
XML Programming:
Web Applications
and Web Services
with JSP and ASP

ALEXANDER NAKHIMOVSKY
TOM MYERS

031fmat.qxp 5/10/02 2:24 PM Page i

XML Programming: Web Applications and Web Services with JSP and ASP
Copyright ©2002 by Alexander Nakhimovsky and Tom Myers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-003-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Slava Paperno
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Erin Mulligan
Copy Editor: Tom Gillen, Gillen Editorial, Inc.
Production Editor: Kari Brooks
Compositor: Impressions Book and Journal Services, Inc.
Artist: Kurt Krames
Indexer: Carol Burbo
Cover Designer: Kurt Krames
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,175 Fifth
Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112
Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress at 2560 9th Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the authors nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

031fmat.qxp 5/10/02 2:24 PM Page ii

CHAPTER 2

Well-Formed Documents
and Namespaces

WITH BASIC DEFINITIONS and examples behind us, we can move on to a detailed
discussion of the specifications. In this chapter, we concentrate on documents
without DTDs because they have a simpler structure. Although occasionally
mentioned in this chapter, DTDs and other approaches to validation (such as
XML Schema and RELAX NG) will be introduced in Chapter 3.

In outline, this chapter proceeds as follows:

• HTML vs. XHTML

• XHTML modularization and XHTML Basic

• well-formed XML documents

• names and namespaces

• global attributes and XLink

• namespace URI and RDDL (XHTML Basic + XLink)

We will start with a comparison of HTML and XHTML.

HTML, XML, and XHTML

HTML is by far the most familiar markup language. We will review its main fea-
tures in comparison with XHTML to emphasize, one last time, the following basic
facts.

• HTML is a specific language defined in the SGML framework.

• XML is not a language but a framework for defining languages.

• XML is a revision of SGML.

41

031ch02.qxp 5/10/02 2:39 PM Page 41

The main difference between XML languages and HTML and other SGML
languages is that XML documents can be parsed without a DTD, whereas
SGML documents (whether in HTML or any other SGML language) can be parsed
only with the help of the DTD. This is because, in SGML languages, the end tag of
an element can frequently be omitted even if the element is not empty: in HTML,
you don’t have to close off your <p>s with a </p>. For HTML empty elements, the
end tag is always optional: nobody puts
</br> in a Web page.

HTML vs. XHTML

Listing 2-1 provides an example of a perfectly grammatical HTML document
(paralist.htm); it uses CSS within a style attribute to specify the font properties
for the first <p> element:

Listing 2-1. An HTML Document
<html>

<head><title>HTML Example</title></head>

<body bgcolor=”#ffffef”>

<h1>Heading</h1>

<p style=”color:maroon;font-size:2em”>a paragraph with italics

followed by a list

item one

item two

<p>Another paragraph with a line break
 in the middle.

</body>

</html>

What would the element tree for this document look like? Figure 2-1 shows
one possibility.

42

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 42

Is this the only possible tree? Note that the <p> elements don’t have an end
tag, so it would be consistent with the markup to make the element a child
of the first <p>. In fact, we could even make the second <p> a child of the first. Is
there a “correct” structure among these possibilities? The question is not aca-
demic because the page uses CSS, and a CSS style defined on an element is
inherited by the element’s children. If is a child of <p>, its font will be large
and maroon; otherwise, it will be small and black. Obviously, we can’t leave this
decision to the browser’s parser: we need a rule. There is, indeed, such a rule; in
fact, for every HTML element, there is a rule that stipulates which elements it can
contain. The rule for <p> lists many possible children, but is not among
them. As Figure 2-2 shows, the browser knows and obeys the rule.

43

Well-Formed Documents and Namespaces

Figure 2-1. Element tree of an HTML document

Figure 2-2. HTML document in the browser

031ch02.qxp 5/10/02 2:39 PM Page 43

The rules of HTML are stated in the HTML DTD, which is part of the W3C
HTML recommendation. (The latest and final version is 4.01.) HTML DTDs are
very similar to XML DTDs, and we are not going to discuss their minor differ-
ences. The essential point is that, to process an HTML document and build its
tree, the browser’s parser needs to know the grammar of HTML (the HTML DTD).
The corresponding XML document terminates each element with an end tag and
can be parsed without a grammar. (Empty elements consist of a single tag termi-
nated with the “/>” sequence, as in
.) Modified in this way, HTML becomes
XHTML, officially described by W3C as “a Reformulation of HTML 4 in XML 1.0”.

To parse the document shown in Listing 2-2, the browser wouldn’t need the
grammar anymore.

Listing 2-2. An XHTML Document
<html>

<head><title>HTML Example</title></head>

<body bgcolor=”#ffffef”>

<h1>Heading</h1>

<p style=”color:maroon;font-size:2em”>a paragraph with italics

followed by a list</p>

item one

item two

<p>Another paragraph with a line break
 in the middle.</p>

</body>

</html>

HTML As a Language

In Chapter 1, we defined a language as consisting of a vocabulary and a grammar.
Is HTML a language in the sense of this general definition? It most certainly is
because it has a fixed vocabulary of element and attribute names whose usage is
controlled by specific grammar rules. Is HTML a formal language or an inter-
preted one? This question is a little trickier: HTML itself does not define the
meaning of its expressions, but they are always given a meaning in a stylesheet
(either the default stylesheet that comes with the browser or a custom style-
sheet supplied by the user). For instance, the meaning of the <h1> tag in the fol-
lowing line is something like: “display the text ‘Heading’ in a large font, bold face”
(for example, 24 point Times New Roman).

<h1>Heading </h1>

44

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 44

As an HTML author who is also well versed in CSS, you can change that
meaning by redefining the style as in the following line of code.

<h1 style=”font-family:algerian;color:red;font-size:4em”>Heading</h1>

Figure 2-3 shows the resulting document, paralist2.htm, in the browser.

However, your creativity has limits: all possible meanings are about how
the text within the tags is to be displayed in the browser. This is what HTML
expressions within the body are mostly about. The important point here is that
the meaning of HTML tags and attributes is determined by a stylesheet and
a specific application—the browser—that interprets it.

By contrast, XML is not a language. It doesn’t have a specific markup
vocabulary or a specific grammar. Instead, it has a DTD language for defining
vocabularies and grammars. In addition, XML makes no assumptions at all about
the meaning of its markup languages. They can be intended for any application,
and the application alone determines the meaning of the markup.

SGML/HTML = XML/XHTML

In a sense, it is unfair to compare HTML to XML: it’s like comparing a cookie to
a cookie cutter. Or, to change the metaphor, XML is not HTML’s sibling but more
like its (youthful and vigorous) uncle. Figure 2-4 illustrates the relationship.

45

Well-Formed Documents and Namespaces

Figure 2-3. HTML Document with a different stylesheet

031ch02.qxp 5/10/02 2:39 PM Page 45

A good comparison would be between HTML and XHTML. More precisely,
we want to compare an HTML document with the corresponding XHTML docu-
ment; Listing 2-1 and 2-2 give us material for comparison. The most important
difference between them, from which more-specific differences follow, is that an
XHTML document can be checked for well-formedness and parsed in the
absence of a grammar. We have expressed this difference by saying that elements
must form a tree in all SGML languages as well as in all XML languages, but, in
XML languages, additionally, the document’s markup must explicitly show the
tree structure.

HTML and XHTML have several other, less important differences, such as
XML is case sensitive and XHTML tags are defined to be in lowercase. (A good
place to look for a summary of all such differences is Section 4 of the XHTML
spec that lists its differences with HTML 4.0, www.w3.org/TR/xhtml1/#diffs.)
However, most remaining differences between XHTML and HTML pages result
from the behavior of the parser that processes them rather than from any differ-
ences in their grammar and underlying framework.

Parsers with Attitude

HTML parsers are famously tolerant of ungrammatical Web pages: they will dis-
play a page without complaint even if it lacks the <html> and <head> elements,
has unquoted attribute values, and shows other violations of HTML rules. For
instance, the page shown here (paralistbad.htm) will display correctly in both IE
and Netscape browsers, possibly with differences in whitespace:

<p style=color:maroon;font-size:2em>a paragraph followed by a list

item one

item two

46

Chapter 2

Figure 2-4. SGML and XML

031ch02.qxp 5/10/02 2:39 PM Page 46

As you can imagine, this means a lot of work both for parser writers, and for
parsers themselves. All SGML parsers are complex, but HTML parsers are even
more so because they try to anticipate and correct users’ mistakes. XML is more
economical on all counts. (One of XML’s design goals was that it shall be easy to
write programs that process XML documents.) XML parsers, especially nonvali-
dating ones, are small and relatively easy to write both because XML is simpler
than SGML and because XML’s attitude to syntax errors is totally negative.

Error handling by XML parsers is not only strict, it is also uniform. The W3C
XML recommendation, in a section on conformant processors, precisely specifies
what a processor must do in response to different kinds of errors. There is, as we
mentioned in Chapter 1, a test suite that is designed to test the parser’s compli-
ance with the XML specification, especially in its error handling. (See
http://oasis-open.org/committees/xml-conformance/xml-test-suite.shtml.)

There are two main reasons for this strict attitude. First, XML parsers are fre-
quently used to mediate between computer applications or components within
an application. XML data is often generated by a program and consumed by
another program that performs computations on it. In this sort of configuration,
ill-formed data must be inadmissible. (In particular, it must be inadmissible to
feed the same XML data into two different browsers and see one of them succeed
and the other fail to parse it.) Second, XML was developed from the start in anti-
cipation of small mobile devices. A parser sitting in a cell phone, wristwatch, or
remote sensor cannot afford the megabytes of memory that are needed to anti-
cipate and accommodate grammatical error.

47

Well-Formed Documents and Namespaces

NOTE Dave Raggett, a longtime staff member at W3C, wrote a remarkable
program called Tidy (http://www.w3.org/People/Raggett/tidy/). It per-
forms several functions on HTML documents: fixes grammatical errors,
points out deprecated features, and converts the HTML document to
XHTML. We will use Tidy in Chapter 7.

Why XHTML?

Why use XHTML instead of HTML? The main reason is that the entire array of
XML technologies becomes available to you. If you want your Web page to be
produced by an XSLT program, you have to make your template HTML material
conformant to XML rules because an XSLT program is an XML document, and if
you enter, for example,
 instead of
, the parser will object.

Since 1999, HTML has been in effect mothballed while XHTML has been an
area of active development. A quick look at the list of W3C recommendations
shows XHTML 1.1—Module-Based XHTML (May 2001) and XHTML Basic for

031ch02.qxp 5/10/02 2:39 PM Page 47

Small Devices (December 2000). If you look inside MathML 2.0 (February 2001),
you will see that “it is designed to be used as a module in documents marked up
with the XHTML family of markup languages” (Appendix A2). Outside W3C,
XHTML has been used to define RDDL (Resource Directory Description
Language), a promising new idea that we will introduce in the section on name-
spaces.

48

Chapter 2

NOTE All new XHTML-based or XHTML-related languages rely on
XHTML modularization, a framework for dividing the large vocabulary of
HTML into small modules that can be independently reused in various
ways. We present XHTML modularization in Chapter 3.

XML Documents Without a DTD

XML documents have logical and physical structure. Logically, a document con-
sists of elements, attributes, and other less important items, such as comments.
Some types of items are processed away in parsing, and the rest are represented
as a tree of nodes. The Infoset recommendation regulates what gets preserved in
the tree.

Physically, a document is a unit of storage (such as a file or a string) for char-
acter data and markup that can include other such units by reference. A generic
name for “units of storage” is “entity.” Most entities have to be declared in a DTD
before they can be used, but two groups of entities can appear in documents
without a DTD. We explain about entities and CDATA sections before presenting
a complete summary and outline of an XML document without a DTD.

Character Entities and Five Predeclared Entities

Character entities represent individual characters by their Unicode numbers,
either decimal or hexadecimal. They are used for markup characters and charac-
ters that are difficult to enter from the keyboard. To refer to a character entity
within a document, place it between an ampersand and a semicolon. For
instance, the copyright symbol (©), whose Unicode number is x00A9, can be
entered into your document in three ways:

© © ©

The ampersand itself can also be entered as a character reference (&),
but it has a special name in addition to the numeric code. Such special names are

031ch02.qxp 5/10/02 2:39 PM Page 48

predeclared for five characters. (See Table 2-1.) To refer to a character by its spe-
cial predeclared name, place it between an ampersand and a semicolon.

Table 2-1. Five Predeclared Entities

CHARACTER ENTITY NAME REFERENCE DECIMAL CODE HEX CODE

& amp & & &

< lt < < <

> gt > > >

" quot " " "

' apos ' ' '

CDATA Sections

If you have a section in your document that contains a great number of markup
characters (such as XML source or Java code), you may want to enter the entire
section as a CDATA section that is not parsed by the processor. The syntax is as
follows,

<![CDATA[“<” & “>” are “angle brackets”]]>

Within XHTML, it is common to put the contents of <script> and <style>
elements in CDATA sections.

The markup of CDATA sections is removed in parsing. The boundaries of
CDATA sections leave no trace in the XPath tree model but may be preserved in
DOM. They are not preserved in the document’s infoset, and the next version
of DOM will conform to the Infoset recommendation and align itself with XPath.

Summary, Outline, and EBNF Productions

In summary, documents without a DTD can contain the following kinds of
material,

• Declaration: Optional but highly recommended, as in

<?xml version=”1.0” encoding=”utf-8”?>

49

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 49

• Elements and attributes: This is the informational core of the document.

• Comments:

<!-- this is a comment -->

• Processing instructions (PIs) (in XML, they are rarely used except to pro-
vide a stylesheet reference):

<?xml-stylesheet href=”style0.css” type=”text/css”?>

• Character entity references.

• References to five predeclared entities: lt, gt, quot, apos, and amp.

• CDATA sections: A document without a DTD follows this outline.

<![CDATA[if(a<b && b<c) return;]]>.

• XML declaration: Nothing can precede it, not even a comment or white-
space.

• Miscellaneous optional material: Comments and PIs, whitespace as
desired. (In a document with a DTD, the DTD or a DTD reference would
appear here.)

• The start tag of the root element.

• All other material, well formed.

• The end tag of the root element.

It is actually easier to say this in EBNF (Extended Backus-Naur Form) than
in English. EBNF is a formal notation for describing the syntax of programming
languages, and it is also used in many XML specifications. In XML 1.0, it is used
to define the well-formedness and validity rules of XML documents. The entire
XML 1.0 boils down to 89 EBNF rules, or “productions” as they are called. It is
useful to be able to read EBNF productions because they pack a lot of infor-
mation in very few lines of text. Here is a small sample, numbered as in XML 1.0,
with brief comments. As you read the rules, remember that the characters ?, +,
and * indicate the number of repetitions: ? stands for 0 or 1, + stands for 1 or
more, and * stands for 0 or more.

50

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 50

Production 1 specifies the structure of a document:

[1] document ::= prolog element Misc*

This says that a document is composed of a prolog, followed by a single ele-
ment (the root of the element tree), followed by optional miscellaneous material.

Prolog is composed of optional elements, as follows: an optional XML decla-
ration, followed by Misc*, followed by an optional DTD, again with Misc*
thrown in:

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

Misc* is any sequence of whitespace, comments, and PIs. Here’s the Misc
production (S stands for whitespace, and the vertical bar means “OR”):

[27] Misc ::= Comment | PI | S

[3] S ::= (#x20 | #x9 | #xD | #xA)+

We will show more EBNF in the namespace section later in the chapter.

A “Kitchen Sink” Example

Listing 2-3 shows everything you can find in a DTD-less document (ksink.xml).
Note that, to display escape sequences in the browser, we have to escape the
escapes: for instance, to display < we have to enter &amp;lt;. Because
CDATA sections cannot be nested, we have to enter its closing character
sequence outside the section itself, using entity references. The document is fol-
lowed by a modest CSS stylesheet (ksink.css, Listing 2-4) and a screenshot
(Figure 2-5).

Listing 2-3. All You Can Find in an XML Document Without a DTD
<?xml version=’1.0’ encoding=’utf-8’?>

<!-- The line above is the XML declaration. Nothing can precede it,

not even comments or whitespace.

The line below is a PI. It associates a stylesheet with the document.

In XML, PIs are rarely used for any other purpose.

-->

<?xml-stylesheet href=”ksink.css” type=”text/css”?>

<root_elt>

<h1>Document without a DTD</h1>

<non_empty_element>

This is element content, parsed character data (PCDATA).

To insert a markup character here, such as <, you have to use a reference

51

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 51

to a pre-declared general entity, &amp;lt;

or a character entity, &amp;#60;.

If you have many such characters, you can put them all into a

<![CDATA[CDATA section: <[CDATA[(a<b && b>c)]]>.]]>.

CDATA sections cannot be nested.

You can also use character entities to insert characters that are not easy

to enter from the keyboard, such as the copyright character ©.

(In this case, we used the character’s hexadecimal code, &#38;#xA9;.)

</non_empty_element>

</root_elt>

Listing 2-4. A Minimalist Stylesheet
rootElement, h1, non_empty_element, br {

display: block; margin-bottom: .6em;

}

h1 {font-weight:bold;font-size:large;text-align:center;}

em {font-weight:bold;font-style:italic}

Names and Namespaces

A markup language is a vocabulary of names: the names of elements and attri-
butes. The names of attributes must be unique within an element, but different
elements can have attributes of the same name. We can describe this by saying
that attributes of different elements belong in different namespaces. The notion
of a namespace is very familiar from programming: an object in C++ or Java is
a namespace for its variables and methods; a package in Java is a namespace for

52

Chapter 2

Figure 2-5. XML document without a DTD

031ch02.qxp 5/10/02 2:39 PM Page 52

its class names; a database is a namespace for the names of its tables; and a data-
base table is a namespace for the names of its fields. The ability to partition the
names in your program or database into different namespaces is essential for
preventing name conflicts.

The initial XML 1.0 specification has no provisions for partitioning element
names within a document into different namespaces. This could potentially
result in name conflicts when two different vocabularies are merged in a single
document. The danger is real for XML languages—such as XSLT, SVG, XML
Schema, or JSP—that are designed for use with a great many other languages. It
would be reckless to leave the vocabularies of such languages unprotected. XML
Namespaces (1998) was primarily developed to protect the vocabularies of such
widely used XML languages.

Namespaces and Prefixes

A common way to create a globally unique name is by forming a pair that con-
sists of a namespace prefix and a local name. The namespace prefix uniquely
identifies the namespace, the local name must be unique within that namespace,
and the combination of the two creates a globally unique name. This is how Java
classes and packages operate: the name of a package is globally unique (or at
least has a good chance of being so), class names are unique within a package,
and a fully qualified class name consists of the package name as a prefix, fol-
lowed by a period and the class name. Reversed URLs are often used as package
names: a good deal of Sun’s software is in the com.sun package or its subpack-
ages, for instance:

com.sun.xml.parser.Resolver res = new com.sun.xml.parser.Resolver();

Here, Resolver is a local name, com.sun.xml.parser is both the name of the
package and a unique namespace prefix, and the combination of the two is
a fully qualified, globally unique name of Sun’s Resolver class.

The designers of XML Namespaces had a well-known source of globally
unique names ready at hand: the URL, or its generalization, the URI. It was a nat-
ural decision to make it a source of unique namespace prefixes, so that a unique
element name would consist of a URI prefix to identify the namespace and
a local name that is unique within that namespace. Conceptually, if our company
URL is http://www.n-topus.com, and we want to put our Address element in
a protected namespace, we would say that its fully qualified globally unique
name is something like {http://www.n-topus.com/elemnames}Address.

The problem is that this name, as written, is not a legal XML name, and it’s
also extremely long. The solution of XML Namespaces is to use a two-step proce-
dure for establishing a namespace. In the first step, a unique namespace URI is

53

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 53

declared and mapped to a prefix that contains only legal characters. In the scope
of that declaration, the prefix serves as a proxy for the namespace URI. Here is an
example that you have already seen as Listing 1-15:

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<!-- The rest of the program goes here -->

</xsl:template>

</xsl:stylesheet>

The second line of this code contains a namespace declaration that maps the
URI to a prefix. (The prefix for this particular namespace is usually xsl, but any
prefix would do as long as it is associated with the right URI.) Syntactically, the
declaration is an attribute. The name of the attribute consists of a reserved
sequence of characters, xmlns, followed by a colon and the prefix to which the
namespace URI is mapped; the value of the attribute is the namespace URI. The
scope of the declaration includes the element whose start tag contains that dec-
laration and all the descendants of that element (unless there is another
declaration with more local scope, as discussed shortly).

The XML 1.0 Perspective vs. the XML Namespaces Perspective

A namespace declaration is an attribute only from the “naive” perspective of the
pre-namespace XML 1.0 recommendation. From the perspective of namespace-
aware specifications (such as XPath, DOM, or the infoset), this is not an attribute
at all but a namespace declaration: it is not an attribute node in the DOM or
XPath tree, and it is not an “attribute information item” in the document’s infoset.

A related fact of some importance is that the following two documents are
the same from the XML Namespaces perspective but different from the XML 1.0
perspective:

<a:doc xmlns:a=”http://a.b.c.d.com”><a:p>some text</a:p></a:doc>

<b:doc xmlns:b=”http://a.b.c.d.com”><b:p>some text</b:p></b:doc>

Because DTDs originate with XML 1.0, they are namespace unaware and use
the XML 1.0 perspective. This creates validation problems discussed in the next
chapter.

54

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 54

The Syntax of Names and EBNF Productions

The same colon character (:) that separates xmlns from the prefix being declared
is used to separate the prefix from the local name. Here again, there was a change
from XML 1.0 to XML Namespaces. In XML 1.0, a colon could appear anywhere in
the name except as the first character, any number of times. In the XML
Namespaces recommendation, a colon can appear at most once, as a separator
between the namespace prefix and the local name. In the following EBNF pro-
ductions, NCName is a “No-Colon Name” that does not contain a colon.

[6] QName ::= (Prefix ‘:’)? LocalPart

[7] Prefix ::= NCName

[8] LocalPart ::= NCName

Most of today’s parsers will reject as non-well-formed any documents with
names containing more than one colon.

Scope of Declarations

Namespace declarations are inherited: the scope of a namespace declaration is
the element to which it is attached, together with all its descendants, except
those that declare their own namespaces. Everywhere within that scope, the
names qualified by the prefix belong to the declared namespace. (In the previous
XSLT example, these tag names are stylesheet, output, and template.)
Conversely, if an element’s name has a prefix but no namespace declaration, the
parser will go up its line of ancestors until a declaration for that prefix is found. If
no such declaration is found, the parser must return an error.

Because namespace declarations are inherited, it is possible (and recom-
mended) to declare all namespaces on the root element, as in the example shown
in Listing 2-5.

Listing 2-5. The Root Element of a Document with Three Namespaces
<citeDB

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:xlink=”http://www.w3.org/1999/xlink”

>

The three namespaces declared on this element are all well known. One of
them is for XLink elements and attributes that will be the subject of much dis-
cussion and an extended example later in this chapter. The other two are for

55

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 55

Resource Description Framework (RDF) and Dublin Core Metadata that are dis-
cussed in detail in Chapter 7.

The same prefix can be mapped to different namespaces within the same
document. It is therefore possible to shadow one declaration with another one in
an embedded element. We have never seen a convincing case for using this func-
tionality, but here is a contrived example (the quotes, however, are real):

<prfx:bk xmlns:prfx=”http://chairman.mao.sayings.org.red”>

<prfx:saying>

The world is progressing, the future is bright

and no one can change this general trend of history.

</prfx:saying>

<prfx:bk xmlns:prfx=”http://chairman.greenspan.sayings.org.green”>

<prfx:saying>

History provides excellent lessons for banking institutions

with regard to appropriate pricing, underwriting, and diversification.

</prfx:saying>

</prfx:bk>

</prfx:bk>

The first prfx:saying element in this example is in the mao.sayings.org.red
namespace, but the second such element is in the more local
greenspan.sayings.org.green namespace. We can prove this by writing an
XSLT that will extract the inherited namespace URI from both of those elements
and color the text content red or green accordingly. In the process, we will see how
namespace URIs are accessed in the XPath tree (not as attributes).

Namespaces in XPath and XSLT

Listing 2-6 is the stylesheet that colors Mao’s sayings red and Greenspan’s green.
It is done in the so-called “push” style of multiple independent templates. We will
discuss and use it extensively in Chapter 5. Our interest here is in the XPath
functions that have to do with namespaces. (Both XPath and DOM have functions
that extract the local name, the qualified name (with the prefix), and the name-
space URI from a given element or attribute node in the tree.) Some of those
functions are used in the highlighted part of the second template. Outside the
second template, there may be details that have not yet been explained: please
suspend your curiosity until Chapter 5.

56

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 56

Listing 2-6. Namespace Handling in XSLT and XPath
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”

>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<html><head><title>Two Chairmen’s Wisdom</title></head><body>

<xsl:apply-templates />

</body></html>

</xsl:template>

<xsl:template match=”*[local-name()=’saying’]”>

<xsl:variable name=”color”>

<xsl:choose>

<xsl:when test=”contains(namespace-uri(),’red’)”>red</xsl:when>

<xsl:when test=”contains(namespace-uri(),’green’)”>green</xsl:when>

<xsl:otherwise>blue</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<div style=”{concat(‘color:’,$color)}”>

<xsl:apply-templates/>

</div>

</xsl:template>

</xsl:stylesheet>

The match attribute of that template matches all element nodes (that’s what
the asterisk stands for) such that their local name is saying. As you can see, XPath
has a local-name() function and (a few lines farther down) a namespace-uri()
function. Both return strings that you can work with using XPath string functions,
such as contains(). To compute the color name, we use xsl:choose (the XSLT
equivalent of the switch statement in C and derived languages).

If all namespace URIs contained the color name right after the substring
sayings.org, we could replace the xsl:choose expression with code that extracts
the color name from the namespace URI:

<xsl:variable name=”color”

select=”substring-after(namespace-uri(),’.sayings.org.’)”

>

This would generate different colors from different data without any changes
in the stylesheet.

57

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 57

Default Namespaces

You can save yourself a little typing by creating a default namespace that is not
mapped to a prefix. The syntax is as follows.

<doc xmlns=”http://a.b.c.d.com”><p>some text</p></doc>

From the namespace perspective, this element is equivalent to

<a:doc xmlns:a=”http://a.b.c.d.com”><a:p>some text</a:p></a:doc>

Put differently, prefix-less element names within the scope of a default
namespace declaration belong to the declared namespace. This is very different
from prefix-less names that belong to no namespace at all. For any namespace-
aware program, the two preceding single-line documents are completely
different from

<doc><p>some text</p></doc>

Note that prefix-less attribute names remain in no namespace. The only way
for an attribute to be in a namespace is by having a prefix that is mapped to that
namespace. (See the next section.)

Default namespaces are useful when you have some XML data that you want
to cut and paste into a new XML context. If name conflicts are a possible con-
cern, you can create a default namespace for the data to be pasted in:

<insertFromData xmlns=”http://www.n-topus.com/ns/temp”>

<!-- inserted prefixless data goes here -->

</insertFromData>

To override a default namespace declaration (that is, put an element in its
scope into no namespace), you have to use a special form of the namespace
declaration:

<doc xmlns=”http://a.b.c.d.com”>

<p>this element is in the “http://a.b.c.d.com” namespace</p>

<nons xmlns=””>this element is in no namespace</nons>

</doc>

This facility may also be useful in a cut-and-paste situation.

58

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 58

Namespaces and Attributes

Attributes and elements are treated differently by XML Namespaces because attri-
butes have a natural namespace (their owner element) and don’t need extra
protection. It makes no sense to put attributes in the same namespace as their
owner element instead of simply leaving them in no namespace at all. Attributes
are like local variables in a procedure that don’t need fully qualified names to pre-
vent name conflicts. In XSLT, the attributes of XSLT elements (such as match or
select) remain local:

<xsl:template match=”/”>

It does make sense to put attributes in a namespace of their own that is dif-
ferent from the containing element’s namespace, especially if the attributes come
from an XML language of wide application. Later in this chapter, you will see
examples of XLink attributes that are used to describe links within XML data.
Their (reserved) names are quite common: type, title, href, and so on. To pro-
tect them from conflict with unrelated attributes of the same name, they are
placed into a namespace and are always used with a prefix. (It can be any prefix,
but traditionally xlink: is used.) For examples, see the XLink section that is com-
ing up shortly.

Attributes that are placed in a separate namespace become, in effect, “global
attributes” that can be added to any element in any document to provide specific
functionality. Two important groups of global attributes are those with the fixed
xml: prefix and XLink attributes that usually are mapped to the xlink: prefix. We
introduce them in the remainder of this section.

Attributes with the xml: Prefix

The xml: prefix is reserved by W3C and cannot be used by anybody else. It is
declared in the XML Namespaces recommendation and bound to
www.w3.org/XML/1998/namespace. Several attributes always appear with the xml:
prefix and have a fixed meaning. We mention two: xml:lang and xml:base.

The xml:lang attribute can be added to any element to specify the language
of that element’s content. The value of the attribute is either a two-letter
language code as defined in ISO 639, Codes for the Representation of Names of
Languages, or a language identifier registered with IANA (Internet Assigned
Numbers Authority), or user defined. The two-letter codes cover the most famil-
iar languages, and some of them can be extended to indicate a regional variant:
fr-ca, fr-be, and fr-ch stand for the French dialects of Canada, Belgium, and
Switzerland, respectively. IANA-registered names start with “i-”: i-navajo. User-
defined names start with “x-”: x-esperanto. For an in-depth treatment of

59

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 59

language identifiers in XML, see Robin Cover’s Web page at
http://xml.coverpages.org/languageIdentifiers.html.

A recent newcomer to the xml: family is xml:base. Its purpose is to define
a base URI for resolving relative URIs in parts of XML documents. The value of an
xml:base attribute must be an absolute URI; its scope is the element on which it
is defined and its descendants, unless a descendant defines its own. The most
common use for xml:base will be within xlink:href attributes, to resolve relative
links to images, applets, form-processing programs, style sheets, and other exter-
nal resources.

XLink (XML Linking Language) is a recent (June 2001) W3C recommen-
dation, released together with XBase. It defines several global attributes in the
XLink namespace. The namespace is usually mapped to the xlink: prefix, which
we will use throughout the rest of the book. Although small, the XML Linking
Language is quite intricate and conceptually complex because it overlays a graph
structure over a collection of XML and non-XML resources. It is also a very
important member of the XML family of specifications.

XLink Attributes and XLink Graphs

The purpose of XLink is to establish connections between and among resources.
A resource, as usual, is anything that can be addressed with a URI. It doesn’t have
to be an XML resource; if it is, it does not have to be a complete document
because the URI can be extended with a fragment identifier to select a document
part. A very common kind of fragment identifier is an XPath expression, as you
will see in a moment.

A structure that consists of nodes connected by arcs is called a graph. XLink
is about directed graphs of resources. A graph is called directed if its arcs have
a direction from source to target. In the case of XLink graphs, both source and
target are resources. The nodes and arcs of an XLink graph can also have labels
attached to them.

The most important XLink attribute is xlink:type. It can have several possi-
ble values, including simple and extended. An element that has an xlink:type
attribute with one of those two values is called a link element. A link element
can have any tag name whatsoever: it’s the xlink:type attribute that defines it as
a link element.

Link elements can be simple or extended, depending on the value of
xlink:type. It is important to understand from the start that a link element
describes an entire graph of resources, not just the arcs. The word link is used in
its general meaning, meaning a connection or as a synonym for arc, but a link
element is an XML element that has an xlink:type attribute whose value is
simple or extended. From the XLink perspective, it describes a graph.

60

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 60

Let’s take a look at a simple link element, in comparison with the HTML <a>
element.

A Simple XLink “Link Element” and an HTML
Hyperlink

If you think about it, the HTML <a> element describes a directed labeled arc
between two resources: the source of the arc is the <a> element itself, the target of
the arc is specified in the href attribute, and the label is the content of the <a>
element:

cs303 class list

The closest XLink analog would look like this:

<somePrefix:someElement

xlink:type=”simple”

xlink:href=”classList.xml”

xlink:title=”cs303 class list”

xlink:actuate=”onRequest”>

<!-- wait for user request to traverse the arc -->

xlink:show=”replace”

<!-- upon traversal, replace the current document with the target -->

>

Any text with any non-xlink markup.

</somePrefix:someElement>

The two links show the usual contrast between the fixed appearance and
behavior of HTML and the flexibility of XML. The name of the HTML link ele-
ment is fixed. Links created by that element are for human users. Their labels are
automatically highlighted; even if they are not blue and underlined, which is the
most common way to style them in Web pages, they have to be visible to perform
their function, which is to provide a hypertext jump from the source to the target.
(Such links are called hypertext links.) By default, the jump replaces the source
document with the target in the browser window.

By contrast, an XML simple link element can have any tag name; its content
doesn’t have to be highlighted; it may be intended for human users or programs;
and the behavior of the link is up to the application that processes it. XLink pro-
vides “behavioral attributes” that supply hints about the intended behavior, as
indicated by code comments, but these are just hints and they can be ignored.
Even if they are followed, the hints say nothing about blue underline, the raised
cursor finger, or a single click.

61

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 61

For all the differences between the HTML hypertext link and the XLink sim-
ple link element, they have two important similarities:

• They describe a graph that involves just two resources and a single arc.

• The arc is outbound: its source is local (the link element itself, not speci-
fied by a URI) and its target is remote (specified by a URI).

XLink extended link elements do not have either of these restrictions. An
extended link element can

• describe a complex graph containing multiple sources, targets, and arcs.

• describe arcs that are inbound (local target, remote source) or third-party
(both source and target are remote).

In other words, you can create links from and between resources for which
you don’t have a write permission.

The natural question is: “What does one do with those links?” Hypertext links
are very intuitive: you click on them, and they take you there. If there are multiple
targets, though, where does the click take you? The answer, as always, is that it’s
up to the application to decide what to do with different kinds of links, and as of
today nobody has yet come up with a killer app for multiple-target or third-party
links. All we have is a flexible and powerful language to describe them.

Extended Link Element and Its XLink Graph

To specify a graph, an extended link needs to specify resources and arcs between
them. These are defined by children elements of the extended link element. The
names and namespaces of those elements are completely unconstrained, but
they must all have an xlink:type attribute to indicate their role in the graph. The
possible values of xlink:type for children elements of an extended link element
are as follows:

• locator for “locator elements” that specify remote resources

• resource for “resource elements” that specify local resources

• arc for “arc elements” that specify arcs

The notion of a local resource is a tricky one. A local resource is an XML ele-
ment that satisfies three conditions:

62

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 62

• It is a child of an extended link element or the link element itself.

• It has an xlink:type attribute whose value is resource.

• It does not have an xlink:href attribute.

A remote resource, by contrast, is a resource specified by a URI that is the
value of an xlink:href attribute of a locator element. Put differently, for locator
elements an xlink:href attribute is required, whereas for resource elements an
xlink:href attribute is not allowed. The same exact XML element can be either
a local or a remote resource depending on whether it is specified by a URI refer-
ence or by its position with respect to the link element.

Both locator elements and resource elements must have an xlink:label
attribute that contains an identifying label. The label has to be an NCName; that
is, it cannot have a prefix and a colon. Arc elements (the children of an extended
link element that have xlink:type=”arc”) refer to their source and target
resources using those labels. In summary, the XML structure of an extended link
element looks as shown below. In the outline, elt stands for an arbitrary tag
name, uri for an arbitrary URI, and lbl for an arbitrary label. There have to be
two or more resources and at least one arc. The order of children is not con-
strained by XLink itself but can be constrained by a DTD or some other type of
schema or grammar.

<elt xlink:type=”extended” . . . ><!-- possibly other attributes -->

<!-- external resources / locator elements -->

<elt xlink:type=”locator”

xlink:href=”uri”

xlink:label=”lbl”/>

<!-- local resources / resource elements -->

<elt xlink:type=”resource”

xlink:label=”lbl”/>

<!-- arcs / arc element -->

<elt xlink:type=”arc” xlink:from=”lbl” xlink:to=”lbl” />

</elt>

This outline contains only structural markup that defines the graph. XLink
also has behavioral and semantic markup.

Behavioral and Semantic Markup

You have already seen behavioral attributes, xlink:show and xlink:actuate. Their
values are largely self-explanatory. The specification spells out in some detail

63

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 63

what the conformant applications should do in the presence of behavioral
markup. There are no required actions, only recommended ones:

show: “new”, “replace”, “embed”, “other”, and “none”

actuate: “onLoad”, “onRequest”, “other”, and “none”

Semantic attributes are xlink:title, xlink:role, and xlink:arcrole. The
title attribute can appear on any element to provide a brief description.
The role attribute can appear on extended, simple, locator, and resource ele-
ments. The arcrole attribute can appear on simple and arc elements. Both
xlink:role and xlink:arcrole must be absolute URI, perhaps with a fragment
identifier attached. Their intended use is rather vaguely defined, but see the fol-
lowing RDDL section for an example.

In addition to the xlink:title attribute, extended link-, locator-, and arc-
elements can have any number of children elements of type title, that is, ele-
ments with xlink:type=”title”. Their purpose is to provide a more structured
and extensive annotation or a series of annotations, perhaps in different lan-
guages. (The value of an attribute can only be CDATA.)

Summary of XLink Attributes

Table 2-2, quoted from the XLink specification, shows all XLink attributes and
how they coexist with different values of xlink:type, listed as column headers.
Now that you have seen them all, this table may actually be useful. (R stands for
required, O stands for optional, and the N/A stands for not applicable.)

Table 2-2. Summary of XLink Attributes

ATTRIBUTE SIMPLE EXTENDED LOCATOR ARC RESOURCE TITLE

type R R R R R R

href O N/A R N/A N/A N/A

role O O O N/A O N/A

arcrole O N/A N/A O N/A N/A

title O O O O O N/A

show O N/A N/A O N/A N/A

actuate O N/A N/A O N/A N/A

label N/A N/A O N/A O N/A

from N/A N/A N/A O N/A N/A

to N/A N/A N/A O N/A N/A

64

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 64

An XLink Example

The following document shows an extended link element with third-party arcs.
For our examples, we chose a Bible commentary. The Bible itself, as you know,
contains many more-or-less obvious cross-references within itself, from later to
earlier books. It also contains elaborate rhetorical and narrative patterns that
take time and study to discover, and Bible commentaries point out those cross-
references and patterns. These commentaries also contain cross-references to
themselves and other commentaries, making it all a very tangled graph indeed.

We will do a simple example of a narrative pattern within the Bible itself,
primarily because we couldn’t find any XML-marked Bible commentaries. As
XML source, we use ot.xml, the King James Version marked up by Jon Bosak and
distributed as part of his Religious Works package (www.ibiblio.org/bosak/). The
package contains tstmt.dtd, which defines the markup structure. Both the XML
source and the DTD can be downloaded from this book’s Web site, but the follow-
ing XPath expressions (within XLinks) should be self-explanatory without the
DTD: the root element is tstmt, which contains bookcoll elements (book col-
lections), which contain book elements, which contain chapter elements, which
contain v elements (verses). To select verses 5 through 11, we say [position()>4
and position()<12]. In an XML file, we encode “>” and “<” as > and <.

We assume two namespaces, one for XLink mapped to xlink: and the other
for the text of the commentary, mapped to c:. We do a single extended link ele-
ment, c:comm, but you should think of it as a child of the root element,
c:commentary, that contains an arbitrary number of c:comm extended link ele-
ments. Such collections of third-party links are called linkbases, and we can say
that we show (and process) a minimal linkbase.

An Extended Link

Our example (see Listing 2-7) comes from the story of Joseph (Genesis 37-49) that
contains three dream sequences, each consisting of two dreams. We will describe
this by an extended link element that has three locator elements (one for each
dream sequence) and six arcs, connecting each dream sequence to the other two.

Because the code is quite repetitious, we show only one locator element and
one arc element. All namespaces are declared on the root element. The value of
the xlink:href attribute is a very long string that, on the printed page, has to be
broken into three lines.

65

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 65

Listing 2-7. An Extended Link Example from dreams.xml
<c:comm xlink:type=”extended” xlink:title=”Dreams in the story of Joseph”>

<c:txt>There are three dream sequences in the story of Joseph,

Joseph’s dreams, Prisoners’ dreams and Pharaoh’s dreams.</c:txt>

<c:node type=”narrativePattern”

xlink:type=”locator”

xlink:title=”Joseph’s dreams”

xlink:label=”Jdreams”

xlink:href=

“http://localhost:8080/xmlp/dat/jb/ot.xml

#xpointer(/tstmt/bookcoll/book[bktshort=’Genesis’]

/chapter[37]/v[position()>4 and position()<12])”>

Joseph tells his brothers about his dreams. The dreams predict that the brothers

will bow to Joseph and become subservient to him. The brothers are not happy.

</c:node>

<!-- two more nodes like this -->

<c:crossRef xlink:type=”arc” from=”Jdreams” to=”Pdreams” </crossref>

<!-- five more arcs like this -->

</c:comm>

The new material in this example is the fragment identifier that follows the
URI in the multiline xlink:href attribute. It is a single string that is again broken
into three lines on the printed page:

“http://localhost:8080/xmlp/dat/jb/ot.xml

#xpointer(/tstmt/bookcoll/book[bktshort=’Genesis’]

/chapter[37]/v[position()>4 and position()<12])”

The fragment identifier consists of two parts: a URI and an XPointer
expression. (XPointers are defined in www.w3c.org/tr/xptr.) The
XPointer expression is the function xpointer() whose argument is an XPath
expression. Together, the URI and the XPath expression uniquely identify a node
set on the Internet. In our example, the expression says

at the top-level, pick the “tstmt” element; within that look for a “bookcoll”
which contains a “book” whose “bktshort” (book-title-short) subelement is
“Genesis”; from this book take the 37th “chapter” element; within this chapter
take every verse whose position is > 4 and < 12.

Note that predicates that constrain the set of nodes selected by an XPath
or XPointer expression appear in square brackets after the tag name, as in

66

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 66

[bktshort=’Genesis’] or v[position()>4 and position()<12]. Because
this is an XML document, angle brackets are encoded as > and <.

Note on XPointers

XPointer expressions are mostly XPath expressions, with two additions:

• Expressions that refer to a specific point between two characters in the text
content of the document, and

• Expressions that refer to character ranges within the text content of the
document.

All of the XPointers in this chapter are also XPaths.
It is anticipated that XPointers will typically be used in XLink elements to

indicate link endpoints. When used that way, the XPointer expression is given as
an argument to the xpointer() function, as in our example.

An XLink Application

Our first XLink application does not do much; it does not even output any blue
underlined links to click on. However, it does process an extended link in a gen-
eral way, extracting all the information it contains, including XML data
referenced by XPointers. It is a Web application that uses Java Server Pages (JSPs)
and XSLTs and runs in Tomcat. The XSLTs it uses introduce some useful general-
purpose techniques.

The application assumes that there is a source of XML data that is not subject
to change (the King James Bible). A separate “linkbase” file contains extended
links that are cross-references within the source. The entry page to the appli-
cation is the familiar xx.jsp that expects, as you recall, two arguments: an XML file
and an XSLT to apply to it. In this application, the XML file is our linkbase and the
XSLT is a data-specific program, dreams.xsl. It incorporates, by inclusion, a data
independent, general purpose XLink application called linkTransform.xsl. This is
a fairly complex program that is partially discussed in the next section; a com-
plete explanation will have to wait until Chapter 5. We use it in this chapter to
provide an interesting example of XLink processing. You can experiment with
dreams.xsl and the linkbase even if you skip the next section altogether.

Schematically, the application consist of components shown in Figure 2-6.
The components above the broken line are completely explained in this chapter
and can be experimented with. The components underneath the broken line are
briefly explained in the next section and completely explained in Chapter 5.

67

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 67

The data-specific dreams.xsl is quite readable:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:output method=”html”/>

<xsl:include href=”linkTransform.xsl”/><!-- include another file -->

<xsl:template match=”v”>

<p><xsl:value-of select=”.”/></p>

</xsl:template>

</xsl:stylesheet>

Remember that our task is to understand the syntax and semantics of XLink
and the general outlines of the XSLT that processes it. The complete details of
XSLT are quite involved, but the general outlines are clear. In dreams.xsl, just
note that the code expects to receive some material from linkTransform.xsl that
contains v elements in it. (This is the import of <xsl:template match=”v”>) All it
does is outputs those elements as XHTML <p> elements.

linkTransform.xsl

All the real work is done in linkTransform.xsl, which knows nothing about the
data source. In outline, this is what’s happening. The linkTransform.xsl file
extracts information from the linkbase, including the xlink:href attributes.
These attributes, as we just discussed, contain the data source URI and an

68

Chapter 2

Figure 2-6. An XLink application with extended links

031ch02.qxp 5/10/02 2:39 PM Page 68

XPointer. After some fairly elaborate footwork (which is discussed in detail in the
next section), the XSLT sends both the URI and the XPointer to another JSP appli-
cation. That other JSP, xpn.jsp, returns the data referenced by the XPointers. The
data consists of v elements that contain Biblical verses. Eventually, that data ends
up in dreams.xsl that converts verses to paragraphs.

For example, with Tomcat running and all the files in the right places, this
URL (shown broken over two lines)

http://localhost:8080/xmlp/xx.jsp?

xmlUri=helloXLink/dreams.xml&xslUri=helloXLink//dreams.xsl

results in the screenshot shown in Figure 2-7.

The Code of linkTransform.xsl

This XSLT can be classified as advanced: it goes beyond what we have so far cov-
ered and can be skipped on first reading. We don’t discuss all of it but we do
address two details that concern calling xpn.jsp and sending parameters to it.
First, we introduce the XPath document() function. Its main use is to include
another XML document for processing. So, for instance, if you have an XML doc-
ument additionalData.xml and you want to store its XPath tree in a variable in
your XSLT program, you would say

<xsl:variable name=”moreData” select=”document(‘additionalData.xml’)” />

69

Well-Formed Documents and Namespaces

Figure 2-7. XLink processed with XSLT (Joseph’s Dreams)

031ch02.qxp 5/10/02 2:39 PM Page 69

The document() function takes any URI as argument, including URIs that connect
to JSPs and are followed by a query string. In other words, the document()
function is perfectly happy to connect to a JSP application and send it some
arguments. For instance, at some point in linkTransform.xsl, we say

<table border=”1”><tr><td>

<xsl:apply-templates select=”document(concat($uri,$qstring))/*” />

</td></tr></table>

This results in the following sequence of events.

• The values of two variables, uri and qstring, are concatenated.

• The result is an argument to a document() call that in turn is a call on
xpn.jsp.

• The call returns some material—a single element called <nodeset>—from
the XML data source using an XPath expression. (Both are specified in the
qstring.)

All children elements of the extracted element are processed by whatever
templates will match them in the containing stylesheet that knows about the
structure of the data. In our case, it’s dreams.xsl that outputs the Bible text in
the bordered box in the screenshot.

The two concatenated variables are declared as follows.

<xsl:variable name=”uri” select=”’http://localhost:8080/xmlp/xpn.jsp?’”/>

<xsl:variable name=”qstring” select=”concat(‘x=’,$x-enc,’&p=’,$p-enc)”/>

The first declaration is straightforward, but note the single quotes within
double quotes: the double quotes enclose the XML attribute, and the single
quotes enclose the constant string that becomes the value of the variable.
Without single quotes, the XSLT processor would try to evaluate the string as an
XPath expression.

The qstring declaration concatenates some constant strings and variable
values. Its purpose is to produce the following query string, shown broken over
two lines.

x=ot.xml&p=/tstmt/bookcoll/book[bktshort=’Genesis’]/chapter[37]

/v[position()>4 and position()<12]

Before this string can be sent to the server, it has to be appropriately
encoded. What does appropriately encoded mean? As you know, one can add

70

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 70

parameters to a URI, separated by a question mark, as you saw in Chapter 1 with
xx.jsp (the URI is divided into two lines):

http://localhost:8080/tryXSL/xx.jsp?

xmlUri=helloXSL/hello.xml&xslUri=helloXSL/hello.xsl

The technical name for the part of the URI that follows the question mark is
query string, because it is intended for sending queries to Web applications. The
problem with the query string is that it can contain only characters that are
allowed in a URI. The forbidden characters (including, for instance, square brack-
ets) have to be URL-encoded. The URL encoding of a character consists of a “%”
followed by two hexadecimal digits showing the UTF-8 code for the character.
Because these are single-byte characters, UTF-8 codes are the same as ASCII
codes: space comes out as %20, left bracket as %5B, and right bracket as %5D.

XSLT/XPath Extension Functions

Instead of doing URL encoding by hand, we call a function to do that. XPath itself
does not have such a function but most XSLT processors have a facility for adding
your own extension functions. This facility will be standardized in the next
release of XSLT, but even now it works pretty much the same way in different
implementations. Follow these two steps if you want to call a static method of
a Java class:

1. Declare a namespace which, for Xalan, is
xmlns:java=”http://xml.apache.org/xslt/java”. Note that this is a spe-
cialized use of namespaces, completely unrelated to their use in
general-purpose XML documents, as opposed to XSLT programs.

2. Within XPath, put the namespace prefix before your function call:

java:java.net.URLEncoder.encode().

Because we use a built-in Java function, we don’t have to write any code. The
function is a public static method of the java.net.URLEncoder class.

This is how we extract the XPointers from dreams.xml and encode them:

<xsl:variable name=”h” select=”@xlink:href”/>

<xsl:variable name=”x” select=”substring-before($h,’#xpointer’)”/>

<xsl:variable name=”p” select=”substring-after($h,’#xpointer’)”/>

<xsl:variable name=”x-enc” select=”java:java.net.URLEncoder.encode($x)”/>

<xsl:variable name=”p-enc” select=”java:java.net.URLEncoder.encode($p)”/>

71

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 71

The preceding section shows how x-enc and p-enc are used to construct
qstring. The entire linkTransform.xsl file is shown in Listing 2-8, with the part we
have discussed highlighted. We’ve also highlighted the beginning of every tem-
plate, of which there are several. The stylesheet uses the xsl:apply-templates
construct extensively. We will discuss the construct and the programming style
based on it in Chapter 5. In the meantime, you can experiment by simply chang-
ing the XML file that contains your XLinks.

Listing 2-8. XSLT Stylesheet to Process XLinks
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:c=”http://n-topus.com/ns/jdreams”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns:java=”http://xml.apache.org/xslt/java”

version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”><-- match root, apply templates to its children -->

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”c:comm”>

<xsl:variable name=”title” select=”@xlink:title”/>

<html> <head> <title> <xsl:value-of select=”$title”/> </title>

</head>

<body >

<h1><xsl:value-of select=”$title”/></h1>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match=”c:txt”>

<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match=”c:node”>

<h2><xsl:value-of select=”@xlink:title”/></h2>

<p>

<xsl:apply-templates/>

<xsl:variable name=”h” select=”@xlink:href”/>

<xsl:variable name=”x” select=”substring-before($h,’#xpointer’)”/>

<xsl:variable name=”p” select=”substring-after($h,’#xpointer’)”/>

<xsl:variable name=”x-enc” select=”java:java.net.URLEncoder.encode($x)”/>

<xsl:variable name=”p-enc” select=”java:java.net.URLEncoder.encode($p)”/>

<xsl:variable name=”qstring” select=”concat(‘x=’,$x-enc,’&p=’,$p-enc)”/>

<xsl:variable name=”uri” select=”’http://localhost:8080/xmlp/xpn.jsp?’”/>

72

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 72

<table border=”1”><tr><td>

<xsl:apply-templates select=”document(concat($uri,$qstring))/*” />

</td></tr></table></p>

</xsl:template>

</xsl:stylesheet>

The last three lines before the closing tag basically say “get the XPointer-
referenced stuff out of the data source, apply whatever templates apply to it in
the containing XSLT, and put the result in a box on screen.” In our minimal
stylesheet, there is only one simple template, but the document-specific pro-
cessing can be as complex as it needs be. This is the signature feature of the
apply-templates processing model.

The JSP Page

The remaining software module is the JSP that uses XPath to extract a node-set.
Its operation consists of these steps:

1. Parse the data source.

2. Obtain a DOM object.

3. Call a selectNodeList() method to extract the list of nodes that satisfies
the XPath/XPointer condition. The method takes two arguments: the
root of the subtree to apply XPath to and the XPath expression to use.

Because the data source remains unchanged, an obvious optimization is to
parse it once and cache the resulting DOM tree in an object that persists from
one application call to another. Listing 2-9, xpn.jsp, illustrates this idea. In JSP,
a simple way to obtain a persistent object is to make it “application scope.”
Similar functionality is available in ASP.

Listing 2-9. JSP Page with XPath
%@ page errorPage=”error.jsp”

import=”org.apache.xalan.xslt.*,org.apache.xerces.parsers.*,

org.w3c.dom.*,org.apache.xml.serialize.*”

%><jsp:useBean id=”cache” class=”java.util.Hashtable” scope=”application”/><%

String xPath=request.getParameter(“p”);

String xml=request.getParameter(“x”);

if(0>xml.indexOf(“:”)) xml=”file:///”+application.getRealPath(xml);

Document doc=(Document) cache.get(xml);

if(doc==null){ // has not been parsed yet

73

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 73

DOMParser parser=new DOMParser();

parser.parse(xml);

doc=parser.getDocument();

cache.put(xml,doc);

}

NodeList ndList=org.apache.xpath.XPathAPI.

selectNodeList(doc.getDocumentElement(),xPath);

if(ndList==null){ // format and display an error message, see the code file

} else {

OutputFormat outputFormat=new OutputFormat();

outputFormat.setOmitXMLDeclaration(true);

// this XML data is a fragment, no declaration,

// can be spliced into another document

XMLSerializer ser= new XMLSerializer(out,outputFormat);

%><nodeList><%

for(int i=0;i<ndList.getLength();i++)

ser.asDOMSerializer().serialize((Element)ndList.item(i));

%></nodeList><%

}

%>

A similar Web application can be made using ASP: both JScript and VBScript
have all the relevant functionality, including querying DOM trees with XPath
expressions. This feature will become standard in DOM Level 3, currently under
development.

Namespace Controversies and RDDL

Unlike other early XML recommendations (XML 1.0, DOM Level 1, XSLT, and
XPath), XML Namespaces provoked a lot of discussion and argument. Until XML
Schema came along, it was easily the most controversial of XML specifications. It
also provoked a good deal of confusion because XML namespaces were very dif-
ferent from the familiar programming language namespaces, sometimes in
counterintuitive ways.

Namespace Explanations

Fortunately, in response to confusions and controversy, many illustrious people
wrote perceptively about namespaces, including Tim Bray, David Megginson,
and James Clark. All their contributions are online, together with an excellent

74

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 74

FAQ by Ronald Bourret, who also wrote a separate piece exploding namespace
myths. Here is a list of resources from which our own summary is synthesized.

• XML Namespaces by James Clark (www.jclark.com/xml/xmlns.htm)

• XML Namespaces by Example by Tim Bray
(www.xml.com/pub/1999/01/namespaces.html)

• 19 Short Questions about Namespaces (with Answers) by David Megginson
(www.megginson.com/docs/namespaces/namespace-questions.html)

• Namespace Myths Exploded by Ronald Bourret
(www.xml.com/pub/2000/03/08/namespaces/index.html)

• Namespaces FAQ by Ronald Bourret
(www.rpbourret.com/xml/NamespacesFAQ.htm)

A Brief List of Confusions and Controversies

Of the many items that have come up in multiple discussions, we have chosen
three that we think are the most important.

• Unlike in programming languages, the names of XML namespaces are dif-
ferent from the prefixes that qualify local names. Those prefixes (with the
exception of xml:) are arbitrary. The same prefix can map to different
namespaces within the same document, and the same namespace can
map to different prefixes.

• XML 1.0 pre-dates XML Namespaces. It treats namespace declarations as
any other attribute; it treats qualified names as monolithic strings with no
internal structure, and it knows nothing about the relationship between
namespace prefixes and namespace URIs. One consequence of this is that
DTDs and later specifications such as DOM or XPath have different ideas
about element names and document identity.

• Programming language namespaces are real and contain information
about their names. A Java or C++ class contains declarations and defi-
nitions of the names that its own name qualifies. If your class is called
Address, and you have a variable named postalIndex, then the qualified
name of this variable is Address.postalIndex; but, also, the definition of the
Address class declares that variable and specifies some of its properties

75

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 75

(such as data type and initial value). By contrast, XML namespace URI,
contrary to its name (Resource Identifier) does not identify any resource.
There is no commitment whatsoever that de-referencing that URI will get
you to any place reasonable, or any place at all. According to the name-
space recommendation, the namespace URI has no intended meaning: it’s
just a unique string of characters that protects against name conflicts.

This last feature of XML namespaces has been especially difficult to accept.
A number of people argued that a namespace URI should point to a DTD, or an
XML schema, or some such resource that would provide information about the
syntax of the names that belong to that namespace, and perhaps also about their
intended meaning. However, it proved impossible to build a consensus on what
such an authoritative resource would be, and many argued that XML’s unique
decentralized strength is in having its intended interpretation left unconstrained
by anything authoritative.

RDDL to the Rescue

In the end of 2000, Jonathan Borden and Tim Bray developed a compromise pro-
posal that seems to be gaining acceptance. Instead of a specific resource, they
proposed that the namespace URI should point to a resource-description docu-
ment that would describe standard resources (such as stylesheets, schemas, and
so on) in a standard format. They called the format RDDL (Resource Directory
Description Language) (For more information, visit www.rddl.org.)

By design, an RDDL document is human-readable and machine-
processable. For humans, RDDL looks just like XHMTL. To give machines some-
thing to do, RDDL has a single additional element called resource. The resource
element of RDDL is also a simple link element in the XLink sense: it has
a required xlink:type attribute whose value, in the current version of the specifi-
cation, can only be simple. (However, when extended link processors are widely
available, it will probably be common to find an RDDL resource element that is
an extended link element and has XLink resource elements as its children.)

Here is an RDDL example, a document describing resources for the
pdata.xml example of Listing 1-7. We repeat here the beginning of that example,
with a default namespace declaration added.

<?xml version=”1.0”?>

<!-- personal data for people and other kinds of personalities -->

<pdata xmlns=”http://csproj.colgate.edu/xmlp/ns/pdata/”>

...

</pdata>

76

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 76

The namespace URI points to an existing directory,
http://csproj.colgate.edu/xmlp/ns/pdata/, within which the RDDL file,
index.html, is the default. The RDDL file, shown in Listing 2-10, follows this
outline:

• root element with namespace declarations

• introductory prose

• validating resources (DTD, XML Schema, RELAX NG)

• display resources (CSS)

Listing 2-10. An RDDL Example
<!DOCTYPE html PUBLIC “-//XML-DEV//DTD XHTML RDDL 1.0//EN”

“http://www.rddl.org/rddl-xhtml.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns:rddl=”http://www.rddl.org/”>

<head><title>PData Resources</title></head><body>

<h1>PData Resources</h1>

<p>

This is a resource file for the <tt>pdata</tt> example of chapters 1 and 2 of

<cite>XML for Programmers</cite> by Alexander D. Nakhimovsky and Tom Myers.

The standard namespace for this example is

http://csproj.colgate.edu/xmlp/ns/pdata/

and that directory’s default,

http://csproj.colgate.edu/xmlp/ns/pdata/index.html,

should be the URL of the current version of this file.

</p>

<h2>Validation</h2>

<p>You can validate a <tt>pdata</tt> document with a dtd,

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd.

</p>

<rddl:resource

xlink:title=”DTD for pdata validation”

xlink:href=”http://www.csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd”

xlink:role=”http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml-

dtd”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

>

77

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 77

<p>A sample DOCTYPE would be</p>

<pre><tt><!DOCTYPE pdata PUBLIC “-//Nakhimovsky-Myers//DTD pdata 0.05//EN”

“http://www.csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd”>

</tt></pre>

</rddl:resource>

<p>You can also validate a <tt>pdata</tt> document with a RELAX NG grammar.</p>

<rddl:resource

xlink:title=”RELAX NG grammar for pdata validation”

xlink:href=”http://csproj.colgate.edu/xmlp/ns/pdata/pdata.rng”

xlink:role=”http://www.rddl.org/#resource”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

>

<p>Such a grammar is available at

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.rng

</p>

</rddl:resource>

<h2>Display</h2>

<rddl:resource

xlink:title=”CSS Style Sheet for pdata display”

xlink:href=”http://csproj.colgate.edu/xmlp/ns/pdata/pdata.css”

xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/text/css”

>

<p>

There is a simple CSS1 style sheet for pdata documents at

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.css

</p>

</rddl:resource>

</body>

</html>

As you can see, each resource element is a simple link element with
xlink:role and xlink:arcrole attributes on it (in addition to the required
xlink:href). Guidelines on how to use these two attributes (to specify the nature
and purpose of the resource, respectively) can be found at www.rddl.org. Some of
the common natures and purposes are also listed there. The intent is to provide
enough information to make RDDL documents processable by machines.

Some of the required processing is fairly straightforward. Consider DTD vali-
dation. The “RDDL standard” values for the nature and purpose attributes are as
follows.

78

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 78

xlink:role=

“ http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml-dtd”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

Given a namespace URI, we extract the document at the end of it (with the
document() function in XSLT) and select an RDDL resource element with the “val-
idation” arcrole. The XPath expression would be

//rddl:resource[@xlink:arcrole=’http://www.rddl.org/purposes#validation’]

If we can confirm that this element has the DTD nature as well, then
xlink:href must be a link to a DTD that can be used for validation in ordinary
ways, as presented in the next chapter.

Similarly, we can look for other standard resources with other standard roles.
It seems plausible that systems of such roles will be developed: with XML used to
describe commercial objects, we can expect a “purchase” role for a resource that
helps you link to software for buying one of whatever it is, and a “complaints-
department” role that helps you link to software to say that what you bought
wasn’t what you thought you were buying.

Conclusion

We’ve covered a lot of ground in this chapter. The most important notion is
a well-formed document, and the second most important notion is a namespace.
We have seen several XML languages, including XHTML, XLink, and RDDL. What
we have not done in this chapter is pose a question such as “How do we check
that a particular XHTML document is not only well formed but also contains only
the markup that is expected in XHTML?” This is the question of validity or con-
formance to a specific grammar, and we take it up in the next chapter.

79

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 79

