
Foreword

Constraint Programming is an approach for modeling and solving combina-
torial problems that has proven successful in many applications. It builds on
techniques developed in Artificial Intelligence, Logic Programming, and Op-
erations Research. Key techniques are constraint propagation and heuristic
search.

Constraint Programming is based on an abstraction that decomposes a
problem solver into a reusable constraint engine and a declarative program
modeling the problem. The constraint engine implements the required prop-
agation and search algorithms. It can be realized as a library for a general
purpose programming language (e.g. C++), as an extension of an existing
language (e.g. Prolog), or as a system with its own dedicated language.

The present book is concerned with the architecture and implementation
of constraint engines. It presents a new, concurrent architecture that is far
superior to the sequential architecture underlying Prolog. The new architec-
ture is based on concurrent search with copying and recomputation rather
than sequential search with trailing and backtracking. One advantage of the
concurrent approach is that it accommodates any search strategy. Further-
more, it considerably simplifies the implementation of constraint propagation
algorithms since it eliminates the need to account for trailing and backtrack-
ing.

The book investigates an expressive generalization of the concurrent ar-
chitecture that accommodates propagation-preserving combinators (known
as deep guard combinators) for negation, disjunction, implication, and reifi-
cation of constraint propagators. Such combinators are beyond the scope of
Prolog’s technology. In the concurrent approach they can be obtained with a
reflective encapsulation primitive.

The concurrent constraint architecture presented in this book has been
designed for and realized with the Mozart programming system, where it
serves as the basis for new applications and tools. One example presented in
this book is the well-known Oz Explorer, a visual and interactive constraint
programming tool.

The author of this book, Christian Schulte, is one of the leading experts in
constraint technology. He also is one the creators of the Mozart programming



VI Foreword

system. His book is a must read for everyone seriously interested in constraint
technology.

December 2001 Gert Smolka



Preface

Constraint programming has become the method of choice for modeling and
solving many types of problems in a wide range of areas: artificial intel-
ligence, databases, combinatorial optimization, and user interfaces, just to
name a few. In particular in the area of combinatorial optimization, constraint
programming has been applied successfully to planning, resource allocation,
scheduling, timetabling, and configuration.

Central to the success of constraint programming has been the empha-
sis on programming. Programming makes constraint-based modeling expres-
sive as it allows sophisticated control over generation and combination of
constraints. Programming makes an essential contribution to the constraint
solving abilities as it allows for sophisticated search heuristics.

Todays constraint programming systems support programming for mod-
eling and heuristics. However, they fall short for programming search strate-
gies and constraint combinators. They typically offer a fixed and small set
of search strategies. Search cannot be programmed, which prevents users
from constructing new search strategies. Search hard-wires depth-first explo-
ration, which prevents even system developers from constructing new search
strategies. Combination is exclusively based on reification which itself is in-
compatible with abstractions obtained by programming and often disables
constraint solving when used for combination.

The main contribution of this book is easy to explain: constraint services
such as search and combinators are made programmable. This is achieved
by devising computation spaces as simple abstractions for programming con-
straint services at a high level. Spaces are seamlessly integrated into a concur-
rent programming language and make constraint-based computations com-
patible with concurrency through encapsulation.

State-of-the-art and new search strategies such as visual interactive
search and parallel search are covered. Search is rendered expressive and
concurrency-compatible by using copying rather than trailing. Search is ren-
dered space and time efficient by using recomputation. Composable combina-
tors, also known as deep-guard combinators, stress the control facilities and
concurrency integration of spaces. Composable combinators are applicable to
arbitrary abstractions without compromising constraint solving.



VIII Preface

The implementation of spaces is presented as an orthogonal extension to
the implementation of the underlying programming language. The resulting
implementation is shown to be competitive with existing constraint program-
ming systems.

Acknowledgments

First and foremost, I would like to thank Gert Smolka, for his unfailing sup-
port, expert advice, and incomparable enthusiasm during my doctoral re-
search. I am extraordinarily grateful to Seif Haridi, who amongst other things
accepted to give his expert opinion on the thesis on which this book is based:
I do consider Seif as my second thesis adviser. Gert, in particular, introduced
me to constraint programming and research in general, and taught me that
striving for simplicity is essential and fun. I am still grateful to Sverker Jan-
son for convincing me that the solve combinator is a suitable starting point
for a thesis.

I am lucky to have had the great advantage of having been surrounded
by knowledgeable and helpful co-workers: Martin Henz, Tobias Müller, Peter
Van Roy, Joachim P. Walser, and Jörg Würtz have been inspiring partners in
many fruitful discussions on constraint programming; Michael Mehl, Tobias
Müller, Konstantin Popov, and Ralf Scheidhauer shared their expertise in
implementation of programming languages and constraints with me; Denys
Duchier, Seif Haridi, Martin Henz, Michael Mehl, and Gert Smolka have been
helpful in many discussions on spaces. I have benefitted very much from the
knowledge – and the eagerness to share their knowledge – of Per Brand, Seif
Haridi, Sverker Janson, and Johan Montelius on AKL. Konstantin Popov has
been invaluable for this work by implementing the first version of the solve
combinator.

Thorsten Brunklaus, Raphaël Collet, Martin Henz, Tobias Müller, Gert
Smolka, and Peter Van Roy provided helpful and constructive comments on
drafts of this work. Their comments have led to fundamental improvements.

April 2001 Christian Schulte


