output panel will display the results.

Comparing a Simple Query in JDBC and ADO.NET

You will now create a simple query in JDBC and then again in ADO.NET to exam-
ine the differences between these two technologies.

Using JDBC

To use JDBC to create a simple query, follow these steps:

1. First create a typical JDBC query for the table dotnetlanguages on the
local MSDE database chapter6 that you created in the preceding section.

2. Start by obtaining a Connection object:

String cstr = “jdbc:microsoft:sqlserver://localhost:1494; “

+ “DataBaseName=Chapter6;User=sa”;

Connection conn = null;

Statement stmt = null;

ResultSet rs = null;

try

{

Class.forName(“com.microsoft.jdbc.sqlserver.SQLServerDriver”);

conn = DriverManager.getConnection( cstr );

124

Chapter 6

NNOOTTEE Determining which port MSDE is listening on can be
difficult. Check the ERRORLOG.1 file located at C:\Program
Files\Microsoft SQL Server\MSSQL$VSdotNET\LOG.

384ch06.qxd  6/17/02  4:15 PM  Page 124



3. Next create the Statement object and execute a SQL statement using it.
As you are performing a query, use the executeQuery method. This will
return a ResultSet object:

stmt = conn.createStatement();

rs = stmt.executeQuery( “select * from dotnetlanguages” );

4. The next step is to iterate over the rows in the ResultSet and extract the
fields you are interested in:

while( rs.next() )

{

System.out.println( rs.getString( “name” ) );

}

5. Finally, ensure everything gets closed to avoid waiting for garbage col-
lection. In most cases there are not finalizers to close the ResultSet,
Statement, or Connection objects:

}

finally

{

if ( rs != null )

{

rs.close();

}

if ( stmt != null )

{

stmt.close();

}

if ( conn != null )

{

conn.close();

}

}

125

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 125



Using ADO.NET

Listing 6-1 shows the equivalent .NET code.

Listing 6-1. The .NET Code
using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

namespace SimpleQuery

{

class SimpleQuery

{

[STAThread]

static void Main(string[] args)

{

string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

SqlCommand cmd

= new SqlCommand( “select * from dotnetlanguages”, conn );

SqlDataReader rdr = cmd.ExecuteReader();

while ( rdr.Read() )

{

System.Console.WriteLine( “{0}”, rdr.GetString( 1 ) );

}

rdr.Close();

}

}

}

}

Start in a similar way to JDBC by creating a connection object. However, you
must explicitly open the connection before using it:

string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

126

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 126



using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

....

}

In this case you create a SqlConnection instance because you are using the
SQL Server managed data provider. Whereas JDBC and Microsoft’s own OLE DB
and ODBC use a factory pattern to return abstract interfaces to the database driv-
ers/providers, ADO.NET uses separate providers whose classes you use directly.
This is not a return to chaos, as the providers are built on top of a base class hier-
archy and therefore follow a consistent pattern.

There are three managed database providers available at the time of writing:
the SQL Server provider used in this example, an OLE DB provider, and an ODBC
provider. The ODBC provider is not part of the base install and must be down-
loaded separately.

The connection string will vary with the provider and driver, just as it does in
JDBC. In the SQL Server managed data provider case, the Server parameter spec-
ifies the server machine and SQL Server instance. Using the MSDE from Visual
Studio .NET, my system results in Server=.\VSdotNet. If you are not using the
local machine, you must substitute your own system name. If you use a full 
version of SQL Server rather than the MSDE that comes with Visual Studio .NET,
remove \VSdotNET, unless your DBA instructs you to use a specific SQL Server
instance name which would replace VSdotNET. The Database property specifies
which database on the server to use. If you accepted the default authentication
option when you installed MSDE, you choose Windows Authentication. In this
case, use the Integrated Security parameter and specify the value SSPI. In this
mode, the underlying Windows logon is used to authenticate to SQL Server or
MSDE. This avoids the need to hard-code user credentials in the connection
string. If you choose mixed authentication, you will have specified a password for
the internal SQL Server user account sa during installation. sa is the SQL Server
administrator account. Replace the Integrated Security parameter with User
ID and Password parameters. The result should be similar to this:

string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”User ID=sa;Password=xxxx”;

If you did not install SQL Server, you will have to consult you system or data-
base administrator to find out which mode and accounts to use.

127

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 127



The ADO.NET equivalent of the JDBC Statement is the command object,
SqlCommand in this case. There is no separation equivalent to Statement and
PreparedStatement in ADO.NET. In place of the ResultSet, obtain a data reader 
(a SqlDataReader in this example) by invoking the ExecuteReader method of the
command as follows:

SqlCommand cmd =

new SqlCommand( “select * from dotnetlanguages”, conn );

SqlDataReader rdr = cmd.ExecuteReader();

Iterating over the rows in the data reader is similar to performing the same
operation on a ResultSet. A data reader is forward only, and you cannot repo-
sition the current record pointer the way you can with a ResultSet:

while ( rdr.Read() )

{

System.Console.WriteLine( “{0}”, rdr.GetString( 1 ) );

}

When extracting the fields from a data reader’s row, use the field index. You
cannot use field names with a data reader.

In JDBC closing the ResultSet can be an optional step (however, not closing
the ResultSet can tie up resources when using some databases, such as Oracle).
In ADO.NET you cannot use the connection for anything else until you have
closed the data reader:

rdr.Close();

In C#, employ the using statement to simplify the code and implicitly call
Dispose to close the connection:

using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

...

}

128

Chapter 6

NNOOTTEE If you need to adjust your connection string for this
example you will need to make similar changes in the con-
nection strings for all other database examples in this book.

384ch06.qxd  6/17/02  4:15 PM  Page 128



Most of the time, ADO.NET providers close the connection in their finalizer if
you have not already done so. However, as garbage collection is inherently unpre-
dictable, it would be unwise to rely on it for such a precious resource.

Using CommandBehavior.CloseConnection

You will find many examples that use the following form of ExecuteReader:

SqlDataReader rdr =

cmd.ExecuteReader( CommandBehavior.CloseConnection );

This form of ExecuteReader specifies that the connection is to be closed
when the data reader is closed. You might use CommandBehavior.CloseConnection
in situations where you open a connection, execute a single SQL statement, read
the results, and then close the connection. Listing 6-2 is an example of this.

Listing 6-2. Typical Usage of CommandBehavior.CloseConnection (Do Not Do This)
string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

SqlConnection conn = new SqlConnection( cstr );

conn.Open();

SqlCommand cmd

= new SqlCommand( “select * from dotnetlanguages”, conn );

SqlDataReader rdr

= cmd.ExecuteReader( CommandBehavior.CloseConnection );

while ( rdr.Read() )

{

System.Console.WriteLine( “{0}”, rdr.GetString( 1 ) );

}

rdr.Close();

129

Exploring ADO.NET

NNOOTTEE The data reader classes do not implement
IDisposable, so you cannot employ a using statement in
those cases.

384ch06.qxd  6/17/02  4:15 PM  Page 129



Examining this code reveals that there is no guarantee that the connection
will be closed when an error occurs. This is not acceptable in a production appli-
cation. Your next thought might be to ensure the reader gets closed by adding
a try...catch block. Even if you do this there is still a window between the con-
nection being opened and the reader being created, which could suffer a failure
and result in the connection being left open. You could add another try...catch
block around the whole thing to ensure the connection gets closed. At this point
you have added a try...catch block to close the connection, just to avoid having
to explicitly close the connection!

Forget CommandBehavior.CloseConnection and employ a using statement to
ensure the connection gets closed. This results in much cleaner and more main-
tainable code (see Listing 6-3).

Listing 6-3. Employing a using Statement to Ensure the Connection Gets Closed
string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

SqlCommand cmd =

new SqlCommand( “select * from dotnetlanguages”, conn );

SqlDataReader rdr = cmd.ExecuteReader();

while ( rdr.Read() )

{

System.Console.WriteLine( “{0}”, rdr.GetString( 1 ) );

}

rdr.Close();

}

Using Command Parameters

ADO.NET does not have separate objects that parallel JDBC’s Statement and
PreparedStatement. The command object you have already seen can be used with
parameters.

When using providers other than the SQL Server managed provider, parame-
ters look much as they do in JDBC. The SQL statement itself is passed to the
command with question marks (?)where the parameters are to be substituted:

string selstr =

“select vendor from dotnetlanguages where name = ?”;

OleDbCommand cmd = new OleDbCommand( selstr, conn );

130

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 130



In the SQL Server managed provider, the parameters are named and pre-
ceded by an at (@) symbol:

string selstr =

“select vendor from dotnetlanguages where name = @name”;

SqlCommand cmd = new SqlCommand( selstr, conn );

For each parameter, you must specify the type by creating an instance of the
appropriate parameter class, such as SqlParameter or OleDbParameter. With 
the SQL Server managed provider, the name identifies the parameter within the
SQL statement:

SqlParameter name =

cmd.Parameters.Add( “@name”, SqlDbType.NVarChar, 15 );

In all other cases, the order they are added to the command’s Parameters
property determines the question mark placeholder to which they correspond.
The parameter name is irrelevant, although it must be specified:

OleDbParameter name =

cmd.Parameters.Add( “@name”, OleDbType.VarChar, 15 );

The Value property of the parameter object is set to the desired value prior to
each call.

name.Value = textBox1.Text;

Using Stored Procedures

In JDBC you use the Connection.prepareCall method to specify the stored proce-
dure and its parameters and may use question marks (?) as you would in
prepareStatement. You can then specify which are output or input/output param-
eters by invoking methods on the CallableStatement returned by prepareCall.

In ADO.NET you create the command object specifying only the stored pro-
cedure name in place of the SQL statement. You then set the CommandType
property of the command to StoredProcedure. You instantiate the parameter
objects as you would with a regular command, but by specifying its Direction
property you can indicate that a parameter is output or input/output. You can
also designate one parameter as the return value of the stored procedure by spec-
ifying a Direction of ParameterDirection.ReturnValue.

131

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 131



Using the following SQL Server stored procedure in the button handler of
a WinForms Form demonstrates this:

CREATE PROCEDURE dbo.QueryVendor

(

@name nvarchar(15),

@vendor nvarchar(15) = NULL OUTPUT

)

AS

SELECT @vendor = vendor

FROM dotnetlanguages

WHERE name = @name

RETURN @@ROWCOUNT

Listing 6-4 is equivalent to the SQL used previously, but it uses parameters
exclusively and demonstrates input, output, and return value parameter types.

Listing 6-4. Invoking a Stored Procedure with Parameters
private void button1_Click(object sender, System.EventArgs e)

{

string cstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

// stored procedure name is used in place of SQL statement

// and type is set to stored procedure

SqlCommand cmd = new SqlCommand( “QueryVendor”, conn );

cmd.CommandType = CommandType.StoredProcedure;

// input parm

SqlParameter name =

cmd.Parameters.Add( “@name”, SqlDbType.NVarChar, 15 );

name.Value = textBox1.Text;

// output parm

SqlParameter vendor =

cmd.Parameters.Add( “@vendor”,

SqlDbType.NVarChar,

15 );

vendor.Direction = ParameterDirection.Output;

132

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 132



// return value

SqlParameter rowCount =

cmd.Parameters.Add( “@rowCount”, SqlDbType.Int );

rowCount.Direction = ParameterDirection.ReturnValue;

// use this since we return no rows – just parms

cmd.ExecuteNonQuery();

if ( (int)rowCount.Value > 0 )

{

MessageBox.Show( this,

textBox1.Text +

“ is available from “ +

vendor.Value );

}

else

{

MessageBox.Show( this,

textBox1.Text +

“ is not available yet” );

}

}

}

If your stored procedure returns rows as well as output or return parameters,
be aware that the values of the parameters will not be available until the data
reader has been closed.

Using DataSets

Although the data reader is the closest analogy to a JDBC ResultSet, Microsoft is
promoting the DataSet as the normal way to use ADO.NET. A DataSet has some of
the characteristics of a JDBC CachedRowSet in that it provides a way to assemble
a set of data and then disconnect from the database before processing it, possibly
remotely.

The Simple Query Revisited

Re-create the example from the start of this chapter using a DataSet instead of
a data reader to show how they differ:

133

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 133



1. First, create the DataSet to hold the data:

DataSet dset = new DataSet();

2. The connection is then obtained as in the previous example, but instead
of creating a SqlCommand, a SqlDataAdapter is instantiated using the
desired SQL statement:

SqlDataAdapter da =

new SqlDataAdapter( “select * from dotnetlanguages”, conn );

3. Next use the DataAdapter to populate a DataTable in the DataSet. A name
is given to the table in the DataSet, but it does not need to match the
name of the original table in the database:

da.Fill( dset, “languages” );

4. Now, by placing the data in a DataSet you can safely close the connection
before processing the data:

using ( SqlConnection conn = new SqlConnection( cstr ) )

{

conn.Open();

SqlDataAdapter da =

new SqlDataAdapter( “select * from dotnetlanguages”,

conn );

da.Fill( dset, “languages” );

}

5. Now iterate the rows in the table and access the required fields by name.
Specify the name for the DataTable that you used in the Fill method:

foreach( DataRow dr in dset.Tables[ “languages” ].Rows )

{

System.Console.WriteLine( “{0}”, dr[ “name” ] );

}

134

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 134



Beyond the Single Table DataSet

In the preceding example you were able to read the results of a query into a col-
lection and close the connection before processing it. However, a DataSet can do
more than store the results of a single query.

Tables

A DataSet is made up of a collection of DataTable objects. In the example, you
added one DataTable. If the application required several queries to be run against
a database they could all have been placed in the same DataSet. A DataSet can be
serialized and transmitted to a remote client for processing. Sending a single
DataSet containing all the necessary tables is more efficient than sending several
individual ones.

One great feature of using a DataSet is that the tables can come from several
databases. It is possible to assemble all the data a client needs into one DataSet
and then send all of the data in a single transfer, isolating the client program from
the details of how the tables are mapped to databases.

Relationships

Having multiple tables in a DataSet is useful, but what if you do not know exactly
which rows you need at the time you make the query? You could extract all the
data you might need (providing it is constrained enough) and process it later, but
then you lose the power of SQL to select the data you need. With a little addi-
tional logic, you can model the relationships between the tables in the DataSet
and use them when you process the data.

Imagine the following scenario. You have a WinForms application that dis-
plays the language skills of a development team. By using the application, you
can discover the languages a given developer knows or see which developers are
proficient in a given language. This is a many-to-many relationship typically
modeled using a simple link table. Figure 6-10 shows the design view of the
developers’ table, and Figure 6-11 shows the design view of the link table, called
devlanglink.

135

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 135



Notice that devlanglink has a composite primary key. To set this while
designing the table in Visual Studio .NET, select both rows, right-click to open the
context menu, and then select Set Primary Key, as shown in Figure 6-12.

You can extract the list of languages for a developer using the following:

SELECT l.name from dotnetlanguages as l

JOIN devlanglink as k ON l.id = k.langid

JOIN developers as d ON d.empno = k.empno

WHERE d.name = @devname

You can obtain the developers who know a language using this:

SELECT d.name from developers as d

JOIN devlanglink as k ON d.empno = k.empno

JOIN dotnetlanguages as l ON l.id = k.langid

WHERE l.name = @langname

136

Chapter 6

Figure 6-10. The design view of the developers’ table

Figure 6-11. The design view of the link table, devlanglink

Figure 6-12. Creating the composite primary key for devlanglink

384ch06.qxd  6/17/02  4:15 PM  Page 136



Unfortunately, this requires a trip to the database each time. Over a slow con-
nection the user interface would respond slowly, and it would be impossible to
work offline. If you extract the data into a DataSet, you can use relationships
between the DataTables to obtain the subsets without contacting the database
each time.

The following example demonstrates how you can use DataSet relationships:

1. Create a new Windows Application project called RelationExample.
Modify the form so that its Text property reads Relation Example and its
Size is 500, 300.

2. Drag a Panel control from the Toolbox onto the form. Set its Dock prop-
erty to Bottom and its Size to 492, 50. Drag a Button control onto the
Panel. Set its name to loadDataButton, its Text property to Load Data,
and its Dock property to Fill.

3. Drag a TabControl control onto the form and set its Dock property to Left.

4. Drag a Splitter control onto the form. It should dock to the right of the
TabControl control.

5. Drag a TextBox control onto the form and set its Name to listTextBox. Set
its MultiLine property to true, its Dock property to Fill, and clear its Text
property.

6. Select the TabControl and open its TabPages collection by clicking on the
button with the ellipsis ( . . . ). You will see the usual collection dialog
box. Click Add to add a TabPage to the collection. Set the page’s name to
languageTabPage and its Text property to language. Click Add again and
this time set the name to developerTabPage and the Text property to
developer. Click OK to close the dialog box.

7. Select the Language tab.

8. Drag a Label control onto the tab. Position it near the top of the page.
Change its Text property to Choose a language.

9. Drag a ComboBox control onto the tab and position it below the Label.
Change the name of the ComboBox to languageComboBox and clear its
Text property.

10. Drag a Button control onto the tab. Set its name to languageButton and
its Text property to Which developers know this language? Change the

137

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 137



Dock property to Bottom and then increase the Size property to 192, 50
so that all the text is visible.

11. The form should now look like that shown in Figure 6-13.

12. Select the Developer tab.

13. Drag a Label control onto the tab. Position it near the top of the page.
Change its Text property to Choose a developer.

14. Drag a ComboBox control onto the tab and position it below the Label.
Change the name of the ComboBox to developerComboBox and clear its
Text property.

15. Drag a Button control onto the tab. Set its name to developerButton and
its Text property to What languages do they know? Change the Dock
property to Bottom and then increase the Size property to 192, 50 so
that all the text is visible.

16. The form should now look like that shown in Figure 6-14.

138

Chapter 6

Figure 6-13. The form with the Language tab completed

384ch06.qxd  6/17/02  4:15 PM  Page 138



17. Double-click loadDataButton to create a button click handler. Change
the code to that shown in Listing 6-5. Start by populating the DataSet
with rows from the dotnetlanguages, developers, and devlanglink tables.
To set up the relationships, create DataRelation objects and add them to
the Relations property of the DataSet. A DataRelation specifies how
columns in one table relate to columns in another table. You specify 
the columns as DataColumn objects.

Listing 6-5. Loading the Data into the DataSet and Setting Up the DataRelation
Objects
const string connstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

private DataSet ds = null;

private void loadDataButton_Click(object sender,

System.EventArgs e)

{

ds = new DataSet();

using ( SqlConnection conn = new SqlConnection( connstr ) )

{

conn.Open();

// get the raw data

139

Exploring ADO.NET

Figure 6-14. The form with the Developer tab completed

384ch06.qxd  6/17/02  4:15 PM  Page 139



SqlDataAdapter da1

= new SqlDataAdapter( “select * from dotnetlanguages”,

conn );

da1.Fill( ds, “dotnetlanguages” );

SqlDataAdapter da2

= new SqlDataAdapter( “select * from developers”,

conn );

da2.Fill( ds, “developers” );

SqlDataAdapter da3

= new SqlDataAdapter( “select * from devlanglink”,

conn );

da3.Fill( ds, “devlanglink” );

// create the relationships

ds.Relations.Add( “langlink”,

ds.Tables[ “dotnetlanguages” ].Columns[ “id” ],

ds.Tables[ “devlanglink” ].Columns[ “langid” ] );

ds.Relations.Add( “devlink”,

ds.Tables[ “developers” ].Columns[ “empno” ],

ds.Tables[ “devlanglink” ].Columns[ “empno” ] );

// establish data binding

languageComboBox.DataSource = ds.Tables[ “dotnetlanguages” ];

languageComboBox.DisplayMember = “name”;

developerComboBox.DataSource = ds.Tables[ “developers” ];

developerComboBox.DisplayMember = “name”;

}

}

18. Now you can use these relationships to filter the rows in the DataSet and
extract the desired rows. Double-click the languageButton on the
Languages tab to create a button click handler. Enter the code as shown
in Listing 6-6. Given a row from the dotnetlanguages table, you can use
the GetChildRows method to locate the rows it maps to in the devlanglink
table. Then iterate those rows and use the GetParent method to locate
the related developers. Figure 6-15 shows how this appears in the appli-
cation.

140

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 140



Listing 6-6. Using the Relationships in the DataSet to List Developers Given
a Language
private void languageButton_Click(object sender,

System.EventArgs e)

{

if ( ds == null )

{

MessageBox.Show( this, “You must load the data first” );

}

else

{

listTextBox.Text = “”;

// languageComboBox combobox is databound to the

// languages DataTable

DataRow lang

= ( (DataRowView)languageComboBox.SelectedValue ).Row;

foreach( DataRow row in lang.GetChildRows( “langlink” ) )

{

DataRow dev = row.GetParentRow( “devlink” );

listTextBox.Text += dev[ “name” ].ToString() + “\r\n”;

}

}

}

141

Exploring ADO.NET

Figure 6-15. Using relationships to list developers who know a given language

384ch06.qxd  6/17/02  4:15 PM  Page 141



19. Similarly, you can use these relationships to locate the languages a given
developer knows. Double-click the developerButton on the Developer
tab and enter the code shown in Listing 6-7. Figure 6-16 shows the result
of implementing this button click handler.

Listing 6-7. Using the Relationships in the DataSet to List Languages Given
a Developer
private void developerButton_Click(object sender,

System.EventArgs e)

{

if ( ds == null )

{

MessageBox.Show( this, “You must load the data first” );

}

else

{

listTextBox.Text = “”;

// developerComboBox combobox is databound to the

// developers DataTable

DataRow dev

= ( (DataRowView)developerComboBox.SelectedValue ).Row;

foreach( DataRow row in dev.GetChildRows( “devlink” ) )

{

DataRow lang = row.GetParentRow( “langlink” );

listTextBox.Text += lang[ “name” ].ToString() + “\r\n”;

}

}

}

142

Chapter 6

Figure 6-16. Using relationships to list the languages a given developer knows

384ch06.qxd  6/17/02  4:15 PM  Page 142



20. Build and run the application.

Most examples of relationships use the equivalent of a two-way join. I delib-
erately chose the equivalent of a three-way join to show that it is almost as easy
to accomplish.

By setting up the relationships between tables in a DataSet, you can avoid
potentially costly roundtrips to the database, and you can even operate in situ-
ations where the database is unavailable.

Completing the Roundtrip

So far you have used DataSets to hold the results of queries, but they are not
restricted to read-only operations. Like a CachedRowSet, a DataSet can be used to
update a database, too.

Updates

When changes are made to a DataSet, they are tracked so that at some point in
the future they may be reconciled with the original database. This occurs when
you invoke the DataAdapter object’s Update method. Just like the Fill method,
the table’s name is specified to indicate which one to update. The DataAdapter
need not be the same instance used to populate the DataSet, and in most cases it
will not be.

Take your developers’ table from the previous example and add a new devel-
oper. Loading the data into the DataSet is the same as before:

SqlDataAdapter da =

new SqlDataAdapter( “select * from developers”, conn );

da.Fill( ds, “developers” );

At this point close the connection to the database.
When you are ready to add a new row, create a DataRow with the same

columns as those in the DataTable. Fortunately, the DataTable has a NewRow
method that does this for you. Then set the values for the fields and add the row
to the Rows collection:

DataRow row = ds.Tables[ “developers” ].NewRow();

row[ “empno” ] = ++empno;

row[ “name” ] = developerTextBox.Text;

ds.Tables[ “developers” ].Rows.Add( row );

You edit the values of existing rows in the DataSet in a similar way.

143

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 143



Once you are ready to commit the changes to the database, you need to
reconnect:

using ( SqlConnection conn = new SqlConnection( connstr ) )

{

conn.Open();

SqlDataAdapter da =

new SqlDataAdapter( “select * from developers”, conn );

So far, you have only supplied a select statement, and you need some com-
bination of insert, update, and delete statements to make the required changes
to the database. The SqlDataAdapter has properties that take a SqlCommand for
each of these. In this example where you are adding the row, you could do the fol-
lowing:

da.InsertCommand = new SqlCommand(

“INSERT INTO developers( empno, name ) values ( @empno, @name )”,

conn );

da.InsertCommand.Parameters.Add( “@empno”,

SqlDbType.Int,

4,

“empno” );

da.InsertCommand.Parameters.Add( “@name”,

SqlDbType.NVarChar,

15,

“name” );

which creates the insert command and maps the appropriate columns to the
parameters.

To process updates and deletes, add the appropriate SqlCommand objects to
the UpdateCommand and DeleteCommand properties of the SqlDataAdapter. The
other alternative in this situation is to create a SqlCommandBuilder on the
SqlDataAdapter that constructs the commands automatically:

SqlCommandBuilder cb = new SqlCommandBuilder( da );

This only works for tables populated by simple single table selects but elimi-
nates all the parameter mapping code when it is an option.

Whichever method you use to populate the commands, your ultimate goal is
to have the changes made to the DataSet reflected in the database. Accomplish
this by invoking the DataAdapter object’s Update method:

da.Update( ds, “developers” );

144

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 144



Invoke Update for each table changed. If the tables came from separate data-
bases, you need to use a DataAdapter connected to the appropriate database for
each table.

Conflicts

Running a single copy of the preceding example will not cause any conflicts
between the DataSet and the database, but if you launch multiple copies you will
soon create duplicate employee numbers. This is a classic optimistic locking
problem, and the strategies for dealing with it and their shortcomings are well
known. It is up to you to detect and handle conflicting updates according to the
strategy you feel is most appropriate to your application.

At first glance this optimistic locking stuff looks ugly, but let me put it in per-
spective. Whenever you display an ASP.NET page to a user that allows them to
update information, you do not usually lock the database rows waiting for
a response. You must expect that when you get the response the underlying data-
base rows may have changed in a manner that renders the updates made by the
user obsolete. Your reaction may simply be to resend the original update page
with the new data, but you deal with the situation somehow.

You can control the types of changes that are applied in a given Update invo-
cation by extracting the rows with the desired change and only passing them to
Update. Specify the rows by selecting out the DataRow instances with a given
DataViewRowState such as Added, Deleted, or ModifiedCurrent. This could be
important to satisfy constraints on the rows in the database, such as when you
delete a row and then add a new one with the same unique key.

Constraints

Just as you can specify foreign key constraints and unique constraints in a data-
base, you can specify them in a DataSet. This can help you validate data in
a client, but remember that it only applies to the subset of rows in the DataSet, so
you may still get errors when you invoke Update against the complete table.

You apply foreign key constraints by creating an instance of
ForeignKeyConstraint and adding it to the Constraints property of the
DataTable. Similarly, you apply unique constraints by creating an instance of
UniqueConstraint and adding it to the same property. In both cases, you may
specify multiple columns.

145

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 145



Understanding Pooling

Connection pooling in JDBC is typically provided by specialized class libraries
that exploit the façade pattern to provide pooled connection objects. When these
connection objects are closed, they do not close the underlying database con-
nection but rather return it to the pool.

The SQL Server managed provider contains its own pooling mechanism,
making the specialized class library unnecessary. Should pooling be undesirable
in a given application it can be disabled in the connection string by specifying
Pooling=’false’.

The OLE DB and ODBC providers do not provide pooling themselves but rely
on existing pooling mechanisms in the OLE DB or ODBC layers.

Implementing Data-Bound Controls

The WinForms and WebForms discussion touched briefly on the subject of data-
bound controls using arrays as the data source. Most of the time a data-bound
control will take its data from a DataTable. These controls save the programmer
from having to map the data from the data source into the control explicitly.

Using Simple Data Binding

Simple data binding applies to controls such as combo boxes and list boxes. You
must specify both the DataTable within the DataSet and the column within that
DataTable to be used as the display value:

developersListBox.DataSource = ds.Tables[ “developers” ];

developersListBox.DisplayMember = “name”;

Using Grid Controls

Both WinForms and WebForms have powerful grid controls that exploit data
binding to display data.

WinForms DataGrid

WinForms has the DataGrid control to display a DataTable. This is the closest
equivalent to a Swing JTable in WinForms, with the DataTable filling the role of

146

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 146



the TableModel. Add a DataGrid to a Form in the usual way by dragging and drop-
ping from the Toolbox. Then make a DataTable the DataSource for the DataGrid:

dataGrid1.DataSource = ds.Tables[ “developers” ];

The DataGrid supports multiple columns, so there is no need to specify
a value for DisplayMember. Figure 6-17 shows how this would look.

By default a DataGrid supports unrestricted editing of the data. All cells are
editable and rows can be added and deleted freely. The DataTable is changed by
these operations, but you must provide code to update the database to make the
changes permanent.

If you only want to display the data, without supporting changes, set the
ReadOnly property of the DataGrid to true. To set an individual column to read-
only, you must locate the appropriate DataGridColumnStyle instance in the
TableStyles property of the DataGrid and set its ReadOnly property to true.

A DataGrid can also display a DataSet, allowing traversal of any relationships
that have been added between the tables. The initial table is established by set-
ting the DataMember property. This is best suited to hierarchical data, where you
want to allow drill-down traversal. The DataSet used earlier with a many-to-many
relationship does not behave as you might expect.

Imagine you want to view the developers with an option to see their lan-
guage skills. Create the following example:

1. Create a new Windows Application project called
DataGridRelationExample.

2. Drag a DataGrid control from the Toolbox onto the form and set its Dock
property to Fill. Set its ReadOnly property to true.

147

Exploring ADO.NET

Figure 6-17. The WinForms DataGrid control

384ch06.qxd  6/17/02  4:15 PM  Page 147



3. Double-click the form to create a form load handler. Change the code to
that shown in Listing 6-8.

Listing 6-8. Using Relationships in a DataSet with a WinForms DataGrid
const string connstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

private DataSet ds = null;

private void Form1_Load(object sender, System.EventArgs e)

{

ds = new DataSet();

using ( SqlConnection conn = new SqlConnection( connstr ) )

{

conn.Open();

SqlDataAdapter da1

= new SqlDataAdapter( “select * from developers”, conn );

da1.Fill( ds, “developers” );

SqlDataAdapter da2

= new SqlDataAdapter( “SELECT k.empno, l.name “ +

“FROM dotnetlanguages l “ +

“JOIN devlanglink k “ +

“ON l.id = k.langid”,

conn );

da2.Fill( ds, “languages” );

// create the relationship

ds.Relations.Add( “language”,

ds.Tables[ “developers” ].Columns[ “empno” ],

ds.Tables[ “languages” ].Columns[ “empno” ] );

dataGrid1.DataSource = ds;

dataGrid1.DataMember = “developers”;

}

}

4. Build and run the application. The list of developers appears as in 
Figure 6-18. The DataGrid shows a plus sign (+) in the left margin that

148

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 148



you can expand (by clicking it) to follow the relation to the languages for
that developer. The languages are shown with the context of the parent,
as shown in Figure 6-19.

WebForms DataGrid

ASP.NET WebForms also have a DataGrid control. Binding the control to
a DataTable is much the same as in WinForms except that once the DataSource
and DataMember properties have been set, you must invoke the DataBind method:

149

Exploring ADO.NET

Figure 6-18. A DataGrid showing a relationship

Figure 6-19. Displaying the child rows of a relationship in a WinForms DataGrid

384ch06.qxd  6/17/02  4:15 PM  Page 149



DataGrid1.DataSource = ds;

DataGrid1.DataMember = “developers”;

DataGrid1.DataBind();

In contrast to the WinForms version, the WebForms DataGrid is read-only by
default. It also does not seem to have any built-in support to traverse relation-
ships. You can configure many visual aspects of the DataGrid. Figure 6-20 shows
how it looks “out of the box” on a WebForms page.

Adding support for editing or even selecting the rows is not a matter of flip-
ping a read-only flag. You must set up handlers for the events and register them
with the control. There are no defaults that operate against the DataSet, so you
must provide all the logic yourself. The following example shows how you
achieve this:

1. Create a new ASP.NET Web Application project called
WebGridEditExample.

2. Drag a DataGrid control from the Toolbox onto the Web form.

3. Switch to code view and add the code to populate the DataGrid, as
shown in Listing 6-9. Notice that this includes changes to the Page_Load
method.

150

Chapter 6

Figure 6-20. The WebForms DataGrid

384ch06.qxd  6/17/02  4:15 PM  Page 150



Listing 6-9. Populating the DataSet and Binding It to the WebForms DataGrid
private const string connstr = @”Server=.\VSdotNET;”

+ @”Database=Chapter6;”

+ @”Integrated Security=SSPI”;

private DataSet ds;

private void PopulateAndBind()

{

ds = new DataSet();

using ( SqlConnection conn = new SqlConnection( connstr ) )

{

conn.Open();

SqlDataAdapter da1 =

new SqlDataAdapter( “select * from developers”, conn );

da1.Fill( ds, “developers” );

DataGrid1.DataSource = ds;

DataGrid1.DataMember = “developers”;

DataGrid1.DataBind();

}

}

private void Page_Load(object sender, System.EventArgs e)

{

if ( !this.IsPostBack )

{

PopulateAndBind();

}

}

4. Switch back to the designer and select the DataGrid. Open the Property
Builder . . . link located on the Properties panel. Select the Columns pane
and then expand the Button Column node in the Available columns tree-
view. Select the Edit, Update, Cancel node and press the > button to add
it to the selected columns list as shown in Figure 6-21. Click OK.

151

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 151



5. Now add the handlers for the Edit, Update, and Cancel events as shown
in Listing 6-10. The Edit and Cancel handlers set the DataGrid object’s
EditItemIndex property to the selected row and –1, respectively. Unless
you rebind to the DataSet after setting this value, it does not work cor-
rectly. Use the PopulateAndBind convenience function from Listing 6-9 to
re-populate and rebind the DataSet. The Update handler must obtain the
modified values from the DataGrid object’s cell controls.

Listing 6-10. The Edit, Cancel, and Update Handlers for the WebForms DataGrid
public void DataGrid1_Edit(Object sender, DataGridCommandEventArgs E)

{

DataGrid1.EditItemIndex = (int)E.Item.ItemIndex;

PopulateAndBind();

}

152

Chapter 6

Figure 6-21. Adding the update commands column to the Web form

384ch06.qxd  6/17/02  4:15 PM  Page 152



public void DataGrid1_Cancel(Object sender, DataGridCommandEventArgs E)

{

DataGrid1.EditItemIndex = -1;

PopulateAndBind();

}

public void DataGrid1_Update(Object sender, DataGridCommandEventArgs E)

{

int row = (int)E.Item.ItemIndex;

int empno =

Int32.Parse( ((TextBox)E.Item.Cells[1].Controls[0]).Text );

String name = ((TextBox)E.Item.Cells[2].Controls[0]).Text;

ds = new DataSet();

using ( SqlConnection conn = new SqlConnection( connstr ) )

{

conn.Open();

SqlDataAdapter da1

= new SqlDataAdapter( “select * from developers”,

conn );

da1.Fill( ds, “developers” );

SqlCommandBuilder cb = new SqlCommandBuilder( da1 );

DataRow dr = ds.Tables[ “developers” ].Rows[ row ];

dr[ “empno” ] = empno;

dr[ “name” ] = name;

da1.Update( ds, “developers” );

DataGrid1.EditItemIndex = -1;

DataGrid1.DataSource = ds.Tables[ “developers” ];

DataGrid1.DataBind();

}

}

6. Then register the handlers with the control using the Events panel of the
Properties window for the DataGrid control. Switch the Properties win-
dow to Events by selecting the Events icon (which looks like a lightning
flash). Then connect the events to the methods, as shown in Figure 6-22.

153

Exploring ADO.NET

384ch06.qxd  6/17/02  4:15 PM  Page 153



7. If you are connecting to a SQL Server database using a user ID and pass-
word in your connection string, you can build and run the application. If
you need to use Windows authentication, there are a few additional
steps.

8. Edit the project’s web.config file to add <identity impersonate=”true”
/> following the <authentication> element. This tells ASP.NET to imper-
sonate the identity of the user connecting to the application so that you
can authenticate to SQL Server/MSDE.

9. Open the Internet Information Services administrative tool from the
Control Panel. Locate the virtual root for the project and open its
Properties panel. Select the Directory Security tab. Uncheck the anony-
mous access box and ensure that the Windows-integrated authentication
box is checked. This makes IIS require user authentication for the appli-
cation.

10. Now you can build and run the application. Figure 6-23 shows this
updatable version of the WebForms DataGrid on a Web page.

154

Chapter 6

Figure 6-22. The Events panel of the Properties window

384ch06.qxd  6/17/02  4:15 PM  Page 154



The WebForms version of the DataGrid is not as powerful as the WinForms
version, and it requires you to add a large amount of your own code to achieve
what is basic functionality in the WinForms DataGrid.

Comparing ADO.NET to the Current ADO

The big difference from ADO is the same as that from JDBC: the disconnected
DataSet model. ADO provides the disconnected RecordSet, which is much the
same as the CachedRowSet, but neither provides the support for multiple tables
that a DataSet does.

An ADO RecordSet is roughly analogous to a DataTable within a DataSet. It is
marshaled by COM, which restricts it to Windows clients most of the time.
A DataSet is marshaled as Extensible Markup Language (XML), which allows it to
be used by non-Windows clients. Until the inner workings of a DataSet become
well documented and client-side libraries appear on other platforms, I doubt you
will see widespread use on non-Windows platforms.

The other big difference is the move away from the façade pattern to discrete
providers with their own classes. ADO uses OLE DB providers and the façade pat-
tern to hide the underlying implementation from developers. It remains to be
seen if this is just expediency and if Microsoft will return to this in future incar-
nations of ADO.NET.

155

Exploring ADO.NET

Figure 6-23. The updatable version of the DataGrid

384ch06.qxd  6/17/02  4:15 PM  Page 155



Summary

JDBC users will find it easy to transition to ADO.NET using the command and
data reader classes following the patterns to which they have become accus-
tomed. Anyone familiar with CachedRowSet will find the DataSet concept easy to
grasp. Data binding will motivate interface developers to start using DataSet
objects. Once you become comfortable with the disconnected model, you will
start enjoying some of the other capabilities DataSet objects provide.

156

Chapter 6

384ch06.qxd  6/17/02  4:15 PM  Page 156




