Preface

The author believes that the theory of operator algebras should be viewed as a num-
ber theory in analysis. Number theory has been attracting the interest of humans ever
since civilization began. Every culture in the world throughout history has given
special meanings to certain numbers.

For example, a number may represent a position, quantity and/or quality. To-
day’s civilization would be just impossible without numbers. People have been at-
tracted to the mysteries of numbers throughout history. Accordingly, number theory
is the oldest and most developed area of mathematics. Throughout the mathemat-
ical path to the present day, people have gradually learned properties of numbers.
It is surprising to find that the number zero was not recognized until Hindus found
it about one thousand years ago (although it is recognized that Mayans found it as
well). Compared to this old field of mathematics, the theory of operator algebras
is very new; its foundation was given by the pioneering work of J. von Neumann
and his collaborator F. J. Murray in the early part of the twentieth century, i.e. in
the thirties. Subsequent major development occurred only a decade later in the late
forties and the early fifties. But since then it has marked steady progress reaching
new heights today. The theory handles self-adjoint algebras of bounded operators
on a Hilbert space. The advent of quantum physics at the turn of century forced
one to consider non-commutative variables. One needed to broaden the concept of
numbers. Integers, rational numbers, real numbers and complex numbers are all
commutative. Among the few noncommutative mathematical systems available at
the beginning of quantum mechanics were matrix algebras, which did not accom-
modate the needs of quantum physics because the Heisenberg uncertainty principle
and/or Heisenberg commutation relation do not allow one to stay in the realm of
finite matrices. One needs to consider algebras of operators on a Hilbert space of
infinite dimension. Some of these operators correspond to important physical quan-
tities. One has to include operators in the list of “numbers”. Number theory tells us
to put numbers in a field to study them more efficiently. Similarly, the theory of oper-
ator algebras puts operators of interest in an algebra and we study the algebra and its
structure first. The infinite dimensionality of the underlying Hilbert space poses big
challenges and also presents interesting new phenomenon which do not occur in the
classical frame work. We have already seen some of them in the first volume. For ex-
ample, the continuity of dimensions in a factor of typgifl one of them. The infinite
dimensionality of our objects forces us to create sophisticated methods to handle ap-
proximations. Simple minded counting does not lead to the heart of the matter. For
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example, it is impossible to introduce a simple minded coordinate system in an in-
finite dimensional operator algebra, thus mathematical induction based on a basis
does not fly. The early part of the theory, in the period of the forties through the
early sixties were spent on this issue. Luckily there is a remarkable similarity be-
tween the theory of measures on a locally compact space and the theory of operator
algebras. The first volume was devoted to the pursuit of this similarity.

The second volume of “Theory of Operator Algebras” is devoted to the study of
the structure of von Neumann algebras of type Il and their automorphism groups,
cf. Chapter VI through Chapter XllI; and the third volume is devoted to the study
of the fine structure analysis of approximately finite dimensional factors and their
automorphism groups, cf. Chapter XllII through Chapter XVIIl. The last chapter,
Chapter XIX, is an introduction to the theory of subfactors and their symmetries.
One should note that the class of von Neumann algebras of type Il is given by
exclusion, i.e., by the absence of a non-trivial trace or a non-zero finite projection.
This situation presented the major obstruction for the study of von Neumann alge-
bras from the beginning of the subject until the advent of Tomita-Takesaki theory in
the late sixties whilst many examples had been found to be of type lll: the infinity
of non-isomorphic factors were first established for factors of type Ill by Powers
in 1967, [670], before the discovery of infinitely many non-isomorphic factors of
type Il or ll o, [635, 686], and most examples from quantum physics were shown
to be of type 11, [430]. It was the Tomita-Takesaki theory which broke the ice. It is
still amazing that the subject defined by exclusion admits such a fine structural anal-
ysis since usually exclusion does not allow one to find any alternative and is viewed
as pathological. Of course, a von Neumann algebra of type Il had been pathological
until we discover their fine structure. We will explore this in full detail through the
second volume.

Each chapter has its own introduction which describes the content of that chapter
and the basic strategy so that the reader can get a quick overview of the chapter.

In the second and third volume, we present two major items in the theory of von
Neumann algebras: one is the analogy with integration theory on an abstract mea-
sure space and the other is the emphatic importance of automorphisms of algebras,
i.e. we emphasize the symmetries of our objects following the modern point of view
of E. Galois.

In general, the theory of von Neumann algebras is considered to be non-
commutative integration. In Volume |, the similarity between von Neumann algebras
and measure spaces are examined from the point of view of Banach space duality.
In the second and third volume, non-commutative integration goes far beyond the
analogy with ordinary integration. Since it is not our main interest to examine how
ordinary integration should be formulated based on commutative von Neumann al-
gebras, it is not discussed here in detail beyond a few comments. Still it is possible
to develop a theory which covers the ordinary integration theory based on the oper-
ator algebra approach. In fact, such a theory has been explored by G. K. Pedersen,
[653, Chapter 6], and it does eliminate pathological uninteresting measure spaces
easily. The main difference between the operator algebra approach and the con-
ventional approach to integration theory relies on the fact that in operator algebras
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one considers functions first, or equivalently variables, and then one views the un-
derlying points as the spectrum of the variables; whilst in the ordinary approach
one considers points first and views variables as functions on the set of points. We
would like to point out here, however, that in practice we never observe points di-
rectly only approximately by successive evaluations of coordinates. Besides this
philosophical difference, there is another major difference between the ordinary in-
tegration theory and the non-commutative integration theory which rests on the fact
that a weight, a non-commutative counterpart ef-finite measure, gives rise to

a one-parameter automorphism group, called the modular automorphism group, of
the von Neumann algebra in question. This modular automorphism group can be
considered as the time evolution of the system, i.e., in the non-commutative world a
state determines the associated dynamics. The appearance of the modular automor-
phism group distinguishes our theory sharply from the classical theory. The modular
automorphism group gives us abundant non-trivial information precisely when there
is no trace on the algebra in question. Since the ordinary integration is a trace, the
modular automorphism group is trivial in that case and cannot be appreciated. Fur-
thermore, thanks to the Connes cocycle derivative theorem, Theorem VI11.3.3, the
modular automorphism group is unique up to perturbation by a one unitary cocy-
cle, which allows us to relate the structure of a von Neumann algebra of type Il
to that of the associated von Neumann algebra of typedtuipped with a trace
scaling one parameter automorphism group, cf. Chapter XIl. As a byproduct of our
non-commutative integration theory, a duality theorem attributed to Pontrjagin, van
Kampen, Tannaka, Stinespring, Eymard, Saito and Tatsuuma, is presented in 83,
Chapter VII. With this exception, no discussion of examples is presented in the sec-
ond volume, Chapter VI through Chapter XIl. Extensive discussions of examples
and constructions of factors occupy the third volume starting in Chapter XlII and
through Chapter XVIII.

The so-called Murray-von Neumann measure space construction of factors is
closely investigated first in Chapter Xlll yielding the Krieger construction of fac-
tors and the theory of measured groupoids. Systematic study of approximately finite
dimensional factors occupies most of the third volume, cf. Chapter XIV through
Chapter XIX. The theory is highlighted by the celebrated classification theorem
of Alain Connes in the form of Theorems XVI.1.9, XVIII.1.1, XVIII.2.1 to which
W. Krieger made a substantial contribution also, and XVIII.4.16 which requires one
full section of preparation given by U. Haagerup, [550]. The last chapter, Chap-
ter XIX, is devoted to an introduction to the theory of subfactors of an AFD factor
created by V. F. R. Jones, and concludes with a classification theorem of Popa, The-
orem X1X.4.16, for subfactors of an AFD factor of type With small indices.

The three volume book, “Theory of Operator Algebras”, is a product of the au-
thor's research and teaching activities at the Department of Mathematics at Univer-
sity of California, Los Angeles, spanning the years from 1969 through the present
time. It is important to mention the following: the author’s visit to the University
of Pennsylvania from 1968 through 1969 where the foundation of Tomita-Takesaki
theory was established; the author’s participation in various research activities which
include several short and long visits to the University of Marseille-Aix-Luminy;
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several short visits to RIMS of Kyoto University; one year participation in the Math-
ematical Physics Project of 1975-1976 at ZiF, University of Bielefeld; a full year
participation in the operator algebra project of MSRI for 1984-1985; a one year
visit to IHES, 1988-1989; two one month long participations in the one year project
(1988-1989) on operator algebras at the Mittag-Leffler Institute; several visits to the
University of New South Wales; and several month long visits to the Mathematics
Institute of University of Warwick. The author would like to express here his sincere
gratitude to these institutions and to the mathematicians who hosted him warmly
and worked with him. Special thanks are due to Professor Richard V. Kadison with
whom the author discussed the philosophy of the subject at length so many times,
and to Professor Daniel Kastler who encouraged him in many ways and provided the
opportunity to work with him and others including Alain Connes. Throughout the
period of the preparation of the book, the author has been continuously supported by
the National Science Foundation. Here he would like to record his appreciation of
that support. The Guggenheim Foundation also gave the author support at a critical
period of his career, for which the author is very grateful. The author also would
like to express his gratitude to Professor Masahiro Nakamura who has constantly
given his moral support to the author, to Professor Takashi Turumaru whose beau-
tiful lectures inspired the author to be a functional analyst and to the late Professor
Yoshinao Misonou under whose leadership the author started his career as a func-
tional analyst. At the final stage of the preparation of the manuscript, Dr. Un Kit Hui
and Dr. Toshihiko Masuda took pains to help the author to edit the manuscript. Al-
though any misprints and mistakes are the author’s responsibility, the author would
like to thank them here.

Guidance to the Reader

Each chapter has its own introduction so that one can quickly get an overview of
the content of the chapter. Theorems, Propositions, Lemmas and Definitions are
numbered in one sequence, whilst formulas and equations are humbered in each
section separately without reference to the section. Formulas (respectively, equa-
tions) are referred to by the formula number (respectively, equation humber) alone
if it is quoted in the same section, and by the section number followed by the for-
mula number if it is quoted in a different section but in the same chapter, and finally
by the chapter number, the section number and the formula number (respectively,
equation number) if it is quoted in a different chapter. Some exercises are selected
to help the reader to get information and techniques not covered in the main text,
so they can be viewed as a supplement to the text. Those exercises taken directly
literatures are marked by'asign, and the references are cited there.

To keep the book within a reasonable size, this three volume book does not in-
clude the materials related to the following important areas of operator algebras:
K-theory for C*-algebras, geometric theory of operator algebras such as cyclic co-
homology, the classification theory of nucld€at-algebras, free probability theory
and the advanced theory of subfactors. The interested readers are referred to the
forthcoming books in this operator algebra series of encyclopedia.



Chapter XVII
Non-Commutative Ergodic Theory

8§80 Introduction

The structure of a facto#( is best understood through the study of symmetry of the
factor, i.e. the study of the group Aut() of automorphisms of(. We have been
experiencing this through the structure analysis of factors of type Il for instance.
Apart from the modular automorphism groups, wenddhave a systematic way of
constructing an automorphism of a given factér It is still unknown if every sepa-

rable factor of typdl; admits an outer automorphismhus we restrict ourselves to

AFD factors in most cases, where we have many different ways of constructing au-
tomorphisms. The counter partin analysis of the theory of automorphisms is ergodic
theory or the theory of non-singular transformations enfinite standard measure
space. As we have seen in Chapter XIllI, the Rokhlin’s tower theorem played a fun-
damental role in the theory of AF measured groupoids. We will present first the
non-commutative analogue of this basic result in ergodic theory in §1. Unlike other
parts, we need this theory for non-separable von Neumann algebras. It is interesting
to note that whilst our primary interests are rest upon separable factors some results
valid for non-separable von Neumann algebras are badly needed to advance our sep-
arable theory. One might be tempted to have a philosophical discussion about this
irony. The results there will be applied to the analysis of outer conjugacy of single
automorphisms in subsequent sections.

In 82, we will discuss the stability of outer conjugacy class of an aperiodic single
automorphisms of a strongly stable factor. It is then applied to the outer conjugacy
classification of a single approximately inner automorphism of a stable factor in 83.
The outer conjugacy class of an approximately inner automorpéisinan AFD
factor R is determined by very simple invariants: outer perjgdf) € Z, and
obstruction Ol®) a root of unity, Theorems 3.1 and 3.16.

81 Non-Commutative Rokhlin Type Theorem

In the classical (or commutative) ergodic theory, Rokhlin’s theorem plays a fun-
damental role. We extend this result to the non-commutative setting. As usual, we
denote byM a von Neumann algebra. In this section, @eenot assume the sepa-
rability for M, since we need the non-separable Rokhlin theorem later even if we
handle only separable von Neumann algebras.
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Definition 1.1. We say thatd € Aut(.M) is properly outerif for every e €
Projm?), e+ 0, the reduced automorphisifi € Aut(.Me) is not inner.

Theorem 1.2. For 6 € Aut(M), the following four conditions are equivalent:

(i) 6 is properly outer;

(i) For every non-zero & ProjM?), [6°—id| =2;

(i) Forevery ec ProjM), e 0,ande¢ > 0, there exists x M such that
O<x=<land|x—0X|>1-¢;

(iv) For every ec ProjfM), e # 0, and e > 0, there exists fe Proj(M),
0+ f <e,suchthat| fo(f)| <e.

By Lemma X1.2.11, there exists a central projectioa Proj(.M?) such thap?
is inner and?1~Z is properly outer. Proposition X1.3.10 or rather its proof shows the
equivalence of (i) and (ii).

Lemma 1.3. Let Sp(®) be the spectrum of in the sense of ChapteXl. If
—1 € Sp®), then for anye > 0O, there exists a non-zero e Proj(.M) such
that [ed(e)|| < ¢.

PROOF. By assumption, for any > 0, there existx € M such thaf|x|| = 1 and
[600+x| < 8. Withh = (x+x*)/2 andk = (x—x*)/2i, we have|6 (h)+h| < §
and|6(k)+k| < 8. Since 1= ||x|| < |Ih||+]K]l, we have|h| > 1/2 or k|| > 1/2.
Assume|lh| > 1/2 (otherwise replace by ix), and leta = £h/| h||, where we
choose the sign in such a way thatISp(a). Then we havd6(a) + a| < 25 and
lall = 1. Lete = x[1—s,17(a). We knowe # 0 since 1le Sp(a).

Representingu in a standard form, we assume thidtacts onf) and there exists
a unitaryU on $ such thalUxU* = 6(x), x € M. Then we havé(e)$Hh = Ue$.
If & € e, thenl||ag — £|| < 8]1&||. For anyn = U¢’ € 6(e)$), we have

lo@n —n| =[Uas"—Ug| <5181 = slnl,
an+ ] < |[a+o@]n| + |1 - oc@n| <35l
Hence we have, for evey € ef) andn € 6(e)$,
|6 1m) — @& || < |@—a)é|lnl < slENnI,
|6 an) + & || < 11 an+n| < 3s1lnl,

so that we get

1
6 I m) < §(|(§ |m) — @& | |+ | | an) + (& | n)\) < 2511l
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Therefore we conclude
lev@1l = sup{ |6 (@6t | n)] : &1 € 5. gl = llnll =1

=sup| |6 | )] : & e en, n e 0@, gl = Inl =1} = 2s.
Thus with§ = ¢/2, we get the conclusion. Q.E.D.

Lemma 1.4. If 6 € Aut(M) is outer, then for any > 0 there exists a non-zero
e € Proj(.M) such that||eg(e)| < e.

PROOFE By the last lemma, we have only to consider the case-tiat Sp(9).

If the restriction of6 to the centerC is non-trivial, then we can find a non-zero
e € Proj(@) such thae L #(e). Hence we may assume th@atc M. Suppose that
6" is properly outer for every € Z. Then the actionn € Z — 6" € Aut(M) is
free. HenceM'N(M x9Z) = @, and therefor is the center ofU xyZ. ButI"(9) is

the kernel of the restriction &f, the dual action of , to @, so that"(9) = T. Hence
—1 € Sp®), which contradicts the above assumption. Hefites not properly
outer for somen € N. Let n be the smallest such positive integer. Here we have
been assuming the proper outernes® dify considering the reduced algebra, so
thatn > 2. By reducing the algebra«(, we may assume tha" < Int(.M), i.e.

0" = Ad(u) for someu € U(M). Since AdO(u)) = 6 Ad(u)d~1 = 6" = Ad(u),

we haved (u) = vu for somev € U(C). If v # 1, then the abelian von Neumann
subalgebraA generated by and v is globally invariant undef andé|, # id.
HenceA must contain a non-zero projecti@such thate 1L 6(e). Thus, we may
assume that = 1, i.e.6(u) = u. We then choose amth rootw of u in M? to get

6 = Ad(w) -6. Then we havé" = id, andé, 62, ..., 6"~ 1 are all properly outer by
the choice oh. Let e be a spectral projection af such that|we — ie| < § for a
preassigned > 0 and some. € C with [A| = 1. Then we havéo®—6¢| < 25, and
therefore if f € Proj(Me), f # O, satisfies| fo(f)|| < 8, then| fo(f)| < 3s.
Thus, we can replacg by 6 to look for a projectionf with | fo(f)| < 38 < ¢,
which means thad" = i. Therefore gives rise to a free actiok € Z, ok €
Aut(M) of Z, = Z/nZ. Thus the cente€ of M is the center ofM xy Z,. Since

I’ (9) is the kernel of the restriction of the dual actioto the cente® of M xg Zn,

we havel'(§) = Zp = {x e T : A" =1}. Therefore, Proposition XI.2.26 entails
the existence of a unitany € M such tha®(u) = Au with A = €™/". Thus,6
gives rise to a non-trivial automorphism of the abelian von Neumann subalgebra of
M generated by, so that there exists a non-zero spectral projeaiofu such that
el 6(e). Q.E.D.

PROOF OFTHEOREM1.2:

(iv) = (iii): For anye € Proj.M), we have|e — 6(e)| > |e — ed(e)| =
1— |ed(e)|. Thus (iii) follows immediately from (iv).

(i) = (ii): If # < x < eande e Proj(.m?), then
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s

|6¢ —id| = H(B —id)(x — (e— x))H =2|x —6(x)

so that (i) also follows from (iii) easily.

(i) = (ii): This equivalence is nothing but a slight modification of Proposi-
tion X1.3.10.

(i) = (iv): Suppose that for some non-zgvae Proj(.M), we have

O<y= inf{ |eo(® | : e Proj(Mp), e+ O].

Chooses > 0 so small that O< ¢ < y/(1+ y), ande e Proj(.Mp) such that
y < |ed (@] < y +e. We claim that

Spy. (e9(®€) C [¥2 (v +)?].

in particulared (e)e is invertible in.Me. If this is not the case, then there exists non-
zeroq € Proj(Me) such that|qed (e)eq|| < A < y2. But we have

lao@|? = [ab@a| < [a6@©d| < |ewp©ae| = |aedereq| < < ¥,

which contradicts the choice gf. Now, consider the right polar decomposition
ed(e) = kuwith k = (ee(e)e)l/z. Then we haver = k~1ef(e), u*u = 6(e) and
uu* = e. Since Sp, (k) C [y, y +¢], we have|yu — ed(e)| < &. Seth1(x) =
ud(x)u*, x € Me. Thend; € Aut(Me) andods is outer by the proper outernesssof
By Lemma 1.4, there exists a non-zefoe Proj(.Me) with | f61(f)| < &, which
means that

[focH] = | fes@o(h] =< | f(es(@ — yu)o(H)| + v fuech)]

<e+y|fou(D)] <L+y)e<y.

This again contradicts the choice f Thereforey must be zero. Q.E.D.

Definition 1.5. We say that € Aut(M) is aperiodicif eachd™, n € N, is properly
outer. This is equivalent to the fact that the actions Z — 6" ¢ Aut(.M) of the
integer groufX is free.

We now state our main result of this section, which is a non-commutative ana-
logue of the Rokhlin tower theorem in ergodic theory.

Theorem 1.6. Let M be a finite, not necessarily separable, von Neumann algebra
equipped with a faithful normal tracial state. If 6 € Aut(.M) is aperiodic and
leavest invariant, then for anye > 0 and ne N, there exists a partition{ F; :
1<j =n} ofidentity in M such that

lo(Fj) — Fjqa],<e. 1<j<n-1,

(1)
[0CFn) = Faf, <.
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We prepare a couple of lemmas.

Lemma 1.7. Suppose thaD < ¢ < 1/n! for afixed ne N. If fq, fp,..., fh €
Proj(M) satisfy the inequality| fi f;| < &, 1 <i # j < n, then there exist
orthogonal g, e, ..., ey € Proj(.M) such that

n n
e~ fj, 1<j=<n, Zej=\/fj,
j=1 j=1
lej — fj|| <ent.
PrRoOOF. Recall the analysis of two projectioesand f in 81, Chapter V. We set

s(e, f) =|e— f|, ce fy=le—(ev -1 )

This is a slight modification of the sine and the cosine by Definition V.1.42 to the
extent that the new cosine is zero @V f)+ whilst the old one is the identity on
(ev f)*. Atany rate, we have

s(e, f)2+c(e, f)2=evV f,
3)

lee. ©)| = llefl,  |ste £ =le— f.
If |ef|l < 1, then|c(e, f)| <1and
F=evf-e~f-enf=Tf
IF = fll=|sF. O] = |s(ev f —e 1)| = et D] =llefll <1,
We now assume the lemma for— 1, and are going to prove the assertion for

f1, f2, ..., fn € Proj(,m) with || fj fk|]| < &, | # k. By assumption, there exist
orthogonaky, ey, . .., en—1 € Proj(.M) such that

n—1 n—1
ej ~ fj, ||ej—fj||<(n—1)!e, Zejz\/sze.
=1 j=1
Hence|ej fn — fj fn| < (n—Dleforj=1,2,....,n—1, sothat
n—-1
=1

<h-D(h—D!'e+(n—De <nle <1

n-1

=Y (M@ =t fal + 1 fa])

=1

[efal =

Therefore, withe, = e v f, — e, we get the desired projectias by the above
arguments. Q.E.D.
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Lemma 1.8. Let {M, 0,7} be as in Theoren.6. If ¢ acts on the center®
trivially, then for any ne€ N, n > 1 and § > 0 there exist orthogonal
f1, f2, ..., fh € ProjsMm) and v € U(M) such that

n
||U—l||1§8r<2fj>, vo(fv* = fj41, 1<j<n, (4)
i=1

where fiy1 = f1.

PrROOF Letd’ = §/12(n + 1) and choose andm in such a way thatn = np >
16/8'> and 0 < & < &'/4mml. The aperiodicity of and Theorem 1.2 enable us
to find a decreasing family of projection§; > E» > --- > Em, Ej € ProjM),
such that|0) (Ej)Ej| <&, 1< j <m. SinceEn < Ej, we have
|6V (EmEm| < |6) (EpEj| <&, 1<j<m
Withe = En, we get, forl<i < j <m,
6" @6l @) =6 (©e| <e.

Let E = \/]_, 60! (e) and apply the last lemma tppi(e) : 1 < j < m}in Mg
to obtain an orthogonal syste{mj 1< < m} C Proj(Mg) such that for each
j=212,....,m,

/

m
ej ~0l(), > e =E, lej — 61| §m!sgj—m.
=1

Put now
F=EVH(E)=Evemlie), Q= Mr.

We then consider the normalized tragg= /7 (F), andL P-norm|| ||’p on Q with
respect targ. It then follows that
1 _
X1y = 7o (IxIP) 7P = ¢ (F) ™ YPIxllp, xe€ Q.
With p = m/n, put

p—1
fi= enjtk, l<k=n-1,
j=0

p
fn= Zaqj, frr1 = f1.
=1

We then havé_}_, fx = E. Since we have for ¥ j <m -1,

/

. : 8
[0e) —ejia] < oce)) — 07 @ + 07+ @) — ej1a] = o,
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we have||6(ej) — j+1, < 6'/2m, j =1,2,...,m— 1. Hence

;8
[6¢f0 = firal = 5. 1=k=n-1

Sinced leaves the centa? fixed, the center valued trace #f is invariant undep,
so thatf ~ 6(f) for any f € Proj.M), which means thafe; : 1 < j < m]}
are mutually equivalent and therefat’g(ej) <1/m andré (e(ej)) < 1/m. Hence

lewlly < 1//mand|6(enp) |, < 1/\/ﬁ, which implies that

|oCtn) — i, = Zaq,ﬂ
p—1
|6/(enj) — enjsa]l5 + [0 enp) — e
j:l
< p_S/ + i < g
- 2m  Jm -

Therefore, we get
l0Cf) — fipa], <8, 1<k=n

Applying Lemma XI1V.2.1, we find unitariegy, . .., uy € U(Q) such that
UjQ(fJ’)UTz [JEER |Uj—F|§\/§|f1+1—9(fj)|.
With vj = u;j6(fj), we get
[vi = fivally = [ fivai = Bl = V2| faa —0(F ], = V25,
andviv; = 0(fj), vjvj = fj11. We next choosep € Q such thatvgvo =
F —0(E) 3 0™(e) andvovy = F — E. Then
8/

luolly < [ocem]y < —= < 2.
Jms2

WithV =wvg+v1 + -+ + vy € U(Q), we have
[ VO(fpVv* = fi1, 1<j=n,

S

IV -F|, < va2n+1s < 7

We nowset =V + (1 — F) € U(M) and obtain:

vo(fpv* = i1, 1<j=n,
lv—11=1(lv—1)=1(IV = Fl) = 1(F)rq(IV — FI) = t(F)|V - F|}
<PV - Fly < 8r<Zf)

This completes the proof. Q.E.D.
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PROOF OFTHEOREM 1.6: We first prove the theorem in the case thdéaves
the centerC of M fixed. We fixn > 1 and O< § < 1. Let X be the set of all
x = (F1, F2, ..., Fn; V) such that

a) {Fl, e, Fn} are mutually orthogonal equivalent projections;
b) Veuwm) and |V —1|, <st(X]_1Fj);
c) VO(Fj)V* = Fjy1, whereFn 1 = Fy.

We then define arelation= (Fy, Fo, ..., Fn; V) <X’ = (F, FJ, ..., Fps V/) by
the following:

(@ Fj<F,1<j=nm

®) V-V =sr(EiaF - Fp).

It then follows that the relation<” in X is an ordering. If)) is a totally ordered
subset ofX, then the mapx = (F1, Fa, ..., Fn; V) € 9 > (X1 Fj) € [0, 1]

gives an order isomorphism 8j into [0, 1], so that)) contains a cofinal sequence
{Xm}. Letxm = (F", F3", ..., F{"; Vin). By (B), we have

n
Vives = Vil = o5 (FP*2 = 7))

=1

so that) > 1| Vimi1 — V|, < 8. The L-completeness oli(M) implies the
convergence liM_oVm = V € U(M). Also each{ ij :m e N}is an
increasing sequence of projections, so tRat= limmn_, ij € Proj(.M) con-
verges. By continuity(F1, Fo, ..., Fn; V) satisfies (a), (b), and (c), and dominates
all (F{", FJ", ..., F"; Vin). Thus, X is an inductive set, which admits therefore a
maximal elemenk = (F1, Fo, ..., Fn; V). We are going to shO\E?Zl Fj =1.

Suppose thaE = 1 — Y1 _;Fj # 0. LetQ = Mg. By (c), we have
VO(E)V* = E, so thatd’ = Ad(V) o 0 leavesQ globally invariant. Hence we
considem’ on Q. It then follows that’ is aperiodic onQ too. By the last lemma,
there existfy, fo, ..., fn € Proj(Q) andv € U(Q) such thatf; L f;, i # j, and
vO(fj)v* = fj11, wherefnq = f1, and furthermorgv — E||’1 < arQ(Z?Zl fi),
wheretq = t/7(E) and | - ||} means theL1-norm on Q relative to 7Q. Put
Fj=Fj+fj, 1<j <nandV'= (v+(1-E))V.Then(F[, Fj, ..., F; V) =X
satisfies (a) and (c). Furthermore, we have

n n
lv+@A-E) -1, =tE)|v-E|] < SI(E)‘EQ< > f,-) =5z(2 fj>;
j=1 j=1

V' =V =|@+a- E)—1)VH1§ST<XH: f,-).
=1
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Hence we get

V' =1y = [V = V] + ]V -1,

r( ) eoe( £6) (£

Therefore x’ belongs toX and dominates properby, contradicting the maximality
of x. Thus we must havgjrj‘:1 Fj =1, and now

|0F)) — Fyia|2 < |0CF) — Fiaa||0F) — Fiia|,

< 2“9(F,-) ~veFV*| =4V -1, =2

This completes the proof for the case thas trivial on C.

General Case: Lét = 0|¢. If 6 is aperiodic, then the usual Rokhlin theorem,
Lemma XII1.3.23, takes care of the existence{Gfl, e Fn}. Hence by decom-
posing.M into direct sum according to the period @f we may assume that is
periodic with periodp > 1. By the previous arguments, we have only to consider
the casep > 1. Chooses € Proj(€) such that{61(c) : 0 < j < p— 1} isapar-
tition of identity. Let; = M andd’ = 9”|N. It follows thatd’ is a periodic and
leaves the cente® y fixed. Hence the previous arguments applytdo guarantee
that for anys” > 0 there exists a partitiofG1, Go, ..., Gn} of identity in & such
that]6'(Gj) — Gj11|, < ¢ whereGp,1 = G1. Put

Hspir =6"(Gs), O0<r <p, 0<s<n,

whereGo = Gp. Then{ H; : 0 < j < np} is a partition of identity inM and
|6(H) — Hiy1], < &’. Now put

p-1
Fs=) Hknys, 1<s<n,
k=0

with Hpn = Ho. We now have
|6(Fs) — Fsya|, < ps’, s=1.2.....n

with Fny11 = F1. Hence withe’ = ¢/ p, we complete the proof. Q.E.D.

§2 Stability of Outer Conjugacy Classes

Let M be a separable strongly stable factor unless we say specifically otherwise.
By definition, we haveM = M ® Ro whereRg is an AFD lh-factor. We study in

this section tensor product perturbations of automorphisrig by automorphisms

of Ro.
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We fix a free ultrafiltero € BN \ N, and considem,, as in 84, Chapter XIV.
By the strong stability,M,, is a o-finite von Neumann algebra of type;)JITheo-
rem XIV.4.18. Eacl¥ € Aut(M) gives rise to an elemeny, € Aut(M,,) naturally
and the correspondeneg: 6 € Aut(M) +— 6, € Aut(M,,) is a homomorphism.
The kernel of,, is independent of the choice efand denoted by Ca). We say
thaté is centrally trivial if & € Cnt(.M). Theouter period p(#) is by definition the
period ofe(0) in Out(M) = Aut(M)/ Int(M), wheree is the quotient homomor-
phism of Aut.M) onto OutM). Similarly, we definep, (6), the asymptotic outer
periodof § € Aut(M), to be the period of,(8), and setpa(8) = 0if 6" ¢ Cnt(M)
for n £ 0. We are going to use the notations from 84, Chapter XIV freely.

Lemma 2.1. If M is a strongly stable separable factor, then for any separable
von Neumann subalgebr@ of M, the relative commutan’ N M, is always
of typelly .

PROOF. Let{X,} be asequence whichdsstrongly dense in the unit ball ¢?. Let
{xn(m)} be a strongly»-central sequence representidg. We fix a dense sequence
{on}in 6, = G,(M) and a faithfulp € &,. For eachm € N, we choose a % 2-
matrix unit{ & j(m) : 1 <i, j <2} such that

IA

1
H[a,j(m), xn(m)]Hw — l=n=m
1
—, 1<k<m

H [a.j (M), o] H

IA

m

Such{e, j(m)} exists by the strong stability. Thee; ; (m)} is strongly central and
with E j = m.({a,j(M}), wherer,, is the map defined in §4, Chapter XIV, we
have

|[Ei ]

ZA@wH[a'j(m)’X”(m)]”i <1im L -0

2,w m—ow M

Hence{ Eij } is a 2x 2-matrix unit in®’ N M,,. Therefore, the relative commutant
of every separable von Neumann subalgebrafgf contains a 2< 2-matrix unit,
which means by induction th&®’N.M,, contains a sequence of mutually commuting
2 x 2-matrix units. Hence®’' N .M., must be of type }. Q.E.D.

Lemma 2.2. Let M be a strongly stable separable factor. Fére Aut(M), the
following two conditions are equivalent:

() 0 ¢CntM);
(i) 6, is properly outer.

PROOF

(i) = (ii)): We shall prove that for any sequenc&,} in M, there existy e
M, such thaB,(Y) # Y and[Y, Xa] =0, n=1,2,.... Let{ xa(k) : k € N} be
a representing strongly-central sequence foX,,. Since ¢ Cnt(.M) there exists
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a strongly central sequendg(k)} such that|6(y(k)) — y(k) ||¢ > § > 0. Since
{y(k)} is central, with faithfuky € S.

kIiﬁmoo” [y®, xn(m)]” =0, n,meN.

#
¢
Let {kn} be an increasing sequenceNnhsuch that|[y(kn). X; (n)]”(ﬁp < 1/n for
i=12....n LetY =m,({y(kn}). It then follows that

0], = g s ], < g 2=

6000 = Y, = Jim 6(ytka) — yika)

>6>0.
¢

Thereforep,, is properly outer.
(i) = (i): Thisis obvious. Q.E.D.

We continue to assume that is a separable strongly stable factor.

Lemma 2.3. If 6 € Aut(M) has p(¥) = 0, then for any separable von Neu-
mann subalgebra® of M, and a natural number & N, there exists a partition
{F1, F2...., Fn} of identity in " N M,, such that

0,(F) =Fj41. 1=<j=n, (Foy1=F1). (1)

PrROOF. We fix a faithfulg € &, and a dense sequengg;} in S.. Let{Xy} be a
o-strongly dense sequence of the unit ballmfand{xm(k)} be a strongly central
sequence i representing{y. _

By Theorem 1.6, for ank € N there exists a partiti0|[1FJk} of identity in M,
such that 1

Hea,(ij) - F}‘HHZ <@ R =FR @)

Let { F}‘(v) : v € N} be a sequence of partitions of identity represen{iﬁé}.
Such a sequence exists by Theorem XIV.4.6. We now choose an increasing se-
quence€{vm} in N such that

a) [ij(Vk),l/fs]H < %, l1<s<k, 1<j<n;

B (oo @] <o 1=msk 1=i<n

: 1 .
o) [o(Frwmo) - ij+1(vk)H¢ <@ 1l=j=n

We now setFj = 7, ({ ij(vk)}) and obtain (1). Q.E.D.
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We are now ready to prove the following stability theorem for aperiodic auto-
morphisms:

Theorem 2.4. If M is a separable strongly stable factor, then every aperiodic
automorphismy of M gives rise to a stable actios,, on M, for any free ultra
filter o € BN\ N in the sense that for every & U(M,,) there existsv € U(M,,)
such that

6, (V) = Uv.

In other words, every inner perturbatioAd(u*) o 6,, of 6, is conjugate tod,,
under Int(M,,) .

PROOF. Letu € U(M,). For a fixeds > 0, choosen € N with n > 4/¢2. By
the last lemma, choose a partitin{)ﬁl, e Fn} of identity in .M, commuting with
u such thab,,(Fj) = Fj41. Thent,(Fj) = 1/n, so that||Fj 2., = 1/v/n < ¢/2.
Inductively, we put

-1 -1 -1
vo=Fn vi=60,"(Uv),..., vkt1=10, (Uv),..., vn—1=06, (Uvn_2).

We then havejvj = vjvj = Fa—j, 0= j =n—1. Wethenpuv = Ykoo vk €
U(M,) and obtain

n—-2
0 (V) = 0,(v0) + ) _ Unk,
k:O
n—-2
uvV =) uvk+ Uvn_1.
k:0

Hence we have
J6utV) — V], = [uon 1~ 6u0)], < e
Therefore, we conclude that for any> 0 there existy/, € U(M,,) such that
160 (Ve) —uVe ], , <& (3)

We now apply the same arguments of the last lemmagpFx &, and{yj} C
&, as in the last lemma. For eache N, letV, be theV, of (3) withe = 1/2v. Let
{uk)} and{v, (k)} be representing sequencesuwéndV, respectively. For each
v € N, let A, be the set of alk € N such that

a) H[vv(k),w,-]H < % =12, v

b) [udou, —Q(vv(k))H(p < %
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ThenA, belongs to the filtew. We then readjusd,, inductively so thatA, ?,: Ayt
For eachj € N, put
v(p=maxfveN:jeAl

Since() A, = @, v(]) is finite. Put
vj = vy(j(j), €N

Then{vj} is strongly central and = =, ({v;}) satisfies,,(u) = vu. Q.E.D.

Theorem 2.5. Let M be a strongly stable separable factor. L€t and Q beAFD

Il 1-subfactors ofM suchthat? v % = M = Qv Q€ and P¢ = M = QC. Ifthe
decompositions? v #£¢ = M = Q v Q° are both tensor product factorizations,
then # and Q are conjugate undeint(.M), i.e. there existsy e Int(.M) such
that o (£) = Q.

PROOF. SinceM, = P.®PF, every central sequenceBfor Q is strongly central
in M. Let{e (k) :1<i, j=<2} (respfijk :1<i,j < 2}) bemutually
commuting sequence of:2 2-matrix units which generateB (resp.Q). Let {v/j}
be a dense sequence®f.

By induction, we are going to construct sequengg$ C N and{u,} C U(M)
such that
a) [uu, fi,j(nk)] =0, k=12 ...,v—-1;
b) withv, =u,u,_1---us,

v& vy = fij(nk), k=1,2,...,v;

c) ¥ o Ad(w)) = ¥j o Ad(wy—)| < 27",
[¥j o Ad@)) = ¥j o Ad(vy_p| <27, j=12...,v

Supposeng andug have been found fok < v — 1. LetR = M N { fi,j (N :
1<i,j<2 1<k=<v-1}.Since

vy—16, j(Nvy_q = fij(nw), 1<k<v-1

vy,—18,j(Mv;_; € R foranyn > n,3, and alsofj j(n) € R forn > n,_;.
Let Ei j = 7o ({vv—18, (M’ ;}) € Ry andFij = 7, ({ fi,j(N)}) € R,. Since
Re C M, andR,, is of type Il there existdV € R, such thaW*W = E;1 and
WW* = F11. By Theorem XIV.4.6, we choose a representing sequéingg C R
of W such that

whwn = vy—1€11(NV)_q, wnwp = f1(N), n>n,_g,

and put

2
Xn = Z fj,1(Mwnv,_1€1j (N)v)_1.
=1
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Then{xn} C U(R) is stronglyw-central. Ifn is sufficiently large along the ultra
filter w, u, = X satisfies the above (a), (b) and (c).

By (c), {Ad(v,,)} is a Cauchy sequence in Aut), so that it converges te €
Aut(M). Let

;‘7’1={a’j(nk):k€N}”, le{fi,j(nk):keN}".
Then we have (1) = Q1. By construction, we have
P=P1@(PLNP), Q=Q®(Q1NQ).

Let « and B8 be isomorphisms oft onto ¢ and Q° respectively, and puf, =
a(P) andQ2 = B(Q). It then follows that

MEPLQ(PLNP)RP2® (PN P N M)
=ZQ®(QNQ)®Q2® (BN Q' N M).
In P ® P (resp.Q® Qz), £ andP (resp.Q1 and Q) are conjugate under
=
X

Aut(P ® P2) = Int( P2) (resp. AutQ ® Q2)). Therefore,? and Q are
conjugate undeint(M). Q.E.D.

We are now going to construct a model automorphism®efFix p € N, p > 2,
and set

Mnh=M(p;C), neN;

o
4
Ro— l—[® M. (4)
n=1
Let{ea, (N :1<i,j < p} be the standard matrix unit &, and put
P
Un =Y eMPey(n) e U(Mn),
k=1
0 (5)
op = []° Ad(un) € Aut(Ro).
n=1

Sinceuf = 1, anduk ¢ Tfor1 <k < p—1, op has periodp and po(op) = p.
Furthermore, we seR, = Ro, n € N, and identifyRg with Hﬁi? Rn, then we
put

o0
o0 = []" on € Aut(Ro),

n=2 (6)
o1 = id € Aut(Ry).

Thus we get a sequendern : n = 0,1,2,...} in Aut(Ro). It follows thatoy is
aperiodic. Hence we have

po(ok) =k, k=0,1,2 .... (7)
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Lemma 2.6. Let M be a von Neumann algebra with no direct summand of finite
typel, and o« € Aut(M) . If « is either stable or gives a free action 8f, = Z/nZ,
thenforeach e N, p> 2,andan n-throoth of 1 there existsa  p -matrix
unit { fij:1<i,j <p}in M suchthat

alfip=A-Tf; 1<ij<p (8)

PROOF. The case that is stable: Lef g j : 1 <i, j < p} be ap x p-matrix unit
in M. Sinceg; ~ «a(gj), there existdN € U(M) such thatW e W* = a(e11).
PutV = 3P a(61)Wey. Thena(gj) = VajV*. Now, setU = Z}’lejejj.
ThenUV*a(gj)VU* = A~ j. By the stability ofw, we can findv € U(M)
such that)V* = v*a(v). Then we get AdJ V*) o« = Ad(v*) o @ 0o Ad(v). Hence
fij = vgjv* gives the required matrix unit.

The periodic case: We view as a free action of,. By the assumption om(,
M contains gpx p-matrixunit{ e j : 1 <i,j < p}. PutU = 30 _; Aawe M.
Then{UX : 0 < k < n— 1} is ana-cocycle ofG. By Proposition XI.2.26, there
existsV € U(M) such thatUk = V*aK(V), 0 <k < n— 1. Hence AdU) o & =
Ad(V*) o a o Ad(V). Therefore,fjj; = Va; V* satisfies (8). Q.E.D.

We apply the last lemma tbM.,, 6, }.

Lemma 2.7. Let M be a strongly stable separable factor afde Aut(M) . For
each pe N, 1 eT with APe® =1, yy, ... yq € &,, afaithful ¢ € &, and
e > 0, there exist ue U(M) and a px p-matrix unit{g j} such that

a) |[ej. v <e, 1<i, j<p, 1<sk=aq;

b) Ad(u)ob(gj)=+"lej, 1<i,j<p;

c) Hu—1||i <e.

PROOF  We apply the last lemma tpM,,, 6, } with a fixed free ultra filtero €
BN\ N, to find ap x p-matrix unit { Ej; : 1 < i,j < p}in M, such that
0u(Eij) = Al Eij.Let {aj (n)} be a stronglyw-central sequence ¢f x p-matrix
units representingk;; }.

Sinceer1(n) ~ 6(er1(n)) and Ex1 = 6,(E11), we find a stronglyw-central
sequencgu(n)} of partial isometries such that

mo({um}) = E1r,  um*un) =eu(n),  umum* = 6(en1(n))

by Theorem XIV.4.6.(iv). Set
p
v(n) = le—le(ejl(n))u(n)elj (n) € U(M).
j=1
Then {v(n)} is strongly w-central, andr,({v(n)}) = 1 becaus&,(Ej1) =
AM1Ej1 andr, (Ju(n)}) = Ei1. Hence lim_ o ||v(n) — 1”2} = 0. By construction,
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we have
Ad(v(M*) 0 b(ej (M) =2 Jgj(n), 1<i,j<p, neN.

Hence if we choose a sufficiently largealong the filterw, {aj (n)} and v(n)
satisfy (a), (b) and (c). Q.E.D.

Definition 2.8. Two automorphismg; of My andé, of M are said to beuter
conjugateand writtend, ~ 6, if there exist an isomorphisma of M1 onto M» and
a unitaryu € M1 such thatr o Ad(u) o 61 o 71 = 65.

Remark 2.9. It is possible to define outer conjugacy for group actions similarly.
But in this case we should not confuse with cocycle conjugacy. In the cocycle conju-
gacy, one requires one cocycle condition in the perturbing unitaries, while arbitrary
inner automorphism perturbations are allowed in the outer conjugacy. In our case,
sinceZ is cohomologically trivial, the outer conjugacy and the cocycle conjugacy
coincide. But when we consider periodic automorphisms and want to pass to the
cyclic groupZ,, = Z/nZ, the subtle difference will appear.

Theorem 2.10. Let M be a strongly stable separable factor. Fér € Aut(M)
and pe N, the following three conditions are equivalent:

(i) pa(®) =0modp;
(i) 6 and 6 ® o are outer conjugate;
(iii) For any faithful ¢ € &, and § > 0, there exists & U(M) such that

Ad(u) 06 =6 ® oy, lu— 1% <.

PROOF

(i) = (iii): Assume (i). Fix§ > 0. We choose sequencés,} ¢ N and
{Ay} € T as follows: If p = O, thenn, > 1 and everyg € N,q > 1, should
appear in{n, } infinitely many times and., = €™/™: if p = 1, thenn, = 2 and
A, = 1;if p > 1, thenn, = p andx, = €2™/P. We further fix a faithfuly € &,
and a dense sequengg;} in &,.

Applying Lemma 2.7 inductively, we will choose a sequeficg € U (M) and
a sequence{a,j (v)} of mutually commutingn, x n,-matrix units satisfying the
conditions:

) Jloi0wd] = gy 1=k =0, 120 =0y
v

b) [u.ej®]=0, 1<k=<v-1, 1<i,j=<ny;

¢) 6, =Ad(uyu,_1---uz) o6 satisfies

(e ) =2"Ta (), 1<i,j<n,

)
d) [usuy_1---up— Uu—luv—Z"'ulni <o
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Suppose thafu, ..., u,} and{e j(1)....,q j(v)} have been chosen. Lat, =
> Cq,j(k),andN, = M1vMaV:--VM,. PutM, = N NM. ThenM = N,@M,.
We choose > 0 andvrq, Vo, ..., r € S4(M,) such that

Iix. vil| < 1<j<v+1

n2 2+
wheneveix € M,, |[x|| <1,and|[x, ¥il| <e, 1<i <r.We also choosg > 0
so thatu € U(M,), |lu— 1||$ < n implies

1)

tt
Hu (Uupty—1---ug) — uvuv,lmulH < S
%4

Letd = 0v] 4 - By (€), 6 € Aut(M,) and pa(d) = pa(d). We apply Lemma 2.7

to {My, 8, Ays1, N1} to Obtain am, 41 x N,41-matrix unit{e j} in M, andd €
U(M,) such that

MQL¢HH<K l<k<r, 1<i,j=<nyu
Ad(0) ob(e)) = A hej.  1<iij<nu
|m—u@<n

We then setj (v + 1) = g j andu,41 = Q. It is now clear that (a), (b), (c) and (d)
hold forv + 1.

By condition (d),u = limu,u,_1---u; € U(M) converges in the-strong
topology. LetRo = /o, M,. By Lemmas XIV.4.9 and XIV.4.10, we have( =
Ro® (RyN M). The restriction of. = Ad(u) o 6 to Rg is conjugate tarp by (c)
andfs = op ® (Boolu,,) WhereMq = Ry N M. Sinceop = op ® op, We have

o = 00 ® op. Finally we have

o0
=T =3ttt — gt <
v=1

(i) = (ii): This s trivial.

(i) = (i): Supposey # 0 modp andé ~ 6 ® op. We work withé ® op
on M ® Ry instead. By constructioRg admits a central sequenég,} such that
Hog(yn) —Yn|, =1, llynll = 1. Thenx, = 1 ® yx is strongly central inM ® Ro
and || (0 ® op)%(Xn) — Xn ”w@r = 1 for anyg € &.(M), wherert is the canonical
trace ofRo. Hence(d ® op)? does not belong to CaM ® Ro). Henceq # pa(d).

Q.E.D.

Corollary 2.11. Let M be a strongly stable separable factor, anthe the canon-

ical quotient map ofAut(.M) onto Out(M) = Aut(M)/ Int(M) . Thene(Cnt(M))
is precisely the centralizer of(Int(M)).

PROOF By Lemma XIV.4.14,&(Cnt(M)) ande (Int(M)) commute.
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Suppose thab € Aut(M) andd ¢ Cni(M). By definition, we havep =
pa(®) # 1. By the last theorem, we may assume that = M; ® R and
6 = 61 ® op. In the construction obp of (5), choosevn, € U(Myn) so that
UnvnUvi ¢ T and setro = [[72F Ad(vn). Then we haverpaoo, lag * ¢ Int(Ro)
and hence (9) ande (id ®ao) do not commute in Outi), while id ®«o belongs to

Int(M). Q.E.D.

Proposition 2.12. For any separable von Neumann algebs#d the modular au-
tomorphism group{c{’} of any faithful semi-finite normal weight on M acts
trivially on strongly central sequences, i.€’ € Cnt(M) .

PROOF. Itis sufficient to prove that; acts on a strongly central sequeriag} of
unitaries. Lety be a fixed faithful normal state of. Then we have

(DY o Ad(un) : DY), = kot (Un), teR.

The strong centrality ofun} means that lim_, « | ¥ o Ad(un) — ¥ || = 0. By Theo-
rem 1X.1.19.(iii), (Dg/; o Ad(up) : Dg[x)t converges -strongly to 1 for every € R,

o) that{u;at"’ (un)} converges to 1o -strongly. Thus;t‘/’ acts on{up} trivially. Since

of, ¢ € Wo(M), is an inner perturbation ef”, o acts trivially on{un} as well.
Q.E.D.

Exercise XVII.2

1) Let M be an AFD factor of type llande € Aut(.M). Suppose that is aperi-
odic. Fix a free ultra filtew € BN \ N and consideM,, as usual. Following the
steps suggested below, show thag it Aut(M) has the property thag, (x) = x
for everyx € (M,)* thenpB,, = o)) for somen € Z.

(@) Show first thatl"(«,,) = T.

(b) Show that(M5”)" N M., = C.

(c) Show that for eacls € ]—x, ] = T there exists a unitary (s) € U(M,,)
such thatr, (U (s)) = €'SU (s).

(d) Show thaty (8)*B,,(U(9)) € (M) .

(e) Show thatg,(U(s)) = A(5)U(s), seT.

(f) Show that(s) = €"S, s e T, for somen € Z.

(9) Show thatg, = o).

2) Let M be a strongly stable separable factor and SN \ N a free ultrafilter.
ConsiderM,, as in 84, Chapter XIV. Letr, 8 € Aut(M) be two automorphisms
commuting modulo IntM) in the sense that there exisis € U(M) such that
aof = Ad(w) o B8 oa. Observe that,, o B, = B o a,. Assume that,, andg,,
generate an isomorphism &f into Aut(M,,), i.e.a™B" ¢ Cnt(M) for (m, n)
(0, 0).
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83 Outer Conjugacy of Approximately Inner Automorphisms
of Strongly Stable Factors

In this section, we determine completely the outer conjugacy classes of approxi-
mately inner automorphisms of strongly stable factors.

We fix a strongly stable separable factdr and denote byrg an AFD factor of
type ll1. Let ¢ be a fixed faithful normal state om. We also fix a free ultra filter
w € BN\ N. Let e denote the canonical quotient map of Aut) onto OutM) =
Aut(M)/ Int(M).

We announce here the first main result of the section:

Theorem 3.1. If M is a strongly stable separable factor andéf, 6, € Int(M)
are strongly aperiodic in the sense that (1) = pa(f2) = 0, then there exists
o € Int(M) such that

e(02) = e(06107 7).

More precisely, for any > 0, there existsw € U(M) such that

Ad(w) o 81 = 65, lw—1ll, <e.

We need some preparation for the proof. We decomp#se M1 ® Rg by the
strong stability ofM, whereMy = M. We are going to comparkeand id®op.

Lemma 3.2. If 6 € Int(M) and m(0) = 0, then there exists a sequenfg,} in

U (M) such that

a) 60 =IimAd(up);

b) limnoo|O(UY) —uk[? =0, keZ.

PROOF. By assumption = limp_~ Ad(vy) for some {vy} in U(M). Let

wn = vpf(vn). Then{wn} is strongly central. LeWW = nw({wn}) and apply The-

orem 2.4 to{W, 6,,} to obtainX € M,, such thatW = X*6,(X). Let {x,} be
a representing sequence Xfin U(M). We then have lim.,, Ad(xp) = id, and

liMn_ o | X560 (Xn) — vﬁ@(vn)Hj} = 0. Passing to a subsequence, we can chpgge
from {xn} such that

id= lim Ad(yn) and _lim [ y36(yn) — w0 )|} = O.
With un = vny;:, * we have
6 = lim Adun);  lim [|6(un) —un | =0
n—oo n—oo ¢

1 Since{yn} is strongly central, the multiplication Hyn} from the right is almost isometry

in theg-norm| - [|,.
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We are going to proved(uf) — uk — 0 o-strongly’ by induction. Sup-
posed (uk) — uk — 0 o-strongly. Thenuy®0(uf) — 1 o-strongly’, and so
ur 10 (un)us o (uk) — 1 o-strongly'. Sinceyr o 671 = limp_o Unyru?; for any
¥ € B, we have lim_ | Ui (¥ 0 671) — yrui| = 0. Hence we have, for any
¥ €6y,

<un*(k+1)9(uﬁ+l)’ w) 1 1»”)'

- <u;un—k9(uﬁ)9(un), w) — (1 ool

— <u;ke(uﬁ)e(un>, w;) — (1 yooY

— 0

(ugke(uﬁ)e(un)u; —1yo 9—1>

< ’wu;ﬁ —ui(y 09—1)H n

asn — oo. Thus u;(k”)e(uﬁﬂ) converges to 1 o-weakly. OnU(M), theo-
strong' topology and ther-weak topology agree, so tha{uk*t?) — uk+! — 0
o-strongly* asn — oo. Q.E.D.

Lemma 3.3. Let {M, 0} be as above. Forany1, ¥, ...,v%q € M, nkeN
and § > O there exist a partition{ F1, F2, ..., Fn} of identity and uw € U(M)
such that

a) |[[Fj.vsl| <8, 1<j<n, 1<s<q;

b) uFju*=Fj41, j=12....,n,where ki1 = Fyq;
©) |vsobl—ysoAdu | <5, 1<s=q;

d) Witho'=Adwob, [pob —goAdu| <3s;

e) [erwhH —uf, <3, lel<k;

) 0'(F)=Fju1, 1=j=n;

9 lw—1]; <.

PROOFE The mapw € U(M) — Ad(v) € Aut(M) is continuous, and the metric:
(v1,v2) € (M) x (M) — [v1— vzHi gives the topology ofl (M), so that
there exists an > 0 such that

whenever|v — 1||?p < n, v e UM). We take such an < 5. Applying Theo-
rem 2.10 to{.M, 6} andn, we findw € U(M) such that Adw) o 6 = 6 ® oo

5o
y °=d

Vs06 Lo Adw*) — ¥s o 9—1H <
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and|w — 1||2,< n. Thus,0’ = Ad(w) o @ is of the form:f; ® og in a factorization
M= N® R with R = Rg. Onced’ is fixed, the construction afy allows us to
choose a partitiof Fj : j = 1,2,...,n} of identity inC ® R such that (a) and (f)
hold. We now set

1
= 9/_8’ 7 < k’ = — s
pe=¢o el < v K1 €§<k¢e

and choose & ¢ < §/2 so small that
3+ 2k (26 + (2k+ 1)3vV2ne) <8 V2(2k+ Dine <7,

wheren’ > 0 is another small number such that wheneer 1||f} < 1’ we have

stoe/*loAd v - wsoe/*lu < % 1<s<aq.
By the last lemma, we can firme U (M) such that
[¥s00 ™t —ysoAd@]| <e, 1<s=<gq; (o)
lee —poAd@)| <% 14 <k ®)
laFa -0/ (Fp[ <e.  1<j=n )
|6'@") —a’ ||j) <e, <k ®)

Sinced’(Fj) = Fj41, 1< j <n, by (f), Lemma XIV.2.1 guarantees the existence
of unitariesbj € U (M) such that

bjaFja*b]!‘z Fit1, [bj — 1] §ﬁ|aFja*—Fj+1|.
Puttingb = Z?zl Fj1+1bj € U(M), we obtain a unitarp such that
baFja*b* = Fj41;

n
(b—D*b—1) =) (bj — *Fja(bj — 1)
j=1

n n
<Y by —D*by — 1 <2 (aFja* — Fj;1)”,
j=1 j=1

so that
Ib—1])% < v2ne.

For eactt, |¢| <k, we havelb — 1||7, < (2k + 1)||b — 1|} and so||b — 1||,, <
V2k + 1v/2ne. By (B) and||b — 1| < 2, we get
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[0 —Da‘|, = lIb—Lyeagan = Ib—Llg, +2[¢r — ¢ 0 Ad@")* H%
<26 ++/22k+1ne = .
Since(ba)**! — a1l = (b — Da‘*! + ba((ba)* — a‘) for ¢ > 0, we have
e+ — a2 < - Dat], + |ar’ ~ ],
so that for O< £ < k, we get
|(ba* — a° H(p < lh.
Similarly, for 0> ¢ > —k, we have
|(bay* — a° ||w < |€|A.
Consideringy o Ad(a) instead ofp, we get
|a(bay‘a* —a |, <leix lel<k-1

This together with ) implies that, forj¢] <k — 1

0'((ba)*) — 9’(a’3)”¢ = | (ba)* —a° ||(p00’

1
<V2[pob' —poAd@]? + [ (ba)" —a°| aga
< 28 + |£]A.

With u = ba, we get, for|¢| < k, using §),

Jo'y -], =

o' ((ba)!) — o' (a") Hw +]o'@) —a’|, + | ba) —a|,
<2+ [lh+e+lr < 3e+2k(2e+vV2V/2k+1ne) < 6.

What remain to be proven are conditions (c) and (d). Sjfice 1|, < V2ne
and(2k + 1)Y/2/2ne < 1, we have||b — 1||,, </, so that for 1< s < q

Yso Adu* — yso 6‘/71H

g

Vs o Ad(@*) o Ad(b*) — ¥rs o 9/71H

s 00'~L o Ad(b*) — s o 9’*1H

Vs o Ad(@*) — ¥s o 9’*1H + ‘

< 4.

B>

<e+

273
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Finally, we get
loot —poAdW)| < |pob —¢poAd@]| + |¢oAd(ba) — ¢ o Ad(a) |

<2+ ||<poAd(b) —<p||

<e24+2b-1|, < 2427 < s.
Thus (d) holds. Q.E.D.

We have still some mileage to go to finish the proof Theorem 3.1. Let us find
out our position and set the general direction of our arguments. @Givemnt(M)
with pa(d) = 0, we can findw € U(M) near 1 such thad’ = Ad(w) 0 6 =
01 ® og by Theorem 2.10. Furthermore, by the last lem#ha approximated by
Ad(u), u e U(M), and Adu) behaves with respect to the partitipRy, ..., Fn}
of identity like the h-component ob,,. However we do not know the behavior of
u itself. If u can be adjusted so thaf = 1, then{Fy, ..., Fn} andu generate

a Iy-subfactor. 19’ leavesu fixed in addition, the®’ behaves 0|1 Fi,..., Fn, u}"
almost likeoy, on the ,-component. Namely, Adv) o 6 is approximated by Adi)
and Adu) on{F1, ..., Fn, u} is the h-component of. Sincew was chosen from
a neighborhood of 1, we will show inductively that the productus converges to
Weo € U(M) and the product of Ai)’s converges to At ) 06 which completes
the proof.

Identifying T with R/2nZ, we set

2n 21
J(A, Q) = [ Vel , A+ 4—q} mod (2nZ), A eT. Q)
Forp € G4(M) andu € U(M), let
1
A(go,u):{keTup((J(A q))) S deN, q>2} @)

wheree(}) is the spectral measure of
Lemma3.4. A(p,u) @, ue UM).
PROOF. Letm denote the normalized Haar measurelone. dn(A) = 1/2x dA,

andu be the probability measure dngiven by (J) = <p(e(J)) for any Borel set
J C T.Putforg > 2

[AeT p(I, o) <2° q}

27
2 J—
{ )\1,)»2 ET |)»1 )»2| < 4q }
Then we have,

(Mm® u)(Bg) = / (IO, @) dur) =2-479%(T) =2-479,
T
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and by Fubini’s theorem,

(M® 1) (B) = /M(J(A,q)) d = / w(30. @) di > 2-9m(CAg).

T Caq

Hence we gem(CAy) < 27971, so that
m< U CAq> <y 29t ==
q>2 q=3
Therefore, we get
1 1
q>2

so thatA (e, u) # @. Q.E.D.

We now define a Borel functiofi, on T by

fa(€%) =€%", 6 el-m,n] =T =R/2nZ. (3)

Lemma3.5. Let {M,0,¢, ¥1,...,V¥q} beasbefore. Forany > 0 and ne N,
there exists a partitior{ F, ..., Fa} of identity and uv € U(M) with the follow-
ing properties:

a) |[F. vl <e, 1<j<n, 1<k=<aq;
b) uFju*=Fj;1, 1<j=<n, (Fay1=F1);
¢) [vko6t—ykoAduH| <e, 1<k=q;
d —-1le A(p,u";

e) Ad(v) o 6(x) = uxu* for any x in thely-subfactor X generated byl =
ufauM* and {Fj:j=1,...,n};

) lv-1, <e.

PrROOF Choose a largen € N such that 32—”‘)% <eg/8n.Forp=12,...,n,
choose polynomial®y(z) = mek apﬂt of zandz~1 such that

‘ <—, zeT, "¢ J(-1,m)y
8n ()
|IRp(2)| <2, zeT.

|Ro(@ = (22

LetA= vat |ap.t| and choose a small> 0 to be specified. Applying Lemma 3.3
to {M. 0,0, ¥1,.... Vg, 8,n, K}, we obtain a partitio] F1, F», ..., Fy} of iden-
tity andu, w € U(M). Since we can replace by Au, 1 € T, if necessary,
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Lemma 3.4 allows us to assumel € A(p, u"). Putd’ = Ad(w) o 6, and lete
be the spectral projection of' corresponding td (=1, m). Sincep(e) < 2~™M, we
have, by (4),

_gP £ oy g.pm2_ %
| Rp(u) — G ||(p =& +3.2 < (5)

for p=1,2, ..., nwhenmis so large that 32-™/2 < ¢/8n.
With 91 = ¢ o Ad(u), we also have

- &
|Row) — 0, < =

becauseu commutes with bothRp(u) and . Lemma 3.3.(d) and the inequality
|Rp(u) — @P| < 3imply that

&

1
2 3
|Rp(u) — aproe, < ((E) +98> , l<p<n (6)

By the condition (e) of Lemma 3.3 and the choicefofwe get
|Re®'(W) = Rpw|, < As, 1<p=<n @

Combining (5), (6) and (7), we get

, l<p=n (8)

As§ < g, the conditions (a), (b), (c) and (d) are now automatic. We are going to
constructa € U(M) so thatv = aw satisfies (e) and (f). By constructioi] = 1.
Sinceu" commutes withF;’s, so doesf,(u")* which means

GFj0" =uFju*=Fj11, 1<j=<n

Henced and Fj’s generate a subfactdv of type I,. We then set j = 0'1F;
to obtain a matrix unife j} of M. We note that" and f,(u") both belong toM’.
Hencelig j0 = 41 j+1 entails thaug ju* = g1 j4+1 for alli, | also, where the
indicesi, j are considered in mod. We then put

n
a= Z ej+1,20"(ey)).
j=1
By the condition (f) of Lemma 3.3a is a unitary of.M, and

ad’ (e j)a* = agy120'(€11)€2,j+1 = 6 41,j+1 = UQ ju™.
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We now setv = aw, and see that satisfies (e). To prove (f), we note that for
1<j<n

ej 1120/ (e1) = €j11.20"(FDO (7)) = e 110" (@),

so that (8) entails

. e I €
€j+1,20" (€1,j) — €j+1,20 <-.
7 n
Sinceej 1,001 = 01 71F0'1 = Fj14, we have
la—1lly <e,

so that|lv — 1|, = llaw — 1||, < 2¢. This completes the proof by replaciady

g/2. Q.E.D.

We choose a sequengm®,} in N such that

o]

1
Y= < too 9)
ny
v=1
and put
8y = 1 (10)
T2y + DY

Lemma3.6. If {Fj :1<j <n,} isa partition of identity inM and u is a
unitary of M suchthat i =1 and uRu* = Fj11 (Fn,,, = F1), then

[v —¥ime @] <27, ¥ € M.,
whenever|[u, ¥]| < 8, and ||[Fj,v]| < 8,, where M is theln, -subfactor of
M generated by u andF;}.

PrROOF.  This follows immediately from Lemma XIV.4.9 and the fact tieaj =
u'~JFj is a matrix unit ofM and |[& j, ¥1| < (n, + D8 if |[u,¥]| < § and
[[Fj, v1| <. Q.E.D.

As before, we keep a fixed faithful stape

Lemma 3.7. Forany ne N and § > 0, there existss = ¢(8, n) > 0 such that if
ue UM) and —1 € A(p, u"), then withd = uf,(u")*
Jta, i) <8, v eMf

whenever|[u, ¥]|| <2 and0 <y < ¢.

PROOF LetR(2) = Y. _,amz" be such thatR(2)| < 2, ze T and

2 82
‘R(Z)— fn(zMz <35 zeT\J(-1,0),
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whereq > 3 is chosen so that/29 < §2/8. Since—1 € A(p,u"), we have
(IR — ufn(u”)*Hi)2 < 8%/8+49-279. Hence||R(u) — 0||?/, < §/2 whenever
0<y <o.If |[u y1| <e, then|[uk, vI| < IKle, k € Z, so that we set

S m
a=e<a,n>=z( > |k||ak|>.

k=—m

It is straightforward to check that thisworks. Q.E.D.

We now choose a decreasing sequefagg such that

1
O<eg < min{e(SuH, Nyt1), n—}. (11)

v

Lemma 3.8. Let N be a typel, -subfactor of M and decomposeM into the
tensor productM = N@N€. Let{q j: 1 <i,j <n} beamatrix unitof N and
{wi,j} be the basis of Ndualto {g j}. Then everyy e M, is uniquely written
in the form:

n
= wij®¥ij. vijeNS, 1<ij=<n (12)
i j=1
We then have

a) [[1®x y]| <n?suglyij. x]|, xeNE;
b) forany ue U(N), v e U(N®) and g € Aut(N),

[vo(Adw®6) - v o (Adu®w)| = n?supvij 06 — vij o Adw)|.

PROOF.  We know thatwj j|| = 1. For everyx € N€,
[1ex.v]=> o [x il
i

which shows (a). For (b), we have

Yo (AdW ®6) = > (w1, o AdW) ® (i, 06).

i,

Yo (AdUu®v) =Y (arj o AdW) & (i) o Ad()).

0]

Since|wij o Ad(u) || = l|wij | = 1, we get (b). Q.E.D.

We finally come to the following last lemma:
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Lemma 3.9. Let {M, 0, ¢} be as before, andyj} be a sequence int, with
0 < ¥j < ¢. Then there exist a sequen¢d,} of finite typel subfactors ofm
and a sequencéa, } of unitariesin.M such that the following conditions hold:

a) Mj and M, commute, j<v, veN;
b) M, is generated by a partitior{ FjU :1<j=<n, } of identity and a unitary
u, such that

Vypk v v _ v H n, _ 1.
uFjuy = F/ . (Fo=F)., 1<j=n, ur=1L

o) |lu.vel| <60, €<v, [[F.vel| <6, £<v;
d) aue(Mlszvvav,l)c;
e) |@-Da 1-al)<8/n,;

fy with 6, = Ad(aya,—1...a1) 00, 6, leaves M, 1 < j < v, globally
invariant and agrees wittAd(uj) on M;j;

9) |[¥job;t—vjoAdUU 1 U7 < ey,

ProOOF We constructa, } and{M, } by induction. Supposa; andM;, 1 < j <v,
have been constructed.

LetN = M1 v Mav.---v M, andn = ]‘[?Llnj. ThenN is of type k. Put
Q = N®andU = u,u,_1---uz. By assumptiong, = Ad(a,a,—1---a1) o 6
leavesN globally invariant and agrees with Ad). Letd be the restriction o,
toN® Let{wij : 1 <i,j < n} be the basis oN, dual to a matrix unit oN and
fore =1,2,...,v+ 1, decompose, in the form:y, = Zﬂjzlwij ® 1//;j with
vy e NE.

By Theorem 2.10 is outer conjugate t6, so tha¥l e Int(N®) andpa(d) = 0.
We apply Lemma 3.5 t4N°, 4, gne = ¢lne, ¥"), ny41} to obtain a partition
{Fj:1<j <ny1}ofidentity in N® and unitariess, v € N such that

|[Fj, wi¥1| < 8upa/m?, 1<j<nua, 1<ik<n, (13)
UFU* =Fjy1, 1<j<ng1, (14)

HW od -yl o AduY ” < 52”;21, 1<f<v+l, (15)
—1 € A(pne, u™+t), (16)

Ad(v) 0 8(X) = uxu®, xe M, a7

whereM is the |, -subfactor generated by thg’s and

v+1

i=uf,, ™" (18)
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Ev+1 s Ev+1
RS SENACEE 09
[0 - Daa-1--al, < 2.

Here we are applying Lemma 3.5 with< min{8v+1, ev+1/2} which is so small
that|lv — 1fl4c < € for anyv € U(NC) entails the above condition (19). Since
6, = AdU ® 6 in the decompositiotd = N ® N¢, (15) and the last lemma imply
that

Ht/fzof?v‘l—t/fzoAd(uU)‘lu 58”7“, l<t<v+1 (20)

The induction hypothesis (g) means
HW 067t — ¥y oAd(U)—l” <6, l<f<v.

The commutativity olu andU then gives, for 1< ¢ < v,

[ve o AdW ™ — v <& + 2% < 26,
so that
[u, wel| <260, 1<t<v. (21)
As 0 < ¥, < ¢, Lemma 3.7 entails by (11) that
Ia, well| < 8vy1, 1<e<w. (22)

Putb = fq,,, (U™)* = Gu*. Then|lb — 1| < n/n,41, and witha = bv we have
by (19) and (11)

T Ev+1 8
Ja- a)a”a”_lmalu‘ﬂ = N1 2 = Ny’
* % *0q ok Lk B Ev+1 T 8
Jajas - +-aja—a, = fa- v, + 2 < Sty oo 2
so that g
ft
- a)auav,l-nalH(p < TS (23)

As 0 < ¥, < ¢, we have by (19)
[ 067t o Adw") =y 0 07| = v o Ad(2(0") — v
<2l6; ) -1, = 2ot - 1],

=2)itw -1, = 4.

Hence, we get by (20)
H Vo6 o Ad(W") — Y o Ad(uU)*lH <61, l<f<v+l

Therefore we obtain the estimate:
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H‘/" 06710 Ad(@") — Y o Ad(uU)—1H

- H Ve 0671 o Ad(v*) 0 Ad(b*) — ¥ 0 Ad(U™2) 0 Ad(U*b")

- H Ve 067 o Ad(W") — Wy o Ad(uU)—1H < evi1.
Hence we have
” Yo 06, 0 Ad@) L — Yy o Ad(aU)*lH <6y, l<t<vi+l  (24)
We now set
Fj”+1 =Fj, 1<j<ng,

Up+1 = ﬂ,

. "
Mypr={Fj,u1:1<j<nga},

ay+]_ =a.
Conditions (a) and (b) are automatic. Inequality (22) gives the first half of (c). In-

equality (13) and Lemma 3.7 give the second half of (c). Condition (d) is automatic
by the construction dd. Inequality (23) is precisely (e). With

0,41 =Ad@@) o6, = Ad U ® Ad(a) o 4,

we get (f) for 1< j < v. To establish (f) foj = v+1, we observe tha¥l, 1 = M,
and must show that Ad) o 6(x) = GxG* for everyx € M. But we have (17) and
a = bv, so that for everx € M

ad(x)a* = bvd(x)v*b* = buxu'b* = Gxa*.

Thus (f) forj = v + 1 follows.
Finally, inequality (24) is precisely (g) far + 1. Q.E.D.

PROOF OFTHEOREM3.1: Let{M, 9} be as before and choose a faithfue &,

and a sequencg),} which is dense ify € M} : 0 < ¥ < ¢}. For a given
¢ > 0, we choosén,} C N such thay")2; 1/n, < /8. We then construdtV, },

{a,} and{u,} by Lemma 3.9, and se® = \/;Z; M,. We now observe that

a) R isan AFD ll;-subfactor ofmM and withQ = R°
M=RBQ (25)
by Lemmas XIV.4.9 and XIV.4.10;
b) w, = a,a,-1---a1 convergesr-strongly to a unitaryw € M since |w, —
wv_1||i < 8/n, by the condition (e) of the lemma.
Since we may sabp = 1, we have

oo

ad 8
lw =1y < D [lws —wial, < Zn—v <e.

p=1 v=1
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Let 6 = Ad(w) 0o 6 = lim,_ o 6,. Thenb, leaves eactM, globally in-
variant and agrees with Ad,) on M,. Thereforef|g = ]‘[S":? Ad(u,). Let
a = ]'[ﬁi? Ad(u,) on R. By (g) of Lemma 3.9, we get, relative to the decom-
position (25),
O = Q@idg, (26)

where id is the identity automorphism da®.

By Theorem 2.10, a small perturbatiehof « by Int(R) is conjugate te ®id z,
so that there exists € U(R) such thafju — 1J|, < ¢ and Adu) o Ad(w) 0 6 =
o ® idzrgq With respect to the decompositiol = R ® R ® Q. The behavior
of @ on R depends only on the choice @f,} not oné itself. Thus, we conclude
that a small perturbatiod’ of & by Int(.M) conjugate tao, ® id with respect
to a decompositiotd = Ro ® N whereN = M. This completes the proof of
Theorem 3.1. Q.E.D.

Corollary 3.10. The AFD factor Ro of type Il1 has only one outer conjugacy
class of aperiodic automorphisms. More preciselygsifand 6, are aperiodic au-
tomorphisms ofRg, then for anye > 0 there exist ue U(Rp) and o € Aut(Rp)
such that

a) llu—1j2<e;

b) ooAdU)obhioc t=06;.

PROOF. By Theorem XIV.2.16, we have AURo) = Int(Ro) and also CnitRg) =
Int(Ro) by Theorem XIV.4.16. Hence Theorem 3.1 whose proof was just completed
gives the above conclusion. Q.E.D.

Lemma 3.11. If Ro.1 is theAFD factor of typell . , then

Cnt(fRo’l) = |nt(e720,1).
PROOF Let6 € Cnt(:Rg1), so thatpa(f) = 1. By Theorem 2.10¢ is outer
conjugate t®¥ ® idg, with a decomposition;Ro1 = Ro1 ® Ro. Furthermore,

6 is outer conjugate t6 ® idg with a decompositionRp1 = Ro 1 ® B, where
8B = £(¢?(2)). Hence we havé ~ 0 ® idg,,, so that

0 ®idry, € Cnt(Ro1 ® Ro1).
Lets be the symmetrys(x ® y) = ¥y ® X on Ro1 ® Ro.1. It follows thats €
Int(Ro,1 ® Ro,1). Hences andf ® idg,, commute modulo IrftRo,1 ® Ro,1) by
Corollary 2.11 or Lemma XIV.4.14. Thus we have
@607 = (0®idr,,)s(0 " ®idry,)s™ € Int(Ro1 ® Ro1),

so that itself is inner. Q.E.D.
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Theorem 3.12. If Ro 1 is theAFD factor of typell », , then the conjugacy class of
non-unimodular automorphis of Ro 1, i.e. 6 € Aut(Ro,1) with mod®) # 1,
is uniquely determined bgnod(®) .

PROOF SinceRo1 = Ro ® L(£?), where Rg is the AFD ll-factor, Rq 1 is
strongly stable. Le#; andé, be automorphisms aRg 1 with mod(61) = mod(62) =
A # 1. Thenf; and @, are both aperiodic, so thgi;(61) = po(f1) = 0 =
Po(62) = pa(f2). Henced, ~ 01 ® og andby ~ 62 ® ap by Theorem 2.10. Put
6 = 61 ®6, *. Then we have ma@d) = 1. Identify Ro 1 with Ro 1 ® Ro,1. Choose
e € Proj(Ro,1) with t(e) = 1. Thene ~ 6(e), so that there exists € U(Ro 1)
such thate = Ad(u) o 6(e). Let{e j : i, € N} be a matrix unit ofRg 1 such
thate; 1 = e, and letB be the type d, subfactor ofRg 1 generated bye ;}. Let
v=> 1, &1uf(eLi) andd’ = Ad(v) o 6. Then we haveRg 1 = (Ro,1)e ® B and
0’ = 6p ® id, wherefy = (6)°. Sincety € Aut((Ro,1)e) = INt((Ro,1)e), (Ro,1)e
being isomorphic taRg, we haved’ e Int(Ro.1); consequently) e Int(Ro1).
Therefore, we conclude thét~ op ® id oNn Rp1 = Rp ® £L(¢?). Finally, we get
ONRo1 = Ro1 ® Ro

02 ~ 0200 ~ 2@00Qide) ~ 20 (1®0,1) ~ 020 (6, ®61)
~ (92®0{1) ® 01 ~ ids(g) Qoo @01 ~ 61.

Thereforep; andf, are outer conjugate. By Theorem XlI.1.14,andd, are stable,
so that they are conjugate. Q.E.D.

Proposition 3.13. Let M be a factor and6 = Aut(M). Let p= pa(6) > 0.
Choose ue U(M) with 8P = Ad(u). Then there exists a p-th rogt of unity
such thatf(u) = yu. The numbery is an outer conjugacy invariant of .

PROOF. First, we have
Ad(6(u)) = 6 Ad(u)s~t = 96P9~1 = 6P = Ad(u),
so thatu*9(u) = y € C, and|y| = 1. Next,
yPu=6P(U) =uuu* =u,

so thaty P = 1. Sinceu is unique up to a scalar multiplg, does not depend on the
choice ofu.

The numbey is clearly conjugacy invariant. Suppage= Ad(v)o6. Inductively
setvx = vh(vk—1) With v; = v andvs = 1. Then we have® = Ad(vk) 06X, so that
9P = Ad(vpu); and so

0(vpU) = v (vp)yUv* = yupi1Uuv* = yupdP)IP (W U = yupu.

Therefore, the samg works for@. Thus,y is an outer conjugacy invariant éf
Q.E.D.



284 XVII  Non-Commutative Ergodic Theory

Definition 3.14. The p-th rooty of unity in the last proposition is called thub-
structionof 8 and denoted by QB).

Proposition 3.15. Forany pe N and a p-th root of unityy , theAFD factor Ro
of typell; admits an automorphism) with p= po(c}) and y = Ob(o}).

PROOF Lety = e2"k/P 0 <k < p — 1. Leta be an aperiodic automorphism of
an AFD factorM of type ll1. SetRg = M x4 (pZ). SinceRy is injective, itis AFD
and of type Ii. Let u be the unitary ofRg implementingaP on .M. Consider the
dual actionx of (pZ)™ in the pairing:as(u) = e2misy 0 < s < 1, andas(x) = X,
X € M. Observe that the automorphisnextends taRg naturally, andxP = Ad(u).
Setf = ak/p o «. Sincea anda commute, we can compui’ easily and in fact
0P = aP = Ad(u). Also we havé (u) = e1K/Pu = yu.

Suppos#! = Ad(v) for 1 < j < pwith v € U(Ro). Sinced andu agree on
M, we havex! (x) = vxv* for everyx € M. For everyn € Z, we have also

uMoxv*uT" = P (%), x e M.
Let ¢ be the canonical conditional expectation®§ onto M. Then we have
W)X = aP™I()eUM), X € M.

Sincea P is free, we have (U"v) = 0, n € Z. But we have, inL2(Ro, 1),

v = Z u"e(u™ ).

nezZ

Thus, this is impossible. Heng®(0) = p. Q.E.D.

Theorem 3.16. Let M be a strongly stable separable factor, aéd 6, € Int(M) .
If p= po(B1) = po(B2) = pa(P1) = pa(f2) > 0, then the following two conditions
are equivalent:

(i) Ob(61) = Ob(6y);
(i) 61 and 92 are outer conjugate, i.e. there exist € Aut(.M) and a unitary
u e U(M) such that

7 oAdU)obor =6,
PrROOF. The implication: (i) = (i) was already proved in Proposition 3.13.

First, we reduce the proof to the case of trivial obstruction. Namely, we assume
that if & e Int(M) satisfies the condition thady(9) = pa(d) = p and OlY) = 1,
then6 ~ id®ocp on M ® Ro Whereop € Aut(Ro) is the automorphism given
by (2.5).

Suppose thad e Int(.M) satisfies the condition thaip(6) = pa(6) = p and
Ob(p) = y. By Theorem 2.10, we have~ 6 ® o, on M ® Ro. Since Ol ® B) =
Ob(a) Ob(B) for anya € Aut(M) andB € Aut(Rg) with po(a) = po(B) = p, we
have Olff ® o)) = y ¥ = 1. Sinced ® oy € Int(M ® Ro) andd @ oy ~ id ®op.
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Therefore, we have
0 ~0Q0p ~0®id®op ~ 0® (o) ®c})
~ (9 ®0p7) ®07p/ ~ (id®ap) ®07p/ ~ id®(ap ®o£,’) ~ id®0£.

Thus, all we have to do is to prove the statement that & Int(M) satisfies the
conditions:pg(#) = pa(®) = p > 0 and OlY) = 1, thend ~ id ®op oNn M @ Ro.

Since OlY) = 1, we can choosa € U(M?) with P = Ad(u). Letu = e
for some self-adjoinh € M?. Setv = e '"/P. Then(Ad(v) 0 6)” = id. We now
replaced by Ad(v) o 8, so that we havéP = id. Thusé can be interpreted as a free
action of the cycle groug, = Z/pZ = {0, 1,..., p — 1}. We fix a pairing ofZ
and its duaZ , = Z,, as follows:

(k=P kez,
We then split the proof into a few steps. [sTOH
Lemma 3.17. There exists a sequendan} in U(M?) such that

0= lim Adu,) and W=1 neN.
n—oo

PROOF By the assumption, there exists a sequefigg in U(M) with 6 =
limp_ « Ad(vp) in the topology of Au¢M). Let w be a free ultra filter oM, and
consider{v,’;‘ek(vn)} = Vk as an element dtl(M,,). By the assumption op,(6),

6., is a free action oZ , and{Vy} is a one cocycle foé,,, so that there exists an
elementx = {Xp} in U(M,) and thatvyx = X*Gf)(X). Passing to a subsequence of
{xn}, we obtain a strongly central sequerigg} in U (M) such that

X560 (Xn) — 1565 (un)

f
n—oo @
for any faithfulg € &.. The strong centrality ofx,} means that the multiplication
of xn from either side is almost unitary ih- ||,-norm. The convergence of Aadh)
to 6 in Aut(M) implies that the sef ¢ o Ad(ek(vn))jEl :neN, keZplis
relatively compact in norm. Thus we conclude that

f
=0, keZp
¥

lim

LS Un)(?]< — ek(UnX:)

Then withe = 1/p ZE;Ol 6¥, the conditional expectation t&? invariant unde®,
{vnxi} is equivalent to the sequende(vnxi)} in M?. sincevnx;: is a unitary,
e(vnx) can be readjusted to a unitary, in M?, so that{vnx;]"} is equivalent to the
sequencéwn} in U(M?). Hence we obtain

lim Ad(wn) = lim Ad(vn) Ad(xn) "t = lim Ad(vp) lim Ad(x,) ™t = 6.
n—o00 n—oo n—oo
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SincedP = id, {w}} is strongly central inM. Write w} = €% in M? with —7 <
hn < m. Seth), = (1—1/n)h, andyn = €. Then we havéh, —h;,| < 2x/nand
[wh —yn| < sin(z/n). Hencelyn} is also strongly central. Singg — logyn = hy,
is aC*-algebraic functional calculus because ¥ does not contair-1, {hy}is

also strongly central, so thahy} itself is strongly central. Set, = €M™/P and

Un = Znwn. Sincewp andh, commutep? = z2w? = 1, and we have

lim Ad(up) = lim Ad(z,) lim Ad(wn) = 6. Q.E.D.
n—o00 n—o0 n—o0

Lemma 3.18. If 6 gives a free action oZ , then§ is conjugate tod ® op.

ProOFR By Theorem 2.10, there exists € U (M) such that Adw) 00 ~ 6 @ op
onM ® Ro. For 1 < k < p, we definewg inductively as followsaw; = w and
wk = wd(wk_1). Then (Ad(w) o )" = Ad(wy) o 6¥. Since (Ad(w) o §)P ~
(6 ® op)P = id, andgP = id, wp must be a scalar of absolute value one. L& a
p-th root ofw, and seby = y Ky, k e Zp. Then{uy} is af-cocycle ovelZ . By
the stability of free action of a finite group. Proposition XI.2.26, the cocjal¢is
a coboundary, i.esx = a*6%(a) for somea € U(M). Hence we have

0 ® op ~ Ad(w) 0 6 = Ad(v1) 0 6 = Ad(a*6(a)) o 0

=Ad@ o6 oAd@) ~6. Q.E.D.

Let » = €¥"/P, Then from the above it follows that there exists a strongly
central sequenciun} of unitaries such that

6 (wn) = Awn and wP = 1.

Lemma 3.19. Fix afaithful ¢ € &, and e > 0. If w € U(M) satisfies
0(w) = Aw and wP =1,
then there exisb € U(M) and a sequencéun} in U(M?) such that
lw—vlly <&
o) =rv, VP =1;
Unuuy = Av, ub =1
6 = lim Ad(up).

PROOF. Let {an} be a sequence itt(M?) such thabt = lim Ad(a,) anda} = 1.
We then split the arguments according to the typeafof
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Type Il case: Suppos#( is of type lIl. Then.m? is also of type Ill. Letw =
Ad(w) € Aut(M?). Sinced = lim Ad(a,), we have
O=nl|_)moo||anw —aw* || = lim |anw*ajw — 4|

n—o0 pou

= i e~ Tail,
0= nli_)moo\}a,’;w*an —Aw* ”w

- n'l)moo"a;]"w*anw - A’H(/)oa = nli—>moon*anw — Aan H‘POW'

Hencew*ajw — Aa, converges *-strongly to 0, equivalently, Iimm(a(%) -
Xan) = 0 o*-strongly. Letay, = Zkezpkka((n) be the spectral decomposi-
tion. Thena(ex(n)) ~ ec41(n) under U(M?) since.m? is of type IIl, and also
liMn_ o[t (&k(N)) — &s+1(M)] = 0 o*-strongly. By Lemma XIV.2.1, there exists a
unitaryby(n) € M? such that

bie(Mer (@) b()* = Ba(m; |1 = ()| = V2|(a() = &csam)|-
Settingb(n) = Zkezp &-+1(n)bk(n), we have

b(ma(eb()* = e1(n), ke Zp;
2
[1-b| <2 3 fa(am) — s o
keZp

Hence{b(n)} converges to 1 in(M?). We also haveé (b(n)w) = Ab(n)w, and
b(nNyway, = Aanb(nw. Thus(b(n)w)P belongs toU(M?) and commutes witlay,.
SincewP = 1 andb(n) is near 1, (b(n)w)p is also close to 1 in the topology of
U(M?). With the functionf,, of (3), we sew(n) = b(mwf,(b(mwP)*. Then we
havev(n)a, = Aa,v(n), v(N)P = 1 andv(n) converges tav in U(M).

Type ll, case: Supposau is of type ll. Sinced has periodp, 6 preserve
the tracer of M. Hencer is also semi-finite oM. Furthermore mM? is also of
type llo. Therefore, factoringu? = & ® B into the tensor product of a factor
of type 1l; and a factorB of type |, we obtain a decomposition ot = M; @ 8
so thatd also decomposes = 01 ® id, where{Ml, 91} is a free covariant system
of type Ily overZp. Thus, the proof is reduced to the case of tyge Il

Type ll; case: SupposeM is a factor of I with the normalized trace.

The arguments for the type lll case breaks down at the point of the equiva-
Ience:a(q(n)) ~ &41(n). Thus, we need a slight detour. In any case, we have
liMp 00| (@n) — Aan |, = 0, so that

a(em) —ewam| =0, kezp.

Hence|z (aX(ep(n)) — 7 (ex(n))| — 0, k € Z, thus we havér (ex(n)) —1/p|— 0,

k € Zp. Thus we can find a sequenctefk(n)}kezp of partition of unity such
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thatr(fk(n)) = 1/p and eitherfc(n) < e(n) or fx(n) > e(n). Then we have
limn_ o || fk(n) — ex(n)|| . = 0. Let

un= 3 T Hn) € UMD
keZp

We then have
Jim Ja(fim) = fiam| =0

a(f(m) ~ fipa(n);
lim|lun — an||, = 0.
From this point one, we can return to the arguments of the type Il cas&.E.D.

Thus, we have obtained a sequeiag} of U(M?) and a strongly central se-
quencegbyp} in U(M) such that

6(bn) = anbnay = Abn,
ay =bi=1; 27)
0= nIi_)mooAd(an).
We now prove the following result which implies Theorem 3.16 as seen in the

first part of the above arguments:

Theorem 3.20. Let M be a separable strongly stable factor.dfe Int(M) gives
rise to a free action of the cyclic groug, = Z/pZ, p > 0,and @) = p
also, thend is conjugate toid ®op on M ® Ro where o is the automorphism
of theAFD factor Rg of typell1 constructed in (2.5).

PROOF. Lety € &, be faithful, and pus, = 27" (p+1)~2 asin (10) witn, = p.

Let { Yji:jeN } is a dense sequence.it,. We are going to construct a sequence
{M,} of type I, subfactors ofM and two sequencdsi, } and{v,} of unitaries such
thatforl< ¢ <v, 1<j <vandseZp

a) M, andM, commute,
b) M, is generated by, andv, which satisfy

UE = vlf) = 1’ Uyvy = AvyUy;

) [us, well| <8, |05, wel| < 8u;
d) 6(Mj) = Mj andf|v; =Ad(uj)|Mj;

e) ” Yjo 6S — Yjo (Ad(uvuu_l . ul)s) H <$4,/4.
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Supposelj, vj andMj, 1 < j < v, have been constructed. Lt= M; v Mz v
---Vv M,, andn = p*. ThenN is of type lp». PutQ = N®andU = u,u,_1--- us.
Thend leavesN globally invariant and agrees with Ald) on N. Consider the
restrictiond of 6 to Q. Let {wi,j :1<i,j <n=p"}be the basis oN, dual to a
matrix unit of N. For¢ =1,2,...,v + 1, write

n
Yo = Z wij ® ¥,
ij=1

with ) € Q.. N
Sinced >~ 0 ® op, 0 is conjugate t@. Thus, we can apply the previous argu-
ments to) to find unitarieas andv in Q such that

uP =P =1; 6(u) = u;
5(1}) = Av = Uvu™;

8v+l
n2’

It w2 M| < l<jk<n 1l<t<v+l
8v+1

Hl/fzjk 00S — wék oAd(U)S” < 2’

Se€”Zp.

LetM,11 = {u, v}//, Uy+1 = Uandv,;1 = v. Then we havé(x) = Ad(u)(x),
X € M, ;1. Sinced = Ad(U) ® 6 relative toM = N ® Q, we have, by Lemma 3.8,

- 5”11, l1<t<v+1;

H W 0 6° — Y o Ad(UU)S

[0S, wel| <8p41, 1<€<v+1
By the induction hypothesis (e), we have foxll < v
1)
[weondu) —yoe| <2 sezp
sothatforl<¢ <v

e o AdW® = | = |4 0 AdUU)® — v 0 Ad(U)?

IA

HW o Ad(UU)® — v o QSH v Hw 005 — oAd(U)SH

Syy1+ 8 3
= % = Z5u+1 < Sp+1.

Therefore, we get

H [UISJ+1’ W]H <0yt1, 1=L€ <y

H [U§+1’ W]H <dpy1, 1=<t=<v.

the other conditions fo{MHl, Uyt1, v,,+1} have been already proved. Thus, the
induction process is complete.
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The normalized trace, on M, is given by

1
== Z Ad(u'jvf).
p k.teZp

so that the conditional expectatidh from M to M = M/ N M satisfies the
inequality: |j o & — ¥j| < 8,, 1 < j < v. Hence Lemma XIV.4.10 yields
that R = \/j’il Mj is an AFD factor of type H such thatM = R°® R. By
construction, we havé = id ®9|R relative to this factorization and|s ~ op.
Q.E.D.

Thus, we have completed the proof of Theorem 3.16 as well.

Corollary 3.21. If Rg is anAFD factor of typell1, then Out(Rp) is a simple
group with only countably many conjugacy classes labelled by the outer period
po(6) and the obstructiorOb(6) .

PROOF. Let N be a normal subgroup of QuRp), and setG = ¢ 1(N). If G

contains an elemerit € Aut(Rg) with po(d) = p > 1 andy = Ob(®), then
0 ~ o}, ando} ~ id®a} on Ro ® Ro, SO thato} ® o} = (o} ®id)(id ®c})

belongs toG and Ol{oy ® o'}y) = y2. Repeating this, we see thaf ® - -- ® o},

p-times tensor product, belongs®ando, ~ o} ® --- ® o} . HenceG contains
6 € Aut(Ro) with pp(f) = p and OliH) = 1.

Suppose nows containsd € Aut(Ro) with po(0) = p > 1 and Olgp) = 1.
Recall the proof of Proposition 3.15, and observe thgtr) = p, Obe) = 1,
po(&1/p) = p and Old1/p) = 1. Hencex € G andds/p € G, whilsto) =
Giyp o = (1/p)< 0 o thusa) € G.

Let n be a sufficiently large positive integer and wriR = ]_[Eii@ M with
Mk = Mn(C). On Mp(C), take a pair of unitaries andv such thaulP = vP = 1,
uk ¢ Tandvk ¢ Tforl < k < p—1, andw = uvu*v* is an aperiodic unitary in the
sense thawk ¢ T forallk # 0. Letux = u andvk = v, ande = [[72? Ad(uk) and
B = T1re¥ Ad(vk). Then we havepo(e) = po(8) = p and Olia) = Ob(B) = 1,
so thate and g both belong taG. Butafa~1871 = [p2 P Ad(wk) with wy = w
is aperiodic, so thaB containsoo.

If G contains aperiodic element, then it contairgs But op ~ op ® oo and
oo ~ id ®ayp, so thatop ® op and id®ag on Ro ® Ro belong toG. Henceop ®
id = (0p ® 00)(id ®00) " belongs toG. ThusG containso. Thus, ifG contains
an element of any type representing a conjugacy class,@heontains all others.
ThereforeG must be the entire A@Rp), which means that OURp) is simple.

Q.E.D.

We now close this section with the following result which will be used to de-
scribe the structure of OUR) of an AFD factor of type 1l], 0 < A < 1, which is
in turn needed to the uniqueness of AFD factors of type Il
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Proposition 3.22. Let M be a separable strongly stable factordfis an action of
a discrete countable abelian group G such trznatl(Cnt(M)) = H then for any
free ultra filter » and a character pe (G/H)~= H', there exists e U(M,,)
such that

ag(u) = (g, pu, geG,
where a® is of course the natural action of G a(,, induced by« .

In fact, we can do slightly better. Namely, 4 is a separable von Neumann
subalgebra ofM,,, then we can choose the abavdrom the relative commutant
P’ N M, of P.

PROOF By Lemma 2.2, the action® of G/H on (Ugeg g () N M, is free.
Therefore, for any > 0, and a finite subsdt of G, there existd) = U(e, F) €
U(M, N P’) such that

Ha;;(U) — (g, pU Hw <e, geF.

Let {Xn} be ac*-strongly dense sequence &f and eachX,, be represented by
{xn(k) : k € N }. Then we have withJ (¢, F) = {uk(e, F)},

1im [ [xa00, ute, F)]| =0;

g

¢

r!iLTLHag(Uk(S, F)) — (9. p)uk(e, F)Hi <, geF;
lim | [ucce, ). v = 0.

whereg is a faithful normal state ool and{v/j} is a dense sequence #.. Let
{ F, : v e N} be an increasing sequence of finite subsets afith G = [ JJ2; F,.
Let { A, :veN } be a strictly decreasing sequence of subsetd b&longing to
the ultra filterw such that for ank € A,

H:Xn(k),uk(}»lzv):| < }, l1<n<vy,
% %
1 1 1
Olg <UK<_ s FV)) - (97 p)uk(_ ) FV) < -, g € Fl)v
v % v
1 f
‘ |:uk<_1 FU) Jﬁ]
%

Letk, be the first element oA, and set, = u,(1/v, F,). Thenu = 7, ({u,})
satisfies the requirement. Q.E.D.

<—, 1l<j=w
Vv
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Exercise XVII.3

1) Let Ro be an AFD factor of type il

(@) Show that the adjoint map Adi € U(Rp) — Ad(u) € Int Rp) admits a Borel
cross-sectiow € Int(Ro) > U(ar) € U(Ro) SO thate = Ad(u(a)), a € IntRo).

(b) Show that there exisk-valued Borel functiong., on Int(Rg) x Aut(Rg) and
“u on Int(Rp) x Int(Rp) such that

1

y(u(y ay)) = tu(e, Y)u(@), «€lInt(Ro), vy € Aut(Ro)

and
U(a)u(B) = pula, pu(@p), «a, B € Int(Ro).
(c) Show that the paitx, 1) = (Ly, uy) satisfies the following identities:
e, Byup, y) = p(a, By ), v), @, B,y € Int(Ro);
A y1r2) = e, yDA (i L y2), @ €Int(Ro),  y1. y2 €AUL(Ro);
e, ABIM(aB y) T = n(y ray, vy By ), B

Ma,y)=pla, ) =1
if any of o, B8 € Int(Ro), or y € Aut(Rp) is the identity

(d) Observe that the set(But(Ro), Int(:Ro), T) consisting of all pairgx, w) of
T-valued Borel functions. on Int(Rg) x Aut(Rp) and x on Int(Rg) x Int(Rp)
satisfying the identities of (c) form an abelian group relative to the pointwise mul-
tiplication. With Map(Int(Ro), T) = { f: Int(Ro) — T Borel, f(id) = 1}, show
that if

nfy) =ty tay)f@™
d2f(a, )= f@ B F@)™! «Belnt(Ro), y eAU(Ro.
then the paivof = (31 f, azf) satisfies the identities of (c).

Set BAut(Ro), Int(Ro), T) = d(Map(Int(Ro), T)) and consider the quotient
group:

A(AUt(Ro), Int(Ro), T) = Z(Aut(Ro), Int(Ro), T) / B(Aut(Ro), Int(Ro), T).

(e) Show that the clasgz, € A(Aut(Ro), Int(Ro), T) of the pair(iy, u) of (c)
does not depend on the choice of the Borel cross-seati®husx z, is an intrinsic
quantity of Rg. This was called the intrinsic invariant & in Definition X11.6.18.

2) Let G be a countable discrete group amdbe an action of5 on Rg. For a nor-
mal subgroupN <1 G, construct the groupt (G, N, T) of characteristic invariants
following the construction in Problem 1.
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(8) Show thatA(G, N, T) is a compact abelian group.

(b) Show that withN(e) = a~1(Int(Ro)) the elementy (@) = o*(xz,) €
A(G, N(a), T) is a cocycle conjugacy invariant af

(¢) Show thatifG = Z andN = pZ, thenA(Z, pZ,T) = Z/pZ.

3) Letd e Aut(Rp) with Rg an AFD factor of type || as before. Viewing as an
action ofZ on Ro, show thatpo(9)Z = 6~1(Int(Ro)) and that Ol¥) represent the
classy (0) = 6" (xr,) € A(Z, po(8)Z, T) =Z/po®)Z.

4) Let G be a countable discrete infinite group andXix 0 < A < 1. To each
elementy € G associate a 2 2-matrix algebraMg = M»(C) and a state»éJ on My
given by the matrix:

A2
A% 44”3 °
g = * 1
A2
O 1 1
AZ 4272

Observe tha{R;, w;} = [14ec{Mg, @} is an AFD factor of type Il for & # 1
and type Ij for » = 1.

(@) Show that to each € G there corresponds an automorphismof R; such

that
® ® ®
geG geG geG
(b) Show that is a free action of5 on R;. such thatr1(Cnt(R;)) = {e}.

(c) Show that the crossed produgt, x, G is a factor of type Ilf forO < A < 1
and type I} for A = 1.

5) Let G be a countable discrete group aNd << G be a normal subgroup. Fix
(A, n) € Z(G, N, T). Construct an actioa of G on an AFD factor of type il such
thatx (@) = [A, u] € A(G, N, T) following the steps suggested below.

(a) Fix a free actiong of G on an AFD factor®y. Construct the twisted crossed
product®y g, N as follows: represenfy on a Hilbert spacef then setf) =
¢%(G, 8) on which define operators:

{ (Tp@E)(M) = fm(@EM),  £€H, aePo
(uMé)(m) = (M, NEmn), mneN;

then setRo = Po xp, N = (m5(Po) U u(N))”. Observe thau(mu(n) =
w(m, myu(mn), m,n € N. Prove using Theorem XIV.1.9 th&g is an AFD factor
of type Il;.
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(b) To eachg € G associate an operatdy (g) defined by
(Un(@)8) (M) = A(m, g)E(g~'mg), me N.

Show thataa’“ = Ad(U;.(9))|
x(@) =[x, ul € A(G,N,T).
(c) Toeachf € Map(N, T) associate an operator defined by:

R 9 € G, is an action ofG on R such that

Us)(m) = f(mém), §e€hH meN.
Observe thalUg = Utg, f, g € Map(G, T), and show that
Uf(ﬂ)o X B, N)U’fk = Po Xg,uaf N;

Ad(Uf) o aa’ﬂ o Ad(Uf)_l _ ag\,u)af ’ ge G.

Notes on Chapter XVII

As mentioned earlier, the study of the automorphism grougAutof a von Neu-

mann algebra occupied the central place in the entire history of operator algebras.
It was already noted in the mid fifties by I. M. Singer, [332], that the double com-
mutation theorem of von Neumann, the fundamental theorem of the subject, Theo-
rem 11.3.9, should be viewed as a kind of the Galois correspondence, or that the lack
of the double commutation theorem for subfactors of a factor relative to the rela-
tive commutant can be restored by the Galois type correspondence at least in some
cases. In fact, in the late fifties and the early sixties, M. Nakamura and Z. Takeda,
independently N. Suzuki, laid down the basics of the theory of finite groups of au-
tomorphisms of a factor of type 1lby establishing subgroups-subfactors Galois
correspondence, [702, 644, 645]. But one had to wait until the work of A. Connes
in 1975 for the true picture of the structure of the automorphism groupuof

an AFD factorR, [466, 469]. The weapon he used in this endeavor was the anal-
ysis of asymptotic commutativity, i.e. the study of central sequences, which came
into the subject from two sources: one from the propdrtyf Murray and von
Neumann, and the other from mathematical physics which asserts that the Einstein
causality law implies the commutativity of two observables localized in regions of
space-like separation. The propeftyof a factorMm of type ll; is equivalent to the
non-closedness of Iay) in Aut(M), cf. Theorem XIV.3.8. The study of asymp-
totic commutativity was intensified in the mid sixties through the mid seventies
due partly to the influence from mathematical physics, which yielded a number of
results including the discovery of non-isomorphic factors of Powers and McDuff.
The characterization of the strong stability of a factor was obtained by D. McDuff,
[636], and H. Araki, [423]. In a way, the time was ripe for A. Connes. As we have
seen through this chapter as well as previous chapters, the analysis was carried out
through ultra filters, which allowed him to peek through ultra filters an elaborated
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mathematical structure hidden in the narrow gap ofd¢heeak topology and the
o-strong topology. The group OuiRg) of an AFD factorRg is the quotient group

of a Polish group AutRp) by a dense subgroup (%), so that as a topological
group OutRp) is non-manageable. He discovered that(@gh can be faithfully
represented in A@iRp),,. This was the key for his success in this analysis as we
have seen throughout the second half of this volume.

After Connes’ work, V. F. R. Jones classified actions of finite groups on an AFD
factor Rg of type Il in his thesis, [570], by extending the concept of the obstruction
of a single automorphism to tlebaracteristic invarianty («) of an action of a group
on a factor. It was then further extended by A. Ocneanu to the cocycle conjugacy
classification of actions of a countable discrete amenable group on a semifinite AFD
factor and provided analytical tools for the later study of such group actions on
AFD factors by proving two cohomology vanishing theorem and Rokhlin’s tower
and/or paving for the group, [648]. Today, one can summarize the cocycle conjugacy
classification of countable discrete amenable group actions on an AFD fadtor
the following one theorem:

Theorem. Let R be an approximately finite dimensional factor and G a count-
able discrete amenable group. The cocycle conjugacy dl@$f an actiona of
G on R is completely determined by the pull back:

X (@) = a*(O(R)) € A(G x R, N(@), U(C))

of the intrinsic invariant® (R) of R defined in DefinitioXll .6.18 where No) =
a~1(Cnt(R)) and {C, R, 6} is the flow of weights ofR .

This was the result of many hands: Jones-Takesaki, [574], C. E. Sutherland—
M. Takesaki, [699, 700], Y. Kawahigashi—C. E. Sutherland—M. Takesaki, [593] and
finally Y. Katayama—C. E. Sutherland—M. Takesaki, [590, 591].

The conjugacy classification of compact abelian group actions on AFD factors
is also now completed by the hand of V.F. R. Jones—M. Takesaki, [574], for the
semi-finite case and Y. Kawahigashi—M. Takesaki for the type Il case, [594].

We should note however that the above fine classifications are valid only for dis-
crete group actions or compact abelian group actions. Toward continuous group ac-
tions, there are only few works. Y. Kawahigashi classified the cocycle conjugacy of
product type one parameter automorphism groups on semifinite AFD factors, [592],
which covers all known examples but not all actions. Hui, [565], extended the work
of Kawahigashi to the case of type lII.



