1 Symbol Super Colliders

Tommaso Toffoli

We argue that lattice-gas computers are the conceptual offspring of colliding-beams
particle accelerators. Instead of streams of physical particles, streams of symbolic
tokens are run through one another in a cross-current fashion, intersecting at pre-
arranged places and times. In this way, an astronomical number of tokens continu-
ally collide and interact in a disciplined choreography.

In a particle collider, the by-products of a collision are scrutinized, occasionally
subjected to new collisions, but then purged out of the system. What’s new is that
in a lattice gas we have a digital rather than an analog collider: our control of the
nature and geometry of the interactions is such that what comes out of a collision is
just as good, for the sake of arranging further interactions, as what went in. While
in a particle collider one must labor to supply a steady supply of fresh projectiles,
the tokens in a lattice gas are always “as good as new” and can be recirculated ad
infinitum. This mode of operation is not an intuitive one; indeed, it took centuries of
intellectual struggle to realize that this is the way nature works, and that a similar
mode of operation can be employed in computation.

From the transformations and rearrangements of colliding tokens there emerges,
both in nature and in “artificial” computation, a spacetime tapestry whose overall
design often transcends the petty details of the specific script and acquires an
identity of its own.

dedicated to Ed Fredkin, inventor of collision-based computing

Have you noticed how in recent years the term “particle accelerators” has
quietly given place to “particle colliders”, as in the famed Superconducting
Super Collider (SSC)? There is a reason for that. We may feel exhilarated
to be the first kids on the block to accelerate electrons to 1GeV (billion
electron volt), but why would we want to do that in the first place? The
answer is, of course, to smash them onto each other! Acceleration is only
a means to an end — collisions are what we want! If particle colliders are
the instruments par excellence of experimental physics, lattice-gases are the
instruments par excellence of experimental mathematics. In this chapter we
show how close the family connections are between physical and mathematical
“supercolliders”.

What emerges from a collision of particles is other particles. In physics,
the properties of particles are ultimately defined in terms of what happens
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to them under all possible collision circumstances — and that’s why exper-
imental physicists are so busy trying out quite exotic kinds of collisions.!
Thus, the ostensible goal of particle physics is to determine the properties of
particles; according to what we just said, that means essentially to construct
a full collision lookup table which for every configuration of input particles
will tell the corresponding configuration of output particles.?

Once we have the complete table, microscopic or fundamental physics is
over, since the behavior of any system can in principle be derived by repeated
use of this table. From then on, all we can do is, as it were, mere “mathe-
matical post-processing” — not new fundamental physics. And usually we
do this to pursue one of two complementary endeavors:

Direct problem To derive macroscopic, collective, average, or typical con-
sequences of the fundamental laws, that is, to tell in coarser but more
practical terms what will happen in certain (perhaps only partially spec-
ified) conditions. This is, in essence, statistical physics.

Inverse problem Conversely, to figure out what conditions must be set up
if we want to achieve certain desired consequences. This is, of course,
engineering.

But why stop at physics? Can’t we play God and dictate a lookup table our-
selves? What would happen in a world governed by that microphysics? Or,
given certain observed or desired macroscopic properties, is there a micro-
scopic dynamics (a.k.a., a lookup table) from which those properties would
emerge merely by massive iteration? What are the simplest such tables? And
so forth. This is where cellular automata and lattice gases enter the picture.

Cellular automata are a discrete counterpart to partial differential equa-
tions. They fulfill an obvious need — and it is not surprising that they have
been reinvented innumerable times under different names and within differ-
ent disciplines. The canonical attribution is to Ulam and von Neumann [23],
circa 1950.3 To this attribution we also owe that awkward name, “Cellu-
lar Automata” (I remember Richard Feynman mutter “Who’d want to pro-
nounce that?”*). To add insult to injury, von Neumann didn’t let cellular

! There is one catch with this definition: it is circular! To characterize a collision
we must specify what particles went in and what particles came out; but particles
do not carry a name tag, and to know who they are we must determine their
properties by subjecting them to further collisions. This chicken-and-egg problem
is solved in practice by using, for initial projectiles and for measuring probes,
“trusted” sources of standard particles, such as a well-collimated, monochromatic
proton beam.

One may recognize in such a table the discrete counterpart of a partial differential
equation.

Though one must not forget an independent, historically isolated entry by
Zuse [25].

And, like with “media”, how many people see “cellular automata”’ as a plural
and know or have a use for its singular?
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automata learn to speak physics on “their father’s lap”, even though he was a
most outstanding mathematical physicist. Note that von Neumann had a spe-
cial interest in the foundations of quantum mechanics, and when he thought
physics he naturally viewed the world in terms of unitary transformations —
a microscopically reversible continuum dynamics. But cellular automata were
for him only a toy model for reductionistic arguments in biology, where he
needed a dissipative, phenomenologically irreversible dynamics. The shortest
way to achieve that was to start directly with a microscopically irreversible
substrate quite unlike the physical substrate of classical or quantum mechan-
ics. Regrettably, it took cellular automata another three decades to become
expressive in the language of fundamental (rather than phenomenological)
physics [16,5,12,10,9,19,24,15] and become, in this course, lattice gas com-
puters.

To explain why lattice gases are what cellular automata should have been
in the first place, we’ll tell a story that has in it particle colliders and cellular
automata machines, Aristotle and Galileo, Pascal’s triangle and asteroids.
First, though, we’ll briefly introduce the two contenders.

1.1 Cellular Automata and Lattice Gases

Let us consider an indefinitely extended array of cells that can take on values
1 (denoted by a black token) and 0 (empty); for simplicity, let the array be
one-dimensional; Fig. 1.1 shows a possible configuration of this array. The
index x denotes the spatial position of a cell along the array.

Fig.1.1. A possible configuration for a one-dimensional cellular automaton with
two-state cells; states 1 and 0 are indicated by the presence or the absence of a
black token.

We shall now construct subsequent configurations in time (t = 1,2,...)
for this array by using a recurrence relation to derive each configuration from
the previous one. For example, using the recurrence relation

G = ey @ d B dpp (1.1)
(the state of a cell at time ¢+ 1 is the sum mod 2, or “exclusive OR”, denoted
by @, of the states of the cell itself and its left and right neighbors at time t)
we obtain the spacetime history of Fig. 1.2 when we start from a configuration
consisting of a single token.

Generalizations to more than two states per cell, to more than one spatial di-
mension, and to a dependency on more than just the left and right neighbors,
are straightforward.
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Fig. 1.2. Spacetime history obtained by running recurrence relation (1.1) starting
from a configuration consisting of a single token.

A dynamical system of this kind is called a cellular automaton if:

e The number of possible cell states is finite.

e The recurrence relation is finite, i.e., the new state of a cell depends only
on the state of a finite number of cells at the previous instant.

e The recurrence relation is space- and time-translation invariant, i.e., does
not make use of the absolute position of a cell in space and time.

It is easy to verify that the system of Fig. 1.2 is indeed a cellular automaton.

The indexing used in recurrence relation (1.1) suggests the interpretation
that there is a physical cell for each spatial position x, and that this cell
updates its state at each successive instant of time #; thus, ¢/, can be read as
“the state of cell z at time ¢”. In the following spacetime diagram (1.2), each
column of boxes indicates the successive states — and thus the “lifeline” —
of the cell at a particular spatial position.

r—1 T z+1
L) [ O
Nl v

e+ | |:| [ ]

We have used a thicker outline for the successive states of cell z. According
to the recurrence relation, this cell constructs its “new state” by gathering
“current state” information from its left neighbor, its right neighbor, and
“itself”.

Though cellular automata are traditionally conceived in this way, that is,
with the identity of a cell persisting from one step to the next, this feature
is by no means obligatory. In fact, one can think of a spacetime arrangement,
whereby cell states do not line up in time columnwise, as in diagram (1.2),
but form an alternating or quincunx pattern:
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On this spacetime lattice, the recurrence relation

t+3

G ®=q, 1 O, (14)
defines a cellular automaton whose evolution, from an initial configuration
consisting of a single token, is, in effect, “Pascal’s triangle mod 2” (Fig. 1.3).
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Fig. 1.3. When started with a single token, the cellular automaton defined by re-
currence relation (1.4) (which makes use of spacetime lattice (1.3)) yields “Pascal’s

triangle mod 2”.

It turns out that “spacetime crystallographic groups” of the latter kind
(1.3), analogous to a body-centered cubic arrangement (of course what we
have shown here is only the simplest one-dimensional variety; but see Fig. 1.6)
are almost invariably used in the context of lattice gases, while cellular au-
tomata almost invariably use the former kind (1.2), analogous to a plain
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cubic arrangement. The point we wanted to make by introducing the cellular
automaton of Fig. 1.3 was that this distinction may reflect convenience, tra-
dition, or accident, but is not fundamental and should not distract us when
we want to contrast cellular automata with lattice gases on the basis of their
essential differences.

A lattice gas, illustrated in its simplest form in Fig. 1.4, may be viewed
a dual structure to a cellular automaton. In a cellular automaton, state in-
formation resides on the nodes (the squares of (1.3)), while in a lattice gas
it resides on the arcs — which play the role of signals — while nodes rep-
resent events — that is, stateless functions through which signals interact.
In Fig. 1.4 we have two kinds of signals, which travel at the “speed of light”
respectively rightwards and leftwards.

t
I

Fig. 1.4. Spacetime lattice of a simple, one-dimensional lattice gas. Arcs represent
signals, which carry state information, while nodes represent events — stateless
functions through which signals interact. Here we have two kinds of signals, which
travel “at the speed of light” respectively rightwards and leftwards.

In the slightly more complex lattice of Fig. 1.5 we have introduced a third
signal which is “at rest” (zero spatial velocity) in the given reference frame
and thus represents static information — “data storage” rather than “data
communication”. Thus, even though data in lattice gases are are always imag-
ined to be “in transit” between events, nonetheless they can still be used to
implement local state, as in cellular automata.

In physics, the term “lattice gas” originally denoted simply a stylized
gas model in which space and time were discretized so that the underlying
continuum spacetime effectively turned into a lattice. The canonical example
of a lattice gas in this sense is the so-called “HPP gas”, invented by Yves
Pomeau [9], which runs on the two-dimensional lattice of Fig. 1.6 (the third
dimension in the figure is of course for time). Signals are binary and travel
in the four compass directions; each signal represents the presence (“1”) or
absence (“0”) of a particle on the corresponding spacetime track.

As sketched in Fig. 1.7, particles that come together at a node go through
and continue in the original direction, with one exception: if two particles
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Fig. 1.5. Here we add a third kind of “signal”, which, having zero spatial velocity,
is better thought of as a form of memory rather than data transmission.

Fig. 1.6. Spacetime layout for a simple two-dimensional lattice gas; signals come
together to an event from four directions and similarly depart from in four direc-
tions.

meet head on and the other two tracks are empty, then the two particles will
“bounce” off one another and come out of the node on these two tracks, at
right angles to the original direction of travel.

Fig. 1.7. In the HPP lattice gas, particles crossing one another’s paths (a) go through
a site unaffected, while particles colliding head-on (b) are scattered at right angles.
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In the HPP gas, as soon as the numbers involved become large enough for
averages to be meaningful — say, averages over spacetime volume elements
containing thousands of particles and involving thousands of collisions — a
definite continuum dynamics emerges. And, in the present example, it is a
rudimentary fluid dynamics, with quantities recognizably playing the roles
of density, pressure, flow velocity, viscosity, speed of sound, etc. Fig. 1.8 il-
lustrates sound-wave propagation in this model. Note that, even though the
microscopic interactions only display a limited form of rotational symmetry
(namely, invariance under quarter-turn rotations), the “speed of sound” in
the HPP gas is fully isotropic.

Fig. 1.8. Wave propagation in the HPP lattice gas. Note the emergence of circular
symmetry.

When it was proposed, the HPP gas was really a piece of conceptual art,
designed by a professional hydrodynamicist to impress fellow professional
hydrodynamicists (who else?): “Imagine, we’ve been spending all our lives
knee-deep in differential equation, continuous variables, Banach spaces, and
all that, and here is something that in principle can get the same results with
the most incredibly simple machinery!” (The catch of course is that while
the components are simple you need lots of them — billions of collisions
loci to see a picture with some detail like vortices or wakes.) The joke was
appreciated by an inner circle, but for the moment nothing came out of it.

One must give to Edward Fredkin the credit of envisaging and taking
very seriously the possibility of doing general-purpose computation by purely
ballistic means — that is, collision-based computing. Ed played with many
variations of this idea until he came up first with “conservative logic” (where
the two Boolean states, Os and 1s, were independently conserved by the logic
gates — and thus could be conceived as balls or atoms which preserved their
identity through a collision. Eventually he came up with the Billiard-Ball
Model of Computation, which showed that, in spite of widely spread doubts
to the contrary, general-purpose computation could be achieved entirely by
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a “Galilean” mechanism consisting of elastic balls and flat mirrors. These
developments are reported in [5].5

Meanwhile, Ed Fredkin’s Information Mechanics group had started devel-
oping high-performance, low-cost hardware engines dedicated to cellular au-
tomata and similar fine-grained, massively-parallel computation schemes [19].
To implement the Billiard Ball model of computation on one of these ma-
chines, Norman Margolus managed to cajole a cellular automaton into think-
ing it was a collision-based scheme.® While experimenting with variations of
Ed’s billiard-ball rule, I stumbled on a rule from which fluid behavior — the
laws of perfect gases, viscous damping, and all that — naturally emerged.
Gérard Vichniac located a precedent for that in Pomeau’s HPP gas, and we
invited its author to one of our Information Mechanics workshops. According
to Pomeau, seeing this gas actually running on one of our machines made
him realize that what he had conceived primarily as a conceptual model
could indeed be turned, once suitable hardware was available, into a compu-
tationally accessible model; this stimulated his interest in finding lattice-gas
rules which would provide better models of fluids. A landmark was reached
with the slightly more complicated FHP model [7] (it uses six rather than
four particle directions), which gives, in an appropriate macroscopic limit,
a fluid obeying the well-known Navier—Stokes equation — and thus suitable
for modeling actual hydrodynamics. Soon after, analogous results for three-
dimensions were obtained by a number of researchers [6].

As we said, the structure of a cellular automaton seems designed for the
convenience of an accountant — or of a spreadsheet. The nodes of the space-
time lattice contain static data; in fact, cell states sit snugly in their spacetime
boxes, as in (1.2), and their location does not convey any directional informa-
tion. The arcs only denote the functional dependency paths between old and
new states: a transition function sweeps over the array and fills the boxes of
one row by looking at the contents of the neighboring boxes in the previous
row. Several of these “old state” boxes will have to be looked at in order to
construct a single “new state”; conversely, the same “old state” will be looked
at several times, by different “neighbors” in the new row.

A lattice gas, by contrast, is more like a pinball machine. State information
resides in the inertially-traveling tokens, that is, in the spacetime signals,
while nodes act as stateless transducers — n-input, n-output functions. Each
signal derives its entire contents from a single node and delivers its entire
contents to a single node; no duplication of neighbor data occurs en route as
in cellular automata. By its very location in the spacetime lattice, a signal
associates dynamical information — a certain direction and velocity — with

% Signals and events (and, specifically, reversible events) as a basis for a physically-
minded model of computation had been proposed in [16], but reduction to really
elementary interactions was still lacking there.

S Born as a clever trick, the “Margolus neighborhood” was incorporated as an
architectural primitive in subsequent machines.
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the data it carries. It is impossible to specify where certain data are without
simultaneously specifying whence and whither: as in physics, the two aspects
of position and velocity are intimately joined; this is seen with particular
clarity in Fig. 1.6.

The advantages of lattice gases over cellular automata from the viewpoint
of information mechanics (i.e., information theory applied to a dynamical
context) are amply discussed in [20]. Hardware and software engines are also
discussed elsewhere [21,18]. Here we are going to present a broader intuitive
picture, placing more emphasis on complementary themes.

1.2 Heat, Ice, and Waves

To better appreciate the contrast between cellular automata and lattice gases,
let’s recast it in the familiar setting of Pascal’s triangle. We may think of this
triangle,

13 3 1 7
1 4 6 4 1

as a particular history of a discrete, one-dimensional dynamical system having
spacetime variables (here all set to 0 for definiteness) in the following positions

00000
00 0 0
tJOOOOO. (1.5)
000 0
00000

As a dynamics for this system, let each variable be constructed as the sum
of the two variables standing above-right and above-left of it (the above
assignment of 0 to all variables trivially satisfies this dynamics).

Suppose now that variable values are arbitrarily assigned on the t = 0
row, while the values for ¢t = 1,2, ... are obtained by iterating the dynamics
just described. If we start with a 1 in the center position and Os in all others
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we obtain the following history

t
0 0 0 1 0 0
1 01 1 0
2 01210 |, (1.6)
3 1 3 3 1
4 1 4 6 4 1

which, as anticipated, reproduces Pascal’s triangle.
Note that each element in (1.6) is computed as the output of a two-
argument function of the form

u (Y

with, in our case, f(u,v) = u + v. In order to normalize to 1 the sum of
each row of Pascal’s triangle, such as we would get for the coefficients of
the binomial distribution ($a + £b)", we may replace the above function by
f(u,v) = 3(u+v). That is, each spacetime variable is now obtained as the
average, rather than the sum, of the two variables above it, and we get

0 0 1 0 0
0
1
‘1
1% 1
4 16

(I
(I

0 1 3 0

0]
ool
ool

1 13
16 4 8
This recurrence relation, where each element is the mean of the two neighbor-
ing values from the previous time instant, is of course a discrete counterpart
of the partial differential equation

du  d*u

dt — dz?’

that is, the well-known diffusion (or “heat”) equation.

Now, we would like to look at essentially the same process but from the
viewpoint of a physicist rather than of an accountant.

Let us imagine spacetime to be uniformly criss-crossed by quantities that
travel inertially rightwards and leftwards at unit speed (we may think of this
as the “speed of light”). Maintaining the same orientation of the ¢ axis as in
(1.5), we have the following spacetime diagram
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(1.8)
t

!

This diagram consists of signals and events much as explained in the previous
section. In general, an event will represent an arbitrary, two-input, two-output
function of the form

Uo Vo
}'fi ’
(% U1

through which the two signals u and v interact; an event is thus the locus of
interaction of signals.

Note that here and in what follows we identify signals not according to
whether they lie on the left or the right of an event, but according to their
direction of travel, rightwards or leftwards. Thus, if we call u the signal that
enters a node from the left, we’ll also call w the signal that exits that node
from the right. Accordingly, in (1.9), where the arrow representing an event is
preceded by the ordered pair of arguments and followed by the ordered pair
of results, in both pairs the first element denotes the right-traveling signal
and the second, the left-traveling one.

In the identity (or “null”) event,
fiden : (U;U) = (U,’U), (19)

the two signals cross one another’s paths without interacting:

u (Y
v u

Similarly, one may consider the reflecting event,
frefiect * (u,v) = (v,u), (1.10)

where the leftwards outgoing signal carries the value of the rightwards ingoing
signal, and vice versa (the passengers “trade ships” as the two vessels cross
one another’s paths):

u v

hig
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Finally, we may want to consider the equalizing event, which adds together
the two incoming signals and then redistributes this sum evenly between the
two outputs:

fmean : (u,v) = (3 (u+0), 3 (u+0)). (1.11)

We are now ready to translate the recurrence relation of (1.7) into a
signal/event diagram. If we put an equalizing event (1.11) at each node and
inject a unit signal into the “origin” node we obtain the following cascade

T —

, (1.12)

which is identical to the binomial distribution of (1.7) if at each node one
chooses to be blind to how much comes from the left and how much from
the right, so that the two incoming signals are lumped into a single entity.
Thus, events of type (1.11) (equalizing events) yield the diffusion equation.
With events of type (1.10) (reflecting events) each piece of data moves back
and forth on alternating steps, yielding no net progress in the z direction;
the dynamics is effectively frozen. At the other extreme, events of type (1.9)
(identity events) let rightwards and leftwards signals travel through one an-
other undisturbed; but this linear superposition of left- and right-traveling
trains of values is nothing less than the general solution of the wave equation
(cf. [22]), and we obtain genuine, perfectly undamped harmonic motion — a
vibrating string! Anything in between (1.9) and (1.11) will yield a version of
the telegrapher’s equation [13] — which displays a mixture of both inertial
(wave equation) and dissipative (heat equation) traits.

In conclusion, while the cellular-automata-like recurrence scheme of (1.7)
loses valuable information (the momentum of a signal) at every step, a com-
parable lattice-gas-like scheme, such as (1.8), takes better care of the infor-
mation that is entrusted to it — and in the end can let it do more interesting
things. Here we can tune an extremely simple system all the way from a
frozen dynamics to diffusive transport to perfect harmonic motion, effort-
lessly yielding a wide range of basic types of physical dynamics.” What we’ve
done is move from a game of checkers to a game of billiards [5]!

" And note that we’ve only been considering those dynamics that are linear com-
binations of the two extreme cases fiden and frefiect; this is a but a small subset
of all the possible dynamics.
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1.3 Colliding-Beams Particle Accelerators

My first doctoral thesis (I started my scientific career as an experimental
physicist) entailed developing a wide-angle muon detector [14] to be used in
one of the first experiments planned for ADONE.

At that time, conventional particle accelerators hurled a beam of particles
at a stationary target. The resulting debris would fly more or less in all
directions, but retained an overall momentum in the forward direction equal
to the momentum of the incoming particle. Thus, much of the laboriously
built up beam energy escaped in the form of collective forward motion of
the reaction by-products, rather than being used for probing deeper into the
internal structure of the target (see [17] for a “computer-science” counterpart
to this effect). With a more energetic beam the probing would get deeper,
but the fraction of energy wasted would grow even larger.

Ttaly, I was told by my professor, did not have the resources to compete in
this expensive race by brute force and was exploring a more subtle approach.
The idea was to have head-on collisions between two beams of particles of the
same mass traveling at the same speed in opposite directions; in this case the
center of mass of the collision was stationary and the entire energy of the two
beams would be spent in actual smashing work — a 100% “payload”. After
feasibility experiments with a small working model called ADA® (1961-64),
in 1965 construction was afoot for a full-size colliding-beams accelerator to
be called ADONE.? Ironically, even though ADA had been the first working
electron-positron colliding-beams accelerator, Italy’s scientific cleverness was
not matched by its ability to resolve labor disputes, and, after a long series
of strikes, ADONE only started operating in 1969 — when other laboratories
had already had the first pick of the technique, and, incidentally, I had moved
to the United States to pursue my interest in physics-motivated computer
science.

The economics of colliding beams required new beam management prac-
tices. When a beam of electrons strikes a solid target, each electron is prac-
tically sure to undergo a collision and the beam is totally spent by the en-
counter. On the other hand, when the “target” is another beam, the sparse
flocks of particles constituting the two beams stream through one another
with only rare collisions. Thus the beams are only very slowly depleted, and
it is expedient to recirculate them so as to give the unaffected particles new
chances to collide. Thence the concept of storage ring: two beams, one of,
say, electrons (™) and the other of positrons (e™), are gradually built up (us-
ing an external injector) in an evacuated circular pipe or “ring”, where they
travel in opposite directions on essentially the same circular trajectory,'® as

8 “Anello Di Accumulazione”, or storage ring.

9 “Big ADA”.

10 The particles are kept on a circular course by deflection magnets, which impart
the same curvature to e~ traveling one way and e™ traveling the opposite way.
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Fig.1.9. Colliding-beams accelerator. (a) A beam of electrons (e”) and one of
positrons (e') are accumulated in the same evacuated ring, where they travel in
opposite directions on parallel but slightly separated circular paths; the particles
stream past one another without interacting. (b) When the spacing between the
circular paths is reduced to zero so that the paths merge, the two streams collide
head on.

in Fig. 1.9a. Initially the beams’ paths are kept slightly separated so that the
particles do not interact. When the beams have attained the desired particle
density and energy, the spacing between the paths is reduced to zero so that
the two paths overlap and the particles start colliding (Fig. 1.9b).

We shall draw a spacetime diagram in which x denotes position along the
ring (the right and left ends of the z axis coincide) while ¢ denotes elapsed
time (Fig. 1.10). On this diagram, the lifelines of all of one beam’s particles
run parallel to one another with a constant spacetime slope (typically very
close to 1 — the speed of light); those of the other beam have the oppo-
site slope. If we superpose the two families of lifelines we obtain a grid in
which every crossing is a potential interaction locus. When the beams are
slightly separated, as in Fig. 1.9a, the two families of lines live, as it were,
on different planes, and interactions are switched off. When the two beams
are brought together as in Fig. 1.9b, the places were spacetime lines visually
cross, in Fig. 1.10, become actual intersection points (cf. crossover X vs tie
> in conventional electric schematics) and interactions between particles are
enabled.

To continue with our conceptual motivation of lattice gases, let us observe
that, in physics experiments, detectors are arranged around the ring to inter-
cept and study the debris that scatter off these collisions. With the geometry
described above, collisions can take place anywhere along the ring. However,
sophisticated detectors tend to be bulky and expensive, and it is not feasible
to strew a lot of them along the whole length of the ring. Besides, detectors
can be made to work more efficiently if they are focused on a very small
volume of space. Thus, it is desirable to have any collisions occur only at
precisely appointed places. By slightly distorting the two beam trajectories,
one can make them intersect at only a few discrete places along the ring, as
shown in Fig. 1.11a.
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Fig. 1.10. Spacetime lifelines of individual particles in the storage ring. The z
axis represents length along the ring; its right and left ends of course coincide. (a)
Lifelines of positrons. (b) Lifelines of electrons. (¢) Superposition of the two families
of lifelines. A grid crossing represents two particles passing by one another; they
will actually collide if both families of lines run in the same plane rather than on
slightly separated planes (cf. Fig. 1.9).
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Fig.1.11. (a) Beam routing. Small distortions to the circular trajectories make
the two beams overlap only at a few selected places. The small circles denote the
collision sites, at which the detectors will be aimed. (b) Beam bunching. Here
particles come in concentrated volleys or “bunches” (the grey blobs); being evenly
spaced, the bunches from the two beams will meet only at certain regular intervals.
(¢) By combining routing and bunching, one can further customize where and when
collisions may take place.

Furthermore, detectors can be made to yield richer data about the colli-
sions if these happen only at precisely appointed times as well. To this pur-
pose, the particles are “bunched” so that instead of a continuous beam one
has “beads on a necklace” — a regular succession of concentrated volleys that
are well separated from one another (Fig. 1.11b). In this way, particles pass by
one another only at certain discrete moments in time. Finally, by combining
and coordinating the two approaches (namely, routing and bunching), one
can further customize when and where collisions may take place (Fig. 1.11c).

The spacetime diagrams corresponding to the routing and bunching of
Fig. 1.11 are illustrated in Fig. 1.12. Note that a bunch is shown as having a
lifeline that persists through a number of collision sites. In fact, even though
an individual bunch particle may undergo a destructive interaction at a site,
the bunch itself, which consists of very many particles, as a whole retains its
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identity through an experiment (and may even be “replenished” on a regular
basis).
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Fig. 1.12. Spacetime diagrams for the beam geometries of Fig. 1.11. (a) Lifelines
of particles in beams routed as in Fig. 1.11a. The small cylinders are the spacetime
representation of the collision sites; the two families of particle lifelines only inter-
sect within these cylinders; outside of the cylinders, what graphically looks like an
intersection is in reality a passive crossover. (b) Lifelines of particle bunches, as in
Fig. 1.11b. Now it is the timing constraints that limit collisions to discrete spatial
sites. (¢) Adding routing to bunching further restricts the possibilities for collision,
as at some of the grid intersections the beams cross over without interacting.
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Fig.1.13. (a) To the circulating beams of Fig. 1.11c we have added bunches of
stationary particles (zero speed) hovering at the collision sites. (b) Overall spacetime
diagram for the three kinds of bunches, traveling at speeds —1, 0, +1. In (c) we
have added two more circulating bunched beams traveling at velocities +1/2 and
—1/2, yielding 5-body interactions at each site.

We may even imagine that, in addition to the two circulating beams,
bunches of stationary particles are located at each of the collision sites of
Fig. 1.11, as indicated by the darker dots in Fig. 1.13a. The lifelines of these
bunches, for which z is constant, are indicated in Fig. 1.13b. We now have
three families of bunches, with respective velocities —1, 0, and +1, that cross
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one another’s lifelines at certain regularly spaced interaction loci (Fig. 1.13b).
We can further enliven the collider by adding two more bunched beams of
particles that travel at velocities +1/2 and —1/2, yielding five-body interac-
tions at each site, as in Fig. 1.13c.

What we’ve been doing may properly be termed spacetime crystallogra-
phy;that is, in Fig. 1.12 and Fig. 1.13 we have constructed regular diagrams of
causal dependencies expressing the spacetime ordering with which collisions
have been arranged within the particle collider. We will note for the moment
that these diagrams are identical to those of lattice gases (see Sect. 1.1),
once we replace the different types of particle bunches with different types of
lattice-gas signals.

We’ll leave off for a moment particle colliders, and turn to the issue of
ballistic dynamics.

1.4 Why Aristotle Didn’t Discover Universal
Gravitation

You cannot park in space! If you have engine troubles on the expressway you
can pull over, stop, leave your car on the emergency lane, and come pick it
up with a tow truck an hour later. But if you are going to Mars and your
ion drive runs out of fuel, there is just no way you can “leave your spaceship
there”. Your ship will go hurtling through space in an orbit around the Sun.
If you actually insisted on stopping it, say, by firing the retro rockets (and
that may cost you a lot of energy), your ship will start falling into the Sun.
In neither case would it make sense to say, “Oh, I just left it last night at
celestial coordinates such and such. Here are the keys and a gallon of fuel
— will you please go get it for me?” In sum, the natural “rest” state for a
spaceship or an asteroid is not “motionlessness” but travel along an inertial
trajectory.

If things are so, where in the world did Aristotle (1616-1678)'! get his idea
that an object will grind to a halt as soon as you stop pushing it? Well, that
is simply what everybody knows, because that’s what you can see with your
own eyes. A ship won’t move without wind or oars. Kill a bird with a stone
and it will stop in midair and fall to the ground. And have you ever tried to
push a cart? It is evident that to make it go faster you have to push harder.
When Aristotle said that the “the velocity of an object is proportional to the
applied force” he was just stating in a formal way what everybody intuitively
knew all along.

As a corollary of this belief, if an object moves on a certain course you
should look along its trajectory — right behind the object or right ahead of

11 Aristotle’s dates are, of course, 384-322 B.C.; by expressing them as —1000 + 616
and —1000 + 678 (that’s what our notation means) we facilitate comparison
between B.C. and A.D. dates. Specifically, it becomes obvious that Galileo (1564—
1642) lived about two thousand years after Aristotle (1616-1678).
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it — to find out who’s pushing or pulling it. More formally, to find out what
makes a body move you must look in the direction of its velocity vector.

Aristotle’s prescription works reasonably well with earthly — or “sublu-
nar” — things, but when we look at the planets’ orbits we can’t see behind
or before the planets anything of any account. Are planets being pushed by
invisible angels? Or is each planet bolted to an invisible crystal sphere that
carries the planet with it and that somebody (presumably hidden below the
horizon) keeps pushing around like a donkey a grain mill? Or are celestial
things governed by laws quite unlike those in force on earth?

The issue remained stuck at that point for two thousand years, until
Galileo (1564-1642) started playing harmless games with “bocce” balls on
gently sloping tracks; the latter “diluted” gravity, and thus velocity and
thence air friction. From this Galileo concluded, “In ideal conditions, ve-
locity comes for free; it is change in velocity that one has to pay for!” More
formally, to find out what makes a body go faster, slow down, or turn away
from a straight line, you must look in the direction of its acceleration vector.

Though it had been Galileo that first had turned the telescope to the
planets, it didn’t occur to him to turn to the planets his own conclusions on
forces and accelerations. But Newton (1643-1727) did; and when he looked
along a planet’s acceleration vector rather than its velocity vector what did
he see? Lo and behold, the Sun! — a very big angel indeed.'?

After that observation, it didn’t take much imagination to guess that it
was the Sun that, by somehow pulling on the planets, steered them into their
quasi-circular orbits, and that similarly it was the Earth that was making the
Moon go circles.!® Thus, a seemingly minor shift of attention, from velocities
to accelerations, opened the door to one of the most powerful insights in the
history of science.

The contrast between cellular automata and lattice gases is essentially
one between the Aristotelian and the Galilean approach to dynamics, be-
tween a dissipative or “damped” philosophy of history and a conservative or
“ballistic” one. In the first view, the natural state of an object is rest and
we have to “do something” just to make it move. In the second, the natural
state is inertial motion and a dynamics only has to specify what is new with
respect to that. Moreover, as explained at some length in [5], in the first ap-
proach variables are thrown away at every step and are replaced with freshly
fabricated ones, while in the second approach variables retain their identity

12 Kepler (1571-1630) had shown that, if one wanted to be precise, planets moved
on ellipses of low eccentricity rather than circles (or circles upon circles upon
circles as per Ptolemy’s model) as Galileo thought, and with different velocities
on different points of the ellipse. Though the Sun was not at the center of these
ellipses but a bit off-center, at one of the two foci, still the acceleration of the
planets always kept pointing exactly toward the Sun!

13 This whole argument paraphrases in part Feynman [4, Lecture 2].
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through a step of the dynamics — even though they may thereby undergo a
change of state (cf. Fig. 1.7).

1.5 “On The Nature of the Universe”

Let’s return to colliding-beams accelerators. The by-products of a collision
are scrutinized, occasionally subjected to new collisions, but then as a rule
purged out of the system. In most cases, these particles will no longer have
the desired energy or momentum (or, even worse, they may no longer be
the desired kinds of particles). At any rate, since some noise is unavoidably
picked up at each collision, the dynamical characteristics of the particles
become less predictable and thus less useful for studying further interactions.
For all practical purposes, particles become, after a few collisions, “tired”
and “worn out” and must be replaced by fresh ones.

Of course, nothing of that kind has really happened to the particles; it is
only our information about them that has become “tired” and “worn out;”
the particles themselves are just fine, thank you!

Yet, since everything in our coarse world seems to run down, it takes a
veritable leap of faith to believe that the particles with their agitation keep
a piston from settling at the bottom of a cylinder never get tired, and will
keep supporting the piston even when all batteries in the world will have run
out and the universe will be approaching thermal death. The “spring of air”,
as they called it in the seventeenth century [2], is, to make a bad pun, an
eternal spring; it’s among the few entities that have nothing to fear from the
second principle of thermodynamics.

This leap of faith — which many still find hard to make today — would
have been unthinkable before Galileo. Two thousand years before, it is true,
Democritus (1540-1630) had proposed an atomistic theory, which Epicurus
(~ 1650-1729) had then developed into an all-encompassing “philosophical”
(that is, physical) system. But neither Epicurus nor his best literary agent,
Lucretius (1902-1945), could figure out how the whole thing could possibly
work, and had to make recourse to an ad hoc addition to their theory to
make it believable not only to others but to themselves. I will explain what
I mean, using mostly Lucretius’ words [11, passim)].

“You must know, my Memmius, that nothing can ever be created by di-
vine power out of nothing [conservation of matter and energy]. ... Further-
more, nature resolves everything into its component atoms and never reduces
anything to nothing [universal atomic hypothesis]. ... From the action of the
wind etc. you have evidence of bodies whose existence you must acknowledge
though they cannot be seen [you may not see the atoms, but the spring of
air is enough witness to them]. ... Material objects are of two kinds, atoms
and compounds of those atoms. The atoms themselves cannot be swamped
by any force, for they are preserved indefinitely by their absolute solidity [if
you don’t see the atoms themselves, you may at least see aggregates of atoms;
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though these may change shape and be eroded, the atoms themselves never
wear out].”

So far, so good! Everything looks strictly kosher even when seen with post-
Newtonian eyes. But then, with as little advertisement as possible, comes
most embarrassing admission: “In this connection, there is another fact that
I want you to grasp. When atoms are travelling straight down through empty
space by their own weight [so, after all, some force must be constantly pulling
the atoms lest they slow down] at quite indeterminate times and places they
ever swerve so little from their course, just so much that you can call it
a change of direction. If it were not for this swerve, everything would fall
downwards like rain-drops through the abyss of space.”

Ah, poor Lucian, you had practically managed to walk on water across
the whole lake, but your faith failed you at the last moment! In the end, you
couldn’t believe that atoms can keep colliding forever, on their own, without
some external intervention, and you had to invent this swerve, this infamous
clinamen! It’s the Aristotelian fallacy again: no force, no velocity. If you swirl
a handful of sand in the air, the sand grains may collide for a while, but
eventually they will asymptote to a downward, parallel fall. Their weight will
still make them travel vertically, but their horizontal motion relative to one
another, not refreshed by anything, will soon be spent, and they will stop
colliding.

Critics have made much of Epicurus’ clinamen, but I think they’ve missed
a most important point. I'll quote from Ronald Latham [11]:

In one particular, again, Epicurus indulged in a metaphysical sub-
tlety foreign to the spirit of his materialistic doctrine. As a moralist,
he believed in free will. If the movements of the atoms were abso-
lutely determined, as Democritus had taught, it seemed to him that
all human actions must equally be determined. Therefore the atoms
must swerve, very rarely and very little, from the paths ordained for
them by nature. To contemporaries this seemed an absurd notion. We
may doubt whether it was really relevant to the moral question at
issue. But it was one concession in a dogmatic system to that element
of the inexplicable and unpredictable in nature which some modern
physicists have been driven to acknowledge by a somewhat similar
concession.

Note the attempt to bring in free will, morality, and even quantum me-
chanics! But if we reread Lucretius, we find no attempt to introduce free will
under the name of “random will” or whatever. His words are clear: “If it were
not for this swerve, everything would fall downwards like rain-drops through
the abyss of space.” This is Aristotle plain and simple! If we really wanted to
read in between Lucretius’ lines, we could construe an argument as follows.
“Collisions are sufficient to account for all the interesting things that happen
in the world; thence we need not postulate the Gods in order to keep matters
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being interesting. However, in order to have collisions, atoms must move to-
ward one another; but all things stop moving if they are not pushed, and thus
atoms will eventually stop colliding. Now, it is a fact that interesting things
keep happening, thence collisions must be taking place all along; therefore
things must be being pushed somehow. Who can possibly push them? The
man in the street thinks it can only be other animate beings, namely, the
Gods; thence superstitious fears and all that. I [Epicurus] think that this
“God postulate” is more expensive than the theorem we wanted to obtain.
Why introduce the Gods, if all we need from them is a bit of stirring? Any
mindless stirring will do! Thence my recipe: Add a little clinamen — never
mind what that might be — to the inertial (but ultimately damped) motion,
and here we go!”

Lattice gases solve Epicurus’ dilemma by postulating away friction instead
of introducing external stirring. What’s original with the lattice gas idea is
that we have a digital rather than an analog collider: our control over the
nature and the geometry of the interactions is such that what comes out of
a collision is just as good, for the sake of arranging further interactions, as
what went in. While in a particle collider one must labor to supply a steady
supply of fresh projectiles, the tokens in a lattice gas are always “as good as
new” and can be recirculated ad infinitum. Not only the tokens themselves,
but also their directions and velocities are discrete, and therefore always “as
good as new”. The magnetization of an analog audio tape may imperceptibly
decay, but a bit is a bit is a bit — always a brand new “1” or a brand new
“0”. Similarly, a token on a lattice like (1.8) can only go right or left, never
in a direction in between.

Given that our perceptual world is still not much different from Aristo-
tle’s, the lattice-gas model of computation is not an intuitive one; it takes
courage and faith to entertain it. But, once we have grasped it, we can dream
Democritus’ dream in peace. We no longer have to worry about having to
explain to our disciples that, yes, it was supposed to be atoms all the way
down, but actually without a God or a random swerve it won’t work.

1.6 Conclusions

It took centuries of intellectual struggle to realize that the physical world
can get by with collisions and nothing else. Fredkin’s intuition — that this
idea applies to computation as well, has given rise to Symbol Super Colliders,
both as conceptual and experimental tools.
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