
Preface

The author believes that the theory of operator algebras should be viewed as a num-
ber theory in analysis. Number theory has been attracting the interest of humans ever
since civilization began. Every culture in the world throughout history has given
special meanings to certain numbers.

For example, a number may represent a position, quantity and/or quality. To-
day’s civilization would be just impossible without numbers. People have been at-
tracted to the mysteries of numbers throughout history. Accordingly, number theory
is the oldest and most developed area of mathematics. Throughout the mathemat-
ical path to the present day, people have gradually learned properties of numbers.
It is surprising to find that the number zero was not recognized until Hindus found
it about one thousand years ago (although it is recognized that Mayans found it as
well). Compared to this old field of mathematics, the theory of operator algebras
is very new; its foundation was given by the pioneering work of J. von Neumann
and his collaborator F. J. Murray in the early part of the twentieth century, i.e. in
the thirties. Subsequent major development occurred only a decade later in the late
forties and the early fifties. But since then it has marked steady progress reaching
new heights today. The theory handles self-adjoint algebras of bounded operators
on a Hilbert space. The advent of quantum physics at the turn of century forced
one to consider non-commutative variables. One needed to broaden the concept of
numbers. Integers, rational numbers, real numbers and complex numbers are all
commutative. Among the few noncommutative mathematical systems available at
the beginning of quantum mechanics were matrix algebras, which did not accom-
modate the needs of quantum physics because the Heisenberg uncertainty principle
and/or Heisenberg commutation relation do not allow one to stay in the realm of
finite matrices. One needs to consider algebras of operators on a Hilbert space of
infinite dimension. Some of these operators correspond to important physical quan-
tities. One has to include operators in the list of “numbers”. Number theory tells us
to put numbers in a field to study them more efficiently. Similarly, the theory of oper-
ator algebras puts operators of interest in an algebra and we study the algebra and its
structure first. The infinite dimensionality of the underlying Hilbert space poses big
challenges and also presents interesting new phenomenon which do not occur in the
classical frame work. We have already seen some of them in the first volume. For ex-
ample, the continuity of dimensions in a factor of type II1 is one of them. The infinite
dimensionality of our objects forces us to create sophisticated methods to handle ap-
proximations. Simple minded counting does not lead to the heart of the matter. For
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example, it is impossible to introduce a simple minded coordinate system in an in-
finite dimensional operator algebra, thus mathematical induction based on a basis
does not fly. The early part of the theory, in the period of the forties through the
early sixties were spent on this issue. Luckily there is a remarkable similarity be-
tween the theory of measures on a locally compact space and the theory of operator
algebras. The first volume was devoted to the pursuit of this similarity.

The second volume of “Theory of Operator Algebras” is devoted to the study of
the structure of von Neumann algebras of type III and their automorphism groups,
cf. Chapter VI through Chapter XII; and the third volume is devoted to the study
of the fine structure analysis of approximately finite dimensional factors and their
automorphism groups, cf. Chapter XIII through Chapter XVIII. The last chapter,
Chapter XIX, is an introduction to the theory of subfactors and their symmetries.
One should note that the class of von Neumann algebras of type III is given by
exclusion, i.e., by the absence of a non-trivial trace or a non-zero finite projection.
This situation presented the major obstruction for the study of von Neumann alge-
bras from the beginning of the subject until the advent of Tomita-Takesaki theory in
the late sixties whilst many examples had been found to be of type III: the infinity
of non-isomorphic factors were first established for factors of type III by Powers
in 1967, [670], before the discovery of infinitely many non-isomorphic factors of
type II1 or II∞, [635, 686], and most examples from quantum physics were shown
to be of type III, [430]. It was the Tomita-Takesaki theory which broke the ice. It is
still amazing that the subject defined by exclusion admits such a fine structural anal-
ysis since usually exclusion does not allow one to find any alternative and is viewed
as pathological. Of course, a von Neumann algebra of type III had been pathological
until we discover their fine structure. We will explore this in full detail through the
second volume.

Each chapter has its own introduction which describes the content of that chapter
and the basic strategy so that the reader can get a quick overview of the chapter.

In the second and third volume, we present two major items in the theory of von
Neumann algebras: one is the analogy with integration theory on an abstract mea-
sure space and the other is the emphatic importance of automorphisms of algebras,
i.e. we emphasize the symmetries of our objects following the modern point of view
of E. Galois.

In general, the theory of von Neumann algebras is considered to be non-
commutative integration. In Volume I, the similarity between von Neumann algebras
and measure spaces are examined from the point of view of Banach space duality.
In the second and third volume, non-commutative integration goes far beyond the
analogy with ordinary integration. Since it is not our main interest to examine how
ordinary integration should be formulated based on commutative von Neumann al-
gebras, it is not discussed here in detail beyond a few comments. Still it is possible
to develop a theory which covers the ordinary integration theory based on the oper-
ator algebra approach. In fact, such a theory has been explored by G. K. Pedersen,
[653, Chapter 6], and it does eliminate pathological uninteresting measure spaces
easily. The main difference between the operator algebra approach and the con-
ventional approach to integration theory relies on the fact that in operator algebras
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one considers functions first, or equivalently variables, and then one views the un-
derlying points as the spectrum of the variables; whilst in the ordinary approach
one considers points first and views variables as functions on the set of points. We
would like to point out here, however, that in practice we never observe points di-
rectly only approximately by successive evaluations of coordinates. Besides this
philosophical difference, there is another major difference between the ordinary in-
tegration theory and the non-commutative integration theory which rests on the fact
that a weight, a non-commutative counterpart of aσ -finite measure, gives rise to
a one-parameter automorphism group, called the modular automorphism group, of
the von Neumann algebra in question. This modular automorphism group can be
considered as the time evolution of the system, i.e., in the non-commutative world a
state determines the associated dynamics. The appearance of the modular automor-
phism group distinguishes our theory sharply from the classical theory. The modular
automorphism group gives us abundant non-trivial information precisely when there
is no trace on the algebra in question. Since the ordinary integration is a trace, the
modular automorphism group is trivial in that case and cannot be appreciated. Fur-
thermore, thanks to the Connes cocycle derivative theorem, Theorem VIII.3.3, the
modular automorphism group is unique up to perturbation by a one unitary cocy-
cle, which allows us to relate the structure of a von Neumann algebra of type III
to that of the associated von Neumann algebra of type II∞ equipped with a trace
scaling one parameter automorphism group, cf. Chapter XII. As a byproduct of our
non-commutative integration theory, a duality theorem attributed to Pontrjagin, van
Kampen, Tannaka, Stinespring, Eymard, Saito and Tatsuuma, is presented in §3,
Chapter VII. With this exception, no discussion of examples is presented in the sec-
ond volume, Chapter VI through Chapter XII. Extensive discussions of examples
and constructions of factors occupy the third volume starting in Chapter XIII and
through Chapter XVIII.

The so-called Murray-von Neumann measure space construction of factors is
closely investigated first in Chapter XIII yielding the Krieger construction of fac-
tors and the theory of measured groupoids. Systematic study of approximately finite
dimensional factors occupies most of the third volume, cf. Chapter XIV through
Chapter XIX. The theory is highlighted by the celebrated classification theorem
of Alain Connes in the form of Theorems XVI.1.9, XVIII.1.1, XVIII.2.1 to which
W. Krieger made a substantial contribution also, and XVIII.4.16 which requires one
full section of preparation given by U. Haagerup, [550]. The last chapter, Chap-
ter XIX, is devoted to an introduction to the theory of subfactors of an AFD factor
created by V. F. R. Jones, and concludes with a classification theorem of Popa, The-
orem XIX.4.16, for subfactors of an AFD factor of type II1 with small indices.

The three volume book, “Theory of Operator Algebras”, is a product of the au-
thor’s research and teaching activities at the Department of Mathematics at Univer-
sity of California, Los Angeles, spanning the years from 1969 through the present
time. It is important to mention the following: the author’s visit to the University
of Pennsylvania from 1968 through 1969 where the foundation of Tomita-Takesaki
theory was established; the author’s participation in various research activities which
include several short and long visits to the University of Marseille-Aix-Luminy;
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several short visits to RIMS of Kyoto University; one year participation in the Math-
ematical Physics Project of 1975–1976 at ZiF, University of Bielefeld; a full year
participation in the operator algebra project of MSRI for 1984–1985; a one year
visit to IHES, 1988–1989; two one month long participations in the one year project
(1988–1989) on operator algebras at the Mittag-Leffler Institute; several visits to the
University of New South Wales; and several month long visits to the Mathematics
Institute of University of Warwick. The author would like to express here his sincere
gratitude to these institutions and to the mathematicians who hosted him warmly
and worked with him. Special thanks are due to Professor Richard V. Kadison with
whom the author discussed the philosophy of the subject at length so many times,
and to Professor Daniel Kastler who encouraged him in many ways and provided the
opportunity to work with him and others including Alain Connes. Throughout the
period of the preparation of the book, the author has been continuously supported by
the National Science Foundation. Here he would like to record his appreciation of
that support. The Guggenheim Foundation also gave the author support at a critical
period of his career, for which the author is very grateful. The author also would
like to express his gratitude to Professor Masahiro Nakamura who has constantly
given his moral support to the author, to Professor Takashi Turumaru whose beau-
tiful lectures inspired the author to be a functional analyst and to the late Professor
Yoshinao Misonou under whose leadership the author started his career as a func-
tional analyst. At the final stage of the preparation of the manuscript, Dr. Un Kit Hui
and Dr. Toshihiko Masuda took pains to help the author to edit the manuscript. Al-
though any misprints and mistakes are the author’s responsibility, the author would
like to thank them here.

Guidance to the Reader

Each chapter has its own introduction so that one can quickly get an overview of
the content of the chapter. Theorems, Propositions, Lemmas and Definitions are
numbered in one sequence, whilst formulas and equations are numbered in each
section separately without reference to the section. Formulas (respectively, equa-
tions) are referred to by the formula number (respectively, equation number) alone
if it is quoted in the same section, and by the section number followed by the for-
mula number if it is quoted in a different section but in the same chapter, and finally
by the chapter number, the section number and the formula number (respectively,
equation number) if it is quoted in a different chapter. Some exercises are selected
to help the reader to get information and techniques not covered in the main text,
so they can be viewed as a supplement to the text. Those exercises taken directly
literatures are marked by a†-sign, and the references are cited there.

To keep the book within a reasonable size, this three volume book does not in-
clude the materials related to the following important areas of operator algebras:
K-theory forC∗-algebras, geometric theory of operator algebras such as cyclic co-
homology, the classification theory of nuclearC∗-algebras, free probability theory
and the advanced theory of subfactors. The interested readers are referred to the
forthcoming books in this operator algebra series of encyclopedia.



Chapter XVII

Non-Commutative Ergodic Theory

§ 0 Introduction

The structure of a factorM is best understood through the study of symmetry of the
factor, i.e. the study of the group Aut(M) of automorphisms ofM. We have been
experiencing this through the structure analysis of factors of type III for instance.
Apart from the modular automorphism groups, we donot have a systematic way of
constructing an automorphism of a given factorM. It is still unknown if every sepa-
rable factor of typeII1 admits an outer automorphism. Thus we restrict ourselves to
AFD factors in most cases, where we have many different ways of constructing au-
tomorphisms. The counter part in analysis of the theory of automorphisms is ergodic
theory or the theory of non-singular transformations on aσ -finite standard measure
space. As we have seen in Chapter XIII, the Rokhlin’s tower theorem played a fun-
damental role in the theory of AF measured groupoids. We will present first the
non-commutative analogue of this basic result in ergodic theory in §1. Unlike other
parts, we need this theory for non-separable von Neumann algebras. It is interesting
to note that whilst our primary interests are rest upon separable factors some results
valid for non-separable von Neumann algebras are badly needed to advance our sep-
arable theory. One might be tempted to have a philosophical discussion about this
irony. The results there will be applied to the analysis of outer conjugacy of single
automorphisms in subsequent sections.

In §2, we will discuss the stability of outer conjugacy class of an aperiodic single
automorphisms of a strongly stable factor. It is then applied to the outer conjugacy
classification of a single approximately inner automorphism of a stable factor in §3.
The outer conjugacy class of an approximately inner automorphismθ of an AFD
factor R0 is determined by very simple invariants: outer periodp0(θ) ∈ Z+ and
obstruction Ob(θ) a root of unity, Theorems 3.1 and 3.16.

§ 1 Non-Commutative Rokhlin Type Theorem

In the classical (or commutative) ergodic theory, Rokhlin’s theorem plays a fun-
damental role. We extend this result to the non-commutative setting. As usual, we
denote byM a von Neumann algebra. In this section, wedo not assume the sepa-
rability for M, since we need the non-separable Rokhlin theorem later even if we
handle only separable von Neumann algebras.
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Definition 1.1. We say thatθ ∈ Aut(M) is properly outer if for every e ∈
Proj(Mθ ), e 6= 0, the reduced automorphismθe

∈ Aut(Me) is not inner.

Theorem 1.2. For θ ∈ Aut(M) , the following four conditions are equivalent:

(i) θ is properly outer;

(ii) For every non-zero e∈ Proj(Mθ ) ,
∥∥θe
− id

∥∥ = 2 ;

(iii) For every e∈ Proj(M) , e 6= 0 , and ε > 0 , there exists x∈ Me such that
0≤ x ≤ 1 and

∥∥x − θ(x)
∥∥ > 1− ε ;

(iv) For every e∈ Proj(M) , e 6= 0 , and ε > 0 , there exists f∈ Proj(M) ,
0 6= f ≤ e , such that

∥∥ f θ( f )
∥∥ < ε .

By Lemma XI.2.11, there exists a central projectionz ∈ Proj(Mθ ) such thatθz

is inner andθ1−z is properly outer. Proposition XI.3.10 or rather its proof shows the
equivalence of (i) and (ii).

Lemma 1.3. Let Sp(θ) be the spectrum ofθ in the sense of ChapterXI . If
−1 ∈ Sp(θ) , then for anyε > 0 , there exists a non-zero e∈ Proj(M) such
that

∥∥eθ(e)
∥∥ < ε .

PROOF: By assumption, for anyδ > 0, there existsx ∈M such that‖x‖ = 1 and∥∥θ(x)+x
∥∥ < δ. With h =

(
x+x∗

)
/2 andk =

(
x−x∗

)
/2i, we have

∥∥θ(h)+h
∥∥ < δ

and
∥∥θ(k)+k

∥∥ < δ. Since 1= ‖x‖ ≤ ‖h‖+‖k‖, we have‖h‖ ≥ 1/2 or‖k‖ ≥ 1/2.
Assume‖h‖ ≥ 1/2 (otherwise replacex by ix), and leta = ±h/‖h‖, where we
choose the sign in such a way that 1∈ Sp(a). Then we have

∥∥θ(a) + a
∥∥ ≤ 2δ and

‖a‖ = 1. Lete= χ[1−δ,1](a). We knowe 6= 0 since 1∈ Sp(a).
RepresentingM in a standard form, we assume thatM acts onH and there exists

a unitaryU on H such thatU xU∗ = θ(x), x ∈ M. Then we haveθ(e)H = UeH.
If ξ ∈ eH, then

∥∥aξ − ξ
∥∥ ≤ δ‖ξ‖. For anyη = Uξ ′ ∈ θ(e)H, we have∥∥θ(a)η − η∥∥ = ∥∥Uaξ ′ −Uξ ′

∥∥ ≤ δ‖ξ ′‖ = δ‖η‖,∥∥aη + η
∥∥ ≤ ∥∥∥[a+ θ(a)]η∥∥∥+ ∥∥η − θ(a)η∥∥ ≤ 3δ‖η‖.

Hence we have, for everyξ ∈ eH andη ∈ θ(e)H,∣∣(ξ | η)− (aξ | η)∣∣ ≤ ∥∥(1− a)ξ
∥∥‖η‖ ≤ δ‖ξ‖‖η‖,∣∣(ξ | aη)+ (ξ | η)∣∣ ≤ ‖ξ‖∥∥aη + η
∥∥ ≤ 3δ‖ξ‖‖η‖,

so that we get∣∣(ξ | η)∣∣ ≤ 1

2

(∣∣(ξ | η)− (aξ | η)∣∣+ ∣∣(ξ | aη)+ (ξ | η)∣∣) ≤ 2δ‖ξ‖‖η‖.
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Therefore we conclude

‖eθ(e)‖ = sup
{ ∣∣(θ(e)eξ | η)∣∣ : ξ, η ∈ H, ‖ξ‖ = ‖η‖ = 1

}
= sup

{ ∣∣(ξ | η)∣∣ : ξ ∈ eH, η ∈ θ(e)H, ‖ξ‖ = ‖η‖ = 1
}
≤ 2δ.

Thus withδ = ε/2, we get the conclusion. Q.E.D.

Lemma 1.4. If θ ∈ Aut(M) is outer, then for anyε > 0 there exists a non-zero
e∈ Proj(M) such that

∥∥eθ(e)
∥∥ < ε.

PROOF: By the last lemma, we have only to consider the case that−1 /∈ Sp(θ).
If the restriction ofθ to the centerC is non-trivial, then we can find a non-zero
e∈ Proj(C) such thate⊥ θ(e). Hence we may assume thatC ⊂Mθ . Suppose that
θn is properly outer for everyn ∈ Z. Then the action:n ∈ Z 7→ θn

∈ Aut(M) is
free. HenceM′∩(MoθZ) = C, and thereforeC is the center ofMoθZ. ButΓ (θ) is
the kernel of the restriction of̂θ , the dual action ofT, toC, so thatΓ (θ) = T. Hence
−1 ∈ Sp(θ), which contradicts the above assumption. Henceθn is not properly
outer for somen ∈ N. Let n be the smallest such positive integer. Here we have
been assuming the proper outerness ofθ by considering the reduced algebra, so
that n ≥ 2. By reducing the algebraM, we may assume thatθn

∈ Int(M), i.e.
θn
= Ad(u) for someu ∈ U(M). Since Ad

(
θ(u)

)
= θ Ad(u)θ−1

= θn
= Ad(u),

we haveθ(u) = vu for somev ∈ U(C). If v 6= 1, then the abelian von Neumann
subalgebraA generated byu andv is globally invariant underθ and θ |A 6= id.
HenceA must contain a non-zero projectione such thate ⊥ θ(e). Thus, we may
assume thatv = 1, i.e.θ(u) = u. We then choose ann-th rootw of u in Mθ to get
θ̄ = Ad(w) · θ . Then we havēθn

= id, andθ̄ , θ̄2, . . . , θ̄n−1 are all properly outer by
the choice ofn. Let e be a spectral projection ofw such that

∥∥we− λe
∥∥ < δ for a

preassignedδ > 0 and someλ ∈ C with |λ| = 1. Then we have
∥∥θ̄e
−θe

∥∥ < 2δ, and
therefore if f ∈ Proj(Me), f 6= 0, satisfies

∥∥ f θ̄ ( f )
∥∥ < δ, then

∥∥ f θ( f )
∥∥ < 3δ.

Thus, we can replaceθ by θ̄ to look for a projectionf with
∥∥ f θ( f )

∥∥ < 3δ < ε,
which means thatθn

= i. Therefore,θ gives rise to a free action:k ∈ Zn 7→ θk
∈

Aut(M) of Zn = Z/nZ. Thus the centerC of M is the center ofM oθ Zn. Since
Γ (θ) is the kernel of the restriction of the dual actionθ̂ to the centerC of M oθ Zn,
we haveΓ (θ) = Ẑn =

{
λ ∈ T : λn

= 1
}
. Therefore, Proposition XI.2.26 entails

the existence of a unitaryu ∈ M such thatθ(u) = λu with λ = e2πi/n. Thus,θ
gives rise to a non-trivial automorphism of the abelian von Neumann subalgebra of
M generated byu, so that there exists a non-zero spectral projectioneof u such that
e⊥ θ(e). Q.E.D.

PROOF OFTHEOREM 1.2:
(iv) H⇒ (iii): For anye ∈ Proj(M), we have

∥∥e− θ(e)
∥∥ ≥ ∥∥e− eθ(e)

∥∥ ≥
1−

∥∥eθ(e)
∥∥. Thus (iii) follows immediately from (iv).

(iii) H⇒ (ii): If θ ≤ x ≤ e ande∈ Proj(Mθ ), then
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− id

∥∥ ≥ ∥∥∥(θ − id)
(
x − (e− x)

)∥∥∥ = 2
∥∥x − θ(x)

∥∥;
so that (ii) also follows from (iii) easily.

(i) H⇒ (ii): This equivalence is nothing but a slight modification of Proposi-
tion XI.3.10.

(i) H⇒ (iv): Suppose that for some non-zerop ∈ Proj(M), we have

0< γ = inf
{ ∥∥eθ(e)

∥∥ : e∈ Proj(Mp), e 6= 0
}
.

Chooseε > 0 so small that 0< ε < γ/(1 + γ ), ande ∈ Proj(Mp) such that
γ ≤

∥∥eθ(e)
∥∥ ≤ γ + ε. We claim that

SpMe

(
eθ(e)e

)
⊂
[
γ 2, (γ + ε)2

]
,

in particulareθ(e)e is invertible inMe. If this is not the case, then there exists non-
zeroq ∈ Proj(Me) such that

∥∥qeθ(e)eq
∥∥ ≤ λ < γ 2. But we have∥∥qθ(q)

∥∥2
=
∥∥qθ(q)q

∥∥ ≤ ∥∥qθ(e)q
∥∥ ≤ ∥∥eqθ(e)qe

∥∥ = ∥∥qeθ(e)eq
∥∥ ≤ λ < γ 2,

which contradicts the choice ofγ . Now, consider the right polar decomposition
eθ(e) = ku with k =

(
eθ(e)e

)1/2. Then we haveu = k−1eθ(e), u∗u = θ(e) and
uu∗ = e. Since SpMe

(k) ⊂ [γ , γ + ε], we have
∥∥γu − eθ(e)

∥∥ < ε. Setθ1(x) =
uθ(x)u∗, x ∈Me. Thenθ1 ∈ Aut(Me) andθ1 is outer by the proper outerness ofθ .
By Lemma 1.4, there exists a non-zerof ∈ Proj(Me) with

∥∥ f θ1( f )
∥∥ < ε, which

means that∥∥ f θ( f )
∥∥ = ∥∥ f eθ(e)θ( f )

∥∥ ≤ ∥∥∥ f
(
eθ(e)− γu

)
θ( f )

∥∥∥+ γ ∥∥ f uθ( f )
∥∥

≤ ε + γ
∥∥ f θ1( f )

∥∥ < (1+ γ )ε < γ.

This again contradicts the choice ofγ . Therefore,γ must be zero. Q.E.D.

Definition 1.5. We say thatθ ∈ Aut(M) is aperiodicif eachθn, n ∈ N, is properly
outer. This is equivalent to the fact that the action:n ∈ Z 7→ θn

∈ Aut(M) of the
integer groupZ is free.

We now state our main result of this section, which is a non-commutative ana-
logue of the Rokhlin tower theorem in ergodic theory.

Theorem 1.6. Let M be a finite, not necessarily separable, von Neumann algebra
equipped with a faithful normal tracial stateτ . If θ ∈ Aut(M) is aperiodic and
leavesτ invariant, then for anyε > 0 and n∈ N , there exists a partition

{
F j :

1≤ j ≤ n
}

of identity in M such that∥∥θ(F j )− F j+1
∥∥

2 ≤ ε, 1≤ j ≤ n− 1,∥∥θ(Fn)− F1
∥∥

2 ≤ ε.

}
(1)
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We prepare a couple of lemmas.

Lemma 1.7. Suppose that0 < ε < 1/n! for a fixed n∈ N . If f1, f2, . . . , fn ∈
Proj(M) satisfy the inequality

∥∥ fi f j
∥∥ ≤ ε , 1 ≤ i 6= j ≤ n , then there exist

orthogonal e1,e2, . . . ,en ∈ Proj(M) such that
ej ∼ f j , 1≤ j ≤ n,

n∑
j=1

ej =

n∨
j=1

f j ,

∥∥ej − f j
∥∥ < εn! .

PROOF: Recall the analysis of two projectionse and f in §1, Chapter V. We set

s(e, f ) = |e− f |, c(e, f ) =
∣∣e− (e∨ f − f )

∣∣. (2)

This is a slight modification of the sine and the cosine by Definition V.1.42 to the
extent that the new cosine is zero on(e∨ f )⊥ whilst the old one is the identity on
(e∨ f )⊥. At any rate, we have

s(e, f )2+ c(e, f )2 = e∨ f,∥∥c(e, f )
∥∥ = ‖ef‖,

∥∥s(e, f )
∥∥ = ‖e− f ‖.

}
(3)

If ‖ef‖ < 1, then
∥∥c(e, f )

∥∥ < 1 and

F = e∨ f − e∼ f − e∧ f = f,

‖F − f ‖ =
∥∥s(F, f )

∥∥ = ∥∥∥s
(
e∨ f − e, f

)∥∥∥ = ∥∥c(e, f )
∥∥ = ‖ef‖ < 1.

We now assume the lemma forn − 1, and are going to prove the assertion for
f1, f2, . . . , fn ∈ Proj(M) with ‖ f j fk‖ < ε, j 6= k. By assumption, there exist
orthogonale1,e2, . . . ,en−1 ∈ Proj(M) such that

ej ∼ f j ,
∥∥ej − f j

∥∥ < (n− 1)! ε,
n−1∑
j=1

ej =

n−1∨
j=1

f j = e.

Hence
∥∥ej fn − f j fn

∥∥ < (n− 1)! ε for j = 1,2, . . . ,n− 1, so that

∥∥efn
∥∥ = ∥∥∥∥n−1∑

j=1

ej fn

∥∥∥∥ ≤ n−1∑
j=1

(∥∥(ej − f j ) fn
∥∥+ ∥∥ f j fn

∥∥)
≤ (n− 1)(n− 1)! ε + (n− 1)ε < n! ε < 1.

Therefore, withen = e∨ fn − e, we get the desired projectionen by the above
arguments. Q.E.D.
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Lemma 1.8. Let
{
M, θ, τ

}
be as in Theorem1.6. If θ acts on the centerC

trivially, then for any n ∈ N , n > 1 and δ > 0 there exist orthogonal
f1, f2, . . . , fn ∈ Proj(M) and v ∈ U(M) such that

‖v − 1‖1 ≤ δτ

( n∑
j=1

f j

)
, vθ( f j )v

∗
= f j+1, 1≤ j ≤ n, (4)

where fn+1 = f1 .

PROOF: Let δ′ = δ/12(n+ 1) and chooseε andm in such a way thatm = np ≥
16/δ′2 and 0< ε < δ′/4mm! . The aperiodicity ofθ and Theorem 1.2 enable us
to find a decreasing family of projections,E1 ≥ E2 ≥ · · · ≥ Em, E j ∈ Proj(M),
such that

∥∥θ j (E j )E j
∥∥ < ε, 1≤ j ≤ m. SinceEm ≤ E j , we have∥∥θ j (Em)Em

∥∥ ≤ ∥∥θ j (E j )E j
∥∥ < ε, 1≤ j ≤ m.

With e= Em, we get, for 1≤ i < j ≤ m,∥∥θ i (e)θ j (e)
∥∥ = ∥∥θ j−i (e)e

∥∥ < ε.

Let E =
∨m

j=1 θ
j (e) and apply the last lemma to

{
θ j (e) : 1 ≤ j ≤ m

}
in ME

to obtain an orthogonal system
{

ej : 1 ≤ j ≤ m
}
⊂ Proj(ME) such that for each

j = 1,2, . . . ,m,

ej ∼ θ
j (e),

m∑
j=1

ej = E,
∥∥ej − θ

j (e)
∥∥ ≤ m! ε ≤

δ′

4m
.

Put now
F = E ∨ θ(E) = E ∨ θm+1(e), Q =MF .

We then consider the normalized traceτQ = τ/τ(F), andL p-norm‖ ‖′p on Q with
respect toτQ. It then follows that

‖x‖′p = τQ
(
|x|p

)1/p
= τ(F)−1/p

‖x‖p, x ∈ Q.

With p = m/n, put 
fk =

p−1∑
j=0

enj+k, 1≤ k ≤ n− 1,

fn =
p∑

j=1

enj , fn+1 = f1.

We then have
∑n

k=1 fk = E. Since we have for 1≤ j ≤ m− 1,∥∥θ(ej )− ej+1
∥∥ ≤ ∥∥θ(ej )− θ

j+1(e)
∥∥+ ∥∥θ j+1(e)− ej+1

∥∥ ≤ δ′

2m
,
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we have
∥∥θ(ej )− ej+1

∥∥′
2 ≤ δ

′/2m, j = 1,2, . . . ,m− 1. Hence∥∥θ( fk)− fk+1
∥∥′

2 ≤
δ′

2
, 1≤ k ≤ n− 1.

Sinceθ leaves the centerC fixed, the center valued trace ofM is invariant underθ ,
so that f ∼ θ( f ) for any f ∈ Proj(M), which means that

{
ej : 1 ≤ j ≤ m

}
are mutually equivalent and thereforeτ ′Q(ej ) ≤ 1/m andτ ′Q

(
θ(ej )

)
≤ 1/m. Hence

‖e1‖
′

2 ≤ 1/
√

m and
∥∥θ(enp)

∥∥′
2 ≤ 1/

√
m, which implies that

∥∥θ( fn)− f1
∥∥′

2 =

∥∥∥∥ p∑
j=1

θ(enj )−

p−1∑
j=0

enj+1

∥∥∥∥′
2

≤

p−1∑
j=1

∥∥θ(enj )− enj+1
∥∥′

2+
∥∥θ(enp)− e1

∥∥′
2

≤
pδ′

2m
+

2
√

m
≤ δ′.

Therefore, we get ∥∥θ( fk)− fk+1
∥∥′

2 ≤ δ
′, 1≤ k ≤ n.

Applying Lemma XIV.2.1, we find unitariesu1, . . . ,un ∈ U(Q) such that

u j θ( f j )u
∗

j = f j+1,
∣∣u j − F

∣∣ ≤ √2
∣∣ f j+1− θ( f j )

∣∣.
With v j = u j θ( f j ), we get∥∥v j − f j+1

∥∥′
2 =

∥∥ f j+1(u j − F)
∥∥′

2 ≤
√

2
∥∥ f j+1− θ( f j )

∥∥′
2 ≤
√

2δ′,

and v∗j v j = θ( f j ), v j v
∗

j = f j+1. We next choosev0 ∈ Q such thatv∗0v0 =

F − θ(E) - θm+1(e) andv0v
∗

0 = F − E. Then

‖v0‖
′

2 ≤
∥∥θ(em)

∥∥′
2 ≤

1
√

m
≤
δ′

2
.

With V = v0+ v1+ · · · + vn ∈ U(Q), we have
Vθ( f j )V

∗
= f j+1, 1≤ j ≤ n,∥∥V − F

∥∥′
2 ≤
√

2(n+ 1)δ′ ≤
δ

4
.

We now setv = V + (1− F) ∈ U(M) and obtain:

vθ( f j )v
∗
= f j+1, 1≤ j ≤ n,

‖v − 1‖1 = τ
(
|v − 1|

)
= τ

(
|V − F |

)
= τ(F)τQ

(
|V − F |

)
= τ(F)

∥∥V − F
∥∥′

1

≤ τ(F)
∥∥V − F

∥∥′
2 ≤

δτ(F)

2
≤ δτ

( n∑
j=1

f j

)
.

This completes the proof. Q.E.D.
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PROOF OFTHEOREM 1.6: We first prove the theorem in the case thatθ leaves
the centerC of M fixed. We fix n > 1 and 0< δ < 1. Let X be the set of all
x =

(
F1, F2, . . . , Fn;V

)
such that

a)
{
F1, . . . , Fn

}
are mutually orthogonal equivalent projections;

b) V ∈ U(M) and
∥∥V − 1

∥∥
1 ≤ δτ

(∑n
j=1 F j

)
;

c) Vθ(F j )V∗ = F j+1, whereFn+1 = F1.

We then define a relationx =
(
F1, F2, . . . , Fn;V

)
≤ x′ =

(
F ′1, F ′2, . . . , F ′n;V

′
)

by
the following:

(α) F j ≤ F ′j , 1≤ j ≤ n;

(β)
∥∥V − V ′

∥∥
1 ≤ δτ

(∑n
j=1(F

′

j − F j )
)
.

It then follows that the relation “≤” in X is an ordering. IfY is a totally ordered
subset ofX, then the map:x =

(
F1, F2, . . . , Fn;V

)
∈ Y 7→ τ

(∑n
j=1 F j

)
∈ [0,1]

gives an order isomorphism ofY into [0,1], so thatY contains a cofinal sequence
{xm}. Let xm =

(
Fm

1 , Fm
2 , . . . , Fm

n ;Vm
)
. By (β), we have

∥∥Vm+1− Vm
∥∥

1 ≤ δτ

( n∑
j=1

(
Fm+1

j − Fm
j

))
,

so that
∑
∞

m=1

∥∥Vm+1 − Vm
∥∥

1 ≤ δ. The L1-completeness ofU(M) implies the
convergence limm→∞ Vm = V ∈ U(M). Also each

{
Fm

j : m ∈ N
}

is an
increasing sequence of projections, so thatF j = limm→∞ Fm

j ∈ Proj(M) con-

verges. By continuity,
(
F1, F2, . . . , Fn;V

)
satisfies (a), (b), and (c), and dominates

all
(
Fm

1 , Fm
2 , . . . , Fm

n ;Vm
)
. Thus,X is an inductive set, which admits therefore a

maximal elementx =
(
F1, F2, . . . , Fn;V

)
. We are going to show

∑n
j=1 F j = 1.

Suppose thatE = 1 −
∑n

j=1 F j 6= 0. Let Q = ME. By (c), we have
Vθ(E)V∗ = E, so thatθ ′ = Ad(V) ◦ θ leavesQ globally invariant. Hence we
considerθ ′ on Q. It then follows thatθ ′ is aperiodic onQ too. By the last lemma,
there existf1, f2, . . . , fn ∈ Proj(Q) andv ∈ U(Q) such thatfi ⊥ f j , i 6= j , and
vθ( f j )v

∗
= f j+1, where fn+1 = f1, and furthermore

∥∥v− E
∥∥′

1 ≤ δτQ
(∑n

j=1 f j
)
,

where τQ = τ/τ(E) and ‖ · ‖′1 means theL1-norm on Q relative to τQ. Put
F ′j = F j+ f j , 1≤ j ≤ n andV ′ =

(
v+(1−E)

)
V . Then

(
F ′1, F ′2, . . . , F ′n;V

′
)
= x′

satisfies (a) and (c). Furthermore, we have

∥∥v + (1− E)− 1
∥∥

1 = τ(E)
∥∥v − E

∥∥′
1 ≤ δτ(E)τQ

( n∑
j=1

f j

)
= δτ

( n∑
j=1

f j

)
;

∥∥V ′ − V
∥∥

1 =

∥∥∥(v + (1− E)− 1
)
V
∥∥∥

1
≤ δτ

( n∑
j=1

f j

)
.
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Hence we get∥∥V ′ − 1
∥∥

1 ≤
∥∥V ′ − V

∥∥
1+

∥∥V − 1
∥∥

1

≤ δτ

( n∑
j=1

f j

)
+ δτ

( n∑
j=1

F j

)
= δτ

( n∑
j=1

F ′j

)
.

Therefore,x′ belongs toX and dominates properlyx, contradicting the maximality
of x. Thus we must have

∑n
j=1 F j = 1, and now∥∥θ(F j )− F j+1

∥∥2
2 ≤

∥∥θ(F j )− F j+1
∥∥∥∥θ(F j )− F j+1

∥∥
1

≤ 2
∥∥∥θ(F j )− Vθ(F j )V

∗

∥∥∥
1
≤ 4

∥∥V − 1
∥∥

1 ≤ 2δ.

This completes the proof for the case thatθ is trivial onC.
General Case: Let̄θ = θ |C . If θ̄ is aperiodic, then the usual Rokhlin theorem,

Lemma XIII.3.23, takes care of the existence of
{
F1, . . . , Fn

}
. Hence by decom-

posingM into direct sum according to the period ofθ̄ , we may assume that̄θ is
periodic with periodp ≥ 1. By the previous arguments, we have only to consider
the casep > 1. Choosec ∈ Proj(C) such that

{
θ j (c) : 0 ≤ j ≤ p− 1

}
is a par-

tition of identity. LetN = Mc andθ ′ = θ p
∣∣
N

. It follows thatθ ′ is a periodic and
leaves the centerCN fixed. Hence the previous arguments apply toθ ′ to guarantee
that for anyε′ > 0 there exists a partition

{
G1,G2, . . . ,Gn

}
of identity inN such

that
∥∥θ ′(G j )− G j+1

∥∥
2 < ε′ whereGn+1 = G1. Put

Hsp+r = θ
r (Gs), 0≤ r < p, 0≤ s< n,

whereG0 = Gn. Then
{

H j : 0 ≤ j < np
}

is a partition of identity inM and∥∥θ(Hk)− Hk+1
∥∥

2 ≤ ε
′. Now put

Fs =

p−1∑
k=0

Hkn+s, 1≤ s ≤ n,

with Hpn = H0. We now have∥∥θ(Fs)− Fs+1
∥∥

2 ≤ pε′, s= 1,2, . . . ,n,

with Fn+1 = F1. Hence withε′ = ε/p, we complete the proof. Q.E.D.

§ 2 Stability of Outer Conjugacy Classes

Let M be a separable strongly stable factor unless we say specifically otherwise.
By definition, we haveM ∼=M ⊗R0 whereR0 is an AFD II1-factor. We study in
this section tensor product perturbations of automorphisms ofM by automorphisms
of R0.
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We fix a free ultrafilterω ∈ βN \ N, and considerMω as in §4, Chapter XIV.
By the strong stability,Mω is a σ -finite von Neumann algebra of type II1, Theo-
rem XIV.4.18. Eachθ ∈ Aut(M) gives rise to an elementθω ∈ Aut(Mω) naturally
and the correspondenceεω : θ ∈ Aut(M) 7→ θω ∈ Aut(Mω) is a homomorphism.
The kernel ofεω is independent of the choice ofω and denoted by Cnt(M). We say
thatθ is centrally trivial if θ ∈ Cnt(M). Theouter period p0(θ) is by definition the
period ofε(θ) in Out(M) = Aut(M)/ Int(M), whereε is the quotient homomor-
phism of Aut(M) onto Out(M). Similarly, we definepa(θ), theasymptotic outer
periodof θ ∈ Aut(M), to be the period ofεω(θ), and setpa(θ) = 0 if θn /∈ Cnt(M)

for n 6= 0. We are going to use the notations from §4, Chapter XIV freely.

Lemma 2.1. If M is a strongly stable separable factor, then for any separable
von Neumann subalgebraP of Mω the relative commutantP ′ ∩Mω is always
of type II1 .

PROOF: Let {Xn} be a sequence which isσ -strongly dense in the unit ball ofP . Let{
xn(m)

}
be a stronglyω-central sequence representingXn. We fix a dense sequence

{ϕn} in S∗ = S∗(M) and a faithfulϕ ∈ S∗. For eachm ∈ N, we choose a 2× 2-
matrix unit

{
ei, j (m) : 1≤ i, j ≤ 2

}
such that

∥∥∥[ei, j (m), xn(m)
]∥∥∥]
ϕ
≤

1

m
, 1≤ n ≤ m,

∥∥∥[ei, j (m), ϕk
]∥∥∥ ≤ 1

m
, 1≤ k ≤ m.

Such
{
ei, j (m)

}
exists by the strong stability. Then

{
ei, j (m)

}
is strongly central and

with Ei, j = πω(
{
ei, j (n)

}
), whereπω is the map defined in §4, Chapter XIV, we

have ∥∥∥[Ei, j , Xn
]∥∥∥

2,ω
= lim

m→ω

∥∥∥[ei, j (m), xn(m)
]∥∥∥]
ϕ
≤ lim

m→ω

1

m
= 0.

Hence
{
Ei, j

}
is a 2× 2-matrix unit inP ′ ∩Mω. Therefore, the relative commutant

of every separable von Neumann subalgebra ofMω contains a 2× 2-matrix unit,
which means by induction thatP ′∩Mω contains a sequence of mutually commuting
2× 2-matrix units. HenceP ′ ∩Mω must be of type II1. Q.E.D.

Lemma 2.2. Let M be a strongly stable separable factor. Forθ ∈ Aut(M) , the
following two conditions are equivalent:

(i) θ /∈ Cnt(M) ;
(ii) θω is properly outer.

PROOF:
(i) H⇒ (ii): We shall prove that for any sequence{Xn} in Mω there existsY ∈

Mω such thatθω(Y) 6= Y and[Y, Xn] = 0, n = 1,2, . . . . Let
{

xn(k) : k ∈ N
}

be
a representing stronglyω-central sequence forXn. Sinceθ /∈ Cnt(M) there exists
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a strongly central sequence
{
y(k)

}
such that

∥∥θ(y(k)) − y(k)
∥∥
ϕ
≥ δ > 0. Since{

y(k)
}

is central, with faithfulϕ ∈ S∗

lim
k→∞

∥∥∥[y(k), xn(m)
]∥∥∥]
ϕ
= 0, n,m ∈ N.

Let
{
kn
}

be an increasing sequence inN such that
∥∥[y(kn), x j (n)

]∥∥]
ϕ
≤ 1/n for

j = 1,2, . . . ,n. Let Y = πω
({

y(kn)
})

. It then follows that∥∥∥[Y, X j
]∥∥∥

2,ω
= lim

n→ω

∥∥∥[y(kn), x j (n)
]∥∥∥
ϕ
≤ lim

n→ω

1

n
= 0,

∥∥θω(Y)− Y
∥∥

2,ω = lim
n→ω

∥∥∥θ(y(kn)
)
− y(kn)

∥∥∥
ϕ
≥ δ > 0.

Therefore,θω is properly outer.
(ii) H⇒ (i): This is obvious. Q.E.D.

We continue to assume thatM is a separable strongly stable factor.

Lemma 2.3. If θ ∈ Aut(M) has pa(θ) = 0 , then for any separable von Neu-
mann subalgebraP of Mω and a natural number n∈ N , there exists a partition{
F1, F2, . . . , Fn

}
of identity in P ′ ∩Mω such that

θω(F j ) = F j+1, 1≤ j ≤ n,
(
Fn+1 = F1

)
. (1)

PROOF: We fix a faithfulϕ ∈ S∗ and a dense sequence{ψ j } in S∗. Let {Xm} be a
σ -strongly dense sequence of the unit ball ofP , and

{
xm(k)

}
be a strongly central

sequence inM representingXm.
By Theorem 1.6, for anyk ∈ N there exists a partition

{
F̃k

j

}
of identity in Mω

such that ∥∥∥θω(F̃k
j

)
− F̃k

j+1

∥∥∥
2
<

1

k
, F̃k

n+1 = F̃k
1 . (2)

Let
{

Fk
j (ν) : ν ∈ N

}
be a sequence of partitions of identity representing

{
F̃k

j

}
.

Such a sequence exists by Theorem XIV.4.6. We now choose an increasing se-
quence{νm} in N such that

a)
∥∥∥[Fk

j (νk), ψs
]∥∥∥ < 1

k
, 1≤ s ≤ k, 1≤ j ≤ n;

b)
∥∥∥[Fk

j (νk), xm(k)
]∥∥∥]
ϕ
<

1

k
, 1≤ m≤ k, 1≤ j ≤ n;

c)
∥∥∥θ(Fk

j (νk)
)
− Fk

j+1(νk)

∥∥∥]
ϕ
<

1

k
, 1≤ j ≤ n.

We now setF j = πω
({

Fk
j (νk)

})
and obtain (1). Q.E.D.
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We are now ready to prove the following stability theorem for aperiodic auto-
morphisms:

Theorem 2.4. If M is a separable strongly stable factor, then every aperiodic
automorphismθ of M gives rise to a stable actionθω on Mω for any free ultra
filter ω ∈ βN \N in the sense that for every u∈ U(Mω) there existsv ∈ U(Mω)

such that
θω(v) = uv.

In other words, every inner perturbationAd(u∗) ◦ θω of θω is conjugate toθω
under Int(Mω) .

PROOF: Let u ∈ U(Mω). For a fixedε > 0, choosen ∈ N with n ≥ 4/ε2. By
the last lemma, choose a partition

{
F1, . . . , Fn

}
of identity inMω commuting with

u such thatθω(F j ) = F j+1. Thenτω(F j ) = 1/n, so that‖F j ‖2,ω = 1/
√

n ≤ ε/2.
Inductively, we put

v0 = Fn, v1 = θ
−1
ω (uv0), . . . , vk+1 = θ

−1
ω (uvk), . . . , vn−1 = θ

−1
ω (uvn−2).

We then havev∗j v j = v j v
∗

j = Fn− j , 0≤ j ≤ n− 1. We then putV =
∑n−1

k=0 vk ∈

U(Mω) and obtain

θω(V) = θω(v0)+

n−2∑
k=0

uvk,

uV =
n−2∑
k=0

uvk + uvn−1.

Hence we have∥∥θω(V)− uV
∥∥

2,ω =
∥∥uvn−1− θω(v0)

∥∥
2,ω ≤ ε.

Therefore, we conclude that for anyε > 0 there existsVε ∈ U(Mω) such that∥∥θω(Vε)− uVε
∥∥

2,ω ≤ ε. (3)

We now apply the same arguments of the last lemma. Fixϕ ∈ S∗ and{ψ j } ⊂

S∗ as in the last lemma. For eachν ∈ N, let Vν be theVε of (3) with ε = 1/2ν. Let{
u(k)

}
and

{
vν(k)

}
be representing sequences ofu andVν respectively. For each

ν ∈ N, let Aν be the set of allk ∈ N such that

a)
∥∥∥[vν(k), ψ j

]∥∥∥ < 1

ν
, j = 1,2, . . . , ν;

b)
∥∥∥u(k)vν(k)− θ

(
vν(k)

)∥∥∥
ϕ
<

1

ν
.
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ThenAν belongs to the filterω. We then readjustAν inductively so thatAν % Aν+1.
For eachj ∈ N, put

ν( j ) = max
{
ν ∈ N : j ∈ Aν

}
.

Since
⋂

Aν = ∅, ν( j ) is finite. Put

v j = vν( j )( j ), j ∈ N.

Then{v j } is strongly central andv = πω
(
{v j }

)
satisfiesθω(u) = vu. Q.E.D.

Theorem 2.5. Let M be a strongly stable separable factor. LetP and Q beAFD
II1-subfactors ofM such thatP ∨P c

=M = Q∨Qc and P c ∼=M ∼= Qc . If the
decompositionsP ∨ P c

= M = Q ∨ Qc are both tensor product factorizations,
then P and Q are conjugate underInt(M) , i.e. there existsσ ∈ Int(M) such
that σ(P ) = Q .

PROOF: SinceM∗ = P∗⊗̂P c
∗ , every central sequence ofP or Q is strongly central

in M. Let
{

ei, j (k) : 1 ≤ i, j ≤ 2
}

(resp.{ fi, j (k) : 1 ≤ i, j ≤ 2}) be mutually
commuting sequence of 2× 2-matrix units which generatesP (resp.Q). Let {ψ j }

be a dense sequence ofS∗.
By induction, we are going to construct sequences{nν} ⊂ N and{uν} ⊂ U(M)

such that

a)
[
uν, fi, j (nk)

]
= 0, k = 1,2, . . . , ν − 1;

b) with vν = uνuν−1 · · · u1,

vνei, j (nk)v
∗
ν = fi, j (nk), k = 1,2, . . . , ν;

c)
∥∥ψ j ◦ Ad(vν)− ψ j ◦ Ad(vν−1)

∥∥ < 2−ν,∥∥ψ j ◦ Ad(v∗ν )− ψ j ◦ Ad(v∗ν−1)
∥∥ < 2−ν, j = 1,2, . . . , ν.

Supposenk anduk have been found fork ≤ ν − 1. Let R = M ∩
{

fi, j (nk) :

1≤ i, j ≤ 2, 1≤ k ≤ ν − 1
}′. Since

vν−1ei, j (nk)v
∗

ν−1 = fi, j (nk), 1≤ k ≤ ν − 1,

vν−1ei, j (n)v∗ν−1 ∈ R for any n > nν−1, and also fi, j (n) ∈ R for n > nν−1.
Let Ei, j = πω

({
vν−1ei, j (n)v∗ν−1

})
∈ Rω andFi, j = πω

({
fi, j (n)

})
∈ Rω. Since

Rω ⊂Mω andRω is of type II1, there existsW ∈ Rω such thatW∗W = E11 and
W W∗ = F11. By Theorem XIV.4.6, we choose a representing sequence{wn} ⊂ R
of W such that

w∗nwn = vν−1e11(n)v
∗

ν−1, wnw
∗
n = f11(n), n > nν−1,

and put

xn =

2∑
j=1

f j,1(n)wnvν−1e1 j (n)v
∗

ν−1.
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Then{xn} ⊂ U(R) is stronglyω-central. Ifn is sufficiently large along the ultra
filter ω, uν = xn satisfies the above (a), (b) and (c).

By (c),
{
Ad(vν)

}
is a Cauchy sequence in Aut(M), so that it converges toσ ∈

Aut(M). Let

P1 =
{

ei, j (nk) : k ∈ N
}′′
, Q1 =

{
fi, j (nk) : k ∈ N

}′′
.

Then we haveσ(P1) = Q1. By construction, we have

P = P1⊗
(
P ′1 ∩P

)
, Q = Q1⊗

(
Q′1 ∩ Q

)
.

Let α andβ be isomorphisms ofM onto P c and Qc respectively, and putP2 =

α(P ) andQ2 = β(Q). It then follows that

M ∼= P1⊗
(
P ′1 ∩P

)
⊗P2⊗

(
P ′2 ∩P ′ ∩M

)
∼= Q1⊗

(
Q′1 ∩ Q

)
⊗ Q2⊗

(
Q′2 ∩ Q′ ∩M

)
.

In P ⊗ P2 (resp.Q ⊗ Q2), P1 andP (resp.Q1 and Q) are conjugate under
Aut(P ⊗ P2) = Int

(
P ⊗ P2

)
(resp. Aut(Q ⊗ Q2)). Therefore,P and Q are

conjugate underInt(M). Q.E.D.

We are now going to construct a model automorphism ofR0. Fix p ∈ N, p ≥ 2,
and set

Mn = M(p;C), n ∈ N;

R0 =

∞∏⊗⊗⊗

n=1

Mn.

 (4)

Let
{

ei, j (n) : 1≤ i, j ≤ p
}

be the standard matrix unit ofMn and put

un =

p∑
k=1

e2πik/pekk(n) ∈ U(Mn),

σp =

∞∏⊗

n=1

Ad(un) ∈ Aut(R0).


(5)

Sinceup
n = 1, anduk

n /∈ T for 1 ≤ k ≤ p− 1, σp has periodp and p0(σp) = p.
Furthermore, we setRn = R0, n ∈ N, and identifyR0 with

∏
∞ ⊗

n=2 Rn, then we
put

σ0 =

∞∏⊗

n=2

σn ∈ Aut(R0),

σ1 = id ∈ Aut(R0).

 (6)

Thus we get a sequence
{
σn : n = 0,1,2, . . .

}
in Aut(R0). It follows thatσ0 is

aperiodic. Hence we have

p0(σk) = k, k = 0,1,2, . . . . (7)
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Lemma 2.6. Let M be a von Neumann algebra with no direct summand of finite
typeI, and α ∈ Aut(M) . If α is either stable or gives a free action ofZn = Z/nZ ,
then for each p∈ N , p≥ 2 , and an n -th rootλ of 1 there exists a p× p -matrix
unit

{
fi, j : 1≤ i, j ≤ p

}
in M such that

α( fi, j ) = λ
i− j fi, j , 1≤ i, j ≤ p. (8)

PROOF: The case thatα is stable: Let
{

ei, j : 1≤ i, j ≤ p
}

be ap× p-matrix unit
in M. Sinceei i ∼ α(ei i ), there existsW ∈ U(M) such thatWe11W∗ = α(e11).
Put V =

∑p
i=1 α(ei 1)We1i . Thenα(ei j ) = V ei j V∗. Now, setU =

∑p
j=1 λ

j ej j .

ThenU V∗α(ei j )VU∗ = λi− j ei, j . By the stability ofα, we can findv ∈ U(M)

such thatU V∗ = v∗α(v). Then we get Ad(U V∗) ◦ α = Ad(v∗) ◦ α ◦Ad(v). Hence
fi j = vei j v

∗ gives the required matrix unit.
The periodic case: We viewα as a free action ofZn. By the assumption onM,

Mα contains ap×p-matrix unit
{

ei, j : 1≤ i, j ≤ p
}
. PutU =

∑p
k=1 λ

kekk∈Mα.
Then

{
Uk
: 0 ≤ k ≤ n − 1

}
is anα-cocycle ofG. By Proposition XI.2.26, there

existsV ∈ U(M) such thatUk
= V∗αk(V), 0≤ k ≤ n− 1. Hence Ad(U ) ◦ α =

Ad(V∗) ◦ α ◦ Ad(V). Therefore,fi j = V ei j V∗ satisfies (8). Q.E.D.

We apply the last lemma to
{
Mω, θω

}
.

Lemma 2.7. Let M be a strongly stable separable factor andθ ∈ Aut(M) . For
each p∈ N , λ ∈ T with λpa(θ) = 1 , ψ1, . . . , ψq ∈ S∗ , a faithful ϕ ∈ S∗ and
ε > 0 , there exist u∈ U(M) and a p× p -matrix unit {ei, j } such that

a)
∥∥[ei, j , ψk

]∥∥ < ε , 1≤ i , j ≤ p , 1≤ k ≤ q ;

b) Ad(u) ◦ θ(ei j ) = λ
i− j ei j , 1≤ i, j ≤ p ;

c)
∥∥u− 1

∥∥]
ϕ
< ε .

PROOF: We apply the last lemma to
{
Mω, θω

}
with a fixed free ultra filterω ∈

βN \ N, to find a p × p-matrix unit
{

Ei j : 1 ≤ i, j ≤ p
}

in Mω such that
θω(Ei j ) = λ

i− j Ei, j . Let
{
ei j (n)

}
be a stronglyω-central sequence ofp× p-matrix

units representing{Ei j }.
Sincee11(n) ∼ θ

(
e11(n)

)
and E11 = θω(E11), we find a stronglyω-central

sequence
{
u(n)

}
of partial isometries such that

πω
({

u(n)
})
= E11, u(n)∗u(n) = e11(n), u(n)u(n)∗ = θ

(
e11(n)

)
by Theorem XIV.4.6.(iv). Set

v(n) =
p∑

j=1

λ1− j θ
(
ej 1(n)

)
u(n)e1 j (n) ∈ U(M).

Then
{
v(n)

}
is stronglyω-central, andπω

({
v(n)

})
= 1 becauseθω(E j 1) =

λ j−1E j 1 andπω
({

u(n)
})
= E11. Hence limn→ω

∥∥v(n)−1
∥∥]
ϕ
= 0. By construction,
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we have

Ad
(
v(n)∗

)
◦ θ
(
ei j (n)

)
= λi− j ei j (n), 1≤ i, j ≤ p, n ∈ N.

Hence if we choose a sufficiently largen along the filterω,
{
ei j (n)

}
and v(n)

satisfy (a), (b) and (c). Q.E.D.

Definition 2.8. Two automorphismsθ1 of M1 andθ2 of M2 are said to beouter
conjugateand writtenθ1 ∼ θ2 if there exist an isomorphismπ of M1 ontoM2 and
a unitaryu ∈M1 such thatπ ◦ Ad(u) ◦ θ1 ◦ π−1

= θ2.

Remark 2.9. It is possible to define outer conjugacy for group actions similarly.
But in this case we should not confuse with cocycle conjugacy. In the cocycle conju-
gacy, one requires one cocycle condition in the perturbing unitaries, while arbitrary
inner automorphism perturbations are allowed in the outer conjugacy. In our case,
sinceZ is cohomologically trivial, the outer conjugacy and the cocycle conjugacy
coincide. But when we consider periodic automorphisms and want to pass to the
cyclic groupZn = Z/nZ, the subtle difference will appear.

Theorem 2.10. Let M be a strongly stable separable factor. Forθ ∈ Aut(M)

and p∈ N , the following three conditions are equivalent:

(i) pa(θ) ≡ 0 mod p ;
(ii) θ and θ ⊗ σp are outer conjugate;
(iii) For any faithful ϕ ∈ S∗ and δ > 0 , there exists u∈ U(M) such that

Ad(u) ◦ θ ∼= θ ⊗ σp, ‖u− 1‖]ϕ < δ.

PROOF:
(i) H⇒ (iii): Assume (i). Fixδ > 0. We choose sequences{nν} ⊂ N and

{λν} ⊂ T as follows: If p = 0, thennν > 1 and everyq ∈ N,q > 1, should
appear in{nν} infinitely many times andλν = e2πi/nν ; if p = 1, thennν = 2 and
λν = 1; if p > 1, thennν = p andλν = e2πi/p. We further fix a faithfulϕ ∈ S∗
and a dense sequence{ψ j } in S∗.

Applying Lemma 2.7 inductively, we will choose a sequence{uν} ⊂ U(M) and
a sequence

{
ei, j (ν)

}
of mutually commutingnν × nν-matrix units satisfying the

conditions:

a)
∥∥∥[ei, j (ν), ψk

]∥∥∥ ≤ 1

2νn2
ν

, 1≤ k ≤ ν, 1≤ i, j ≤ nν ;

b)
[
uν,ei, j (k)

]
= 0, 1≤ k ≤ ν − 1, 1≤ i, j ≤ nν ;

c) θν = Ad
(
uνuν−1 · · · u1

)
◦ θ satisfies

θν
(
ei, j (ν)

)
= λi− j

ν ei, j (ν), 1≤ i, j ≤ nν,

d)
∥∥uνuν−1 · · · u1− uν−1uν−2 · · · u1

∥∥]
ϕ
<

δ

2ν
.
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Suppose that
{
u1, . . . ,uν

}
and

{
ei, j (1), . . . ,ei, j (ν)

}
have been chosen. LetMk =∑

Cei, j (k), andNν = M1∨M2∨· · ·∨Mν . PutMν = N′ν∩M. ThenM = Nν⊗Mν .
We chooseε > 0 andψ̃1, ψ̃2, . . . , ψ̃r ∈ S∗(Mν) such that∥∥[x, ψ j ]

∥∥ ≤ 1

n2
ν+12ν+1

, 1≤ j ≤ ν + 1

wheneverx ∈Mν , ‖x‖ ≤ 1, and
∥∥[x, ψ̃i ]

∥∥ < ε, 1≤ i ≤ r . We also chooseη > 0

so thatu ∈ U(Mν), ‖u− 1‖]ϕ < η implies∥∥∥u
(
uνuν−1 · · · u1

)
− uνuν−1 · · · u1

∥∥∥]
ϕ
<

δ

2ν+1
.

Let θ̃ = θν
∣∣
Mν

. By (c), θ̃ ∈ Aut(Mν) and pa(θ̃) = pa(θ). We apply Lemma 2.7

to
{
Mν, θ̃, λν+1,nν+1

}
to obtain annν+1 × nν+1-matrix unit{ei, j } in Mν andũ ∈

U(Mν) such that

∥∥∥[ei, j , ψ̃k
]∥∥∥ < k, 1≤ k ≤ r, 1≤ i, j ≤ nν+1;

Ad
(
ũ
)
◦ θ̃ (ei j ) = λ

i− j
ν+1ei j , 1≤ i, j ≤ nν+1;∥∥ũ− 1

∥∥]
ϕ
< η.

We then setei j (ν + 1) = ei, j anduν+1 = ũ. It is now clear that (a), (b), (c) and (d)
hold forν + 1.

By condition (d), u = lim uνuν−1 · · · u1 ∈ U(M) converges in theσ -strong∗

topology. LetR0 =
∨
∞

v=1 Mν . By Lemmas XIV.4.9 and XIV.4.10, we haveM =
R0⊗ (R

′

0∩M). The restriction ofθ∞ = Ad(u) ◦ θ to R0 is conjugate toσp by (c)
andθ∞ ∼= σp ⊗ (θ∞|M∞) whereM∞ = R′0 ∩M. Sinceσp ∼= σp ⊗ σp, we have
θ∞ ∼= θ∞ ⊗ σp. Finally we have

‖u− 1‖]ϕ ≤
∞∑
ν=1

∥∥uνuν−1 · · · u1− uν−1 · · · u1
∥∥]
ϕ
< δ.

(iii) H⇒ (ii): This is trivial.
(ii) H⇒ (i): Supposeq 6≡ 0 mod p andθ ∼ θ ⊗ σp. We work with θ ⊗ σp

on M ⊗R0 instead. By construction,R0 admits a central sequence{yn} such that∥∥σq
p(yn)− yn

∥∥
2 = 1, ‖yn‖ = 1. Thenxn = 1⊗ yn is strongly central inM ⊗R0

and
∥∥(θ ⊗ σp)

q(xn) − xn
∥∥
ϕ⊗τ
= 1 for anyϕ ∈ S∗(M), whereτ is the canonical

trace ofR0. Hence(θ ⊗ σp)
q does not belong to Cnt(M⊗R0). Henceq 6= pa(θ).

Q.E.D.

Corollary 2.11. Let M be a strongly stable separable factor, andε be the canon-
ical quotient map ofAut(M) onto Out(M) = Aut(M)/ Int(M) . Thenε

(
Cnt(M)

)
is precisely the centralizer ofε

(
Int(M)

)
.

PROOF: By Lemma XIV.4.14,ε
(
Cnt(M)

)
andε

(
Int(M)

)
commute.
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Suppose thatθ ∈ Aut(M) and θ /∈ Cnt(M). By definition, we havep =
pa(θ) 6= 1. By the last theorem, we may assume thatM = M1 ⊗ R0 and
θ = θ1 ⊗ σp. In the construction ofσp of (5), choosevn ∈ U(Mn) so that
unvnu∗nv

∗
n /∈ T and setα0 =

∏
∞ ⊗

n=1 Ad(vn). Then we haveσpα0σ
−1
p α−1

0 /∈ Int(R0)

and henceε(θ) andε
(
id⊗α0

)
do not commute in Out(M), while id⊗α0 belongs to

Int(M). Q.E.D.

Proposition 2.12. For any separable von Neumann algebraM the modular au-
tomorphism group

{
σ
ϕ
t
}

of any faithful semi-finite normal weightϕ on M acts
trivially on strongly central sequences, i.e.σ ϕt ∈ Cnt(M) .

PROOF: It is sufficient to prove thatσ ϕt acts on a strongly central sequence{un} of
unitaries. Letψ be a fixed faithful normal state onM. Then we have(

Dψ ◦ Ad(un) : Dψ
)
t = u∗nσ

ψ
t (un), t ∈ R.

The strong centrality of{un}means that limn→∞
∥∥ψ ◦Ad(un)−ψ

∥∥ = 0. By Theo-
rem IX.1.19.(iii),

(
Dψ ◦ Ad(un) : Dψ

)
t convergesσ -strongly to 1 for everyt ∈ R,

so that
{
u∗nσ

ψ
t (un)

}
converges to 1σ -strongly. Thusσψt acts on{un} trivially. Since

σ
ϕ
t , ϕ ∈W0(M), is an inner perturbation ofσψt , σ ϕt acts trivially on{un} as well.

Q.E.D.

Exercise XVII.2

1) Let M be an AFD factor of type II1 andα ∈ Aut(M). Suppose thatα is aperi-
odic. Fix a free ultra filterω ∈ βN \ N and considerMω as usual. Following the
steps suggested below, show that ifβ ∈ Aut(M) has the property thatβω(x) = x
for everyx ∈ (Mω)

αω thenβω = αn
ω for somen ∈ Z.

(a) Show first thatΓ (αω) = T.

(b) Show that
(
Mαω
ω

)′
∩Mω = C.

(c) Show that for eachs ∈ ]−π,π] = T there exists a unitaryU (s) ∈ U(Mω)

such thatαω
(
U (s)

)
= eisU (s).

(d) Show thatU (s)∗βω
(
U (s)

)
∈
(
Mαω
ω

)′.
(e) Show thatβω

(
U (s)

)
= λ(s)U (s), s ∈ T.

(f) Show thatλ(s) = eins, s ∈ T, for somen ∈ Z.

(g) Show thatβω = αn
ω.

2) Let M be a strongly stable separable factor andω ∈ βN \ N a free ultrafilter.
ConsiderMω as in §4, Chapter XIV. Letα, β ∈ Aut(M) be two automorphisms
commuting modulo Int(M) in the sense that there existsw ∈ U(M) such that
α ◦ β = Ad(w) ◦ β ◦ α. Observe thatαω ◦ βω = βω ◦ αω. Assume thatαω andβω
generate an isomorphism ofZ2 into Aut(Mω), i.e.αmβn /∈ Cnt(M) for (m,n) 6=
(0,0).



270 XVII Non-Commutative Ergodic Theory

§ 3 Outer Conjugacy of Approximately Inner Automorphisms
of Strongly Stable Factors

In this section, we determine completely the outer conjugacy classes of approxi-
mately inner automorphisms of strongly stable factors.

We fix a strongly stable separable factorM, and denote byR0 an AFD factor of
type II1. Let ϕ be a fixed faithful normal state onM. We also fix a free ultra filter
ω ∈ βN \ N. Let ε denote the canonical quotient map of Aut(M) onto Out(M) =

Aut(M)/ Int(M).
We announce here the first main result of the section:

Theorem 3.1. If M is a strongly stable separable factor and ifθ1, θ2 ∈ Int(M)

are strongly aperiodic in the sense that pa(θ1) = pa(θ2) = 0 , then there exists
σ ∈ Int(M) such that

ε(θ2) = ε
(
σθ1σ

−1).
More precisely, for anyε > 0 , there existsw ∈ U(M) such that

Ad(w) ◦ θ1 ∼= θ2, ‖w − 1‖ϕ < ε.

We need some preparation for the proof. We decomposeM =M1⊗R0 by the
strong stability ofM, whereM1 ∼=M. We are going to compareθ and id⊗σ0.

Lemma 3.2. If θ ∈ Int(M) and pa(θ) = 0 , then there exists a sequence{un} in
U(M) such that

a) θ = lim Ad(un) ;

b) limn→∞
∥∥θ(uk

n)− uk
n

∥∥]
ϕ
= 0 , k ∈ Z .

PROOF: By assumption,θ = limn→∞ Ad(vn) for some {vn} in U(M). Let
wn = v

∗
nθ(vn). Then{wn} is strongly central. LetW = πω

(
{wn}

)
and apply The-

orem 2.4 to
{
W, θω

}
to obtain X ∈ Mω such thatW = X∗θω(X). Let {xn} be

a representing sequence ofX in U(M). We then have limn→ω Ad(xn) = id, and
limn→ω

∥∥x∗nθ(xn)− v
∗
nθ(vn)

∥∥]
ϕ
= 0. Passing to a subsequence, we can choose{yn}

from {xn} such that

id = lim
n→∞

Ad(yn) and lim
n→∞

∥∥y∗nθ(yn)− v
∗
nθ(vn)

∥∥]
ϕ
= 0.

With un = vny∗n, 1 we have

θ = lim
n→∞

Ad(un); lim
n→∞

∥∥θ(un)− un
∥∥]
ϕ
= 0

1 Since{yn} is strongly central, the multiplication by{yn} from the right is almost isometry
in theϕ-norm‖ · ‖ϕ .



§ 3 Outer Conjugacy of an Automorphism of a Factor 271

We are going to proveθ
(
uk

n

)
− uk

n → 0 σ -strongly∗ by induction. Sup-
poseθ

(
uk

n

)
− uk

n → 0 σ -strongly∗. Thenu−k
n θ

(
uk

n

)
→ 1 σ -strongly∗, and so

u−1
n θ(un)u−k

n θ
(
uk

n

)
→ 1 σ -strongly∗. Sinceψ ◦ θ−1

= limn→∞ unψu∗n for any
ψ ∈ S∗, we have limn→∞

∥∥u∗n(ψ ◦ θ
−1) − ψu∗n

∥∥ = 0. Hence we have, for any
ψ ∈ S∗,∣∣∣∣〈u−(k+1)

n θ
(
uk+1

n

)
, ψ

〉
− 〈1, ψ〉

∣∣∣∣
=

∣∣∣∣〈u∗nu−k
n θ

(
uk

n

)
θ(un), ψ

〉
−
〈
1, ψ ◦ θ−1〉∣∣∣∣

=

∣∣∣∣〈u−k
n θ

(
uk

n

)
θ(un), ψu∗n

〉
−
〈
1, ψ ◦ θ−1〉∣∣∣∣

≤

∥∥∥ψu∗n − u∗n
(
ψ ◦ θ−1)∥∥∥+ ∣∣∣∣〈u−k

n θ
(
uk

n

)
θ(un)u

∗
n − 1, ψ ◦ θ−1

〉∣∣∣∣ → 0

asn → ∞. Thusu−(k+1)
n θ

(
uk+1

n

)
converges to 1 σ -weakly. OnU(M), the σ -

strong∗ topology and theσ -weak topology agree, so thatθ
(
uk+1

n

)
− uk+1

n → 0
σ -strongly∗ asn→∞. Q.E.D.

Lemma 3.3. Let
{
M, θ

}
be as above. For anyψ1, ψ2, . . . , ψq ∈M+∗ , n, k ∈ N

and δ > 0 there exist a partition
{
F1, F2, . . . , Fn

}
of identity and u, w ∈ U(M)

such that

a)
∥∥[F j , ψs]

∥∥ ≤ δ , 1≤ j ≤ n , 1≤ s ≤ q ;

b) uFj u∗ = F j+1 , j = 1,2, . . . ,n , where Fn+1 = F1 ;

c)
∥∥ψs ◦ θ

−1
− ψs ◦ Ad u−1

∥∥ ≤ δ , 1≤ s ≤ q ;

d) With θ ′ = Adw ◦ θ ,
∥∥ϕ ◦ θ ′ − ϕ ◦ Ad u

∥∥ < δ ;

e)
∥∥θ ′(u`)− u`

∥∥
ϕ
≤ δ , |`| ≤ k ;

f) θ ′(F j ) = F j+1 , 1≤ j ≤ n ;

g) ‖w − 1‖]ϕ ≤ δ .

PROOF: The map:v ∈ U(M) 7→ Ad(v) ∈ Aut(M) is continuous, and the metric:
(v1, v2) ∈ U(M) × U(M) 7→

∥∥v1 − v2
∥∥]
ϕ

gives the topology ofU(M), so that
there exists anη > 0 such that∥∥∥ψs ◦ θ

−1
◦ Ad(v∗)− ψs ◦ θ

−1
∥∥∥ ≤ δ

4
, s ≤ q

whenever‖v − 1‖]ϕ < η, v ∈ U(M). We take such anη < δ. Applying Theo-
rem 2.10 to

{
M, θ

}
andη, we findw ∈ U(M) such that Ad(w) ◦ θ ∼= θ ⊗ σ0



272 XVII Non-Commutative Ergodic Theory

and‖w − 1‖]ϕ< η. Thus,θ ′ = Ad(w) ◦ θ is of the form:θ1 ⊗ σ0 in a factorization
M = N ⊗R with R ∼= R0. Onceθ ′ is fixed, the construction ofσ0 allows us to
choose a partition

{
F j : j = 1,2, . . . ,n

}
of identity inC⊗R such that (a) and (f)

hold. We now set

ϕ` = ϕ ◦ θ
′−`, |`| ≤ k, ψ =

1

2k+ 1

∑
|`|≤k

ϕ`,

and choose 0< ε < δ/2 so small that

3ε + 2k
(
2ε + (2k+ 1)

1
2
√

2nε
)
≤ δ;

√
2(2k+ 1)

1
2 nε ≤ η′,

whereη′ > 0 is another small number such that whenever‖v − 1‖]ϕ < η′ we have∥∥∥ψs ◦ θ
′−1
◦ Ad v−1

− ψs ◦ θ
′−1
∥∥∥ ≤ δ

4
, 1≤ s ≤ q.

By the last lemma, we can finda ∈ U(M) such that∥∥ψs ◦ θ
′−1
− ψs ◦ Ad(a)

∥∥ ≤ ε, 1≤ s ≤ q; (α)∥∥ϕ` − ϕ ◦ Ad(a∗)`
∥∥ ≤ ε2, |`| ≤ k; (β)∥∥aFj a

∗
− θ ′(F j )

∥∥]
ψ
≤ ε, 1≤ j ≤ n; (γ)∥∥θ ′(a`)− a`

∥∥]
ϕ
≤ ε, |l | ≤ k. (δ)

Sinceθ ′(F j ) = F j+1, 1≤ j ≤ n, by (f), Lemma XIV.2.1 guarantees the existence
of unitariesb j ∈ U(M) such that

b j aFj a
∗b∗j = F j+1, |b j − 1| ≤

√
2
∣∣aFj a

∗
− F j+1

∣∣.
Puttingb =

∑n
j=1 F j+1b j ∈ U(M), we obtain a unitaryb such that

baFj a
∗b∗ = F j+1;

(b− 1)∗(b− 1) =
n∑

j=1

(b j − 1)∗F j+1(b j − 1)

≤

n∑
j=1

(b j − 1)∗(b j − 1) ≤ 2
n∑

j=1

(
aFj a

∗
− F j+1

)2
,

so that
‖b− 1‖]ϕ ≤

√
2nε.

For each̀ , |`| ≤ k, we have‖b− 1‖2ϕ` ≤ (2k + 1)‖b− 1‖2ψ and so‖b− 1‖ϕ` ≤
√

2k+ 1
√

2nε. By (β) and‖b− 1‖ ≤ 2, we get
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∥∥
ϕ
= ‖b− 1‖ϕ◦Ad(a∗)` ≤ ‖b− 1‖ϕ` + 2

∥∥ϕ` − ϕ ◦ Ad(a∗)`
∥∥ 1

2

≤ 2ε +
√

2
√

2k+ 1nε = λ.

Since(ba)`+1
− a`+1

= (b− 1)a`+1
+ ba

(
(ba)` − a`

)
for ` ≥ 0, we have∥∥(ba)`+1

− a`+1
∥∥
ϕ
≤
∥∥(b− 1)a`+1

∥∥
ϕ
+
∥∥(ba)` − a`

∥∥
ϕ
,

so that for 0≤ ` ≤ k, we get ∥∥(ba)` − a`
∥∥
ϕ
≤ `λ.

Similarly, for 0> ` ≥ −k, we have∥∥(ba)` − a`
∥∥
ϕ
≤ |`|λ.

Consideringϕ ◦ Ad(a) instead ofϕ, we get∥∥a (ba)`a∗ − a`
∥∥
ϕ
≤ |`|λ, |`| ≤ k− 1.

This together with (β) implies that, for|`| ≤ k− 1∥∥∥θ ′((ba)`
)
− θ ′(a`)

∥∥∥
ϕ
=
∥∥(ba)` − a`

∥∥
ϕ◦θ ′

≤
√

2
∥∥ϕ ◦ θ ′ − ϕ ◦ Ad(a)

∥∥ 1
2 +

∥∥(ba)` − a`
∥∥
ϕ◦Ad(a)

< 2ε + |`|λ.

With u = ba, we get, for|`| < k, using (δ),∥∥θ ′(u`)− u`
∥∥
ϕ
≤

∥∥∥θ ′((ba)`
)
− θ ′(a`)

∥∥∥
ϕ
+
∥∥θ ′(a`)− a`

∥∥
ϕ
+
∥∥(ba)` − a`

∥∥
ϕ

≤ 2ε + |`|λ+ ε + |`|λ < 3ε + 2k
(
2ε +

√
2
√

2k+ 1nε
)
≤ δ.

What remain to be proven are conditions (c) and (d). Since‖b− 1‖ψ ≤
√

2nε
and(2k+ 1)1/2

√
2nε ≤ η′, we have‖b− 1‖ϕ ≤ η′, so that for 1≤ s ≤ q∥∥∥ψs ◦ Ad u∗ − ψs ◦ θ

′−1
∥∥∥

=

∥∥∥ψs ◦ Ad(a∗) ◦ Ad(b∗)− ψs ◦ θ
′−1
∥∥∥

≤

∥∥∥ψs ◦ Ad(a∗)− ψs ◦ θ
′−1
∥∥∥+ ∥∥∥ψs ◦ θ

′−1
◦ Ad(b∗)− ψs ◦ θ

′−1
∥∥∥

≤ ε +
δ

4
≤ δ.
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Finally, we get∥∥ϕ ◦ θ ′ − ϕ ◦ Ad(u)
∥∥ ≤ ∥∥ϕ ◦ θ ′ − ϕ ◦ Ad(a)

∥∥+ ∥∥ϕ ◦ Ad(ba)− ϕ ◦ Ad(a)
∥∥

≤ ε2
+
∥∥ϕ ◦ Ad(b)− ϕ

∥∥
≤ ε2
+ 2‖b− 1‖ϕ ≤ ε2

+ 2η′ < δ.

Thus (d) holds. Q.E.D.

We have still some mileage to go to finish the proof Theorem 3.1. Let us find
out our position and set the general direction of our arguments. Givenθ ∈ Int(M)

with pa(θ) = 0, we can findw ∈ U(M) near 1 such thatθ ′ = Ad(w) ◦ θ =
θ1 ⊗ σ0 by Theorem 2.10. Furthermore, by the last lemmaθ ′ is approximated by
Ad(u), u ∈ U(M), and Ad(u) behaves with respect to the partition

{
F1, . . . , Fn

}
of identity like the In-component ofσn. However we do not know the behavior of
u itself. If u can be adjusted so thatun

= 1, then
{
F1, . . . , Fn

}
and u generate

a In-subfactor. Ifθ ′ leavesu fixed in addition, thenθ ′ behaves on
{
F1, . . . , Fn,u

}′′
almost likeσn on the In-component. Namely, Ad(w) ◦ θ is approximated by Ad(u)
and Ad(u) on

{
F1, . . . , Fn,u

}
is the In-component ofσn. Sincew was chosen from

a neighborhood of 1, we will show inductively that the product ofw’s converges to
w∞ ∈ U(M) and the product of Ad(u)’s converges to Ad(w∞)◦θ which completes
the proof.

IdentifyingT with R/2πZ, we set

J(λ,q) =

[
λ−

2π

4q
, λ+

2π

4q

]
mod(2πZ), λ ∈ T. (1)

Forϕ ∈ S∗(M) andu ∈ U(M), let

Λ(ϕ,u) =

{
λ ∈ T : ϕ

(
e
(
J(λ,q)

))
≤

1

2q
, q ∈ N, q > 2

}
, (2)

wheree(λ) is the spectral measure ofu.

Lemma 3.4. Λ(ϕ,u) 6= ∅ , u ∈ U(M) .

PROOF: Let m denote the normalized Haar measure onT, i.e. dm(λ) = 1/2π dλ,
andµ be the probability measure onT given byµ(J) = ϕ

(
e(J)

)
for any Borel set

J ⊂ T. Put forq > 2

Aq =

{
λ ∈ T : µ

(
J(λ,q)

)
≤ 2−q

}
,

Bq =

{ (
λ1, λ2

)
∈ T2

:
∣∣λ1− λ2

∣∣ ≤ 2π

4q

}
.

Then we have,(
m⊗ µ

)
(Bq) =

∫
T

m
(
J(λ,q)

)
dµ(λ) = 2 · 4−qµ(T) = 2 · 4−q,
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and by Fubini’s theorem,(
m⊗ µ

)
(Bq) =

∫
T

µ
(
J(λ,q)

)
dλ ≥

∫
{Aq

µ
(
J(λ,q)

)
dλ > 2−qm

(
{Aq

)
.

Hence we getm
(
{Aq

)
< 2−q+1, so that

m

( ⋃
q>2

{Aq

)
<

∞∑
q=3

2−q+1
=

1

2
.

Therefore, we get

m
(
Λ(ϕ,u)

)
= m

( ⋂
q>2

Aq

)
> 1−

1

2
=

1

2
,

so thatΛ(ϕ,u) 6= ∅. Q.E.D.

We now define a Borel functionfn onT by

fn
(
eiθ )
= eiθ/n, θ ∈ ]−π,π] ∼= T = R/2πZ. (3)

Lemma 3.5. Let
{
M, θ, ϕ, ψ1, . . . , ψq

}
be as before. For anyε > 0 and n∈ N ,

there exists a partition
{
F1, . . . , Fn

}
of identity and u, v ∈ U(M) with the follow-

ing properties:

a)
∥∥[F j , ψk]

∥∥ < ε , 1≤ j ≤ n , 1≤ k ≤ q ;

b) uFj u∗ = F j+1 , 1≤ j ≤ n ,
(
Fn+1 = F1

)
;

c)
∥∥ψk ◦ θ

−1
− ψk ◦ Ad(u∗)

∥∥ ≤ ε , 1≤ k ≤ q ;

d) −1 ∈ Λ(ϕ,un) ;

e) Ad(v) ◦ θ(x) = uxu∗ for any x in the In-subfactor K generated byũ =
u fn(un)∗ and

{
F j : j = 1, . . . ,n

}
;

f) ‖v − 1‖ϕ < ε .

PROOF: Choose a largem ∈ N such that 3(2−m)
1
2 ≤ ε/8n. For p = 1,2, . . . ,n,

choose polynomialsRp(z) =
∑
|t |≤k ap,t zt of z andz−1 such that∣∣∣Rp(z)−

(
z fn(z

n)−1)p
∣∣∣ ≤ ε

8n
, z ∈ T, zn /∈ J(−1,m);∣∣Rp(z)

∣∣ ≤ 2, z ∈ T.

 (4)

Let A =
∑

p,t |ap,t | and choose a smallδ > 0 to be specified. Applying Lemma 3.3
to
{
M, θ, ϕ, ψ1, . . . , ψq, δ, n, k

}
, we obtain a partition

{
F1, F2, . . . , Fn

}
of iden-

tity and u, w ∈ U(M). Since we can replaceu by λu, λ ∈ T, if necessary,
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Lemma 3.4 allows us to assume−1 ∈ Λ(ϕ,un). Put θ ′ = Ad(w) ◦ θ , and lete
be the spectral projection ofun corresponding toJ(−1,m). Sinceϕ(e) ≤ 2−m, we
have, by (4), ∥∥Rp(u)− ũp

∥∥
ϕ
≤

ε

8n
+ 3 · 2−m/2 <

ε

4n
(5)

for p = 1,2, . . . ,n whenm is so large that 3· 2−m/2 < ε/8n.
With ϕ1 = ϕ ◦ Ad(u), we also have∥∥Rp(u)− ũp

∥∥
ϕ1
<

ε

4n

becauseu commutes with bothRp(u) and ũ. Lemma 3.3.(d) and the inequality∥∥Rp(u)− ũp
∥∥ ≤ 3 imply that

∥∥Rp(u)− ũp
∥∥
ϕ◦θ ′

<

(( ε
4n

)2
+ 9δ

) 1
2

, 1≤ p ≤ n. (6)

By the condition (e) of Lemma 3.3 and the choice ofA, we get∥∥Rp(θ
′(u)

)
− Rp(u)

∥∥
ϕ
≤ Aδ, 1≤ p ≤ n. (7)

Combining (5), (6) and (7), we get

∥∥∥ũp
− θ ′

(
ũp)∥∥∥

ϕ
≤

ε

4n
+

(( ε
4n

)2
+ 9δ

) 1
2

+ Aδ.

Hence, with a small enoughδ > 0, we get∥∥∥ũp
− θ ′

(
ũp)∥∥∥

ϕ
≤
ε

n
, 1≤ p ≤ n. (8)

As δ < ε, the conditions (a), (b), (c) and (d) are now automatic. We are going to
constructa ∈ U(M) so thatv = aw satisfies (e) and (f). By construction,ũn

= 1.
Sinceun commutes withF j ’s, so doesfn(un)∗ which means

ũFj ũ
∗
= uFj u

∗
= F j+1, 1≤ j ≤ n.

Henceũ and F j ’s generate a subfactorM of type In. We then setei, j = ũi− j F j

to obtain a matrix unit{ei, j } of M . We note thatun and fn(un) both belong toM ′.
Henceũei, j ũ = ei+1, j+1 entails thatuei, j u∗ = ei+1, j+1 for all i, j also, where the
indicesi, j are considered in modn. We then put

a =
n∑

j=1

ej+1,2θ
′(e1, j ).

By the condition (f) of Lemma 3.3,a is a unitary ofM, and

aθ ′(ei, j )a
∗
= ei+1,2θ

′(e11)e2, j+1 = ei+1, j+1 = uei, j u
∗.
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We now setv = aw, and see thatv satisfies (e). To prove (f), we note that for
1≤ j ≤ n

ej+1,2θ
′(e1, j ) = ej+1,2θ

′(F1)θ
′(ũ1− j ) = ej+1,2θ

′(ũ1− j ),

so that (8) entails ∥∥∥ej+1,2θ
′(e1, j )− ej+1,2ũ1− j

∥∥∥
ϕ
≤
ε

n
.

Sinceej+1,2ũ1− j
= ũ j−1F2ũ1− j

= F j+1, we have

‖a− 1‖ϕ ≤ ε,

so that‖v − 1‖ϕ = ‖aw − 1‖ϕ ≤ 2ε. This completes the proof by replacingε by
ε/2. Q.E.D.

We choose a sequence{nν} in N such that

∞∑
ν=1

1

nν
< +∞ (9)

and put

δν =
1

2ν(nν + 1)3
. (10)

Lemma 3.6. If
{

F j : 1 ≤ j ≤ nν
}

is a partition of identity inM and u is a
unitary of M such that unν = 1 and uFj u∗ = F j+1 ( Fnν+1 = F1 ), then∥∥ψ − ψ |Mc ⊗ τM

∥∥ < 2−ν, ψ ∈M∗,

whenever
∥∥[u, ψ]∥∥ ≤ δν and

∥∥[F j , ψ]
∥∥ ≤ δν , where M is theInν -subfactor of

M generated by u and{F j } .

PROOF: This follows immediately from Lemma XIV.4.9 and the fact thatei, j =

ui− j F j is a matrix unit ofM and
∥∥[ei, j , ψ]

∥∥ ≤ (nν + 1)δ if
∥∥[u, ψ]∥∥ < δ and∥∥[F j , ψ]

∥∥ < δ. Q.E.D.

As before, we keep a fixed faithful stateϕ.

Lemma 3.7. For any n∈ N and δ > 0 , there existsε = ε(δ, η) > 0 such that if
u ∈ U(M) and −1 ∈ Λ(ϕ,un) , then withũ = u fn(un)∗∥∥[ũ, ψ]∥∥ ≤ δ, ψ ∈M+∗

whenever
∥∥[u, ψ]∥∥ ≤ 2ε and 0≤ ψ ≤ ϕ .

PROOF: Let R(z) =
∑m

k=−m amzk be such that
∣∣R(z)∣∣ ≤ 2, z ∈ T and∣∣∣R(z)− fn(zn)z

∣∣∣2 ≤ δ2

8
, z ∈ T \ J(−1,q),



278 XVII Non-Commutative Ergodic Theory

whereq ≥ 3 is chosen so that 9/2q
≤ δ2/8. Since−1 ∈ Λ(ϕ,un), we have(∥∥R(u) − u fn(un)∗

∥∥]
ϕ

)2
≤ δ2/8+ 9 · 2−q. Hence‖R(u) − ũ‖]ψ ≤ δ/2 whenever

0≤ ψ ≤ ϕ. If
∥∥[u, ψ]∥∥ < ε, then

∥∥[uk, ψ]
∥∥ ≤ |k|ε, k ∈ Z, so that we set

ε = ε(δ,n) =
δ

4

( m∑
k=−m

|k||ak|

)
.

It is straightforward to check that thisε works. Q.E.D.

We now choose a decreasing sequence{εν} such that

0< εν ≤ min

{
ε
(
δν+1, nν+1

)
,

1

nν

}
. (11)

Lemma 3.8. Let N be a typeIn -subfactor ofM and decomposeM into the
tensor productM = N⊗Nc . Let

{
ei, j : 1≤ i, j ≤ n

}
be a matrix unit of N and

{ωi, j } be the basis of N∗ dual to {ei, j } . Then everyψ ∈ M∗ is uniquely written
in the form:

ψ =

n∑
i, j=1

ωi, j ⊗ ψi, j , ψi, j ∈ Nc
∗ , 1≤ i, j ≤ n. (12)

We then have

a)
∥∥[1⊗ x, ψ ]

∥∥ ≤ n2 sup
∥∥[ψi, j , x]

∥∥ , x ∈ Nc ;

b) for any u∈ U(N) , v ∈ U(Nc) and θ ∈ Aut(N) ,∥∥∥ψ ◦ ((Ad u)⊗ θ
)
− ψ ◦

(
Ad(u⊗ v)

)∥∥∥ ≤ n2 sup
∥∥∥ψi, j ◦ θ − ψi, j ◦ Ad(v)

∥∥∥.
PROOF: We know that‖ωi, j ‖ = 1. For everyx ∈ Nc,[

1⊗ x, ψ
]
=

∑
i, j

ωi, j ⊗
[
x, ψi, j

]
,

which shows (a). For (b), we have

ψ ◦
(
Ad(u)⊗ θ

)
=

∑
i, j

(
ωi, j ◦ Ad(u)

)
⊗
(
ψi, j ◦ θ

)
,

ψ ◦
(
Ad(u⊗ v)

)
=

∑
i, j

(
ωi, j ◦ Ad(u)

)
⊗
(
ψi, j ◦ Ad(v)

)
.

Since
∥∥ωi j ◦ Ad(u)

∥∥ = ‖ωi j ‖ = 1, we get (b). Q.E.D.

We finally come to the following last lemma:
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Lemma 3.9. Let
{
M, θ, ϕ

}
be as before, and{ψ j } be a sequence inM∗ with

0 ≤ ψ j ≤ ϕ . Then there exist a sequence{Mν} of finite typeI subfactors ofM
and a sequence{aν} of unitaries inM such that the following conditions hold:

a) M j and Mν commute, j< ν , ν ∈ N ;

b) Mν is generated by a partition
{

Fνj : 1 ≤ j ≤ nν
}

of identity and a unitary
uν such that

uνFνj u∗ν = Fνj+1,
(
Fνnν+1 = Fν1

)
, 1≤ j ≤ nν, unν

ν = 1;

c)
∥∥[uν, ψ`]∥∥ ≤ δν , ` < ν ,

∥∥[Fνj , ψ`]∥∥ ≤ δν , ` < ν ;

d) aν ∈
(
M1 ∨ M2 ∨ · · · ∨ Mν−1

)c ;

e)
∥∥(aν − 1)aν−1 · · ·a1

∥∥]
ϕ
≤ 8/nν ;

f) With θν = Ad
(
aνaν−1 . . .a1

)
◦ θ , θν leaves Mj , 1 ≤ j ≤ ν , globally

invariant and agrees withAd(u j ) on Mj ;

g)
∥∥ψ j ◦ θ

−1
ν − ψ j ◦ Ad(uνuν−1 · · · u1)

−1
∥∥ ≤ εν .

PROOF: We construct{aν} and{Mν} by induction. Supposea j andM j , 1≤ j ≤ ν,
have been constructed.

Let N = M1 ∨ M2 ∨ · · · ∨ Mν andn =
∏nν

j=1 n j . ThenN is of type In. Put

Q = Nc andU = uνuν−1 · · · u1. By assumption,θν = Ad
(
aνaν−1 · · ·a1

)
◦ θ

leavesN globally invariant and agrees with Ad(U ). Let θ̃ be the restriction ofθν
to Nc. Let

{
ωi, j : 1 ≤ i, j ≤ n

}
be the basis ofN∗ dual to a matrix unit ofN and

for ` = 1,2, . . . , ν + 1, decomposeψ` in the form:ψ` =
∑n

i, j=1ωi j ⊗ ψ
i j
` with

ψ
i, j
` ∈ Nc

∗ .
By Theorem 2.10,̃θ is outer conjugate toθ , so thatθ̃ ∈ Int(Nc) andpa(θ̃) = 0.

We apply Lemma 3.5 to
{
Nc, θ̃, ϕNc = ϕ|Nc, ψ

i, j
l , nν+1

}
to obtain a partition{

F j : 1≤ j ≤ nν+1
}

of identity in Nc and unitariesu, v ∈ Nc such that∥∥[F j , ψ
i,k
` ]
∥∥ ≤ δν+1/n2, 1≤ j ≤ nν+1, 1≤ i, k ≤ n, (13)

uFj u
∗
= F j+1, 1≤ j ≤ nν+1, (14)∥∥∥ψ i, j

` ◦ θ̃
−1
− ψ

i, j
` ◦ Ad(u−1)

∥∥∥ < εν+1

2n2
, 1≤ ` ≤ ν + 1, (15)

−1 ∈ Λ
(
ϕNc,unν+1

)
, (16)

Ad(v) ◦ θ(x) = uxu∗, x ∈ M, (17)

whereM is the Inν+1-subfactor generated by theF j ’s and

ũ = u fnν+1(u
nν+1)∗, (18)
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‖v − 1‖ϕ <
εν+1

2
,

∥∥θ̃−1(v)− 1
∥∥
ϕ
<
εν+1

4∥∥(v − 1)aνaν−1 · · ·a1
∥∥
ϕ
<
εν+1

2
.

 (19)

Here we are applying Lemma 3.5 withε ≤ min
{
δν+1, εν+1/2

}
which is so small

that ‖v − 1‖ϕ|Nc < ε for any v ∈ U(Nc) entails the above condition (19). Since

θν = Ad U ⊗ θ̃ in the decompositionM = N ⊗ Nc, (15) and the last lemma imply
that ∥∥∥ψ` ◦ θ−1

ν − ψ` ◦ Ad(uU)−1
∥∥∥ ≤ εν+1

2
, 1≤ ` ≤ ν + 1. (20)

The induction hypothesis (g) means∥∥∥ψ` ◦ θ−1
ν − ψ` ◦ Ad(U )−1

∥∥∥ ≤ εν, 1≤ ` ≤ ν.

The commutativity ofu andU then gives, for 1≤ ` ≤ ν,∥∥ψ` ◦ Ad(u)−1
− ψ`

∥∥ ≤ εν + εν+1

2
≤ 2εν,

so that ∥∥[u, ψ`]∥∥ ≤ 2εν, 1≤ ` ≤ ν. (21)

As 0≤ ψ` ≤ ϕ, Lemma 3.7 entails by (11) that∥∥[ũ, ψ`]∥∥ ≤ δν+1, 1≤ ` ≤ ν. (22)

Putb = fnν+1(u
nν+1)∗ = ũu∗. Then‖b− 1‖ ≤ π/nν+1, and witha = bv we have

by (19) and (11)∥∥(1− a)aνaν−1 · · ·a1
∥∥
ϕ
≤

π

nν+1
+
εν+1

2
≤

8

nν+1
,

∥∥a∗1a∗2 · · ·a
∗
ν (1− a∗)

∥∥
ϕ
≤
∥∥(1− v∗)∥∥

ϕ
+

π

nν+1
<
εν+1

2
+

π

nν+1
≤

8

nν+1
,

so that ∥∥(1− a)aνaν−1 · · ·a1
∥∥]
ϕ
<

8

nν+1
. (23)

As 0≤ ψ` ≤ ϕ, we have by (19)∥∥ψ` ◦ θ−1
ν ◦ Ad(v∗)− ψ` ◦ θ

−1
ν

∥∥ = ∥∥∥ψ` ◦ Ad
(
θ−1
ν (v∗)

)
− ψ`

∥∥∥
≤ 2

∥∥θ−1
ν (v)− 1

∥∥
ψ`
≤ 2

∥∥θ−1
ν (v)− 1

∥∥
ϕ

= 2
∥∥θ̃−1(v)− 1

∥∥
ϕ
≤

εν+1

2
.

Hence, we get by (20)∥∥∥ψ` ◦ θ−1
ν ◦ Ad(v∗)− ψ` ◦ Ad(uU)−1

∥∥∥ ≤ εν+1, 1≤ ` ≤ ν + 1.

Therefore we obtain the estimate:
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ν ◦ Ad(a∗)− ψ` ◦ Ad(ũU)−1

∥∥∥
=

∥∥∥ψ` ◦ θ−1
ν ◦ Ad(v∗) ◦ Ad(b∗)− ψ` ◦ Ad(U−1) ◦ Ad(u∗b∗)

∥∥∥
=

∥∥∥ψ` ◦ θ−1
ν ◦ Ad(v∗)− ψ` ◦ Ad(uU)−1

∥∥∥ ≤ εν+1.

Hence we have∥∥∥ψ` ◦ θν ◦ Ad(a)−1
− ψ` ◦ Ad(ũU)−1

∥∥∥ ≤ εν+1, 1≤ ` ≤ ν + 1. (24)

We now set 

Fν+1
j = F j , 1≤ j ≤ nν+1,

uν+1 = ũ,

Mν+1 =
{

F j ,uν+1 : 1≤ j ≤ nν+1
}′′
,

aν+1 = a.

Conditions (a) and (b) are automatic. Inequality (22) gives the first half of (c). In-
equality (13) and Lemma 3.7 give the second half of (c). Condition (d) is automatic
by the construction ofa. Inequality (23) is precisely (e). With

θν+1 = Ad(a) ◦ θν = Ad U ⊗ Ad(a) ◦ θ̃ ,

we get (f) for 1≤ j ≤ ν. To establish (f) forj = ν+1, we observe thatMν+1 = M ,
and must show that Ad(a) ◦ θ̃ (x) = ũxũ∗ for everyx ∈ M . But we have (17) and
a = bv, so that for everyx ∈ M

aθ̃ (x)a∗ = bvθ(x)v∗b∗ = buxu∗b∗ = ũxũ∗.

Thus (f) for j = ν + 1 follows.
Finally, inequality (24) is precisely (g) forν + 1. Q.E.D.

PROOF OFTHEOREM 3.1: Let
{
M, θ

}
be as before and choose a faithfulϕ ∈ S∗

and a sequence{ψν} which is dense in
{
ψ ∈ M+∗ : 0 ≤ ψ ≤ ϕ

}
. For a given

ε > 0, we choose{nν} ⊂ N such that
∑
∞

ν=1 1/nν < ε/8. We then construct{Mν},
{aν} and{uν} by Lemma 3.9, and setR =

∨
∞

ν=1 Mν . We now observe that

a) R is an AFD II1-subfactor ofM and withQ = Rc

M = R ⊗ Q (25)

by Lemmas XIV.4.9 and XIV.4.10;
b) wν = aνaν−1 · · ·a1 convergesσ -strongly∗ to a unitaryw ∈ M since

∥∥wν −
wν−1

∥∥]
ϕ
≤ 8/nν by the condition (e) of the lemma.

Since we may setw0 = 1, we have

‖w − 1‖ϕ ≤
∞∑
ν=1

∥∥wν − wν−1
∥∥
ϕ
≤

∞∑
ν=1

8

nν
< ε.
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Let θ∞ = Ad(w) ◦ θ = limν→∞ θν . Thenθ∞ leaves eachMν globally in-
variant and agrees with Ad(uν) on Mν . Thereforeθ∞|R ∼=

∏
∞ ⊗

ν=1 Ad(uν). Let
α =

∏
∞ ⊗

ν=1 Ad(uν) on R. By (g) of Lemma 3.9, we get, relative to the decom-
position (25),

θ∞ ∼= α ⊗ idQ, (26)

where idQ is the identity automorphism ofQ.
By Theorem 2.10, a small perturbationα′ of α by Int(R) is conjugate toα⊗idR,

so that there existsu ∈ U(R) such that‖u − 1‖ϕ < ε and Ad(u) ◦ Ad(w) ◦ θ =
α ⊗ idR⊗Q with respect to the decompositionM = R ⊗ R ⊗ Q. The behavior
of α on R depends only on the choice of{nν} not onθ itself. Thus, we conclude
that a small perturbationθ ′ of θ by Int(M) conjugate toσo ⊗ idN with respect
to a decompositionM = R0 ⊗ N whereN ∼= M. This completes the proof of
Theorem 3.1. Q.E.D.

Corollary 3.10. TheAFD factor R0 of type II1 has only one outer conjugacy
class of aperiodic automorphisms. More precisely, ifθ1 and θ2 are aperiodic au-
tomorphisms ofR0 , then for anyε > 0 there exist u∈ U(R0) and σ ∈ Aut(R0)

such that

a) ‖u− 1‖2 < ε ;

b) σ ◦ Ad(u) ◦ θ1 ◦ σ−1
= θ2 .

PROOF: By Theorem XIV.2.16, we have Aut(R0) = Int(R0) and also Cnt(R0) =

Int(R0) by Theorem XIV.4.16. Hence Theorem 3.1 whose proof was just completed
gives the above conclusion. Q.E.D.

Lemma 3.11. If R0,1 is theAFD factor of typeII∞ , then

Cnt
(
R0,1

)
= Int

(
R0,1

)
.

PROOF: Let θ ∈ Cnt
(
R0,1

)
, so thatpa(θ) = 1. By Theorem 2.10,θ is outer

conjugate toθ ⊗ idR0 with a decomposition:R0,1 ∼= R0,1 ⊗ R0. Furthermore,
θ is outer conjugate toθ ⊗ idB with a decomposition:R0,1 ∼= R0,1 ⊗ B, where
B = L

(
`2(Z)

)
. Hence we haveθ ∼ θ ⊗ idR0,1, so that

θ ⊗ idR0,1 ∈ Cnt
(
R0,1⊗R0,1

)
.

Let s be the symmetry:s(x ⊗ y) = y ⊗ x on R0,1 ⊗ R0,1. It follows that s ∈
Int
(
R0,1 ⊗R0,1

)
. Hences andθ ⊗ idR0,1 commute modulo Int

(
R0,1 ⊗R0,1

)
by

Corollary 2.11 or Lemma XIV.4.14. Thus we have

θ ⊗ θ−1
=
(
θ ⊗ idR0,1

)
s
(
θ−1
⊗ idR0,1

)
s−1
∈ Int

(
R0,1⊗R0,1

)
,

so thatθ itself is inner. Q.E.D.
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Theorem 3.12. If R0,1 is theAFD factor of typeII∞ , then the conjugacy class of
non-unimodular automorphismθ of R0,1 , i.e. θ ∈ Aut

(
R0,1

)
with mod(θ) 6= 1 ,

is uniquely determined bymod(θ) .

PROOF: SinceR0,1 ∼= R0 ⊗ L(`2), whereR0 is the AFD II1-factor, R0,1 is
strongly stable. Letθ1 andθ2 be automorphisms ofR0,1 with mod(θ1) = mod(θ2) =
λ 6= 1. Thenθ1 and θ2 are both aperiodic, so thatpa(θ1) = p0(θ1) = 0 =
p0(θ2) = pa(θ2). Henceθ1 ∼ θ1 ⊗ σ0 andθ2 ∼ θ2 ⊗ σ0 by Theorem 2.10. Put
θ = θ1⊗ θ

−1
2 . Then we have mod(θ) = 1. IdentifyR0,1 with R0,1⊗R0,1. Choose

e ∈ Proj(R0,1) with τ(e) = 1. Thene ∼ θ(e), so that there existsu ∈ U(R0,1)

such thate = Ad(u) ◦ θ(e). Let
{

ei, j : i, j ∈ N
}

be a matrix unit ofR0,1 such
thate1,1 = e, and letB be the type I∞ subfactor ofR0,1 generated by{ei, j }. Let
v =

∑n
i=1 ei,1uθ(e1,i ) andθ ′ = Ad(v)◦ θ . Then we haveR0,1 ∼= (R0,1)e⊗B and

θ ′ = θ0 ⊗ id, whereθ0 = (θ ′)e. Sinceθ0 ∈ Aut
(
(R0,1)e

)
= Int

(
(R0,1)e

)
, (R0,1)e

being isomorphic toR0, we haveθ ′ ∈ Int(R0,1); consequentlyθ ∈ Int(R0,1).
Therefore, we conclude thatθ ∼ σ0 ⊗ id on R0,1 = R0 ⊗ L(`2). Finally, we get
onR0,1 ∼= R0,1⊗R0

θ2 ∼ θ2⊗ σ0 ∼ θ2⊗ σ0⊗ idL(H) ∼ θ2⊗
(
θ1⊗ θ

−1
2

)
∼ θ2⊗

(
θ−1

2 ⊗ θ1
)

∼
(
θ2⊗ θ

−1
2

)
⊗ θ1 ∼ idL(H)⊗σ0⊗ θ1 ∼ θ1.

Therefore,θ1 andθ2 are outer conjugate. By Theorem XII.1.11,θ1 andθ2 are stable,
so that they are conjugate. Q.E.D.

Proposition 3.13. Let M be a factor andθ = Aut(M) . Let p = pa(θ) > 0 .
Choose u∈ U(M) with θ p

= Ad(u) . Then there exists a p-th rootγ of unity
such thatθ(u) = γu . The numberγ is an outer conjugacy invariant ofθ .

PROOF: First, we have

Ad
(
θ(u)

)
= θ Ad(u)θ−1

= θθ pθ−1
= θ p

= Ad(u),

so thatu∗θ(u) = γ ∈ C, and|γ | = 1. Next,

γ pu = θ p(u) = u u u∗ = u,

so thatγ p
= 1. Sinceu is unique up to a scalar multiple,γ does not depend on the

choice ofu.
The numberγ is clearly conjugacy invariant. Supposeθ = Ad(v)◦θ . Inductively

setvk = vθ(vk−1) with v1 = v andvs = 1. Then we haveθ
k
= Ad(vk) ◦ θ

k, so that
θ

p
= Ad(vpu); and so

θ(vpu) = vθ(vp)γuv∗ = γ vp+1uv∗ = γ vpθ
p(v)θ p(v∗)u = γ vpu.

Therefore, the sameγ works for θ . Thus,γ is an outer conjugacy invariant ofθ .
Q.E.D.
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Definition 3.14. The p-th rootγ of unity in the last proposition is called theob-
structionof θ and denoted by Ob(θ).

Proposition 3.15. For any p∈ N and a p-th root of unityγ , theAFD factor R0
of type II1 admits an automorphismσ γp with p= p0(σ

γ
p ) and γ = Ob(σ γp ) .

PROOF: Let γ = e2πik/p, 0≤ k ≤ p− 1. Letα be an aperiodic automorphism of
an AFD factorM of type II1. SetR0 =Moα (pZ). SinceR0 is injective, it is AFD
and of type II1. Let u be the unitary ofR0 implementingα p on M. Consider the
dual actionα̂ of (pZ )̂ in the pairing:α̂s(u) = e2πisu, 0≤ s < 1, andα̂s(x) = x,
x ∈M. Observe that the automorphismα extends toR0 naturally, andα p

= Ad(u).
Setθ = α̂k/p ◦ α. Sinceα andα̂ commute, we can computeθ p easily and in fact
θ p
= α p

= Ad(u). Also we haveθ(u) = e2πik/pu = γu.
Supposeθ j

= Ad(v) for 1 ≤ j < p with v ∈ U(R0). Sinceθ andα agree on
M, we haveα j (x) = vxv∗ for everyx ∈M. For everyn ∈ Z, we have also

unvxv∗u−n
= α pn+ j (x), x ∈M.

Let ε be the canonical conditional expectation ofR0 ontoM. Then we have

ε(unv)x = α pn+ j (x)ε(unv), x ∈M.

Sinceα pn+ j is free, we haveε(unv) = 0, n ∈ Z. But we have, inL2(R0, τ ),

v =
∑
n∈Z

unε(u−nv).

Thus, this is impossible. Hencep0(θ) = p. Q.E.D.

Theorem 3.16. Let M be a strongly stable separable factor, andθ1, θ2 ∈ Int(M) .
If p = p0(θ1) = p0(θ2) = pa(θ1) = pa(θ2) > 0 , then the following two conditions
are equivalent:

(i) Ob(θ1) = Ob(θ2) ;
(ii) θ1 and θ2 are outer conjugate, i.e. there existπ ∈ Aut(M) and a unitary

u ∈ U(M) such that

π ◦ Ad(u) ◦ θ1 ◦ π
−1
= θ2.

PROOF: The implication: (ii) H⇒ (i) was already proved in Proposition 3.13.
First, we reduce the proof to the case of trivial obstruction. Namely, we assume

that if θ ∈ Int(M) satisfies the condition thatp0(θ) = pa(θ) = p and Ob(θ) = 1,
then θ ∼ id⊗σp on M ⊗ R0 whereσp ∈ Aut(R0) is the automorphism given
by (2.5).

Suppose thatθ ∈ Int(M) satisfies the condition thatp0(θ) = pa(θ) = p and
Ob(θ) = γ . By Theorem 2.10, we haveθ ∼ θ⊗σp onM⊗R0. Since Ob(α⊗β) =
Ob(α)Ob(β) for anyα ∈ Aut(M) andβ ∈ Aut(R0) with p0(α) = p0(β) = p, we
have Ob

(
θ ⊗ σ

γ
p
)
= γ γ = 1. Sinceθ ⊗ σ γp ∈ Int

(
M⊗R0

)
andθ ⊗ σ γp ∼ id⊗σp.
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Therefore, we have

θ ∼ θ ⊗ σp ∼ θ ⊗ id⊗σp ∼ θ ⊗
(
σ
γ
p ⊗ σ

γ
p
)

∼
(
θ ⊗ σ

γ
p
)
⊗ σ

γ
p ∼

(
id⊗σp

)
⊗ σ

γ
p ∼ id⊗

(
σp ⊗ σ

γ
p
)
∼ id⊗σ γp .

Thus, all we have to do is to prove the statement that ifθ ∈ Int(M) satisfies the
conditions:p0(θ) = pa(θ) = p > 0 and Ob(θ) = 1, thenθ ∼ id⊗σp onM⊗R0.

Since Ob(θ) = 1, we can chooseu ∈ U(Mθ ) with θ p
= Ad(u). Let u = eih

for some self-adjointh ∈ Mθ . Setv = e−ih/p. Then
(
Ad(v) ◦ θ

)p
= id. We now

replaceθ by Ad(v) ◦ θ , so that we haveθ p
= id. Thusθ can be interpreted as a free

action of the cycle groupZ p = Z/pZ =
{
0,1, . . . , p− 1

}
. We fix a pairing ofZ p

and its dual̂Z p = Z p as follows:

〈 j, k〉 = e2πi jk/p, j, k ∈ Z p.

We then split the proof into a few steps. [STOP]

Lemma 3.17. There exists a sequence{un} in U(Mθ ) such that

θ = lim
n→∞

Ad(un) and up
n = 1, n ∈ N.

PROOF: By the assumption, there exists a sequence{vn} in U(M) with θ =

limn→∞ Ad(vn) in the topology of Aut(M). Let ω be a free ultra filter onN, and
consider

{
v∗nθ

k(vn)
}
= Vk as an element ofU(Mω). By the assumption onpa(θ),

θω is a free action ofZ p and{Vk} is a one cocycle forθω, so that there exists an
elementx = {xn} in U(Mω) and thatVk = X∗θk

ω(X). Passing to a subsequence of
{xn}, we obtain a strongly central sequence{xn} in U(M) such that

lim
n→∞

∥∥∥x∗nθ
k(xn)− v

∗
nθ

k(vn)

∥∥∥]
ϕ
= 0, k ∈ Z p,

for any faithfulϕ ∈ S∗. The strong centrality of{xn} means that the multiplication
of xn from either side is almost unitary in‖ · ‖ϕ-norm. The convergence of Ad(vn)

to θ in Aut(M) implies that the set
{
ϕ ◦ Ad

(
θk(vn)

)±1
: n ∈ N, k ∈ Z p

}
is

relatively compact in norm. Thus we conclude that

lim
n→∞

∥∥∥vnx∗n − θ
k(vnx∗n

)∥∥∥]
ϕ
= 0, k ∈ Z p.

Then withε = 1/p
∑p−1

k=0 θ
k, the conditional expectation toMθ invariant underθ ,{

vnx∗n
}

is equivalent to the sequence
{
ε(vnx∗n)

}
in Mθ . sincevnx∗n is a unitary,

ε(vnx∗n) can be readjusted to a unitarywn in Mθ , so that
{
vnx∗n

}
is equivalent to the

sequence{wn} in U(Mθ ). Hence we obtain

lim
n→∞

Ad(wn) = lim
n→∞

Ad(vn)Ad(xn)
−1
= lim

n→∞
Ad(vn) lim Ad(xn)

−1
= θ.
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Sinceθ p
= id, {wp

n } is strongly central inM. Writewp
n = eikn in Mθ with −π ≤

hn ≤ π. Seth′n = (1−1/n)hn andyn = eih′n . Then we have
∥∥hn−h′n

∥∥ ≤ 2π/n and∥∥wp
n−yn

∥∥ ≤ sin(π/n). Hence{yn} is also strongly central. Sinceyn→ log yn = h′n
is aC∗-algebraic functional calculus because Sp(yn) does not contain−1, {h′n} is
also strongly central, so that{hn} itself is strongly central. Setzn = eihn/p and
un = znwn. Sincewn andhn commute,up

n = zp
nw

p
n = 1, and we have

lim
n→∞

Ad(un) = lim
n→∞

Ad(zn) lim
n→∞

Ad(wn) = θ. Q.E.D.

Lemma 3.18. If θ gives a free action ofZ p , then θ is conjugate toθ ⊗ σp .

PROOF: By Theorem 2.10, there existsw ∈ U(M) such that Ad(w) ◦ θ ' θ ⊗ σp

on M ⊗ R0. For 1≤ k ≤ p, we definewk inductively as follows:w1 = w and
wk = wθ(wk−1). Then

(
Ad(w) ◦ θ

)k
= Ad(wk) ◦ θ

k. Since
(
Ad(w) ◦ θ

)p
'(

θ ⊗σp
)p
= id, andθ p

= id, wp must be a scalar of absolute value one. Letγ be a
p-th root ofwp and setvk = γ

−kwk, k ∈ Z p. Then{vk} is aθ -cocycle overZ p. By
the stability of free action of a finite group. Proposition XI.2.26, the cocycle{vk} is
a coboundary, i.e.vk = a∗θk(a) for somea ∈ U(M). Hence we have

θ ⊗ σp ' Ad(w) ◦ θ = Ad(v1) ◦ θ = Ad
(
a∗θ(a)

)
◦ θ

= Ad(a)−1
◦ θ ◦ Ad(a) ' θ. Q.E.D.

Let λ = e2πi/p. Then from the above it follows that there exists a strongly
central sequence{wn} of unitaries such that

θ(wn) = λwn and w
p
n = 1.

Lemma 3.19. Fix a faithful ϕ ∈ S∗ and ε > 0 . If w ∈ U(M) satisfies

θ(w) = λw and wp
= 1,

then there existv ∈ U(M) and a sequence{un} in U(Mθ ) such that

‖w − v‖ϕ < ε;

θ(v) = λv, v p
= 1;

unvu∗n = λv, up
n = 1;

θ = lim
n→∞

Ad(un).

PROOF: Let {an} be a sequence inU(Mθ ) such thatθ = lim Ad(an) andap
n = 1.

We then split the arguments according to the type ofM.
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Type III case: SupposeM is of type III. ThenMθ is also of type III. Letα =
Ad(w) ∈ Aut(Mθ ). Sinceθ = lim Ad(an), we have

0= lim
n→∞

∥∥anw
∗a∗n − λw

∗
∥∥
ϕ
= lim

n→∞

∥∥anw
∗a∗nw − λ

∥∥
ϕ◦α

= lim
n→∞

∥∥w∗a∗nw − λa∗n
∥∥
ϕ◦α
;

0= lim
n→∞

∥∥a∗nw
∗an − λw

∗
∥∥
ϕ

= lim
n→∞

∥∥a∗nw
∗anw − λ

∥∥
ϕ◦α
= lim

n→∞

∥∥w∗anw − λan
∥∥
ϕ◦α
.

Hencew∗anw − λan convergesσ ∗-strongly to 0, equivalently, limn→∞
(
α(an) −

λ̄an
)
= 0 σ ∗-strongly. Letan =

∑
k∈Z p

λkek(n) be the spectral decomposi-

tion. Thenα
(
ek(n)

)
∼ ek+1(n) underU(Mθ ) sinceMθ is of type III, and also

limn→∞
[
α
(
ek(n)

)
− ek+1(n)

]
= 0 σ ∗-strongly. By Lemma XIV.2.1, there exists a

unitarybk(n) ∈Mθ such that

bk(n)α
(
ek(n)

)
bk(n)

∗
= ek+1(n);

∣∣1− bk(n)
∣∣ ≤ √2

∣∣∣α(ek(n)
)
− ek+1(n)

∣∣∣.
Settingb(n) =

∑
k∈Z p

ek+1(n)bk(n), we have

b(n)α(ek)b(n)
∗
= ek+1(n), k ∈ Z p;∥∥1− b(n)

∥∥2
ϕ
≤ 2

∑
k∈Z p

∥∥∥α(ek(n)
)
− ek+1(n)

∥∥∥2

ϕ
→ 0.

Hence
{
b(n)

}
converges to 1 inU(Mθ ). We also haveθ

(
b(n)w

)
= λb(n)w, and

b(n)wan = λanb(n)w. Thus(b(n)w)p belongs toU(Mθ ) and commutes withan.
Sincewp

= 1 andb(n) is near 1,
(
b(n)w

)p is also close to 1 in the topology of
U(Mθ ). With the function f p of (3), we setv(n) = b(n)w f p

(
b(n)wp

)∗. Then we
havev(n)an = λanv(n), v(n)p

= 1 andv(n) converges tow in U(M).
Type II∞ case: SupposeM is of type II∞. Sinceθ has periodp, θ preserve

the traceτ of M. Henceτ is also semi-finite onMθ . Furthermore,Mθ is also of
type II∞. Therefore, factoringMθ

= N ⊗B into the tensor product of a factorN
of type II1 and a factorB of type I∞, we obtain a decomposition ofM =M1⊗B
so thatθ also decomposesθ = θ1 ⊗ id, where

{
M1, θ1

}
is a free covariant system

of type II1 overZ p. Thus, the proof is reduced to the case of type II1.
Type II1 case: SupposeM is a factor of II1 with the normalized traceτ .

The arguments for the type III case breaks down at the point of the equiva-
lence:α

(
ek(n)

)
∼ ek+1(n). Thus, we need a slight detour. In any case, we have

limn→∞
∥∥α(an)− λan

∥∥
τ
= 0, so that

lim
n→∞

∥∥∥α(ek(n)
)
− ek+1(n)

∥∥∥
τ
= 0, k ∈ Z p.

Hence
∣∣τ(αk(e0(n)

)
−τ

(
ek(n)

)∣∣→ 0, k ∈ Z p, thus we have
∣∣τ(ek(n)

)
−1/p

∣∣→ 0,
k ∈ Z p. Thus we can find a sequence

{
fk(n)

}
k∈Z p

of partition of unity such
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that τ( fk(n)
)
= 1/p and either fk(n) ≤ ek(n) or fk(n) ≥ ek(n). Then we have

limn→∞
∥∥ fk(n)− ek(n)

∥∥
τ
= 0. Let

un =
∑
k∈Z p

λ
k

fk(n) ∈ U(Mθ ).

We then have

lim
n→∞

∥∥∥α( fk(n)
)
− fk+1(n)

∥∥∥
τ
= 0;

α
(

fk(n)
)
∼ fk+1(n);

lim
∥∥un − an

∥∥
τ
= 0.

From this point one, we can return to the arguments of the type III case.Q.E.D.

Thus, we have obtained a sequence{an} of U(Mθ ) and a strongly central se-
quence{bn} in U(M) such that

θ(bn) = anbna∗n = λbn,

ap
n = bp

n = 1;

θ = lim
n→∞

Ad(an).

 (27)

We now prove the following result which implies Theorem 3.16 as seen in the
first part of the above arguments:

Theorem 3.20. Let M be a separable strongly stable factor. Ifθ ∈ Int(M) gives
rise to a free action of the cyclic groupZ p = Z/pZ , p > 0 , and pa(θ) = p
also, thenθ is conjugate toid⊗σp on M ⊗R0 where σp is the automorphism
of theAFD factor R0 of type II1 constructed in (2.5).

PROOF: Letϕ ∈ S∗ be faithful, and putδν = 2−ν(p+1)−3 as in (10) withnν = p.
Let

{
ψ j : j ∈ N

}
is a dense sequence inM∗. We are going to construct a sequence

{Mν} of type Ip subfactors ofM and two sequences{uν} and{vν} of unitaries such
that for 1≤ ` ≤ ν, 1≤ j ≤ ν ands ∈ Z p

a) M` andMν commute,

b) Mν is generated byuν andvν which satisfy

up
ν = v

p
ν = 1, uνvν = λvνuν;

c)
∥∥[us

ν, ψ`]
∥∥ ≤ δν , ∥∥[vs

ν, ψ`]
∥∥ ≤ δν ;

d) θ(M j ) = M j andθ |M j = Ad(u j )
∣∣
M j

;

e)
∥∥ψ j ◦ θ

s
− ψ j ◦

(
Ad(uνuν−1 · · · u1)

s
)∥∥ ≤ δν/4.
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Supposeu j , v j andM j , 1≤ j ≤ ν, have been constructed. LetN = M1 ∨ M2 ∨

· · · ∨ Mν , andn = pν . ThenN is of type Ipν . PutQ = Nc andU = uνuν−1 · · · u1.
Then θ leavesN globally invariant and agrees with Ad(U ) on N. Consider the
restrictionθ̃ of θ to Q. Let

{
ωi, j : 1≤ i, j ≤ n = pν

}
be the basis ofN∗ dual to a

matrix unit of N. For` = 1,2, . . . , ν + 1, write

ψ` =

n∑
i, j=1

ωi j ⊗ ψ
i j
`

with ψ i, j
` ∈ Q∗.

Sinceθ ' θ ⊗ σp, θ̃ is conjugate toθ . Thus, we can apply the previous argu-
ments tõθ to find unitariesu andv in Q such that

up
= v p

= 1; θ(u) = u;

θ̃ (v) = λv = uvu∗;∥∥[v, ψ j,k
` ]

∥∥ ≤ δν+1

n2
, 1≤ j, k ≤ n, 1≤ ` ≤ ν + 1

∥∥ψ j,k
` ◦ θ̃

s
− ψ

j,k
` ◦ Ad(u)s

∥∥ < δν+1

4n2
, s ∈ Z p.

Let Mν+1 =
{
u, v

}′′
, uν+1 = u andvν+1 = v. Then we havẽθ(x) = Ad(u)(x),

x ∈ Mν+1. Sinceθ = Ad(U )⊗ θ̃ relative toM = N⊗ Q, we have, by Lemma 3.8,∥∥∥ψ` ◦ θs
− ψ` ◦ Ad(uU)s

∥∥∥ < δν+1

4
, 1≤ ` ≤ ν + 1;∥∥[vs, ψ`]

∥∥ ≤ δν+1, 1≤ ` ≤ ν + 1.

By the induction hypothesis (e), we have for 1≤ ` ≤ ν∥∥∥ψ` ◦ Ad(U )s− ψ` ◦ θ
s
∥∥∥ ≤ δν

4
, s ∈ Z p;

so that for 1≤ ` ≤ ν∥∥ψ` ◦ Ad(u)s− ψ`
∥∥ = ∥∥∥ψ` ◦ Ad(uU)s− ψ` ◦ Ad(U )s

∥∥∥
≤

∥∥∥ψ` ◦ Ad(uU)s− ψ` ◦ θ
s
∥∥∥+ ∥∥∥ψ` ◦ θs

− ψ` ◦ Ad(U )s
∥∥∥

≤
δν+1+ δν

4
=

3

4
δν+1 < δν+1.

Therefore, we get ∥∥∥[us
ν+1, ψ`

]∥∥∥ < δν+1, 1≤ ` ≤ ν;∥∥∥[vs
ν+1, ψ`

]∥∥∥ < δν+1, 1≤ ` ≤ ν.

the other conditions for
{
Mν+1,uν+1, vν+1

}
have been already proved. Thus, the

induction process is complete.
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The normalized traceτν on Mν is given by

τν =
1

p2

∑
k,`∈Z p

Ad
(
uk
νv
`
ν

)
.

so that the conditional expectationEν from M to Mc
ν = M ′ν ∩ M satisfies the

inequality:
∥∥ψ j ◦ Eν − ψ j

∥∥ ≤ δν , 1 ≤ j ≤ ν. Hence Lemma XIV.4.10 yields

that R =
∨
∞

j=1 M j is an AFD factor of type II1 such thatM = Rc
⊗ R. By

construction, we haveθ = id⊗θ
∣∣
R

relative to this factorization andθ |R ' σp.
Q.E.D.

Thus, we have completed the proof of Theorem 3.16 as well.

Corollary 3.21. If R0 is an AFD factor of type II1 , then Out(R0) is a simple
group with only countably many conjugacy classes labelled by the outer period
p0(θ) and the obstructionOb(θ) .

PROOF: Let N be a normal subgroup of Out(R0), and setG = ε−1(N). If G
contains an elementθ ∈ Aut(R0) with p0(θ) = p > 1 andγ = Ob(θ), then
θ ∼ σ

γ
p , andσ γp ∼ id⊗σ γp on R0 ⊗R0, so thatσ γp ⊗ σ

γ
p =

(
σ
γ
p ⊗ id

)(
id⊗σ γp

)
belongs toG and Ob

(
σ
γ
p ⊗ σ

γ
p
)
= γ 2. Repeating this, we see thatσ γp ⊗ · · · ⊗ σ

γ
p ,

p-times tensor product, belongs toG andσp ∼ σ
γ
p ⊗ · · · ⊗ σ

γ
p . HenceG contains

θ ∈ Aut(R0) with p0(θ) = p and Ob(θ) = 1.
Suppose nowG containsθ ∈ Aut(R0) with p0(θ) = p > 1 and Ob(θ) = 1.

Recall the proof of Proposition 3.15, and observe thatp0(α) = p, Ob(α) = 1,
p0
(
α̂1/p

)
= p and Ob

(
α̂1/p

)
= 1. Henceα ∈ G and α̂1/p ∈ G, whilst σ γp =

α̂k/p ◦ α =
(
α̂1/p

)k
◦ α; thusσ γp ∈ G.

Let n be a sufficiently large positive integer and writeR0 =
∏
∞ ⊗

k=1 Mk with
Mk = Mn(C). On Mn(C), take a pair of unitariesu andv such thatup

= v p
= 1,

uk /∈ T andvk /∈ T for 1≤ k ≤ p−1, andw = uvu∗v∗ is an aperiodic unitary in the
sense thatwk /∈ T for all k 6= 0. Letuk = u andvk = v, andα =

∏
∞ ⊗

k=1 Ad(uk) and
β =

∏
∞ ⊗

k=1 Ad(vk). Then we havep0(α) = p0(β) = p and Ob(α) = Ob(β) = 1,
so thatα andβ both belong toG. But αβα−1β−1

=
∏
∞ ⊗

k=1 Ad(wk) with wk = w

is aperiodic, so thatG containsσ0.
If G contains aperiodic element, then it containsσ0. But σ0 ∼ σp ⊗ σ0 and

σ0 ∼ id⊗σ0, so thatσp ⊗ σ0 and id⊗σ0 on R0 ⊗ R0 belong toG. Henceσp ⊗

id =
(
σp ⊗ σ0

)(
id⊗σ0

)−1 belongs toG. ThusG containsσp. Thus, ifG contains
an element of any type representing a conjugacy class, thenG contains all others.
ThereforeG must be the entire Aut(R0), which means that Out(R0) is simple.

Q.E.D.

We now close this section with the following result which will be used to de-
scribe the structure of Out(R) of an AFD factor of type IIIλ, 0 < λ < 1, which is
in turn needed to the uniqueness of AFD factors of type III1.
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Proposition 3.22. Let M be a separable strongly stable factor. Ifα is an action of
a discrete countable abelian group G such thatα−1

(
Cnt(M)

)
= H then for any

free ultra filter ω and a character p∈ (G/H )̂ = H⊥ , there exists u∈ U(Mω)

such that
αωg (u) = 〈g, p〉u, g ∈ G,

whereαω is of course the natural action of G onMω induced byα .

In fact, we can do slightly better. Namely, ifP is a separable von Neumann
subalgebra ofMω, then we can choose the aboveu from the relative commutant
P ′ ∩Mω of P .

PROOF: By Lemma 2.2, the actionαω of G/H on
(⋃

g∈G α
ω
g (P )

)′
∩Mω is free.

Therefore, for anyε > 0, and a finite subsetF of G, there existsU = U (ε, F) ∈
U
(
Mω ∩P ′

)
such that∥∥∥αωg (U )− 〈g, p〉U

∥∥∥
τ,ω

< ε, g ∈ F.

Let {Xn} be aσ ∗-strongly dense sequence ofP and eachXn be represented by{
xn(k) : k ∈ N

}
. Then we have withU (ε, F) =

{
uk(ε, F)

}
,

lim
n→ω

∥∥∥[xn(k), uk(ε, F)
]∥∥∥]
ϕ
= 0;

lim
n→ω

∥∥∥αg
(
uk(ε, F)

)
− 〈g, p〉uk(ε, F)

∥∥∥]
ϕ
< ϕ, g ∈ F;

lim
k→ω

∥∥∥[uk(ε, F), ψ j
]∥∥∥ = 0.

whereϕ is a faithful normal state onM and{ψ j } is a dense sequence inM∗. Let{
Fν : ν ∈ N

}
be an increasing sequence of finite subsets ofG with G =

⋃
∞

ν=1 Fν .
Let

{
Aν : ν ∈ N

}
be a strictly decreasing sequence of subsets ofN belonging to

the ultra filterω such that for anyk ∈ Aν∥∥∥∥∥
[

xn(k),uk

(
1

ν
, Fν

)]∥∥∥∥∥
]

ϕ

<
1

ν
, 1≤ n ≤ ν,

∥∥∥∥∥αg

(
uk

(
1

ν
, Fν

))
− 〈g, p〉uk

(
1

ν
, Fν

)∥∥∥∥∥
]

ϕ

<
1

ν
, g ∈ Fν;

∥∥∥∥∥
[

uk

(
1

ν
, Fν

)a

, ψ j

]∥∥∥∥∥ < 1

ν
, 1≤ j ≤ ν.

Let kν be the first element ofAν and setuν = ukν

(
1/ν, Fν

)
. Thenu = πω

(
{uν}

)
satisfies the requirement. Q.E.D.
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Exercise XVII.3

1) Let R0 be an AFD factor of type II1.

(a) Show that the adjoint map Ad: u ∈ U(R0) 7→ Ad(u) ∈ Int R0) admits a Borel
cross-sectionα ∈ Int(R0) 7→ u(α) ∈ U(R0) so thatα = Ad

(
u(α)

)
, α ∈ Int R0).

(b) Show that there existT-valued Borel functionsλu on Int(R0) × Aut(R0) and
µu on Int(R0)× Int(R0) such that

γ
(
u(γ−1αγ )

)
= λu(α, γ )u(α), α ∈ Int(R0), γ ∈ Aut(R0)

and
u(α)u(β) = µu(α, β)u(αβ), α, β ∈ Int(R0).

(c) Show that the pair(λ, µ) = (λu, µu) satisfies the following identities:

µ(α, β)µ(αβ, γ ) = µ
(
α, βγ

)
µ(β, γ ), α, β, γ ∈ Int(R0);

λ
(
α, γ1γ2

)
= λ(α, γ1)λ

(
γ1αγ

−1
1 , γ2

)
, α∈ Int(R0), γ1, γ2∈Aut(R0);

λ(α, γ )λ(β, γ )λ
(
αβ, γ

)−1
= µ

(
γ−1αγ, γ−1βγ

)
µ(α, β)−1

;

λ(α, γ ) = µ(α, β) = 1

if any of α, β ∈ Int(R0), or γ ∈ Aut(R0) is the identity.

(d) Observe that the set Z
(
Aut(R0), Int(R0),T

)
consisting of all pairs(λ, µ) of

T-valued Borel functionsλ on Int(R0) × Aut(R0) andµ on Int(R0) × Int(R0)

satisfying the identities of (c) form an abelian group relative to the pointwise mul-
tiplication. With Map

(
Int(R0),T

)
=
{

f : Int(R0) 7→ T Borel, f (id) = 1
}
, show

that if{
∂1 f (α, γ ) = f

(
γ−1αγ

)
f (α)−1

;

∂2 f (α, β) = f (α) f (β) f (αβ)−1, α, β ∈ Int(R0), γ ∈ Aut(R0).

then the pair∂ f =
(
∂1 f, ∂2 f

)
satisfies the identities of (c).

Set B
(
Aut(R0), Int(R0),T

)
= ∂

(
Map(Int(R0),T)

)
and consider the quotient

group:

Λ
(
Aut(R0), Int(R0),T

)
= Z

(
Aut(R0), Int(R0),T

)/
B
(
Aut(R0), Int(R0),T

)
.

(e) Show that the classχR0 ∈ Λ
(
Aut(R0), Int(R0),T

)
of the pair(λu, µu) of (c)

does not depend on the choice of the Borel cross-sectionu. ThusχR0 is an intrinsic
quantity ofR0. This was called the intrinsic invariant ofR0 in Definition XII.6.18.

2) Let G be a countable discrete group andα be an action ofG on R0. For a nor-
mal subgroupN C G, construct the groupΛ(G, N,T) of characteristic invariants
following the construction in Problem 1.



§ 3 Outer Conjugacy of an Automorphism of a Factor 293

(a) Show thatΛ(G, N,T) is a compact abelian group.

(b) Show that with N(α) = α−1
(
Int(R0)

)
the elementχ(α) = α∗(χR0) ∈

Λ
(
G, N(α),T

)
is a cocycle conjugacy invariant ofα.

(c) Show that ifG = Z andN = pZ, thenΛ(Z, pZ,T) ∼= Z/pZ.

3) Let θ ∈ Aut(R0) with R0 an AFD factor of type II1 as before. Viewingθ as an
action ofZ onR0, show thatp0(θ)Z = θ−1

(
Int(R0)

)
and that Ob(θ) represent the

classχ(θ) = θ∗(χR0) ∈ Λ
(
Z, p0(θ)Z,T

)
∼= Z/p0(θ)Z.

4) Let G be a countable discrete infinite group and fixλ, 0 < λ ≤ 1. To each
elementg ∈ G associate a 2×2-matrix algebraMg = M2(C) and a stateωλg on Mg

given by the matrix:

ωg =


λ

1
2

λ
1
2 + λ−

1
2

0

0
λ−

1
2

λ
1
2 + λ−

1
2

 .

Observe that
{
Rλ, ωλ

}
=
∏
⊗

g∈G

{
Mg, ω

λ
g

}
is an AFD factor of type IIIλ for λ 6= 1

and type II1 for λ = 1.

(a) Show that to eachh ∈ G there corresponds an automorphismαh of Rλ such
that

αh

( ∏⊗

g∈G

xg

)
=

∏⊗

g∈G

xhg,
∏⊗

g∈G

xg ∈ Rλ.

(b) Show thatα is a free action ofG onRλ such thatα−1
(
Cnt(Rλ)

)
= {e}.

(c) Show that the crossed productRλ oα G is a factor of type IIIλ for 0 < λ < 1
and type II1 for λ = 1.

5) Let G be a countable discrete group andN C G be a normal subgroup. Fix
(λ, µ) ∈ Z(G, N,T). Construct an actionα of G on an AFD factor of type II1 such
thatχ(α) = [λ,µ] ∈ Λ(G, N,T) following the steps suggested below.

(a) Fix a free actionβ of G on an AFD factorP0. Construct the twisted crossed
productP0 oβ,µ N as follows: representP0 on a Hilbert spaceK then setH =
`2(G,K) on which define operators:{ (

πβ(a)ξ
)
(m) = βm(a)ξ(m), ξ ∈ H, a ∈ P0;(

u(n)ξ
)
(m) = µ(m,n)ξ(mn), m,n ∈ N;

then setR0 = P0 oβ,µ N =
(
πβ(P0) ∪ u(N)

)′′. Observe thatu(m)u(n) =
µ(m,n)u(mn), m,n ∈ N. Prove using Theorem XIV.1.9 thatR0 is an AFD factor
of type II1.
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(b) To eachg ∈ G associate an operatorUλ(g) defined by(
Uλ(g)ξ

)
(m) = λ(m, g)ξ(g−1mg), m ∈ N.

Show thatαλ,µg = Ad
(
Uλ(g)

)∣∣
R0

, g ∈ G, is an action ofG on R0 such that
χ(α) = [λ,µ] ∈ Λ(G, N,T).

(c) To eachf ∈ Map(N,T) associate an operator defined by:

(U f ξ)(m) = f (m)ξ(m), ξ ∈ H, m ∈ N.

Observe thatU f Ug = U f g, f, g ∈ Map(G,T), and show that U f
(
P0 oβ,µ N

)
U∗f = P0 oβ,µ∂2 f N;

Ad(U f ) ◦ α
λ,µ
g ◦ Ad(U f )

−1
= α

(λ,µ)∂ f
g , g ∈ G.

Notes on Chapter XVII

As mentioned earlier, the study of the automorphism group Aut(M) of a von Neu-
mann algebra occupied the central place in the entire history of operator algebras.
It was already noted in the mid fifties by I. M. Singer, [332], that the double com-
mutation theorem of von Neumann, the fundamental theorem of the subject, Theo-
rem II.3.9, should be viewed as a kind of the Galois correspondence, or that the lack
of the double commutation theorem for subfactors of a factor relative to the rela-
tive commutant can be restored by the Galois type correspondence at least in some
cases. In fact, in the late fifties and the early sixties, M. Nakamura and Z. Takeda,
independently N. Suzuki, laid down the basics of the theory of finite groups of au-
tomorphisms of a factor of type II1 by establishing subgroups-subfactors Galois
correspondence, [702, 644, 645]. But one had to wait until the work of A. Connes
in 1975 for the true picture of the structure of the automorphism group Aut(R) of
an AFD factorR, [466, 469]. The weapon he used in this endeavor was the anal-
ysis of asymptotic commutativity, i.e. the study of central sequences, which came
into the subject from two sources: one from the propertyΓ of Murray and von
Neumann, and the other from mathematical physics which asserts that the Einstein
causality law implies the commutativity of two observables localized in regions of
space-like separation. The propertyΓ of a factorM of type II1 is equivalent to the
non-closedness of Int(M) in Aut(M), cf. Theorem XIV.3.8. The study of asymp-
totic commutativity was intensified in the mid sixties through the mid seventies
due partly to the influence from mathematical physics, which yielded a number of
results including the discovery of non-isomorphic factors of Powers and McDuff.
The characterization of the strong stability of a factor was obtained by D. McDuff,
[636], and H. Araki, [423]. In a way, the time was ripe for A. Connes. As we have
seen through this chapter as well as previous chapters, the analysis was carried out
through ultra filters, which allowed him to peek through ultra filters an elaborated
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mathematical structure hidden in the narrow gap of theσ -weak topology and the
σ -strong∗ topology. The group Out(R0) of an AFD factorR0 is the quotient group
of a Polish group Aut(R0) by a dense subgroup Int(R0), so that as a topological
group Out(R0) is non-manageable. He discovered that Out(R0) can be faithfully
represented in Aut(R0)ω. This was the key for his success in this analysis as we
have seen throughout the second half of this volume.

After Connes’ work, V. F. R. Jones classified actions of finite groups on an AFD
factorR0 of type II1 in his thesis, [570], by extending the concept of the obstruction
of a single automorphism to thecharacteristic invariantχ(α) of an action of a group
on a factor. It was then further extended by A. Ocneanu to the cocycle conjugacy
classification of actions of a countable discrete amenable group on a semifinite AFD
factor and provided analytical tools for the later study of such group actions on
AFD factors by proving two cohomology vanishing theorem and Rokhlin’s tower
and/or paving for the group, [648]. Today, one can summarize the cocycle conjugacy
classification of countable discrete amenable group actions on an AFD factorR in
the following one theorem:

Theorem. Let R be an approximately finite dimensional factor and G a count-
able discrete amenable group. The cocycle conjugacy class[α] of an actionα of
G on R is completely determined by the pull back:

χ̃(α) = α∗
(
Θ(R)

)
∈ Λ

(
G× R, N(α),U(C)

)
of the intrinsic invariantΘ(R) of R defined in DefinitionXII .6.18, where N(α) =
α−1

(
Cnt(R)

)
and

{
C,R, θ

}
is the flow of weights ofR .

This was the result of many hands: Jones-Takesaki, [574], C. E. Sutherland–
M. Takesaki, [699, 700], Y. Kawahigashi–C. E. Sutherland–M. Takesaki, [593] and
finally Y. Katayama–C. E. Sutherland–M. Takesaki, [590, 591].

The conjugacy classification of compact abelian group actions on AFD factors
is also now completed by the hand of V. F. R. Jones–M. Takesaki, [574], for the
semi-finite case and Y. Kawahigashi–M. Takesaki for the type III case, [594].

We should note however that the above fine classifications are valid only for dis-
crete group actions or compact abelian group actions. Toward continuous group ac-
tions, there are only few works. Y. Kawahigashi classified the cocycle conjugacy of
product type one parameter automorphism groups on semifinite AFD factors, [592],
which covers all known examples but not all actions. Hui, [565], extended the work
of Kawahigashi to the case of type III.


