
Preface

The author believes that the theory of operator algebras should be viewed as a num-
ber theory in analysis. Number theory has been attracting the interest of humans ever
since civilization began. Every culture in the world throughout history has given
special meanings to certain numbers.

For example, a number may represent a position, quantity and/or quality. To-
day’s civilization would be just impossible without numbers. People have been at-
tracted to the mysteries of numbers throughout history. Accordingly, number theory
is the oldest and most developed area of mathematics. Throughout the mathemat-
ical path to the present day, people have gradually learned properties of numbers.
It is surprising to find that the number zero was not recognized until Hindus found
it about one thousand years ago (although it is recognized that Mayans found it as
well). Compared to this old field of mathematics, the theory of operator algebras
is very new; its foundation was given by the pioneering work of J. von Neumann
and his collaborator F. J. Murray in the early part of the twentieth century, i.e. in
the thirties. Subsequent major development occurred only a decade later in the late
forties and the early fifties. But since then it has marked steady progress reaching
new heights today. The theory handles self-adjoint algebras of bounded operators
on a Hilbert space. The advent of quantum physics at the turn of century forced
one to consider non-commutative variables. One needed to broaden the concept of
numbers. Integers, rational numbers, real numbers and complex numbers are all
commutative. Among the few noncommutative mathematical systems available at
the beginning of quantum mechanics were matrix algebras, which did not accom-
modate the needs of quantum physics because the Heisenberg uncertainty principle
and/or Heisenberg commutation relation do not allow one to stay in the realm of
finite matrices. One needs to consider algebras of operators on a Hilbert space of
infinite dimension. Some of these operators correspond to important physical quan-
tities. One has to include operators in the list of “numbers”. Number theory tells us
to put numbers in a field to study them more efficiently. Similarly, the theory of oper-
ator algebras puts operators of interest in an algebra and we study the algebra and its
structure first. The infinite dimensionality of the underlying Hilbert space poses big
challenges and also presents interesting new phenomenon which do not occur in the
classical frame work. We have already seen some of them in the first volume. For ex-
ample, the continuity of dimensions in a factor of type II1 is one of them. The infinite
dimensionality of our objects forces us to create sophisticated methods to handle ap-
proximations. Simple minded counting does not lead to the heart of the matter. For
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example, it is impossible to introduce a simple minded coordinate system in an in-
finite dimensional operator algebra, thus mathematical induction based on a basis
does not fly. The early part of the theory, in the period of the forties through the
early sixties were spent on this issue. Luckily there is a remarkable similarity be-
tween the theory of measures on a locally compact space and the theory of operator
algebras. The first volume was devoted to the pursuit of this similarity.

The second volume of “Theory of Operator Algebras” is devoted to the study of
the structure of von Neumann algebras of type III and their automorphism groups,
cf. Chapter VI through Chapter XII; and the third volume is devoted to the study
of the fine structure analysis of approximately finite dimensional factors and their
automorphism groups, cf. Chapter XIII through Chapter XVIII. The last chapter,
Chapter XIX, is an introduction to the theory of subfactors and their symmetries.
One should note that the class of von Neumann algebras of type III is given by
exclusion, i.e., by the absence of a non-trivial trace or a non-zero finite projection.
This situation presented the major obstruction for the study of von Neumann alge-
bras from the beginning of the subject until the advent of Tomita-Takesaki theory in
the late sixties whilst many examples had been found to be of type III: the infinity
of non-isomorphic factors were first established for factors of type III by Powers
in 1967, [670], before the discovery of infinitely many non-isomorphic factors of
type II1 or II∞, [635, 686], and most examples from quantum physics were shown
to be of type III, [430]. It was the Tomita-Takesaki theory which broke the ice. It is
still amazing that the subject defined by exclusion admits such a fine structural anal-
ysis since usually exclusion does not allow one to find any alternative and is viewed
as pathological. Of course, a von Neumann algebra of type III had been pathological
until we discover their fine structure. We will explore this in full detail through the
second volume.

Each chapter has its own introduction which describes the content of that chapter
and the basic strategy so that the reader can get a quick overview of the chapter.

In the second and third volume, we present two major items in the theory of von
Neumann algebras: one is the analogy with integration theory on an abstract mea-
sure space and the other is the emphatic importance of automorphisms of algebras,
i.e. we emphasize the symmetries of our objects following the modern point of view
of E. Galois.

In general, the theory of von Neumann algebras is considered to be non-
commutative integration. In Volume I, the similarity between von Neumann algebras
and measure spaces are examined from the point of view of Banach space duality.
In the second and third volume, non-commutative integration goes far beyond the
analogy with ordinary integration. Since it is not our main interest to examine how
ordinary integration should be formulated based on commutative von Neumann al-
gebras, it is not discussed here in detail beyond a few comments. Still it is possible
to develop a theory which covers the ordinary integration theory based on the oper-
ator algebra approach. In fact, such a theory has been explored by G. K. Pedersen,
[653, Chapter 6], and it does eliminate pathological uninteresting measure spaces
easily. The main difference between the operator algebra approach and the con-
ventional approach to integration theory relies on the fact that in operator algebras
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one considers functions first, or equivalently variables, and then one views the un-
derlying points as the spectrum of the variables; whilst in the ordinary approach
one considers points first and views variables as functions on the set of points. We
would like to point out here, however, that in practice we never observe points di-
rectly only approximately by successive evaluations of coordinates. Besides this
philosophical difference, there is another major difference between the ordinary in-
tegration theory and the non-commutative integration theory which rests on the fact
that a weight, a non-commutative counterpart of aσ -finite measure, gives rise to
a one-parameter automorphism group, called the modular automorphism group, of
the von Neumann algebra in question. This modular automorphism group can be
considered as the time evolution of the system, i.e., in the non-commutative world a
state determines the associated dynamics. The appearance of the modular automor-
phism group distinguishes our theory sharply from the classical theory. The modular
automorphism group gives us abundant non-trivial information precisely when there
is no trace on the algebra in question. Since the ordinary integration is a trace, the
modular automorphism group is trivial in that case and cannot be appreciated. Fur-
thermore, thanks to the Connes cocycle derivative theorem, Theorem VIII.3.3, the
modular automorphism group is unique up to perturbation by a one unitary cocy-
cle, which allows us to relate the structure of a von Neumann algebra of type III
to that of the associated von Neumann algebra of type II∞ equipped with a trace
scaling one parameter automorphism group, cf. Chapter XII. As a byproduct of our
non-commutative integration theory, a duality theorem attributed to Pontrjagin, van
Kampen, Tannaka, Stinespring, Eymard, Saito and Tatsuuma, is presented in §3,
Chapter VII. With this exception, no discussion of examples is presented in the sec-
ond volume, Chapter VI through Chapter XII. Extensive discussions of examples
and constructions of factors occupy the third volume starting in Chapter XIII and
through Chapter XVIII.

The so-called Murray-von Neumann measure space construction of factors is
closely investigated first in Chapter XIII yielding the Krieger construction of fac-
tors and the theory of measured groupoids. Systematic study of approximately finite
dimensional factors occupies most of the third volume, cf. Chapter XIV through
Chapter XIX. The theory is highlighted by the celebrated classification theorem
of Alain Connes in the form of Theorems XVI.1.9, XVIII.1.1, XVIII.2.1 to which
W. Krieger made a substantial contribution also, and XVIII.4.16 which requires one
full section of preparation given by U. Haagerup, [550]. The last chapter, Chap-
ter XIX, is devoted to an introduction to the theory of subfactors of an AFD factor
created by V. F. R. Jones, and concludes with a classification theorem of Popa, The-
orem XIX.4.16, for subfactors of an AFD factor of type II1 with small indices.

The three volume book, “Theory of Operator Algebras”, is a product of the au-
thor’s research and teaching activities at the Department of Mathematics at Univer-
sity of California, Los Angeles, spanning the years from 1969 through the present
time. It is important to mention the following: the author’s visit to the University
of Pennsylvania from 1968 through 1969 where the foundation of Tomita-Takesaki
theory was established; the author’s participation in various research activities which
include several short and long visits to the University of Marseille-Aix-Luminy;
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several short visits to RIMS of Kyoto University; one year participation in the Math-
ematical Physics Project of 1975–1976 at ZiF, University of Bielefeld; a full year
participation in the operator algebra project of MSRI for 1984–1985; a one year
visit to IHES, 1988–1989; two one month long participations in the one year project
(1988–1989) on operator algebras at the Mittag-Leffler Institute; several visits to the
University of New South Wales; and several month long visits to the Mathematics
Institute of University of Warwick. The author would like to express here his sincere
gratitude to these institutions and to the mathematicians who hosted him warmly
and worked with him. Special thanks are due to Professor Richard V. Kadison with
whom the author discussed the philosophy of the subject at length so many times,
and to Professor Daniel Kastler who encouraged him in many ways and provided the
opportunity to work with him and others including Alain Connes. Throughout the
period of the preparation of the book, the author has been continuously supported by
the National Science Foundation. Here he would like to record his appreciation of
that support. The Guggenheim Foundation also gave the author support at a critical
period of his career, for which the author is very grateful. The author also would
like to express his gratitude to Professor Masahiro Nakamura who has constantly
given his moral support to the author, to Professor Takashi Turumaru whose beau-
tiful lectures inspired the author to be a functional analyst and to the late Professor
Yoshinao Misonou under whose leadership the author started his career as a func-
tional analyst. At the final stage of the preparation of the manuscript, Dr. Un Kit Hui
and Dr. Toshihiko Masuda took pains to help the author to edit the manuscript. Al-
though any misprints and mistakes are the author’s responsibility, the author would
like to thank them here.

Guidance to the Reader

Each chapter has its own introduction so that one can quickly get an overview of
the content of the chapter. Theorems, Propositions, Lemmas and Definitions are
numbered in one sequence, whilst formulas and equations are numbered in each
section separately without reference to the section. Formulas (respectively, equa-
tions) are referred to by the formula number (respectively, equation number) alone
if it is quoted in the same section, and by the section number followed by the for-
mula number if it is quoted in a different section but in the same chapter, and finally
by the chapter number, the section number and the formula number (respectively,
equation number) if it is quoted in a different chapter. Some exercises are selected
to help the reader to get information and techniques not covered in the main text,
so they can be viewed as a supplement to the text. Those exercises taken directly
literatures are marked by a†-sign, and the references are cited there.

To keep the book within a reasonable size, this three volume book does not in-
clude the materials related to the following important areas of operator algebras:
K-theory forC∗-algebras, geometric theory of operator algebras such as cyclic co-
homology, the classification theory of nuclearC∗-algebras, free probability theory
and the advanced theory of subfactors. The interested readers are referred to the
forthcoming books in this operator algebra series of encyclopedia.



Chapter IX

Non-Commutative Integration

§ 0 Introduction

The theories of weights, traces and states are often referred as non commutative
integration. If the von Neumann algebra in question is abelian, then our theory
is precisely the theory of measures and integration. In fact, the weight value of a
self-adjoint element is given precisely by the integration of the corresponding func-
tion on the spectrum relative to the measure corresponding to the weight. As there
are many non-commuting self-adjoint elements in the algebra, we have to consider
various spectral measures even if we fix one weight and we can not represent non-
commuting self-adjoint elements as functions on the same space. The striking differ-
ence between the commutative case and the non-commutative case is the appearance
of one parameter automorphism group which is determined by the weight. Namely,
weights and/or states determine the dynamics of the system which does not have
the commutative counter part. We have explored the relationship between weights
and the modular automorphism groups so far. We now further investigate how the
dynamics, i.e. the modular automorphism groups, of the algebra relate the different
spaces associated with the algebras. First, we study the underlying Hilbert space
of the algebra and find the intrinsic pointed convex cone there, which is called the
natural cone, in the first section. The theory developed there allows us to view the
standard Hilbert space as the square root of the predual of the algebra as well as to
represent the automorphism group Aut(M), of a von Neumann algebraM, as the
group of unitaries which leaves the natural cone globally invariant. In §2, we con-
sider the special case that the weight is a trace and see the very special character
of a trace, which allows us to realize various spaces associated with the algebraM
as the space of unbounded operators affiliated withM satisfying certain regulating
condition which are called measurable operators. We will see that in the case of a
finite von Neumann algebraM every closed operator affiliated withM is measur-
able. Measurable operators form an involutive algebra as we will see in this sec-
tion. It is remarkable that the trace regulates the behavior of unbounded operator so
strongly that closed symmetric measurable operators are automatically self-adjoint.
Section 3 relates a von Neumann algebraM of operators on a Hilbert spaceH to
its commutantM′ in very strong way. It will be shown that there uniquely corre-
sponds a non-singular self-adjoint operator, called the spatial derivative, to any pair
of a faithful semi-finite normal weightsϕ on M andψ on M′. The spatial deriva-
tive behaves very naturally even though they are unbounded operators. Also, we
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consider right actions, i.e. an anti-representation, of a von Neumann algebra on a
Hilbert space and view it a right module over the von Neumann algebra. We then
view a Hilbert space equipped with the usual action of a von Neumann algebra as a
left module over the von Neumann algebra. Naturally, we consider bimodules over
a pair of von Neumann algebras, as a Hilbert space equipped with commuting the
left action of one algebra and the right action of the other. This view allows us to
introduce the concept of relative tensor product of a pair of a right module and a
left module over a fixed von Neumann algebra. It should be noticed that this corre-
sponds to the relative tensor products in algebra but not straightforward way. There
are subtle difference here and the situation in pure algebra. For example, the relative
tensor product of an arbitrary pair of vectors does not make sense unless we are in
the very special case of atomic von Neumann algebras. The last section, §4, discuss
conditional expectations and unbounded operator valued weights as a generalization
of conditional expectations which allows us to view our theory in a more balanced
way. It allows us to factor the usual trace, Tr, on a Hilbert spaceH through a faithful
semi-finite normal traceτ on a semi-finite von Neumann algebraM and the corre-
sponding operator valued weight toM. This in a sense justifies to say that a factor is
indeed afactor of L(H). One should interpret an operator valued weight as a partial
integral relative to the related non-commutative measure, which is not visible unless
the algebra is abelian.

§ 1 Standard Form of a von Neumann Algebra

We begin our discussion with an example. LetM = L(H) with a Hilbert space
H. We fix the usual trace Tr onM and denote it byτ , then consider the semi-
cyclic representation

{
πτ , Hτ , ητ

}
. The Hilbert spaceHτ is then identified with the

Hilbert space of operators of the Hilbert-Schmidt class, and the representationπτ is
given by the left multiplication. Ifϕ is a faithful normal positive linear functional
onM, thenϕ is of the form:

ϕ(x) = τ(xh) =
(
xh

1
2
∣∣ h

1
2
)
HS (1)

with h a non-singular nuclear positive operator onH, where( | )HS denotes the
inner product inHτ . Therefore,h1/2 is the cyclic and separating vector associated
with the functionalϕ. Hence we have

Sϕx =
(
xh−

1
2
)∗

h
1
2 = h−

1
2 x∗h

1
2 , (2)

for thosex ∈ Hτ such thatxh−1/2 is bounded. We proceed our discussion formally
without worrying about the domain questions and other analytical details, in order
to figure out the picture of the entire mechanism. The adjoint involutionFϕ of Sϕ is
then given by

Fϕx = h
1
2
(
h−

1
2 x
)∗
= h

1
2 x∗h−

1
2 , x ∈ D[. (3)
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Hence we get
∆ϕx = hxh−1, x ∈ D(∆ϕ); (4)

∆i t
ϕ x = hi t xh−i t , x ∈ Hτ . (5)

We now observe that[
∆

1
4
ϕM+h

1
2
]
=
[
h

1
4 M+h

1
4
]
= (Hτ )+. (6)

Thus, the positive cone(Hτ )+ of Hτ is recovered fromM+h1/2 by multiplying
∆

1/4
ϕ . The point here is that the positive cone(Hτ )+ does not depend on the choice

of ϕ; it is intrinsic to the algebraM = L(H). We are going to see that this fact is
not special toL(H), but true for general von Neumann algebras.

Now, we fix a von Neumann algebraM and a faithful semi-finite normal weight
ϕ on it; thus also the semi-cyclic representation

{
πϕ, Hϕ, ηϕ

}
. In the Hilbert space

Hϕ , we shall consider various pointed convex cones. LetA be the full left Hilbert
algebra associated withϕ andA0 the associated Tomita algebra. We identifyM with
R`(A). We put

P]
ϕ =

{
ξξ ] : ξ ∈ A

}−
,

P[
ϕ =

{
ξξ [ : ξ ∈ A′

}−
,

Pϕ =
{
ξξ∗ : ξ ∈ A0

}−
.

 (7)

Hereξ∗ = Jξ , ξ ∈ Hϕ and the bar means the closure.

Definition 1.1. For a convex coneP in a Hilbert spaceH, the dual coneP◦ is
defined to be the set of all those vectorsη ∈ H such that(ξ | η) ≥ 0 for every
ξ ∈ P:

P◦ =
{
η ∈ H : (ξ | η) ≥ 0, ξ ∈ P

}
. (8)

If P = P◦, thenP is calledself-dual.

To motivate discussion, we state the next result concerning the convex cones
defined in (7).

Theorem 1.2. Under the above notations and assumptions, we have the follow-
ing:

(i) The setsP]
ϕ and P

[
ϕ are mutually dual pointed convex cones;

(ii) Pϕ is a self-dual convex cone and every element ofHϕ is represented as
a linear combination of four vectors ofPϕ . Furthermore, each self-adjoint
vector ξ ∈ Hϕ , i.e. ξ = ξ∗ , is uniquely represented as difference of two
orthogonal vectors ofPϕ ;

(iii) a Ja JPϕ ⊂ Pϕ for every a∈M ;
(iv) To eachω ∈ M+∗ , there corresponds a uniqueξ ∈ Pϕ with ω = ωξ .

Furthermore, we have

‖ξ − η‖2 ≤ ‖ωξ − ωη‖ ≤ ‖ξ − η‖ ‖ξ + η‖, ξ, η ∈ Pϕ . (9)
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PROOF OFTHEOREM 1.2.(i): Letξ ∈ A andη ∈ A′. We then have(
ξ ]ξ

∣∣ ηη[) = (π`(ξ)∗ξ ∣∣ πr (η)
∗η
)
=
∥∥π`(ξ)η∥∥2

≥ 0.

Suppose thatξ ∈ Hϕ satisfies
(
ξ
∣∣ ηη[) ≥ 0 for everyη ∈ A′. By the polarization

identity,A′
2

is linearly spanned by
{
ηη[ : η ∈ A′

}
, so that Lemma VI.1.13 implies

that ξ belongs toD], andπ`(ξ) is a symmetric operator affiliated withM. The
positivity assumptionξ entails that ofπ`(ξ). We denote the Friedricks extension
of π`(ξ) by a. With its spectral decompositiona =

∫
∞

0 λ de(λ), setξn = e(n)ξ .
Then we getξn ∈ A and‖ξn − ξ‖ → 0 asn → ∞. Furthermore,

(
ξn
∣∣ ηη[) =(

ae(n)η
∣∣ η) ≥ 0, η ∈ A′. Thus, to proveξ ∈ P

]
ϕ it suffices to show thatξn ∈ P

]
ϕ .

This means that we are asked to proveξ ∈ P
]
ϕ if

(
ξ
∣∣ ηη[) ≥ 0, η ∈ A′, and

ξ is left bounded. As observed already,ξ belongs toA, so a = π`(ξ) ≥ 0 and
ϕ(a2) < +∞. Sinceλ

(
1−e(λ)

)
≤ a, λ > 0, we haveϕ

(
1−e(λ)

)
< +∞. Setting

bn =
(
1− e(1/n)

)
a1/2, we getϕ(b2

n) < +∞ andb2
n =

(
1− e(1/n)

)
a. Then with

ζn = ηϕ(bn), we haveζn ∈ A and

ζ ]nζn = ζ
2
n =

(
1− e(1/n)

)
ξ.

Sinceξ ∈
[
aHϕ

]
, we get

∥∥ξ − (1− e(1/n)
)
ξ
∥∥ → 0 asn → ∞, concluding that

ξ ∈ P
]
ϕ . ThusP

]
ϕ =

(
P
[
ϕ

)0. By symmetry, we haveP[
ϕ =

(
P
]
ϕ

)0. Q.E.D.

Lemma 1.3. Pϕ =
(
∆1/4P

]
ϕ

)−
=
(
∆−1/4P

[
ϕ

)−
. In particular, Pϕ is a closed

convex cone.

PROOF: First, we observe thatP]
ϕ ⊂ D]

= D
(
∆1/2

)
andP

[
ϕ ⊂ D[

= D
(
∆−1/2

)
.

Hence∆1/4P
]
ϕ and∆−1/4P

[
ϕ make sense. Furthermore, we have

∆
1
2 P]

ϕ = J SP]
ϕ = JP]

ϕ = P[
ϕ,

so that∆1/4P
]
ϕ = ∆−1/4P

[
ϕ . Thus, it only remains to be proven thatPϕ =(

∆1/4P
]
ϕ

)−. Now, if ξ ∈ A0, then

∆
1
4
(
ξξ ]

)
=
(
∆

1
4 ξ
)(
∆

1
4 ξ ]

)
=
(
∆

1
4 ξ
)(
∆

1
4 ξ
)∗
,

so that∆1/4
{
ξξ ] : ξ ∈ A0

}
=
{
ξξ∗ : ξ ∈ A0

}
. Hence

P0 =
{
ξξ∗ : ξ ∈ A0

}
⊂ ∆

1
4 P]

ϕ .

If ξ ∈ A, set

ξr =

√
r

π

∞∫
−∞

e−r t 2
∆i tξ dt , r > 0. (10)
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We then have, asr →∞, ‖ξ − ξr ‖ → 0,
∥∥ξ ] − ξ ]r ∥∥→ 0∥∥π`(ξr )∥∥ ≤ ∥∥π`(ξ)∥∥, π`(ξr )→ π`(ξ) σ -strongly∗,

and thatξr ∈ A0. Therefore we conclude

P]
ϕ =

{
ξξ ] : ξ ∈ A0

}−
, Pϕ =

{
ξξ∗ : ξ ∈ A0

}−
, P[

ϕ =
{
ξξ [ : ξ ∈ A0

}−
.

Thus, we obtain the inclusion:Pϕ ⊂
(
∆1/4P

]
ϕ

)−. To show the reversed inclusion,

let ξ ∈ P
]
ϕ and chooseξn ∈ P

]
0 =

{
ηη] : η ∈ A0

}
so thatξn → ξ . Then we

haveSξ = ξ , Sξn = ξn, so that∆1/2ξn = Jξn → Jξ = ∆1/2ξ , which yields the
convergence: ∥∥∆ 1

4 ξ −∆
1
4 ξn
∥∥2
=
(
∆

1
2 (ξ − ξn)

∣∣ ξ − ξn)→ 0.

Since∆1/4ξn ∈ P0, ∆1/4ξ ∈ Pϕ . Thus∆1/4P
]
ϕ ⊂ Pϕ . Q.E.D.

Lemma 1.4. Pϕ is a self-dual cone and∆i tPϕ = Pϕ .

PROOF: For anyξ ∈ P
]
ϕ andη ∈ P

[
ϕ ,(

∆
1
4 ξ
∣∣ ∆− 1

4η
)
= (ξ | η) ≥ 0

by Theorem 1.2.(i). Hence(ξ | η) ≥ 0 for every pairξ, η ∈ Pϕ .
Now suppose thatξ ∈ Hϕ satisfies the inequality

(ξ | η) ≥ 0 for everyη ∈ Pϕ .

For eachr > 0, defineξr by (10). Then for eachη ∈ A0, we have

(
ξr
∣∣ ηη∗) = √ r

π

∞∫
−∞

e−r t 2(
∆i tξ

∣∣ ηη∗) dt

=

√
r

π

∞∫
−∞

e−r t 2
(
ξ

∣∣∣ (∆−i tη
)(
∆−i tη

)∗) dt ≥ 0.

Now, we get(
∆−

1
4 ξr

∣∣ ηη[) = (ξr ∣∣ ∆− 1
4 (ηη[)

)
=

(
ξr

∣∣∣ (∆− 1
4η
)(
∆−

1
4η
)∗)
≥ 0.

Henceζr = ∆−1/4ξr ∈ P
]
ϕ becauseP[

0 =
{
ηη[ : η ∈ A0

}
is dense inP[

ϕ , so that
ξr = ∆

1/4ζr ∈ Pϕ . Thereforeξ belongs toPϕ because‖ξ − ξr ‖ → 0. ThusPϕ is
self-dual.

The invariance:∆i tPϕ=Pϕ follows from the fact that∆i t(ξξ∗)=
(
∆i tξ

)(
∆i tξ

)∗,
ξ ∈ A0. Q.E.D.
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Lemma 1.5. If ψ is another faithful semi-finite normal weight onM , then there
exists uniquely a unitary Uϕ,ψ from Hψ onto Hϕ such that

(i) Uϕ,ψπψ (x)U∗ϕ,ψ = πϕ(x) , x ∈M ;

(ii) Uϕ,ψPψ = Pϕ .

PROOF: As in the previous chapter, we considerN = M ⊗ M(2;C) and the
balanced weightρ = ϕ ⊕ ψ given by (VIII.3.7). Then defineSϕ , Sϕ,ψ , Sψ,ϕ and
Sψ by (VIII.3.13) and consider their polar decompositions:

Sϕ = Jϕ∆
1
2
ϕ , Sϕ,ψ = Jϕ,ψ∆

1
2
ϕ,ψ ,

Sψ,ϕ = Jψ,ϕ∆
1
2
ψ,ϕ, Sψ = Jψ∆

1
2
ψ .

(11)

As in Theorem VIII.3.2, the operator

Uϕ,ψ = Jϕ Jϕ,ψ (12)

implements the unitary equivalence ofπϕ andπψ . We recall the fact thatUϕ,ψ is
also given by:

Uϕ,ψ = Jϕ,ψ Jψ . (12′)

SincePϕ is the closure ofP0, we get

Pϕ =
{
πϕ(x)Jϕηϕ(x) : x ∈ nϕ ∩ n∗ϕ

}−
,

Pψ =
{
πψ (y)Jψηψ (y) : y ∈ nψ ∩ n∗ψ

}−
.

If x ∈ nϕ ∩ n∗ϕ andy ∈ nψ ∩ n∗ψ , then we get(
πϕ(x)Jϕηϕ(x)

∣∣ Uϕ,ψπψ (y)Jψηψ (y)
)

=
(
Jϕηϕ(x)

∣∣ Uϕ,ψπψ (x
∗)πψ (y)Jψηψ (y)

)
=
(
Jϕηϕ(x)

∣∣ Uϕ,ψπψ (x
∗)Jψπψ (y)Jψηψ (y)

) 1

=
(
Jϕηϕ(x)

∣∣ Uϕ,ψ Jψπψ (y)Jψπψ (x
∗)ηψ (y)

)
=
(
Jϕηϕ(x)

∣∣ JϕUϕ,ψπψ (y)Jψηψ (x
∗y)
)

=
(
πϕ(y)Uϕ,ψ Jψηψ (x

∗y)
∣∣ ηϕ(x))

=
(
Jϕ,ψηψ (x

∗y)
∣∣ ηϕ(y∗x)) = (

∆
1
2
ϕ,ψηϕ(y

∗x)
∣∣∣ ηϕ(y∗x)) ≥ 0,

where we used the fact thaty∗x ∈ nϕ ∩ nψ . Hence, the self-duality ofPϕ implies
that Uϕ,ψPψ ⊂ Pϕ . The converse inclusion relation follows from the fact that
U∗ϕ,ψ = Uψ,ϕ .

1 πψ (y)Jψηψ (y) = Jψπψ (y)Jψηψ (y).
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Now, suppose thatU is a unitary fromHψ onto Hϕ satisfying (i) and (ii). To
proveU = Uϕ,ψ , setV = Uϕ,ψU∗. ThenV ∈ πϕ(M)′ andVPϕ = Pϕ . Hence for
anyξ ∈ Pϕ , we haveJϕVξ = Vξ = JϕV Jϕξ . By the polarization identity,A2

0 is
spanned by

{
ξξ∗ : ξ ∈ A0

}
andA2

0 is dense inHϕ . Thus, we obtainV = JϕV Jϕ .
Therefore,V = V∗ ∈ πϕ(M) ∩ πϕ(M)′. So we writeV = E − F as a difference
of orthogonal projectionsE, F (in the center ofπϕ(M) with E + F = 1). Since
F = F JϕF Jϕ , for eachξ ∈ A0 we have

F(ξξ∗) = (Fξ)(Fξ)∗ ∈ Pϕ,

so thatFPϕ ⊂ Pϕ . If 0 6= Fξ = ξ , ξ ∈ Pϕ , then(
Vξ

∣∣ ξ) = ((E − F)ξ
∣∣ ξ) = −‖Fξ‖2 < 0,

which is a contradiction. HenceFPϕ = {0}. Since
[
Pϕ

]
= Hϕ as we just observed,

F = 0. ThusV = 1, which means thatU = Uϕ,ψ . Q.E.D.

Lemma 1.6. For eachω ∈M+∗ , there existsξ ∈ Pϕ such that

ω(x) =
(
πϕ(x)ξ

∣∣ ξ).
PROOF: We first prove the case whereω andϕ commute andω ≤ ϕ. As in §VII.2,
there existshω ∈ πϕ(M)′+ andηω ∈ Hϕ such that

h
1
2
ωηϕ(x) = πϕ(x)ηω, ω(x) =

(
πϕ(x)ηω

∣∣ ηω), x ∈M.

It follows easily thatηω∈P
[
ϕ . By assumption,ω andϕ commute, so that∆i t

ϕηω=ηω.

Henceηω ∈ ∆
−1/4
ϕ P

[
ϕ ⊂ Pϕ .

We next prove the case thatω is faithful. We then consider the cyclic represen-
tation

{
πω, Hω, ξω

}
and setηω = Uϕ,ωξω. Sinceξω ∈ Pω, Lemma 1.5 implies that

ηω ∈ Pϕ andω(x) =
(
πϕ(x)ηω

∣∣ ηω).
Finally we prove the general case. Ifω is not faithful, then we choose a semi-

finite normal weightψ ′ on M such thats(ψ ′) = 1− s(ω) and setψ = ψ ′ + ω.
Thenω andψ commute andω ≤ ψ , so that there existsηω ∈ Pψ such thatω(x) =(
πψ (x)ηω

∣∣ ηω). Now, we putξ = Uϕ,ψηω, which is the required vector by the
previous lemma. Q.E.D.

In the above discussion, we used the notationsπϕ andπψ in order to avoid
confusion. But we now identifyπϕ(x) andx, so we writex alone instead ofπϕ(x).
ThusH meansHϕ .

Lemma 1.7. If Jξ = ξ , ξ ∈ H , then ξ is uniquely written as a difference
ξ = ξ+ − ξ− of two orthogonal vectorsξ+, ξ− ∈ Pϕ .
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PROOF: SincePϕ is a closed convex cone, the distanced from ξ to Pϕ is given by
a vectorξ+ ∈ Pϕ , so thatd = ‖ξ − ξ+‖ andξ+ is orthogonal toξ − ξ+. If η ∈ Pϕ ,
η 6= 0, then ∥∥ξ − ξ+∥∥2

= d2 <
∥∥ξ − (ξ+ + λη)∥∥2

, λ > 0,

so
λ2
‖η‖2− 2λ

(
ξ − ξ+

∣∣ η) > 0, λ > 0,

which is possible only if
(
ξ − ξ+

∣∣ η) ≤ 0. Thusξ− = ξ+ − ξ belongs toPϕ and
ξ = ξ+ − ξ−.

Suppose thatξ = ξ ′+ − ξ
′
−, ξ ′+ ⊥ ξ ′− andξ ′+, ξ

′
− ∈ Pϕ . For eachη ∈ Pϕ , we

have

‖ξ − η‖2 =
∥∥ξ ′+ − η∥∥2

+ ‖ξ ′−‖
2
− 2

(
ξ ′+ − η

∣∣ ξ ′−)
=
∥∥ξ ′+ − η∥∥2

+ ‖ξ ′−‖
2
+ 2

(
η
∣∣ ξ ′−) ≥ ‖ξ ′−‖2.

The last inequality becomes an equality only whenη = ξ ′+. Henceξ ′+ is the vector
in Pϕ which gives the distance fromξ to Pϕ . Thusξ ′+ = ξ+ and soξ ′− = ξ−.

Q.E.D.

For eachξ ∈ Pϕ , we considerω = ωξ ∈ M+∗ and sete = s(ω). Thenω
can be viewed as a faithful positive normal functional on the reduced algebraMe.
Viewing

{
πω, Hω, ξω

}
as the cyclic representation ofMe, we consider naturally{

Jω, ∆ω, Pω, P
]
ω, P

[
ω

}
. Now put

Uϕ,ωπω(x)ξω = xξ, x ∈Me. (13)

Lemma 1.8. Uϕ,ω is an isometry fromHω onto
[
Mξ

]
∩
[
M′ξ

]
which enjoys the

following properties:

(i) Uϕ,ωπω(x) = xUϕ,ω , x ∈Me ;

(ii) Uϕ,ωPω = Pϕ ∩
[
Mξ

]
∩
[
M′ξ

]
;

(iii) Uϕ,ω is unique, subject to conditions(i) and (ii) .

PROOF: We note thate =
[
M′ξ

]
. If e′ is the projection to

[
Mξ

]
, thene′ = JeJ

and f = ee′ commutes withJ. It is clear thatUϕ,ω is an isometry ofHω onto f H
and satisfies (i).

We putJ0 = U∗ϕ,ω JUϕ,ω. Then it follows that:

J0ξω = ξω ;

J0πω(Me)J0 = πω(Me)
′
;(

J0πω(x)J0πω(x)ξω
∣∣ ξω) ≥ 0, x ∈Me.

 (14)

From this, we want to conclude thatJ0 = Jω. To this end, putH = J0Sω on Hω,
whereSω means of course the]-operation inHω determined byω. For eachx ∈Me,
we have
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Hπω(x)ξω

∣∣ πω(x)ξω) = (J0πω(x
∗)ξω

∣∣ πω(x)ξω) = (πω(x∗)J0πω(x
∗)ξω

∣∣ ξω)
=
(
J0πω(x

∗)J0πω(x
∗)ξω

∣∣ ξω) ≥ 0.

Sinceπω(Me)ξω is a core for bothH and∆1/2
ω , we getH = ∆

1/2
ω and J0 = Jω

from the uniqueness of polar decomposition.
We have seen already

Pω =

{
Jωπω(x)Jωπω(x)ξω : x ∈Me

}
,

and also
Uϕ,ω Jωπω(x)Jωπω(x)ξω = J x J xξ ∈ Pϕ, x ∈Me,

so thatUϕ,ωPω ⊂ Pϕ . By the self-duality ofPω, we have

U∗ϕ,ω
(
Pϕ ∩ [Mξ ] ∩ [M′ξ ]

)
⊂ Pω.

Thus we obtain assertion (ii).
The uniqueness ofUϕ,ω follows from the arguments similar to that forUϕ,ψ in

Lemma 1.5. We leave the detail to the reader. Q.E.D.

Remark 1.9. We note here that the property (14) characterizes the modular con-
jugationJω for a faithfulω ∈M+∗ .

We shall use the following notations:

∆ξ = Uϕ,ω∆ωU∗ϕ,ω, Sξ = Uϕ,ωSωU∗ϕ,ω, Pξ = Uϕ,ωPω. (15)

Corollary 1.10. For eachω ∈M+∗ , the vectorξ ∈ Pϕ with ω = ωξ is unique.

PROOF: Suppose thatω = ωξ = ωη for someξ, η ∈ Pϕ . Then there exists a
partial isometryu of M′ such thatuξ = η andu∗η = ξ . Hence[M′ξ ] = [M′η]. It
then follows that [

Mξ
]
= J

[
M′ξ

]
= J

[
M′η

]
=
[
Mη

]
.

Therefore, if we defineVϕ,ω by (13) replacingξ with η, thenVϕ,ω enjoys the exactly
same property asUϕ,ω andVϕ,ω has the same range asUϕ,ω. Now V∗ϕ,ωUϕ,ω leaves
Pω invariant. Hence, we haveV∗ϕ,ωUϕ,ω = 1 by Lemma 1.5. Thusξ = η. Q.E.D.

This result allows us to identify
{
Hω, ξω

}
with

{
[Mξ ] ∩ [M′ξ ], ξ

}
. Hence we

shall viewξω as a vector inPϕ for anyω ∈M+∗ , so thatPω = Pξ .

Lemma 1.11. If ξ ∈ Pϕ , then

Pξ =

{(
R+ξ −Pϕ

)
∩Pϕ

}−
.
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PROOF: Puttinge= s(ωξ ), we have

Pξ =

{
∆

1
4
ξ xξ : x ∈M+e

}−
.

Now, from the identity:

‖x‖ξ = ∆
1
4
ξ xξ +∆

1
4
ξ

(
‖x‖ − x

)
ξ, x ∈M+e ,

it follows that∆1/4
ξ xξ ∈

(
R+ξ −Pϕ

)
∩Pϕ . Hence we get

Pξ ⊂

{(
R+ξ −Pϕ

)
∩Pϕ

}−
.

To prove the converse inclusion, suppose thatξ, η ∈ Pϕ andζ = ξ − η ∈ Pϕ .
We choose a semi-finite normal weightψ ′ with s(ψ ′) = 1− s(ωξ ) and putψ =
ωξ + ψ

′. Transferring all the structure inHψ into H by Uϕ,ψ , we can replaceϕ by
ψ , so that we may assume thatω andϕ commute, which means that∆ leavesξ
invariant. For eachr > 0, we considerξr , ηr andζr given by (10). Butξ = ξr since
ξ = ∆i tξ , so that

ξ = ηr + ζr , ηr , ζr ∈ Pϕ, r > 0.

Now, we have

ξ = ∆−
1
4ηr +∆

−
1
4 ζr ∈ P]

ϕ; ∆−
1
4ηr ∈ P]

ϕ, ∆−
1
4 ζr ∈ P]

ϕ .

Sinceξ is left and right bounded,∆1/4ηr and∆−1/4ζr are both left bounded, and
satisfy the inequality:

π`
(
∆−

1
4ηr

)
≤ π`(ξ) ≤ s(ωξ ), π`

(
∆−

1
4 ζr
)
≤ π`(ξ).

Settinge= s(ωξ ), we havee∆−1/4ηr = ∆
−1/4ηr ande∆−1/4ζr = ζr . Sincee and

∆ commute,ηr = eηr andζr = eζr . As r → ∞, we getηr → η andζr → ζ ,
so thatη = eη = JeJη andζ = eζ = JeJζ . Thus,η andζ both belong toPξ .
Therefore, we get

(
R+ξ −Pϕ

)
∩Pϕ ⊂ Pξ . Q.E.D.

Lemma 1.12. For each pairξ1, ξ2 ∈ Pϕ , the following three conditions are equiv-
alent:

(i) ξ1 ⊥ ξ2 ;

(ii) Pξ1 ⊥ Pξ2 ;

(iii) s(ωξ1) ⊥ s(ωξ2) .

PROOF: The implications (iii) H⇒ (ii) H⇒ (i) are obvious. In general[Pξ ] =

[Mξ ] ∩ [M′ξ ] for ξ ∈ Pϕ , so that (ii) H⇒ (iii) follows.
(i) H⇒ (ii): By the previous lemma, it is enough to show that(

R+ξ1−Pϕ

)
∩Pϕ ⊥

(
R+ξ2−Pϕ

)
∩Pϕ .
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If ξ1, η2 ∈ Pϕ andλξ1 − η1 ∈ Pϕ , λ > 0, andµξ2 − η2 ∈ Pϕ , µ > 0, then we
have

0≤ (η1 | η2) ≤ λ (ξ1 | η2) ≤ λµ (ξ1 | ξ2) = 0,

so thatη1 ⊥ η2. Q.E.D.

END OF PROOF OFTHEOREM 1.2: We have already proved almost all of The-
orem 1.2 except inequality (9). The first half of the inequality follows from the
general fact:

ωξ − ωη =
1

2

(
ωξ+η, ξ−η + ωξ−η, ξ+η

)
.

For a given pairξ, η ∈ Pϕ , choose orthogonalζ+, ζ− ∈ Pϕ such thatξ − η =
ζ+ − ζ− by Lemma 1.7. By Lemma 1.12,e = s(ωζ+) ⊥ f = s(ωζ−). Putting
a = e− f , we have∥∥ωζ − ωη∥∥ ≥ ∣∣ωξ (a)− ωη(a)∣∣ (since‖a‖ = 1)

=
1

2

∣∣∣(a (ξ + η) ∣∣ ξ − η)+ (a (ξ − η) ∣∣ ξ + η)∣∣∣
=

1

2

∣∣∣(a (ξ + η) ∣∣ ζ+ − ζ−)+ (a (ζ+ − ζ−) ∣∣ ξ + η)∣∣∣
=

1

2

∣∣∣(ξ + η ∣∣ ζ+ + ζ−)+ (ζ+ + ζ− ∣∣ ξ + η)∣∣∣ 2

=
(
ξ + η

∣∣ ζ+ + ζ−)
≥
(
ξ
∣∣ ζ+)− (ξ ∣∣ ζ−)− (ξ ∣∣ ζ−)− (η ∣∣ ζ+)+ (η ∣∣ ζ−) = ∥∥ξ − η∥∥2

.

This completes the proof for the first part of inequality (9). The second part of (9) is
a general fact. Q.E.D.

Based on the theorem just proven, we make the following definition:

Definition 1.13. Given a von Neumann algebra
{
M,H

}
, a quadruple

{
M,H, J,P

}
of a unitary involution3 J, calledmodular conjugation, and a self-dual coneP in H
is said to be astandard formof M if the following requirements are satisfied:

(i) JMJ =M′;

(ii) Ja J= a∗, a ∈ CM (=M ∩M′);

(iii) Jξ = ξ , ξ ∈ P;

(iv) a Ja JP ⊂ P, a ∈M.

2 a(ζ+ − ζ−) = ζ+ + ζ−.
3 Anti linear isometryJ with J2

= 1.
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Theorem 1.14. Suppose that
{
M1, H1, J1, P1

}
and

{
M2, H2, J2, P2

}
are

standard forms. Ifπ is an isomorphism ofM1 onto M2 , then there exists uniquely
a unitary u fromH1 onto H2 such that

(i) π(x) = uxu∗ , x ∈M1 ;

(ii) J2 = u J1u∗ ;

(iii) P2 = uP1 .

PROOF: Let
{
M, H, J, P

}
be a standard form. We shall prove that{

M, H, J, P
}
∼=
{
πϕ(M), Hϕ, Jϕ, Pϕ

}
with ϕ a faithful weight onM, which in turn shows the existence ofu. The unique-
ness ofu then follows from that ofUϕ,ψ in Lemma 1.5.

For eachξ ∈ P, setH(ξ) = [Mξ ] ∩ [M′ξ ] and e = s(ωξ ). We defineSξ
naturally and setH = J Sξ . The arguments that follow (14) show∆1/2

ξ = H and

Jξ = J. SincePξ =
{

x J xξ : x ∈ Me
}−, we havePξ ⊂ P. The self-duality of

Pξ in H(ξ) then impliesPξ = P ∩ H(ξ).
Theσ -finite case: Assume theσ -finiteness forM. Take a maximal orthogonal

family
{
ξi : i ∈ I

}
in P. Sinces(ωξi ) ⊥ s(ωξ j ), i 6= j , I is countable. Adjusting

norms, we may assume that
∑
‖ξi ‖

2 < +∞. Putξ =
∑

i∈I ξi . The maximality of
{ξi } implies, by Lemma 1.12, thatωξ is faithful. Hence we haveH = H(ξ), so that
P = Pξ .

The general case: For eache ∈ Proj(M), we setH(e) = eH ∩ JeH. If e is
σ -finite, thenP ∩ H(e) = Pξ for someξ ∈ P and there exists uniquely a unitary
Ue from H(e) onto πϕ(e)Jϕπϕ(e)Hϕ such thatUex = πϕ(x)Ue, x ∈ Me, and
UePξ = Pϕ ∩UeH(e). The uniqueness ofUe means thatUe extendsU f if f ≤ e.
Since the family ofσ -finite projections is upward directed and has supremum 1,
there exists a common extensionU of all possibleUe’s. SinceP =

⋃
Pξ , this U

enjoys the required properties. Q.E.D.

We shall close this section with an application of the above theorem to the au-
tomorphism group. Given a von Neumann algebraM, we denote by Aut(M) the
group of all automorphisms ofM. The group of all inner automorphism groups will
be denoted by Int(M). It is easy to see that Int(M) is a normal subgroup, so we
can form the quotient group Out(M) of Aut(M) by Int(M). To each finite subset{
ω1, ω2, . . . , ωn

}
of M∗, and eachα ∈ Aut(M), we set

U
(
α;ω1, . . . , ωn

)
=

{
β ∈ Aut(M) :

‖ωi ◦ α − ωi ◦ β‖ < 1;

‖ωi ◦ α
−1
− ωi ◦ β

−1
‖ < 1,

i = 1, . . . ,n

}
.

(16)

The family
{

U (α;ω1, . . . , ωn) : ω1, . . . , ωn ∈M∗
}

gives rise to a topology in
Aut(M) which makes Aut(M) a topological group. It is not difficult to show that
Aut(M) is complete with respect to this uniform structure.
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Theorem 1.15. If
{
M,H, J,P

}
is a standard form, then the groupU of all uni-

taries u satisfying

uMu∗ =M, u Ju∗ = J, uP = P

is isomorphic toAut(M) under the map: u∈ U 7→ αu ∈ Aut(M) , where

αu(x) = uxu∗, x ∈M.

Furthermore, this map is a homeomorphism ofU equipped with the strong operator
topology ontoAut(M) .

PROOF: The map:u ∈ U 7→ αu ∈ Aut(M) is clearly a homomorphism. By
Theorem 1.14, it is surjective. The uniqueness in the theorem yields the injectivity.
By inequality (9), the map:ξ ∈ P 7→ ωξ ∈ M+∗ is a homeomorphism, which in
turn means that the map:u 7→ αu is a homeomorphism. Q.E.D.

Definition 1.16. The inverse map of the above map:u 7→ αu ∈ Aut(M) is called
thestandard implementationand denoted byU (θ) for eachθ ∈ Aut(M).

The standard implementationU (θ) of θ ∈ Aut(M) is characterized by the fol-
lowing:

θ(x) = U (θ)xU(θ)∗, x ∈M,

U (θ)P = P.
(17)

If we fix a standard form
{
M,H, J,P

}
, then for any faithful weightϕ, there

exists uniquely a unitaryUϕ of Hϕ ontoH such that

Uϕπϕ(x)U
∗
ϕ = x, x ∈M, UϕP = P.

With thisUϕ , we identifyHϕ andH. We then realize
{
Hϕ, ηϕ, Jϕ,Pϕ

}
in H so that

Hϕ = H, Jϕ = J, Pϕ = P

andηϕ is a map fromnϕ into H such that

∆
1
4
ϕ ηϕ(x

∗x) ∈ P, x ∈ nϕ .

Proposition 1.17. In the above setting, the standard implementation U(θ) of θ ∈
Aut(M) has the property:

U (θ)ηϕ(x) = ηϕ◦θ−1

(
θ(x)

)
, x ∈ nϕ . (18)

In particular, we have

U (θ)ξω = ξω◦θ−1, ω ∈M+∗ , (19)

where ξω is the vector inP such thatω = ωξω .

PROOF: Sincenϕ◦θ−1 = θ(nϕ), the right hand side of (18) makes sense. We define
V to be the operator given by the right hand side of (18). It follows thatV can be
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extended to a unitary onH denoted byV again, which implementsθ onM because
for eacha ∈M andx ∈ nϕ

V aV∗ηϕ(x) = V aηϕ◦θ
(
θ−1(x)

)
= Vηϕ◦θ

(
aθ−1(x)

)
= ηϕ

(
θ(a)x

)
= θ(a)ηϕ(x).

To showV = U (θ), we have only to proveVP = P. For eachx ∈ nϕ ∩ n∗ϕ , we
have

V Sϕηϕ(x) = Vηϕ(x
∗) = ηϕ◦θ−1

(
θ(x∗)

)
= Sϕ◦θ−1ηϕ◦θ−1

(
θ(x)

)
= Sϕ◦θ−1Vηϕ(x).

Sinceηϕ(nϕ ∩ n∗ϕ) is a core forSϕ andηϕ◦θ−1

(
θ(nϕ ∩ n∗ϕ)

)
is also a core forSϕ◦θ−1,

we haveV Sϕ = Sϕ◦θ−1V . Hence the uniqueness of the polar decomposition implies
that

V J = J V and V∆ϕV∗ = ∆ϕ◦θ−1.

Recalling thatP =
{

x Jηϕ(x) : x ∈ nϕ
}−, we compute:

VP =
{

V x Jηϕ(x) : x ∈ nϕ
}−
=
{
θ(x)J Vηϕ(x) : x ∈ nϕ

}−
=

{
θ(x)Jηϕ◦θ−1

(
θ(x)

)
: x ∈ nϕ

}−
=
{

y Jηϕ◦θ−1(y) : y ∈ nϕ◦θ−1

}−
= Pϕ◦θ−1 = P. Q.E.D.

Let W(M) be the set of semi-finite normal weights onM andW0(M) be the
set of faithful semi-finite normal weights onM. To each pair(ψ, ϕ) ∈ W0(M) ×

W0(M), there corresponds canonically a unitaryUψ,ϕ : Hϕ 7→ Hψ which carries
the natural conePϕ of Hϕ ontoPψ of Hψ andJϕ onto Jψ , and intertwinesπϕ and
πψ . We now define the canonical Hilbert spaceL2(M) associated with a given von
Neumann algebraM as the Hilbert space:{
ζ = {ζϕ} ∈

∏
ϕ∈W0(M)

Hϕ : ζψ = Uψ,ϕζϕ for every(ψ, ϕ) ∈W0(M)×W0(M)

}
(20)

equipped with the inner product defined by:(
{ζ1,ϕ}

∣∣ {ζ2,ϕ}) = (ζ1,ϕ0

∣∣ ζ2,ϕ0

)
with any fixedϕ0 ∈W0(M). The positive coneL2(M)+ of L2(M) is then defined
as the set of thoseζ = {ζϕ} ∈ L2(M) such thatζϕ ∈ Pϕ , ϕ ∈W0(M). The action
of M on L2(M) is then given by

x{ζϕ} =
{
πϕ(x)ζϕ

}
, x ∈M.

By virtue of Theorem 1.14, for any fixedϕ0 ∈ W0(M) the mapU : ξ ∈ Hϕ0 7→{
Uψ,ϕ0ξ

}
∈ L2(M) gives rise to the unitary equivalence of{

πϕ0(M), Hϕ0, Pϕ0, Jϕ0

}
and the canonical

{
M, L2(M), L2(M)+, J

}
.
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Definition 1.18. We call
{
M, L2(M), L2(M)+, J

}
the standard form ofM or

thecanonicalstandard form.

For anyϕ ∈W0(M), the projectionUϕ : {ξψ } 7→ ξϕ ∈ Hϕ gives unitary equiva-
lence between the canonical standard form

{
M, L2(M), L2(M)+, J

}
and the one{

πϕ0(M), Hϕ0, Pϕ0, Jϕ0

}
associated withϕ0. The map:x ∈ nϕ 7→ U∗ϕηϕ(x) ∈

L2(M) gives the realization of the semi-cyclic representationπϕ on L2(M). We
will identify this map with ηϕ and therefore the semi-cyclic representationπϕ
with

{
L2(M), ηϕ

}
equipped with the canonical action ofM. In the case that we

want to emphasize the dependence onϕ, we will write L2(M, ϕ). To cover a non-
faithful weight, we use the following trick. Letϕ be a faithful semi-finite normal
weight onM ande ∈ Proj(Mϕ). For the semi-finite normal weightψ defined by
ψ(x) = ϕ(exe), x ∈M+, we set:

ηψ (x) = ηϕ(xe), x ∈ nψ . (21)

It follows immediately that the action ofM on JeJ L2(M) together with the map
ηψ is the realization of the semi-cyclic representation

{
πψ , Hψ , ηψ

}
inside the

standard form.

Theorem 1.19. Let M be a σ -finite von Neumann algebra in the standard form{
M, H, H+, J

}
. Suppose that a sequence

{
ϕn
}

of faithful normal positive func-
tionals on M converges to a faithfulϕ in norm. Then for any fixed faithful semi-
finite normal weightψ we have the following convergence:

(i) the sequence
{
∆ϕn,ψ

}
of relative modular operators converges to∆ϕ,ψ in

the strong resolvent sense.
(ii) The sequence

{
(Dϕn:Dψ)t

}
of the cocycle derivatives converges to(Dϕ:Dψ)t

σ -strongly and uniformly in t on any bounded interval.
(iii) The sequence

{
σ ϕn

}
of modular automorphism groups converges to the mod-

ular automorphism groupσ ϕ of ϕ in the following sense:

lim
n→∞

∥∥σ ϕn
t (x)η − σ ϕt (x)η

∥∥ = 0, η ∈ H, x ∈M,

and the convergence is uniform on any bounded interval of t .

PROOF:
(i) Letaψ = nψ∩n∗ψ andAψ = ηψ (aψ ) ⊂ H, a full left Hilbert algebra. Then

with ξϕ the representing vector ofϕ ∈M∗ in the coneH+, we haveJ∆1/2
ϕ,ψηψ (x) =

x∗ξϕ . By inequality (9), we have

lim
n→∞

∥∥ξϕn − ξϕ
∥∥ = 0.

Hence we get, for anyx ∈ aψ ,

lim
n→∞

∥∥∥(∆ϕn,ψ −∆ϕ,ψ
)
ηψ (x)

∥∥∥ = lim
n→∞

∥∥∥(J∆ϕn,ψ − J∆ϕ,ψ
)
ηψ (x)

∥∥∥
= lim

n→∞

∥∥x∗ξϕn − x∗ξϕ
∥∥ = 0.
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SinceAψ = ηψ (aψ ) is a core for∆1/2
ϕ,ψ and contained in

⋂
∞

n=1 D
(
∆

1/2
ϕn,ψ

)
, the

sequence
{
∆ϕn,ψ

}
of relative modular operators converges to∆ϕ,ψ in the strong

resolvent sense by Theorem A.6.(iii).
(ii) and (iii): We have(Dϕn : Dψ)t = ∆i t

ϕn,ψ
∆−i t
ψ , t ∈ R. The strong resolvent

convergence of
{
∆i t
ϕn,ψ

}
to ∆ϕ,ψ implies the strong convergence of the sequence{

∆i t
ϕn,ψ

}
of one parameter unitary groups to the one parameter unitary group

{
∆i t
ϕ,ψ

}
uniformly on any bounded interval oft by Theorem A.6. Thus our assertion follows.

Q.E.D.

Given a standard form
{
M, H, J, P

}
of a von Neumann algebraM, we define

an action ofM onH from the right as follows:

ξx = J x∗Jξ, x ∈M, ξ ∈ H. (22)

SinceJMJ =M′, H becomes a two sidedM-module and the commutant ofM is
precisely given by the right action ofM. Writing Jξ = ξ∗ as before, we have

(xξ)∗ = ξx∗, x ∈M, ξ ∈ H. (23)

We must note however that when
{
M, H, J, P

}
is given by a Tomita algebraA,

for ξ, η ∈ A, we have

ξπ`(η) = Jπ`(η)
∗Jξ = J(η]Jξ) = ξ∆

1
2η = πr

(
∆

1
2η
)
ξ.

Thus, the right action ofx = π`(η) is notπr (η) butπr
(
∆1/2η

)
.

For eachϕ ∈ M+∗ , we denote the representing vector ofϕ in P by ξϕ , i.e.
ϕ(x) =

(
xξϕ

∣∣ ξϕ), x ∈ M. It is easy to see thatxξϕ = ξϕx ⇐⇒ xϕ = ϕx. For
each pairx ∈M andξ ∈ H we write

[x, ξ ] = xξ − ξx.

Proposition 1.20. If h and k are self-adjoint elements ofM , then for eachϕ ∈
M+∗ , there exists a Radon measureµ on R× R such that

∥∥ f (h)ξϕ − ξϕg(k)
∥∥2
=

∫∫
R×R

∣∣ f (x)− g(y)
∣∣ dµ(x, y) (24)

for every bounded Borel functions f and g onR .

PROOF: Let π (resp.π ′) be the left (resp. right) representation ofM on H, i.e.
π(x)ξ = xξ andπ ′(x)ξ = ξx. Let A be theC∗-algebra generated byπ(h) and
π ′(k) and 1. Sinceπ(h) andπ ′(k) commute,A is abelian. HenceA ∼= C

(
Sp(A)

)
.

For eachω ∈ Sp(A) put

x(ω) = ω
(
π(h)

)
, y(ω) = ω

(
π ′(k)

)
.
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Then we have
(
x(ω), y(ω)

)
∈ R2. SinceA is generated byπ(h) andπ ′(k) and 1, the

map:ω ∈ Sp(A) 7→
(
x(ω), y(ω)

)
∈ R2 is injective and continuous. Hence under

this map, Sp(A) is identified with a compact subset ofR2, called the joint spectrum
of π(h) andπ ′(k). The operatorsπ(h) andπ ′(k) are respectively identified with the
projection function from Sp(A) to the first (resp. second) coordinate ofω ∈ Sp(A).
Letµ be the spectral measure corresponding to the vectorξϕ , i.e.

∥∥aξϕ
∥∥2
=

∫
Sp(A)

∣∣a(ω)∣∣ dµ(ω), a ∈ A.

Viewing the measureµ as a measure onR2 supported by Sp(A), we have∥∥∥ f
(
π(h), π ′(k)

)
ξϕ

∥∥∥2
=

∫∫
R2

∣∣ f (x, y)
∣∣2 dµ(x, y)

for every bounded Borel functionf onR2. In particular, we have (24). Q.E.D.

Proposition 1.21. Writing

[x, ϕ] = xϕ − ϕx, x ∈M, ϕ ∈M∗,

we have ∥∥[x, ϕ]∥∥ ≤ 2‖ϕ‖
1
2
∥∥[x, ξϕ]∥∥, ϕ ∈M+∗ , x ∈M. (25)

PROOF: For eachy ∈M, we have∣∣∣〈y, [x, ϕ]〉∣∣∣ = ∣∣〈yx− xy, ϕ〉
∣∣ = ∣∣∣(yxξϕ − xyξϕ

∣∣ ξϕ)∣∣∣
≤

∣∣∣(y (xξϕ − ξϕx)
∣∣ ξϕ)∣∣∣+ ∣∣∣(yξϕx − xyξϕ

∣∣ ξϕ)∣∣∣
≤ ‖y‖

∥∥[x, ξϕ]∥∥‖ξϕ‖ + ∣∣∣(yξϕ ∣∣ ξϕx∗ − x∗ξϕ
)∣∣∣

≤ ‖y‖‖ξϕ‖
∥∥[x, ξϕ]∥∥+ ‖y‖‖ξϕ‖∥∥[x∗, ξϕ]∥∥.

But we have∥∥[x∗, ξϕ]∥∥ = ∥∥J[x∗, ξϕ]
∥∥ = ∥∥[Jξϕ, x]

∥∥ = ∥∥[ξϕ, x]
∥∥. Q.E.D.

For eacha ∈ R+ let Ea denote the characteristic function of the half line[a,∞[.
For eachx ∈M let x = u(x)|x| be the polar decomposition, and define

ua(x) = u(x)Ea
(
|x|
)
, x ∈M. (26)
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Proposition 1.22. For any x∈M and ϕ ∈M+∗ we have

(i) ∞∫
0

ϕ
(

E√a

(
|x|
))

da = ϕ(x∗x), (27)

(ii) ∞∫
0

∥∥∥[u√a(x), ξϕ
]∥∥∥2

da ≤ 4
∥∥[x, ξϕ]∥∥ϕ(x∗x + xx∗)

1
2 . (28)

PROOF:
(i) We haveE√a

(
|x|
)
= Ea(x∗x) and

x∗x =

∞∫
0

Ea(x
∗x) da .

This implies (i).
(ii) First, we assumex = x∗. PutFa(t) = signt Ea

(
|t |
)

for a ∈ R+ andt ∈ R.
Letµ be the measure onR2 determined byh = k = x in Proposition 1.20. Then we
have

∞∫
0

∥∥∥[u√a(x), ξϕ
]∥∥∥2

da =

∞∫
0

∫∫
R2

∣∣F√a(α)− F√a(β)
∣∣2 dµ(α, β) da

=

∫∫
R2

( ∞∫
0

∣∣F√a(α)− F√a(β)
∣∣2 da

)
dµ(α, β) .

If sign(α) = sign(β), then

∞∫
0

∣∣F√a(α)− F√a(β)
∣∣2 da =

∞∫
0

∣∣E√a(α)− E√a(β)
∣∣2 da

=

∞∫
0

∣∣Ea(α
2)− Ea(β

2)
∣∣2 da =

∣∣α2
− β2

∣∣ = |α − β|(|α| + |β|).
If sign(α) = − sign(β), then we have∣∣F√a(α)− F√a(β)

∣∣2 ≤ 2
(
Ea(α

2)+ Ea(β
2)
)
,

so that
∞∫

0

∣∣F√a(α)− F√a(β)
∣∣2 da ≤ 2

(
α2
+ β2)

≤ 4(α − β)2 = 4|α − β|
(
|α| + |β|

)
.
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Therefore, we obtain
∞∫

0

∥∥∥[u√a(x), ξϕ
]∥∥∥2

da ≤ 4
∫∫
R2

|α − β|
(
|α| + |β|

)
dµ(α, β)

≤ 4

( ∫∫
R2

|α − β|2 dµ(α, β)

) 1
2

×

(( ∫∫
R2

|α|2 dµ(α, β)

) 1
2

+

( ∫∫
R2

|β|2 dµ(α, β)

) 1
2
) 1

2

= 4
∥∥[x, ξϕ]∥∥(‖xξϕ‖ + ‖ξϕx‖

)
= 4

∥∥[x, ξϕ]∥∥(‖xξϕ‖ + ‖xξϕ‖) 1
2

= 4
√

2
∥∥[x, ξϕ]∥∥ϕ(x2)

1
2 .

This proves (28) in this self-adjoint case.
For the casex 6= x∗, we consider the 2× 2-matrix algebraM2 = M2(C)⊗M.

The standard form forM2 is given by 2×2-matrices overH. So let̃H = M2(C)⊗H
be the vector space of all 2× 2-matrices with entries fromH. Thus each element
ξ ∈ H̃ is of the form:

ξ =

(
ξ11 ξ12
ξ21 ξ22

)
, ξi, j ∈ H, i, j = 1,2;

ξ∗ = J̃ξ =

(
Jξ11 Jξ21
Jξ12 Jξ22

)
.

Each element ofM2 acts oñH from the left by the matrix multiplication. The com-
mutantM′2 of M2 is given by the right multiplication ofM2. The natural positive
coneP̃ is then the closure of the set of matrices:(

x11ξx∗11+ x12ηx∗12 x11ξx∗21+ x12ηx∗22

x21ξx∗11+ x22ηx∗12 x21ξx∗21+ x22ηx∗22

)
, ξ, η ∈ P, x = [xi, j ] ∈M2.

Now with this setting, we consider

x̃ =

(
0 x∗

x 0

)
, ξϕ̃ =

(
ξϕ 0

0 ξϕ

)
.

Then we get

x̃2
=

(
x∗x 0

0 xx∗

)
, |̃x| =

(
|x| 0

0 |x∗|

)
, u(̃x) =

(
0 u(x)∗

u(x) 0

)
,

Ea
(
|̃x|
)
=

(
Ea
(
|x|
)

0

0 Ea
(
|x∗|

)) , ua(̃x) =

(
0 ua(x)∗

ua(x) 0

)
.
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Furthermore, we have

ua(̃x)ξϕ̃ =

(
0 ua(x)∗ξϕ

ua(x)ξϕ 0

)
, ξϕ̃ua(̃x) =

(
0 ξϕua(x)∗

ξϕua(x) 0

)
,

so that∥∥∥[ua(̃x), ξϕ̃
]∥∥∥2
=

∥∥∥[ua(x), ξϕ
]∥∥∥2
+

∥∥∥[ua(x)
∗, ξϕ

]∥∥∥2
= 2

∥∥∥[ua(x), ξϕ
]∥∥∥2
.

Hence we get

2

∞∫
0

∥∥∥[u√a(x), ξϕ
]∥∥∥2

da =

∞∫
0

∥∥∥[u√a(̃x), ξϕ̃
]∥∥∥2

da

≤ 4
√

2
∥∥[̃x, ξϕ̃]∥∥ϕ̃(̃x2)

1
2 = 8

∥∥[x, ξϕ]∥∥ϕ(x∗x + xx∗)
1
2 .

Q.E.D.

Corollary 1.23. If x ∈M , x 6= 0 , and ϕ ∈M+∗ satisfy the inequality forε > 0 :∥∥[x, ξϕ]∥∥ ≤ εϕ(x∗x + xx∗)
1
2 ,

then there exists a> 0 such that∥∥∥[u√a(x), ξϕ
]∥∥∥ ≤ 2εϕ

(
u√a(x)

∗u√a(x)+ u√a(x)u
√

a(x)
∗

) 1
2
, ua(x) 6= 0.

PROOF: By (27) and (28), we have

∞∫
0

∥∥∥[u√a(x), ξϕ
]∥∥∥2

da ≤ 4
∥∥[x, ξϕ]∥∥ϕ(x∗x + xx∗)

1
2

=
∥∥[x, ξϕ]∥∥( ∞∫

0

ϕ
(

E√a

(
|x|
)
+ E√a

(
|x∗|

))
da

) 1
2

= 4
∥∥[x, ξϕ]∥∥( ∞∫

0

ϕ
(
u√a(x)

∗u√a(x)+ u√a(x)u
√

a(x)
∗

)) 1
2

≤ 4ε

∞∫
0

ϕ
(
u√a(x)

∗u√a(x)+ u√a(x)u
√

a(x)
∗

)
da .
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Thus, we have for somea > 0∥∥∥[u√a(x), ξϕ
]∥∥∥2
≤ 4εϕ

(
u√a(x)

∗u√a(x)+ u√a(x)u
√

a(x)
∗

)
6= 0.

Hence with thisa > 0 we obtain:∥∥∥[u√a(x), ξϕ
]∥∥∥ ≤ 2

√
εϕ
(
u√a(x)

∗u√a(x)+ u√a(x)u
√

a(x)
∗

) 1
2
. Q.E.D.

The following lemma will be used later, in Chapter XVIII.

Lemma 1.24. There exists a universal constant C> 0 such that∥∥(∆i t
ϕ − 1

)
xξϕ

∥∥ ≤ C
(
1+ |t |

)∥∥[x, ξϕ]∥∥, x ∈M, (29)

for any faithful ϕ ∈M+∗ .

PROOF: Since
∥∥[x, ξϕ]∥∥ = ∥∥(1− ∆1/2

ϕ

)
xξ
∥∥, we simply estimate a bound of the

function: (λ, t) ∈ R∗+ × R 7→
(
λi t
− 1

)(
λ1/2
− 1

)−1
∈ C. Thus we consider the

function:

f (λ, t) =
ei t
− 1(

1+ |t |
)(

e
1
2λ − 1

) , (λ, t) ∈ R2,

and observe that this function is indeed bounded onR2. Q.E.D.

Exercise IX.1

1) Let
{
M, H, J, P

}
be a von Neumann algebra in a standard form. InH, define

an order relationξ ≥ η by ξ − η ∈ P. For eachω ∈ M+∗ , let ξ(ω) be the vector
in P such thatω = ωξ(ω). Show that the map:ω ∈ M+∗ 7→ ξ(ω) ∈ P enjoys the
following properties:

ξ(λω) =
√
λξ(ω), λ ≥ 0, ω ∈M+∗ ;

ω1 ≥ ω2 H⇒ ξ(ω1) ≥ ξ(ω2), ω1, ω2 ∈M+∗ .

(Hint: Use Exercise VIII.3.8.)

ξ
(
λω1+ (1− λ)ω2

)
≥ λξ(ω1)+ (1− λ)ξ(w2), 0≤ λ ≤ 1,

(Hint: λωξ1 + (1− λ)ωξ2 ≥ ωλξ1+(1−λ)ξ2 in general.)

2) With
{
M, H, J, P

}
as above, show that for everyξ ∈ H there exist uniquely a

partial isometryu ∈M and|ξ | ∈ P such thatξ = u|ξ |, u∗u is the cyclic projection
to
[
M′|ξ |

]
anduu∗ is the cyclic projection to[M′ξ ]. The vector|ξ | is called the

absolute valueof ξ andu the phaseof ξ . (Hint: Considerω = ωξ ∈ (M
′
∗)
+ and

|ξ | = ξ(ωξ ) relative toM′.)
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3) Show that ifξ = u|ξ | is the polar decomposition, then|ξ∗| = u|ξ |u∗ andξ∗ =
u∗|ξ∗| is the polar decomposition ofξ∗, andu|ξ | = |ξ∗|u.

4) When we consider non faithful elements ofM+∗ , their modular automorphism
groups and related objects mean the ones in the reduced algebra by their support.
Let ϕ andψ be elements inM+∗ . Show that ifϕ ≤ Mψ for someM , then

ξ(ϕ) = (Dϕ : Dψ)
−

i
2
ξ(ψ) = (Dϕ : Dψ)

−
i
4
ξ(ψ)(Dϕ : Dψ)∗

−
i
4
.

(Hint: For the first identity, compare(Dϕ : Dψ)zξ(ψ) and∆iz
ϕ,ψξ(ψ). Then ob-

serve that they agree onR and conclude that

ξ(ϕ) = ∆
1
2
ϕ,ψξ(ψ) = (Dϕ : Dψ)

−
i
2
ξ(ψ).

For the second identity, show that

aξ(ψ) = ξ(ψ)σψi
2
(a), a ∈ D

(
σ
ψ
i
2

)
.

5) Assume thatM is σ -finite andψ is faithful. Prove thatΘψ : x ∈ M 7→

∆
1/4
ψ xξ(ψ) is an order isomorphism ofM onto∆1/4

ψ Mξ(ψ), which is the linear

span of the face
⋃
λ>0

[
0, λξ(ψ)

]
of P generated byξ(ψ), where[0, ξ ] =

{
η ∈ H :

0≤ η ≤ ξ
}

in the ordered Hilbert spaceH given byP.

6) Let
{
Mi , Hi , Ji , Pi

}
, i = 1,2, be the standard form of twoσ -finite von Neu-

mann algebras. Following the steps described below, prove thatU is an isometry of
H1 ontoH2 with U (P1) = P2, thenU gives rise to an order isomorphismθ , i.e. a
Jordan∗-isomorphism, ofM1 ontoM2 such that(

θ(x)Uξ
∣∣ Uξ

)
=
(
xξ
∣∣ ξ), x ∈M1, ξ ∈ H1.

In other words, the order structure of the standard form determines the order (Jor-
dan) structure of a von Neumann algebra. [459]

Before going to the next step, recall that an order isomorphism betweenC∗-
algebras is precisely a Jordan isomorphism by Exercise IV.1.2.

(a) Prove thatU maps the order interval
[
0, ξ(ψ1)

]
given by a faithfulψ1 ∈ M+∗

onto the order interval
[
0,Uξ(ψ1)

]
which generates a dense face ofP2, so that

ψ2 = ωUξ(ψ1) is faithful.

(b) Prove thatθ=Θ−1
ψ2
◦U ◦Θψ1 is the required order isomorphism ofM1 ontoM2.

7) Show that ifθ is a Jordan isomorphism of a von Neumann algebraM1 onto
anotherM2, then there exists a unitaryUθ which maps the standard form

{
M1, H1,

J1, P1
}

of M1 onto that
{
M2, H2, J2, P2

}
of M2 in such a way that(

θ(x)ξ2
∣∣ ξ2) = (xU−1

θ ξ2
∣∣ U−1

θ ξ2
)
, ξ2 ∈ P2, x ∈M1.
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(Hint: By Exercise IV.1.1 and 2, there exists a central projectionz ∈ M1 such that
θ is an isomorphism ofM1z1 and an anti-isomorphism ofM1(1 − z1). Use the
isomorphismθ̄ (x) = θ(xz1)+ Jθ

(
x(1− z1)

)∗
J, x ∈M1, of M1, ontoM2θ(z1)⊕

M′2
(
1− θ(z1)

)
to construct the required unitaryUθ .)

8) Keep the notations and theσ -finiteness assumption of Problem 5. Following the
steps described below, prove that ifT ∈ L(H) is positive and invertible such that
T(P1) = P2, then there exists a unique invertibleh ∈ M+ such thatT = h Jh J.
[459]

(a) Show that ifΘ is a linear map ofM into H such thatΘ(M+) is a dense face
of P, then there exist a unitaryU ∈ L(H) with U (P) = P and a faithfulψ ∈M+∗
such that

Θ = U ◦Θψ .

(Hint: As Θ(M+) is dense inP,
[
0,Θ(1)

]
is total. Soϕ = ωΘ(1) is faithful. As

Θϕ is an order isomorphism fromM onto the face ofP generated byξ(ϕ) = Θ(1),
θ = Θ−1

ϕ ◦ Θ is an order isomorphism ofM onto itself such thatθ(1) = 1. Let
U = Uθ be the unitary given by Problem 7, andψ = ωU−1ξ(ϕ) = ϕ ◦ θ . Then
UΘψ (x) = Θϕ ◦Θ(x) = Θ(x).)

(b) Let ϕ ∈ M+∗ be faithful. Show that there exists a faithfulψ ∈ M+∗ such that

the absolute value of the bounded invertible operator:∆
1/4
ϕ xξ(ϕ) 7→ ∆

1/4
ψ xξ(ψ) is

exactlyT . (Hint: LetΘ = T ◦Θϕ and apply (a) toΘ to find a unitaryU andψ such
that

T∆
1
4
ϕ xξ(ϕ) = U∆

1
4
ψxξ(ψ), x ∈M.

HenceU∗T∆1/4
ϕ xξ(ϕ) = ∆1/4

ψ xξ(ψ), x ∈M.)

(c) Show the equivalence of the following statements:
(i)

∥∥∆1/4
ϕ xξ(ϕ)

∥∥ ≥ ∥∥∆1/4
ψ xξ(ψ)

∥∥, x ∈M;

(ii) The function:t ∈ R 7→ ut = (Dψ : Dϕ)t ∈M has an analytic extension to a
member{uz} of AM

(
D1/4

)
such that

∥∥u−i/4
∥∥ ≤ 1.

Then show that if the above conditions hold, then

∆
1
4
ψxξ(ψ) = u

−
i
4

(
∆

1
4
ϕ xξ(ϕ)

)
u∗
−

i
4
.

(Hint: Making use of the 2× 2-matrix technique, justify the following formal com-
putations:

J∆
1
2
ψ,ϕ ∆

−
1
2

ϕ J = ∆
−

1
2

ψ ∆
1
2
ψ,ϕ

as seen below:

J∆
1
2
ψ,ϕ∆

−
1
2

ϕ J xξ(ϕ) = J∆
1
2
ψ,ϕx∗ξ(ϕ) = xξ(ψ) = ∆

−
1
2

ψ J x∗ξ(ϕ)

= ∆
−

1
2

ψ ∆
1
2
ψ,ϕxξ(ϕ);
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∆
1
4
ψxξ(ψ) = ∆

1
4
ψ J∆

1
2
ψ,ϕx∗ξ(ϕ) = ∆

1
4
ψ J∆

1
2
ψ,ϕ∆

−
1
2

ϕ J xξ(ϕ)

= ∆
1
4
ψ∆
−

1
2

ψ ∆
1
2
ψ,ϕxξ(ϕ) = ∆

−
1
4

ψ ∆
1
2
ψ,ϕ∆

−
1
4

ϕ ∆
1
4
ϕ xξ(ϕ)

= ∆
−

1
4

ψ ∆
1
4
ψ,ϕ∆

1
4
ψ,ϕ∆

−
1
4

ϕ ∆
1
4
ϕ xξ(ϕ)

=

(
J∆

1
4
ψ,ϕ∆

−
1
4

ϕ J
)(
∆

1
4
ψ,ϕ∆

−
1
4

ϕ

)
∆

1
4
ϕ xξ(ϕ)

= u
−

i
4

(
∆

1
4
ϕ xξ(ϕ)

)
u∗
−

i
4
.

(d) In view of (c), T is the absolute value of the operatora Ja J for somea ∈ M.
But the absolute value|a Ja J| is given byT = |a Ja J| = |a|J|a|J.

(e) If a Ja J = 1, a ∈ M, thena is invertible anda−1
= Ja J ∈ M ∩M′ = Z,

so thata is central. Ifh, k ∈ M+ are invertible and ifh Jh J= k Jk J, thenh = ak
with somea ∈ Z+ such that 1= a Ja J = a2, so thata = 1. Thus the uniqueness
of h with T = h Jh J follows.

9) Keep the notations and the assumptions in the previous problem. Assume the in-
nerness of a derivation on a von Neumann algebra which will be proven later, Theo-
rem XI.3.5. Following the arguments presented below, prove that ifδ ∈ L(H) gen-
erates a one parameter group exp(tδ) of invertible operators such that exp(tδ)(P) =
P, t ∈ R, thenδ = x + J x J for somex ∈M.

(a) Based on the formula, called theLie-Trotter formula:

exp
(
t (δ + δ∗)

)
= lim

n→∞

(
exp(tδ/n)exp(tδ/n)∗

)n
;

exp
(
t (δ − δ∗)

)
= lim

n→∞

(
exp(tδ/n)exp(−tδ/n)∗

)n
,

observe that it suffices to prove the claim for a self-adjointδ and a skew-adjointδ
separately.

(b) If δ = δ∗, thenTt = exp(tδ) is of the formTt = Ht J Ht J, Ht ∈ M+, by
Problem 8. By the uniqueness ofHt , we haveHs+t = HsHt . Hence withh =
limt→0(Ht − 1)/t , we obtainδ = h+ Jh J.

(c) Assumeδ = −δ∗. ThenU (t) = exp(tδ) is a one parameter unitary group such
thatU (t)(P) = P. By Problem 6,U (t) gives rise to a one parameter group{θt }
of Jordan∗-automorphisms ofM such thatU (t) = Uθt . As θt = (θt/2)

2, eachθt is
the square of a Jordan∗-automorphism which is an automorphism. Hence{θt } is a
one parameter automorphism group ofM which is given byθt (x) = U (t)xU(t)∗,
t ∈ R, x ∈M.

(d) Differentiating the last equation, we get

d

dt
θt (x)

∣∣∣∣
t=0
= δx − xδ = [δ, x] ∈M, x ∈M ,

so that ad(δ) = [δ, · ] is a derivation ofM.
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(e) By Theorem XI.3.5, there existsh ∈Mh such thatδx − xδ = i [h, x], x ∈M.
Henceδ− ih = ik ∈M′. AsU (t) preservesP, JU(t)J = U (t), so thatJδJ = δ.
Hence

δ = ih+ ik = J
(
ih+ ih+ ik

)
J = −i J(h+ k)J.

Thusa = h+ Jk J= −(Jh J+ k) ∈M ∩M′ = Z, so that

a = a∗ = Ja J= Jh J+ k = −a.

Thereforea = 0, which means that

δ = ih− i Jh J= ih+ J(ih)J.

10) Keep the above notations and the assumptions. Observe that the setg = g(P) of
all δ ∈ L(H) with exp(tδ)(P) = P, t ∈ R, is a Lie algebra under the Lie bracket
operation:[δ1, δ2] = δ1δ2 − δ2δ1. By the previous problem, the mapx ∈ M 7→

x + J x J ∈ g is a real linear surjective Lie algebra homomorphism from the Lie
algebraM ontog whenM is viewed as a Lie algebra under the Lie product[x, y] =
xy− yx, x, y ∈M.

(a) Prove that the kernel of the above Lie homomorphism is precisely
{

a ∈ Z :
a∗ = −a

}
and that the centerc of g is

{
a+ Ja J : a ∈ Z, a = a∗

}
.

(b) Consider the quotient Lie algebrâg = g/c, and denote the cosetδ + c ∈ ĝ
of δ by δ̂. Prove that the homomorphism:x ∈ M 7→ x + J x J ∈ g gives rise to
an isomorphismj of the quotient Lie algebraM/Z = M̂, i.e. the Lie algebra of
derivations ofM, ontoĝ.

(c) Prove that ifa = [x, y], x, y ∈ L(H), commutes with bothx and y, then
Sp(a) = {0}. Hence ifx, y ∈M anda ∈ Z, thena = 0. (Hint: Asa andx commute,
[et x, y] = taet x, so that et x ye−t x

= y + ta. If λ ∈ Sp(a), then tλ + Sp(y) ⊂
Sp(et x ye−t x) = Sp(y). Hence the boundedness of Sp(y) impliesλ = 0.) Therefore,
M̂ has no center other than{0}.

(d) Define IM : ĝ→ ĝ by

IM(δ̂) = j
(
i j−1(δ̂)

)
.

Prove thatI = IM enjoys the following property:

I 2
= − id, I (δ̂∗) = −I (δ̂)∗;[
±δ1, δ2

]
=
[
δ1, I δ2

]
= I

[
δ1, δ2

]
.

}
(∗)

(e) Call a real linear mapI of ĝ onto itself satisfying the above condition (∗) an
orientationof P. Prove that ifI1 and I2 are two orientations ofP, then there exists
a central projectione∈M such thatI1 = I2 on ĝ(eP) andI1 = −I2 on ĝ

(
(1−e)P

)
.

(Hint: SetE = I2 ◦ I −1
1 . Prove thatE2(δ̂) − δ̂ belongs to the center ofĝ which

is {0} by (c). Thusĝ is the direct sum of two ideals

ĝ1 =
{
δ̂ ∈ ĝ : E(δ̂) = δ̂

}
and ĝ−1 =

{
δ̂ ∈ ĝ : E(δ̂) = −δ̂

}
.
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Set

M1 =
{

x ∈M : j ◦ ad(x) ∈ ĝ1
}

and M−1 =
{

x ∈M : j ◦ ad(x) ∈ ĝ−1
}
.

If x ∈ M1 and y ∈ M−1, then j ◦ ad[x, y] = 0, so[x, y] ∈ Z; hence[x, y] = 0
by (c). As E(δ̂∗) = E(δ̂)∗, ĝ1, ĝ−1, M1 and M1 are all closed under the∗-
operation. Ifx ∈ M′1 ∩M, then j ◦ ad(x) commutes witĥg1, hence it belongs to
ĝ−1. HenceM−1 =M′1 ∩M. Similarly,M1 =M′

−1 ∩M. ThusM1 andM−1 are
both von Neumann subalgebras ofM, which containZ. As j ◦ ad(x) ∈ ĝ1 + ĝ−1
for everyx ∈ M, we haveM = M1 +M−1. If x = x1 + x−1 andy = y1 + y−1
with x1, y1 ∈M1 andx−1, y−1 ∈M−1, then[x, y] = [x1, y1] + [x−1, y−1]; hence
[x1, y] = [x1, y1] ∈M1. If z= z1+ z−1 with z1 ∈M1 andz−1 ∈M−1, then

[x1, y1]z= [x1, y1]z1+ x1y1z−1− y1z−1x1 = [x1, y1]z1+ [x1, y1z−1] ∈M1.

Hence ife =
∨{

us̀
(
[x, y]

)
u∗ : x, y ∈ M1, u ∈ U(M1)

}
, thene is a central

projection ofM1 such thatM1,e is an ideal ofM. As M1 ∩M′1 = Z, e ∈ Z and
Me=M1e. SinceM1(1−e) = Z(1−e) = Z(1−e), we haveM1 =M(1−e)+Z.
Now we have seen thatE = id on ĝ(eP) andE = − id on ĝ((1− e)P).)

(f) Prove that if withe∈Proj(Z) I1= IM on ĝ(eP) andI1=−IM on ĝ
(
(1−e)(P)

)
,

then I = IN whereN =Me+M′(1− e).

(g) Prove, withI = IM, that

M =
{
δ1− I δ2 : δ̂2 = I (δ̂1), δ1, δ2 ∈ g(P)

}
;

M′ =
{
δ1+ I δ2 : δ̂2 = I (δ̂1), δ2 ∈ g(P)

}
.

Therefore, the natural positive coneP together with the orientationI determines
the von Neumann algebra. [459].

11) Drop theσ -finiteness assumption from Problems (6), (8), (9) and (10).

12) Consider the standard form
{
M̃, H̃, J̃, P̃

}
of M̃ = M ⊗ M2(C), viewing H̃

as the Hilbert space of 2× 2-matrices with entries fromH and lettingM̃ acts by the
left multiplication, where the inner product iñH is defined as follows:

(
[ξi, j ]

∣∣ [ηk,`]
)
=

2∑
i, j=1

(
ξi j
∣∣ ηi, j

)
.

(a) Observe that
(ξ∗)i, j = (ξ j,i )

∗, ξ = [ξi, j ] ∈ H̃.

(b) Show that
(

a b∗
b c

)
∈ M̃ is positive if and only ifa, b ≥ 0 and∣∣(bξ | η)∣∣ ≤ (aξ ∣∣ ξ) 1

2
(
cη
∣∣ η) 1

2 , ξ, η ∈ H;

if and only if there exists a uniques ∈M with ‖s‖ ≤ 1 such thatb = c1/2sa1/2.
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(c) Show that
(
ϕ ρ∗

ρ ψ

)
∈ M̃∗ is positive when the pairing with̃M is given by

〈(
x11 x12
x21 x22

)
,

(
ω11 ω12
ω21 ω22

)〉
=

2∑
i, j=1

ωi, j (xi, j ),

if and only if ϕ,ψ ≥ 0 and∣∣ρ(y∗x)∣∣ ≤ ϕ(x∗x) 1
2ψ(y∗y)

1
2 , x, y ∈M.

(d) Suppose thatϕ ∈ M+∗ is faithful. Show that
(
ξ ζ ∗

ζ η

)
∈ H̃ belongs tõP if and

only if ξ, η ∈ P and∣∣∣(x∗ζ y
∣∣ ξ(ϕ))∣∣∣ ≤ (x∗ξx

∣∣ ξ(ϕ)) 1
2
(
y∗ηy

∣∣ ξ(ϕ)) 1
2 , x, y ∈M.

13†) Let
{
M, H, J, P

}
be a standard von Neumann algebra. Ifξ0 ∈ P is cyclic,

hence separating, thenP is precisely the set of all vectors of the form

ξ = T J T Jξ0

whereT is a densely defined closed operator affiliated withM such thatξ0 ∈ D(T)
andJ T Jξ0 = J Tξ0 = J Tξ0 ∈ D(T). [601, 602]

§ 2 Measurable Operators and Integral for a Trace

We fix a faithful semi-finite normal traceτ on a semi-finite von Neumann alge-
braM.

Definition 2.1. Themeasure topologyof M with respect toτ (or simplyτ -measure
topology) is the uniform topology given by a neighborhood system

{
x + N(ε, δ) :

ε, δ > 0
}
, x ∈M, whereN(ε, δ) is the set of all operatorsa ∈M such that

‖ap‖ < ε and τ(p⊥) < δ

for somep ∈ Proj(M). The convergence with respect to this topology is calledτ -
measureconvergence. The completion ofM with respect to this topology is denoted
by M(M).

WhenM acts onH, we define the(M, τ )-measure(or simplymeasure) topol-
ogyof H as the uniform topology given by a neighborhood system

{
ξ + O(ε, δ) :

ε > 0, δ > 0
}
, ξ ∈ H, whereO(ε, δ) is the set of allη ∈ H such that

‖pη‖ < ε and τ(p⊥) < δ

for somep ∈ Proj(M). The completion ofH is denoted byM(H). We naturally
define the boundedness for subsets ofM andH with respect to the measure topology.
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Theorem 2.2. Consider the following

a ∈M 7→ a∗ ∈M; (1)

(a,b) ∈M ×M 7→ a+ b ∈M; (2)

(a,b) ∈M ×M 7→ ab∈M; (3)

(ξ, η) ∈ H× H 7→ ξ + η ∈ H; (4)

(a, ξ) ∈M × H 7→ aξ ∈ H. (5)

These maps can respectively be extended to maps:M(M) → M(M) , M(M) ×

M(M)→M(M) , M(M)×M(M)→M(M) , M(H)×M(H)→M(H) and
M(M)×M(H)→M(H) . These extensions are unique, and maps(1), (2) and (4)
together with their extensions are uniformly continuous. Maps(3) and (5) together
with their extensions are uniformly continuous on the product set of bounded sub-
sets. Thus,M(M) is a topological involutive algebra with a continuous represen-
tation on a topological vector spaceM(H) .

PROOF: To prove the theorem, we shall show the following inclusions:

N(ε, δ)∗ ⊂ N(ε,2δ) (1′)

N(ε1, δ1)+ N(ε2, δ2) ⊂ N(ε1+ ε2, δ1+ δ2) (2′)

N(ε1, δ1)N(ε2, δ2) ⊂ N(ε1ε2, δ1+ δ2) (3′)

O(ε1, δ1)+ O(ε2, δ2) ⊂ O(ε1+ ε2, δ1+ δ2) (4′)

N(ε1, δ1)O(ε2, δ2) ⊂ O(ε1ε2, δ1+ δ2) (5′)

Assume these inclusions for a moment. It then follows that the maps (1), (2), (4)
are uniformly continuous. SupposeS1 andS2 are bounded subsets ofM. We want
to show that the map (3) is uniformly continuous onS1 × S2. To this end, for any
ε, δ > 0 we want to findε1, δ1, ε2, δ2 > 0 so that(

a+ N(ε1, δ1)
)(

b+ N(ε2, δ2)
)
⊂ ab+ N(ε, δ) (6)

for everya ∈ S1 andb ∈ S2.
The boundedness ofS1 and S2 means that for anyα, β > 0 there exists

γ > 0 such thatγ S1 ⊂ N(α, β) and γ S2 ⊂ N(α, β), which is equivalent to
S1 ⊂ N(α/γ, β) and S2 ⊂ N(α/γ, β). Thus, for eachα1, α2 > 0, we can find
η1, η2 > 0 such thatS1 ⊂ N(η1, α1) and S2 ⊂ N(η2, α2). By (2′) and (3′), we
have, ifa ∈ S1 andb ∈ S2,(

a+ N(ε1, δ1)
)(

b+ N(ε2, δ2)
)
− ab

⊂ N(η1, α1)N(ε2, δ2)+ N(ε1, δ1)N(η2, α2)+ N(ε1, δ1)N(ε2, δ2)

⊂ N
(
η1ε2, α1+ δ2

)
+ N

(
ε1η2, δ1+ α2

)
+ N

(
ε1ε2, δ1+ δ2

)
⊂ N

(
η1ε2+ ε1η2+ ε1ε2, α1+ α2+ 2δ1+ 2δ2

)
.
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Thus, we chooseα1, α2, δ1, δ2 > 0 in such a way thatα1 + α2 + 2δ1 + 2δ2 ≤ δ,
and then chooseε1, ε2 > 0 further so thatη1ε2+ η2ε1+ ε1ε2 ≤ ε, to conclude (6).
In a similar way, the uniform continuity of map (5) on a bounded set can be shown.
Now, we shall show (1′), (2′) and (3′). The proof for (4′) and (5′) is similar, so we
leave it to the reader.

(1′) If a ∈ N(ε, δ), then‖ap‖ < ε andτ(p⊥) < δ for somep ∈ Proj(M). We
put

pa =
∨{

q ∈ Proj(M) : aq = paq
}
. (7)

It then follows that

p⊥a =
∧{

q ∈ Proj(M) : qa∗p⊥ = a∗p⊥
}
,

so thatp⊥a is the range projection ofa∗p⊥. Hence

p⊥a - p⊥. (8)

Applying (8) to pa∗ , we get

τ
(
(p∧ pa∗)

⊥
)
= τ

(
p⊥ ∨ p⊥a∗

)
≤ τ

(
p⊥
)
+ τ

(
p⊥a∗
)
≤ 2τ

(
p⊥
)
< 2δ,

and

a∗
(
p∧ pa∗

)
= pa∗

(
p∧ pa∗

)
;

∥∥a∗
(
p∧ pa∗

)∥∥ ≤ ∥∥pa∗
∥∥ = ‖ap‖ < ε.

Thus,a∗ belongs toN(ε,2δ).
(2′) Supposea ∈ N(ε1, δ1) andb ∈ N(ε2, δ2). Choosep, q ∈ Proj(M) so that

‖ap‖ < ε1, ‖bq‖ < ε2, τ
(
p⊥
)
< δ1, τ

(
q⊥
)
< δ2.

Since(a+b)(p∧q) = (ap+bq)(p∧q), we have
∥∥(a+b)(p∧q)

∥∥ < ε1+ ε2 and

τ
(
(p∧ q)⊥

)
= τ

(
p⊥ ∨ q⊥

)
≤ τ

(
p⊥
)
+ τ

(
q⊥
)
≤ δ1+ δ2.

(3′) We usepb given by (7) withb in the place ofa. Now we have

ab(q ∧ pb) = apb(q ∧ pb),

so ∥∥ab(q ∧ pb)
∥∥ < ε1ε2.

By (8), we get

τ
(
(q ∧ pb)

⊥
)
= τ

(
q⊥ ∨ p⊥b

)
≤ τ(q⊥)+ (p⊥b ) ≤ τ(q

⊥)+ τ(p⊥) < δ1+ δ2,

thusab∈ N(ε1ε2, δ1+ δ2). Q.E.D.
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Lemma 2.3.

(i) The measure topologies ofM and H both satisfy the Hausdorff separation
axiom. ThusM and H can be viewed as subsets of their completionM(M)

and M(H) respectively.
(ii) For each a ∈ M(M) and ε > 0 , there exists p∈ Proj(M) such that

ap ∈M and τ(p⊥) < ε .

PROOF:
(i) Since they are both uniform topologies, it suffices to prove theT1-separa-

tion axiom. Supposeξ ∈
⋂{

O(ε, δ) : ε > 0, δ > 0
}
. For eachn = 1,2, . . . ,

chooseqn ∈ Proj(M) so that‖qnξ‖ < 2−n and τ(q⊥n ) < 2−n. We set pn =∧
∞

k=n qk. Thenτ(p⊥n ) < 2−n+1 and p1 ≤ p2 ≤ · · ·, so thatp⊥n ↘ 0 which means
pn ↗ 1. But‖pnξ‖ ≤ ‖qkξ‖ < 2−k for everyk ≥ n, so thatpnξ = 0. Thusξ = 0.

If a 6= 0, thenaξ 6= 0 for someξ ∈ H. If a ∈
⋂

N(ε, δ), thenaξ ∈
⋂

O(ε, δ)
by Theorem 2.2, which is impossible as just shown. ThusM satisfies theT1-axiom.

(ii) If a ∈M(M), thena is the measure convergence limit of a sequence{an}

of M. By selecting a subsequence, we may assume that

a = a0+

∞∑
k=1

(ak+1− ak), ak+1− ak ∈ N(2−k,2−k).

Putbk = ak+1− ak, k = 1,2, . . . , and chooseqk ∈ Proj(M) so that‖bkqk‖ < 2−k

andτ(q⊥k ) < 2−k. We then setpn =
∧

k≥n qk. It follows that{pn} is increasing and
τ(p⊥n ) < 2−n+1

→ 0, so thatpn ↗ 1. By Theorem 2.2, we get

apn = a0 pn +

∞∑
k=1

bk pn = a0 pn +

n−1∑
k=1

bk pn +

∞∑
k=n

bkqk pn.

The last summation converges in norm, so thatapn ∈M. Q.E.D.

Definition 2.4. For eacha ∈M(M), we set

D
(
M(a)

)
=
{
ξ ∈ H : aξ ∈ H

}
, M(a)ξ = aξ, ξ ∈ D

(
M(a)

)
. (9)

Theorem 2.5.

(i) For each a∈ M(M) , M(a) is a densely defined closed operator affiliated
with M and maximal in the sense that M(a) has no proper closed extension
affiliated with M .

(ii) For each pair a,b ∈M(M) , we have

M(a∗) = M(a)∗,

M(a+ b) = M(a)+ M(b),

M(ab) = M(a)M(b),

where the bar on the right hand side means the closure.
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(iii) If a sequence{pn} in Proj(M) is increasing andτ(p⊥n ) ↘ 0 and if a lin-
ear operator A defined onD =

⋃
pnH has the property that Apn ∈ M ,

then A is preclosed and there exists uniquely an element a∈ M(M) with
M(a) = Ā .

We need a few lemmas.

Lemma 2.6.

(i) If p ∧ q = 0 , p,q ∈ Proj(M) , then p- q⊥ and q- p⊥ .

(ii) Suppose that e and f are projections inM . If for any ε > 0 there exists
p ∈ Proj(M) with

e∧ p = f ∧ p and τ(p⊥) < ε,

then e= f .

PROOF:
(i) If p∧ q = 0, thenp⊥ ∨ q⊥ = 1, so

p = p⊥ ∨ q⊥ − p⊥ ∼ q⊥ − q⊥ ∧ p⊥ ≤ q⊥,

q = p⊥ ∨ q⊥ − q⊥ ∼ p⊥ − q⊥ ∧ p⊥ ≤ p⊥.

(ii) We have

(e− e∧ f ) ∧ p ≤ e∧ p− (e∧ f ) ∧ p = f ∧ p− f ∧ p = 0,

so (i) implies thate− e∧ f - p⊥. Hence we getτ(e− e∧ f ) < ε for anyε > 0,
soe= e∧ f . Similarly, we getf = e∧ f . Q.E.D.

Lemma 2.7. Given two densely defined closed operators A and B affiliated withM,
if for any ε > 0 , there exists p∈ Proj(M) with τ(p⊥) < ε such that

pH ∩D(A) ∩ A−1(pH) = pH ∩D(B) ∩ B−1(pH) = D,

Aξ = Bξ for every ξ ∈ D,

then A = B . In particular, if pH ⊂ D(A) ∩ D(B) and Ap = Bp for some
p ∈ Proj(M) with τ(p⊥) < ε , then A= B .

PROOF: ConsiderM̃ =M ⊗ M2(C) on H̃ = H⊕ H and the tracẽτ defined by

τ̃

(
a b
c d

)
= τ(a)+ τ(b).

It follows that τ̃ is a faithful semi-finite normal trace oñM. Let g(A) andg(B) be
the projections of̃H onto the graphs ofA andB respectively. The direct computation
shows that

g(A) =

(
(1+ A∗A)−1 A∗(1+ AA∗)−1

A(1+ A∗A)−1 AA∗(1+ AA∗)−1

)
. (10)
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Henceg(A) andg(B) both belong toM̃ . Now, set

p̃ = p⊗ 1=

(
p 0
0 p

)
∈ M̃.

Then we havẽτ( p̃⊥) = 2τ(p⊥) < 2ε. The assumption onA andB means here that
g(A) ∧ p̃ = g(B) ∧ p̃. The previous lemma then shows thatg(A) = g(B), hence
the conclusion. Q.E.D.

We are now ready to complete the proof of Theorem 2.5.

PROOF OFTHEOREM 2.5:
(i) If a ∈M(M), then we can find a sequence{an} in M which converges to

a in the measure convergence. By Theorem 2.2,{anξ} converges toaξ ∈M(H) in
measure. Ifξ ∈ D

(
M(a)

)
, then{anξ} converges toaξ = M(a)ξ ∈ H in measure.

If u ∈ U(M′), thenanuξ → auξ in measure andanuξ = uanξ . Since operators
in M′ are continuous in the measure topology, we get the measure convergence:
uanξ → uM(a)ξ . Thus we haveuξ ∈ D

(
M(a)

)
andM(a)uξ = uM(a)ξ , so that

M(a) is affiliated withM. Suppose now that{ξn} ⊂ D
(
M(a)

)
, ξ = lim ξn and

η = lim M(a)ξn. Sinceξn → ξ in measure,aξn → aξ ∈ M(H) in measure. The
convergence ofM(a)ξn to η implies the measure convergence. The separation prop-
erty of the measure topology inM(H) yields thatη = aξ . Thusξ ∈ D

(
M(a)

)
and

η = M(a)ξ , which means thatM(a) is closed. Finally, ifap ∈ M, p ∈ Proj(M),
then pH ⊂ D

(
M(a)

)
, so that Lemma 2.3.(ii) guarantees the density ofD

(
M(a)

)
in H.

Suppose thatA is a closed operator affiliated withM andA ⊃ M(a). If ap ∈M,
p ∈ Proj(M), thenAp= ap= M(a)p ∈M. By Lemma 2.7, we haveA = M(a).
ThusM(a) is maximal.

(ii) Let ε > 0. Choosep ∈ Proj(M) by Lemma 2.3.(ii) so thata∗p ∈ M and
τ(p⊥) < ε. ThenpH ⊂ D

(
M(a∗)

)
anda∗p = M(a∗)p. From the spectral analysis

of the absolute value
∣∣M(a)∣∣ of M(a), it follows that there exists an increasing

sequence{qn} in Proj(M)with 1= lim qn such thatM(a)qn = aqn ∈M andξ ∈ H
belongs toD

(
M(a)

)
if and only if M(a)qnξ converges, andM(a)ξ = lim M(a)qnξ .

Now if ξ ∈ D
(
M(a)

)
andη ∈ pH, then we have(

M(a)ξ
∣∣ η) = lim

(
aqnξ

∣∣ η) = lim
(
ξ
∣∣ (qna)∗pη

)
= lim

(
ξ
∣∣ qn(a

∗p)η
)

= lim
(
qnξ

∣∣ a∗pη
)
=
(
ξ
∣∣ a∗η

)
=
(
ξ
∣∣ M(a∗)η

)
.

HencepH ⊂ D(M(a)∗) and M(a)∗p = M(a∗)p. Lemma 2.7 now implies that
M(a)∗ = M(a∗).

Trivially, we have

M(a)+ M(b) ⊂ M(a+ b) and M(a)M(b) ⊂ M(ab).

Thus,M(a) + M(b) and M(a)M(b) are both preclosed. Choosep,q ∈ Proj(M)

with τ(p⊥) < ε andτ(q⊥) < ε such thatap ∈ M andbq ∈ M. Putr = p ∧ q.
Then we getτ(r⊥) < 2ε and
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r H ⊂ D
(
M(a)

)
∩D

(
M(b)

)
,[

M(a)+ M(b)
]
r = ar + br = M(a+ b)r.

Thus, Lemma 2.7 implies thatM(a+b) = M(a)+ M(b). With pb given by apply-
ing (7) tob, we puts= q ∧ pb. By (8), we haveτ(s⊥) < 2ε, and furthermore

sH ⊂ D
(
M(a)M(b)

)
, M(a)M(b)s= apbs= M(ab)s.

Thus, we obtainM(a)M(b) = M(ab) by Lemma 2.7.
(iii) Putan = Apn ∈ M. Then{an} is a Cauchy sequence in measure, so that

it converges toa ∈ M(M) in measure. Ifξ ∈ D, then for a sufficiently largen
we haveanξ = an+1ξ = · · · = Aξ , so that{anξ} converges toAξ strongly. On
the other hand,{anξ} also converges toaξ in measure. Henceaξ = Aξ ∈ H and
ξ ∈ D

(
M(a)

)
, so Aξ = M(a)ξ . Therefore, we getM(a) ⊃ A. By Lemma 2.7, we

concludeM(a) = Ā. Q.E.D.

Definition 2.8. When{M,H} andτ are given as before, a closed operatorA of the
form A = M(a), a ∈M(M), is said to beτ -measurable.

By Theorems 2.2 and 2.5, the measurable operators form a∗-algebra.

Corollary 2.9. Let A be a densely defined closed operator affiliated withM and

A = uH, H =

∞∫
0

λ de(λ)

be its polar decomposition and the spectral decomposition of the absolute value. A
necessary and sufficient condition for A to beτ -measurable is that

lim
λ→∞

τ
(
e(λ)⊥

)
= 0. (11)

This condition is equivalent to saying that

τ
(
e(λ)⊥

)
< +∞ for large λ > 0. (12)

The proof is straightforward. We leave it to the reader.

Corollary 2.10. In the algebraM(M) , let

M(M)+ =
{

a∗a : a ∈M(M)
}
. (13)

Then M(M)+ is a pointed convex cone and each element a ofM(M)+ has a
unique square root inM(M)+ denoted by a1/2 . Every a∈M(M) has the polar
decomposition

a = u|a|, with |a| = (a∗a)
1
2 .
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The proof may be carried out by considering
{

M(a) : a ∈ M(M)
}
. We call

|a| = (a∗a)1/2 theabsolute valueof a ∈M(M).

Definition 2.11. The algebraM(M) is called theτ -measurable operator algebra.
If M acts onH, then

{
M(a) : a ∈ M(M)

}
is also called theτ -measurable op-

erator algebra. When we need to distinguish them, we call the former theabstract
τ -measurable operator algebra and the latter theconcreteτ -measurable operator
algebra.

For the sum and the product of two measurable operatorsA and B, we use the
closures of the algebraic sum and product. When we emphasize this fact, we write
them as

A + B, A · B

and call them thestrongsum and thestrongproduct respectively.

We now extend the traceτ onM+ to M(M+) as follows:

τ(h) = lim
ε→0

τ
(
h (1+ εh)−1), h ∈M(M)+. (14)

For eachx ∈M(M), we define

xε = x
(
1+ ε|x|

)−1
∈M, ε > 0. (15)

As before, we considermτ andnτ . The trace property ofτ , τ(x∗x) = τ(xx∗),
implies thatmτ andnτ are both ideals ofM. By the polarization identity, we have

τ(xy) = τ(yx), x, y ∈ nτ . (16)

By the polar decomposition, we know that everya ∈ mτ is of the forma = xy,
x, y ∈ nτ , so that for everyb ∈M, we have

τ(ab) = τ(xyb) = τ
(
x(yb)

)
= τ

(
(yb)x

)
= τ

(
y(bx)

)
= τ(bxy) = τ(ba).

so we get
τ(ab) = τ(ba), a ∈ mτ , b ∈M. (16′)

For x ∈ mτ and y ∈ M, let x = u|x|, y = v|y| andxy = w|xy| be the polar
decompositions. By the Cauchy-Schwarz inequality, we have∣∣τ(xy)

∣∣ = ∣∣∣τ(u |x| 12 |x| 12 v |y| 12 |y| 12 )∣∣∣ = ∣∣∣τ(|y| 12 u |x|
1
2 |x|

1
2 v |y|

1
2
)∣∣∣

≤ τ
(
|y|

1
2 u |x|u∗|y|

1
2
) 1

2 τ
(
|y|

1
2 v∗|x| v |y|

1
2
) 1

2

= τ
(
|x∗||y|

) 1
2 τ
(
|x||y∗|

) 1
2 .

Namely, we have the inequality:∣∣τ(xy)
∣∣2 ≤ τ(|x∗||y|)τ(|x||y∗|), x ∈ mτ , y ∈M. (17)
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The right hand side is further bounded by the following:

≤ ‖y‖τ
(
|x∗|

)
‖y‖τ

(
|x|
)
= ‖y‖2τ

(
|x|
)2
;

thus we get ∣∣τ(xy)
∣∣ ≤ ‖y‖τ(|x|), x ∈ mτ , y ∈M. (18)

Hence eachx ∈ mτ gives rise to an elementτx of M∗: y∈M 7→τx(y)=τ(xy)∈C.

Lemma 2.12.

(i) Each x∈ mτ gives rise toτx ∈M∗ by the formula:

τx(y) = τ(xy), x ∈ mτ , y ∈M, (19)

whose norm is given by:

‖τx‖ = τ
(
|x|
)
, x ∈ mτ . (20)

(ii) The set

L1(M, τ ) =
{

x ∈M(M) : τ
(
|x|
)
< +∞

}
is a two sidedM -submodule ofM(M) and the function:

‖x‖1 = τ
(
|x|
)
, x ∈ L1(M, τ )

is a complete norm of L1(M, τ ) with respect to whichmτ is a dense sub-
space.

(iii) We can extendτ on mτ to L1(M, τ ) continuously to a linear functional and
the bilinear form:

(x, y) ∈M × L1(M, τ ) 7→ τ(xy) ∈ C

identifies L1(M, τ ) with the predualM∗ .

PROOF:
(i) We have proved‖τx‖ ≤ τ

(
|x|
)

for x ∈ mτ . By the polar decomposition
x = u|x|, we have

τ
(
|x|
)
= τ(u∗x) = τ(xu∗) = τx(u

∗),

so that we have‖τx‖ ≥ τ
(
|x|
)
. Hence‖x‖1 = τ

(
|x|
)

gives the norm ofτx ∈ M∗
for x ∈ mτ .

(ii) and (iii): Fix an x ∈ M(M) and let|x| =
∫
∞

0 λ de(λ) be the spectral de-
composition of|x|. Consider the abelian von Neumann subalgebraA generated by{
e(λ)

}
. If x ∈ L1(M, τ ), thenτ

(
|x|ε

)
↗ τ

(
|x|
)
< +∞ asε ↘ 0. This means that

the increasing function:λ ∈ R+ 7→ τ
(
e(λ)

)
∈ [0,+∞] gives rise to a measureµ

on the open half lineR∗+ = ]0,+∞[. Hence asε ↘ 0 we have

τ
(
|x|ε

)
=

∞∫
0

λ

1+ ελ
dµ(λ) ↗ τ

(
|x|
)
=

∞∫
0

λ dµ(λ) < +∞.
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Therefore, we get ∥∥|x| − |x|ε∥∥1→ 0 as ε→ 0

and ∥∥x − xε
∥∥

1 = τ(|x − xε|) = τ(|x| − |x|ε) = ‖ |x| − |x|ε‖1→ 0.

Thus we have

lim
ε→0

∥∥x − xε
∥∥

1 = 0 and lim
ε→0
‖xε‖1 = ‖x‖1.

Therefore,x is approximated byxε ∈ mτ . This means thatL1(M, τ ) can be
viewed as a subspace of the completion of the normed space

{
mτ , ‖ · ‖1

}
. Hence

‖ · ‖1 is a norm onL1(M, τ ) andτ can be extended continuously toL1(M, τ ).
By Corollary VIII.3.6, every semi-finite normal weightϕ on M is of the form

ϕ = τh with a closed self-adjoint positive operator affiliated withM. If ϕ ∈ M+∗ ,
thenτ(h) = limε→0 τ(hε) = ϕ(1) < +∞. With the spectral decompositionh =∫
∞

0 λ de(λ), we haveλe(λ)⊥ ≤ h, so thatτ
(
e(λ)⊥

)
is finite. Thush is τ -measur-

able and belongs toL1(M, τ ). SoM+∗ can be identified withL1(M, τ )+ under the
correspondenceh ∈ L1(M, τ )+←→ τh ∈M+∗ .

Consider the polar decompositionx = u|x| = |x∗|u of x ∈ M(M). Then we
have|x∗|ε = u|x|εu∗, so that

τ
(
|x∗|

)
= lim τ

(
|x∗|ε

)
= lim τ

(
|x|ε

)
= τ

(
|x|
)
.

HenceL1(M, τ ) is self-adjoint. For any unitarya ∈M andx ∈ L1(M, τ ), we have
|ax| = |x|, so thatL1(M, τ ) is a leftM-module. The self-adjointness ofL1(M, τ )

then yields the two sided module property overM.
Now, the polar decompositions inM∗ and in L1(M, τ ) allow us to identify

them. Q.E.D.

Theorem 2.13.

(i) The functionτ on M(M)+ enjoys the following properties:

τ(a+ b) = τ(a)+ τ(b), a,b ∈M(M)+,

τ (λa) = λτ(a), λ ≥ 0,

τ (x∗x) = τ(xx∗), x ∈M(M).

 (21)

(ii) For 1≤ p < +∞ , set

‖x‖p = τ
(
|x|p

)1/p
, x ∈M(M),

L p(M, τ ) =
{

x ∈M(M) : ‖x‖p < +∞
}
.

(22)

Then Lp(M, τ ) is a Banach space in whichM ∩ L p(M, τ ) is dense. Fur-
thermore, Lp(M, τ ) is invariant under the multiplications ofM from both
sides, and

‖ax‖p ≤ ‖a‖‖x‖p, ‖xa‖p ≤ ‖a‖‖x‖p (23)

for each a∈M , x ∈ L p(M, τ ) .
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(iii) The extended traceτ on L1(M, τ ) identifies M∗ with L1(M, τ ) by the
bilinear form:

(x, y) ∈M × L1(M, τ ) 7→ τ(xy) ∈ C.

(iv) If 1/p+ 1/q = 1 and p> 1 , then the product of Lp(M, τ ) and Lq(M, τ )

agrees with L1(M, τ ) and we have the Ḧolder’s inequality:∣∣τ(xy)
∣∣ ≤ ‖x‖p‖y‖q, x ∈ L p(M, τ ), y ∈ Lq(M, τ ). (24)

Furthermore, Lp(M, τ ) and Lq(M, τ ) are the conjugate space of each
other.

PROOF:
(i) Takea andb from M(M)+. If τ(a) < +∞ andτ(b) < +∞ thena and

b are both inL1(M, τ ). The linearity ofτ on L1(M, τ ) implies thatτ(a)+ τ(b) =
τ(a+ b). If τ(a+ b) < +∞, thena ≤ a+ b andb ≤ a+ b, soaε ≤ (a+ b)ε and
bε ≤ (a+ b)ε. Thus we get

τ(a) = lim
ε→0

τ(aε) ≤ lim
ε→0

τ
(
(a+ b)ε

)
= τ(a+ b) < +∞,

similarly τ(b) < +∞. Therefore,τ(a)+ τ(b) = τ(a+ b).
The homogeneity ofτ onM(M)+ is trivial.
For anyx ∈ M(M), let x = u|x| be the polar decomposition. Then we have

xx∗ = ux∗xu∗, sou(x∗x)εu∗ = (xx∗)ε. Hence

τ(xx∗) = lim
ε→0

τ
(
(xx∗)ε

)
= lim
ε→0

τ
(
u(x∗x)εu

∗
)
= lim
ε→0

τ
(
(x∗x)ε

)
= τ(x∗x).

(ii) Assumep > 1, since we have proven the casep = 1. Chooseq so that
1/p+ 1/q = 1. Takea,b ∈ mτ andc,d ∈ m+τ . Assume thatc ≥ εs(c) andd ≥
εs(d) for someε > 0, wheres(c) ands(d) are the support ofc andd respectively. In
this case, we can definemτ -valued entire functions:λ ∈ C→ cλ andλ ∈ C→ dλ.
For eachx andy in M with ‖x‖ ≤ 1 and‖y‖ ≤ 1, the functionf :

f (λ) = τ
(
xcλyd1−λ), λ ∈ C,

is entire, to which the Phragmen-Lindelöf theorem applies. Thus, we get∣∣τ(xcσ yd1−σ )∣∣ ≤ sup
Res=1

∣∣τ(xcsyd1−s)∣∣σ sup
Res=0

∣∣τ(xcsyd1−c)∣∣1−σ
for 0 ≤ σ ≤ 1. By (18), the right hand side is bounded by‖c‖σ1‖d‖

1−σ
1 . Now,

consider the polar decompositiona = u|a| andb = v|b| and putc = |a|p and
d = |b|q, and furtherσ = 1/q. Then under the hypothesis forc andd, we have the
Hölder type inequality:∣∣τ(ab)

∣∣ ≤ τ(|a|p)1/p
τ
(
|b|q

)1/q
= ‖a‖p‖b‖q. (25)

By passing to the limit, the above inequality holds for general paira,b ∈ mτ .
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Let m0 =
{

x ∈M : s̀ (x) ∈ mτ

}
⊂ mτ . It follows thatm0 is an ideal ofM and

dense inL1(M, τ ). If a ∈ m0, then we put

b = ‖a‖−p/q
p |a|p−1u∗ ∈ m0,

and obtainτ(ab) = ‖a‖p and‖b‖q = 1. Thus, we obtain

‖a‖p = sup
{ ∣∣τ(ab)

∣∣ : b ∈ mτ , ‖b‖q ≤ 1
}
, a ∈ m0. (26)

For a generala ∈ mτ , we have

‖a‖p = sup
{
‖ea‖p : e∈ Proj(M) ∩mτ

}
= sup

{ ∣∣τ(eab)
∣∣ : b ∈ mτ , ‖b‖q ≤ 1, e∈ Proj(M) ∩mτ

}
= sup

{ ∣∣τ(ab)
∣∣ : b ∈ mτ , ‖b‖q ≤ 1

}
.

Therefore, we have the Minkowski type inequality:

‖a+ b‖p ≤ ‖a‖p + ‖b‖p, a,b ∈ mτ .

We now want to show that the embedding of
{
mτ , ‖ · ‖p

}
into M(M) is con-

tinuous, so that the identity map ofmτ is extendable to a continuous map of the
completionEp of

{
mτ , ‖ · ‖p

}
into M(M). Let ε, δ > 0. Suppose‖x‖p < εδ1/p,

x ∈ mτ , and letx = uh be the polar decomposition andh =
∫
∞

0 λ de(λ) the
spectral decomposition. Then we have, sinceλe(λ)⊥ ≤ h,

εpτ
(
e(ε)⊥

)
≤ τ(hp) < εpδ,

so thatτ
(
e(ε)⊥

)
< δ; hencex ∈ N(2ε, δ) because

∥∥xe(ε)
∥∥ ≤ ε.

We prove next the injectivity of the extended map ofEp into M(M). Suppose
that a Cauchy sequence{xn} in

{
mτ , ‖ · ‖p

}
converges to zero in measure. For a

fixed ε > 0, choosen0 so that‖xn − xm‖p < ε for n, m ≥ n0. By (26) extended to
mτ , there existsy ∈ mτ with ‖y‖q ≤ 1 such that

∣∣τ(xn0 y)
∣∣ ≥ ‖xn0‖p − ε. Then we

have forn ≥ n0∣∣τ(xny)
∣∣ ≥ ∣∣τ(xn0 y)

∣∣− ∣∣∣τ((xn − xn0)y
)∣∣∣ ≥ ‖xn0‖p − 2ε.

Therefore, ifx = lim xn ∈ Ep is not zero, then there existsy ∈ mτ , ‖y‖q ≤ 1,
such that

{
τ(xny)

}
is bounded away from zero, i.e.

∣∣τ(xny)
∣∣ ≥ δ > 0 for n ≥ n0

and someδ > 0. But the measure convergence of{xn} to zero implies that for any
ε > 0 there existse∈ Proj(M) with ‖xne‖ < ε andτ(e⊥) < εq. But

δ ≤
∣∣τ(xny)

∣∣ ≤ ∣∣τ(xney)
∣∣+ ∣∣τ(xne⊥y)

∣∣
≤ ‖xne‖∞ ‖y‖1+ ‖y‖∞ ‖xn‖p ‖e

⊥
‖q ≤ ε

(
‖y1‖ + ‖xn‖p ‖y‖∞

)
.
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Since
{
‖xn‖p

}
is bounded andy is fixed, we can chooseε > 0 small enough so that

the above inequality does not hold. Therefore,‖xn‖p must converge to zero, that is,
the map ofEp into M(M) is injective. So we embedEp into M(M).

Before going further, we observe the following:∥∥axb
∥∥

p ≤ ‖a‖‖b‖‖x‖p, x ∈ mτ , a,b ∈M. (27)

By the inequalities (26) and (25) extended tomτ , we have

‖ax‖p = sup
{ ∣∣τ(axy)

∣∣ : y ∈ mτ , ‖y‖q ≤ 1
}

≤ ‖a‖ sup
{
‖xy‖1 : y ∈ mτ , ‖y‖q ≤ 1

}
= ‖a‖‖x‖p;

‖xb‖p = sup
{ ∣∣τ(xby)

∣∣ : y ∈ mτ , ‖y‖q ≤ 1
}

= sup
{ ∣∣τ(yxb)

∣∣ : y ∈ mτ , ‖y‖q ≤ 1
}

≤ ‖b‖ sup
{
‖yx‖1 : y ∈ mτ , ‖y‖q ≤ 1

}
= ‖b‖‖x‖p.

Therefore,Ep is a two sidedM-module. We define the actions ofM on (Eq)
∗ by

the following:〈
x,a f b

〉
=
〈
bxa, f

〉
, x ∈ Eq, a,b ∈M, f ∈ E∗q.

Suppose that a bounded net{ai } in M converges to zero∗-strongly. Ifx=exe∈m0,
e∈ Proj(M) ∩mτ , then we have

‖ai x‖p = τ
(
(x∗a∗i ai x)

p/2)1/p
= τe

(
(x∗a∗i ai x)

p/2)1/p
→ 0;

‖xai ‖p = τ
(
(a∗i x∗xai )

p/2)1/p
= τe

(
(a∗i x∗xai )

p/2)1/p
→ 0.

Sincem0 is dense inEp, the actions ofM on Ep are ∗-strongly continuous on
bounded sets.

Fix an x ∈ L p(M, τ ). Let x = uh and h =
∫
∞

0 λ de(λ) be the polar
and spectral decompositions. Seten = e(n) − e(1/n), n = 2,3, . . . . We then
have limn→∞

∥∥x − xen
∥∥

p = 0 andxen ∈ mτ . Hencex belongs toEp, that is
L p(M, τ )⊂Ep.

Fix an f ∈ (Eq)
∗. We definef ∗ by

〈x, f ∗〉 = 〈x∗, f 〉, x ∈ mτ .

It follows that f ∗ ∈ (Eq)
∗ and‖ f ‖ = ‖ f ∗‖. Now, if e ∈ Proj(M) ∩ mτ , then the

map:x ∈M 7→ 〈x, f e〉 = 〈ex, f 〉 is σ -strongly∗ continuous, so thatf e belongs to
L1(M, τ ) ⊂ M(M). Furthermore, the polar decomposition off e and the spectral
decomposition of| f e|, together with the Ḧolder type inequality yield the estimate:

‖ f e‖p = sup
{ ∣∣τ(x f e)

∣∣ : x ∈ mτ , ‖x‖q ≤ 1
}

= sup
{ ∣∣〈x, f e〉

∣∣ : x ∈ mτ , ‖x‖q ≤ 1
}
= ‖ f e‖(Eq)∗ < +∞.
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Thus f e belongs toL p(M, τ ). Hence f gives rise to a densely defined closed op-
erator M( f e) for eache ∈ Proj(M) ∩ mτ . Let DA =

⋃{
D(M( f e)

)
∩ eH :

e ∈ Proj(M) ∩ mτ

}
. Since f (e1 ∨ e2)e1 = f e1 and f (e1 ∨ e2)e2 = f e2 for

e1 and e2, there exists a linear operatorA on D such thatAξ = M( f e)ξ if
ξ ∈ D

(
M( f e)

)
∩ eH. It is clear thatA commutes with every unitary inM′, so

that A is affiliated withM. Based onf ∗, we then defineB by

Bη = M( f ∗g)η for η ∈ DB =
⋃{

D
(
M( f ∗g)

)
∩ gH : g ∈ Proj(M) ∩mτ

}
.

We observe here that( f e)∗ = ef∗ since L p(M, τ ) ⊂ Ep ⊂ (Eq)
∗. For each

ξ ∈ D
(
M( f e)

)
∩ eH andη ∈ D

(
M( f ∗g)

)
∩ gH with e, g ∈ Proj(M) ∩ mτ , we

have(
Aξ
∣∣η) = ( f eξ

∣∣gη) = (g f eξ
∣∣η) = (( f ∗g)∗eξ

∣∣η) = (eξ ∣∣ f ∗gη
)
=
(
ξ
∣∣Bη).

Thus,A∗ ⊃ B andB∗ ⊃ A. In particular,A is preclosed. IdentifyingA∗∗ with f ,
we view f as a densely defined closed operator affiliated withM. We now con-
sider the polar and spectral decompositionsf = u| f | and | f | =

∫
∞

0 λ de(λ). If
τ
(
e(λ)⊥

)
= +∞, λ > 0, thenλe(λ)⊥ ≤ | f | impliesτ

(
| f |p

)
= +∞. So we have

sup
{ ∣∣τ(x| f |)∣∣ : x ∈ mτ , ‖x‖q ≤ 1

}
= +∞. But | f | = u∗ f ∈ (Eq)

∗, which is a
contradiction. Thus, we conclude thatτ

(
e(λ)⊥

)
< +∞ for λ > 0. Therefore,f is

measurable and

‖ f ‖p = τ
(
| f |p

)1/p
= sup

{ ∣∣τ(x f )
∣∣ : x ∈ mτ , ‖x‖q ≤ 1

}
= ‖ f ‖(Eq)∗ .

Thus, f belongs toL p(M, τ ). We now conclude that(Eq)
∗
= L p(M, τ ); hence

L p(M, τ ) =
(
Lq(M, τ )

)∗. In particular,L p(M, τ ) is a Banach space. Q.E.D.

In the casep = 2, L2(M, τ ) is a Hilbert space which can canonically be iden-
tified with the Hilbert spaceHτ .

We will use the following result later:

Theorem 2.14. Let {M, τ } be as before, and let Ea be the characteristic function
of [a,+∞[ . Then we have

∞∫
0

∥∥E√a(h)
∥∥2

2 da = ‖h‖22, h ∈ L2(M, τ )+; (28)

∞∫
0

∥∥E√a(h)− E√a(k)
∥∥2

2 da ≤ ‖h− k‖2‖h+ k‖2, h, k ∈ L2(M, τ ). (29)
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PROOF: Let X =
(
R+ \ {0}

)
×
(
R+ \ {0}

)
. Let H andK be the projections ofX to

the first and second components respectively, i.e.H(x, y) = x andK (x, y) = y. Let
h andk be positive elements ofL2(M, τ ), and consider the von Neumann algebra
A generated byh andJk J, or more precisely by their spectral projections. ThenA
is an abelian von Neumann algebra. LetK be the algebra of all continuous functions
on]0,+∞[with compact support, and consider the algebraic tensor productK⊗K
identified with a subalgebra ofC∞(X). Let A be the subset ofL2(M, τ ) consisting
of all operators of the form:

n∑
i=1

fi (h)gi (k) =
n∑

i=1

(
fi ⊗ gi

)
(h, k).

In A, we define a new product:( n∑
i=1

fi (h)gi (k)

)
·

( m∑
j=1

f ′j (h)g
′

j (k)

)
=

∑
i, j

fi (h) f ′j (h)gi (k)g
′

j (k),

and a new involution:( n∑
i=1

fi (h)gi (k)

)◦
=

n∑
i=1

f̄i (h)ḡi (k).

It then follows thatA is a commutative Hilbert algebra and its left von Neu-
mann algebraR`(A) is isomorphic toA. In fact, the operator corresponding to∑n

i=1 fi (h)gi (k) is exactly the restriction of
∑n

i=1 fi (h)Jḡi (k)J on the closure
K of A. Therefore the faithful semifinite normal trace onA corresponding to the
Hilbert algebraA gives rise to a measureµ on X such that∥∥∥∥ n∑

i=1

fi (h)gi (k)

∥∥∥∥2

2
=

∫
X

∣∣∣∣ n∑
i=1

fi (x)gi (y)

∣∣∣∣2 dµ(x, y) .

Furthermore, the subspaceK is identified withL2(X, µ) under the identification:∑n
i=1 fi ⊗ gi ∈ L2(X, µ) ←→

∑n
i=1 fi (h)gi (k). Therefore we get for any Borel

functions f andg:∥∥ f (h)− g(k)
∥∥2

2 =

∫
X

∣∣ f (x)− g(y)
∣∣2 dµ(x, y) =

∥∥ f ◦ H − g ◦ K
∥∥2

L2(X,µ).

Now, we compute as in the last part of the last section:

‖h‖22 = τ

( ∞∫
0

Ea(h
2) da

)
=

∞∫
0

τ
(
E√a(h)

)
da =

∞∫
0

∥∥E√a(h)
∥∥2

2 da;
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∞∫
0

∥∥E√a(h)− E√a(k)
∥∥2

2 da =

∞∫
0

∫
X

∣∣E√a(x)− E√a(y)
∣∣2 dµ(x, y) da

=

∫
X

∞∫
0

∣∣∣E√a(x)− E√a(y)
∣∣∣ da dµ(x, y)

=

∫
X

∣∣x2
− y2

∣∣ dµ(x, y)

≤

(∫
X

|x − y|2 dµ(x, y)

) 1
2
(∫

X

|x + y|2 dµ(x, y)

) 1
2

= ‖h− k‖2 ‖h+ k‖2. Q.E.D.

Exercise IX.2

Assume that{M, τ } is a von Neumann algebra equipped with a faithful semi-finite
normal traceτ .

1) Show that ifM is a factor of type I, then theτ -measure convergence inM is
precisely the norm convergence, so thatM(M) =M.

2) (a) Show that the identity map ofM is continuous as a map fromM with the
norm topology toM with theτ -topology, i.e. the norm topology is stronger than the
τ -topology.

(b) Show that ifM has no non-zero minimal projection andτ is finite, then there
is no non-zero linear functional onM(M) which is continuous relative to theτ -
topology.

(c) Show that ifM has no non-zero minimal projection andτ is infinite, then a
necessary and sufficient condition for a linear functionalϕ onM to beτ -continuous
is thatϕ(mτ ) = 0.

3) Let M = `∞(N) be the von Neumann algebra of bounded sequences andτ be a
faithful semi-finite normal trace. Show thatτ is finite if and only if every sequence
is τ -measurable.

4) Let M = L∞(X, µ) with {X, µ} a σ -finite measure space andτ be the trace
on M corresponding to the integration relative to the measureµ. Show thatτ -
measurable operators are precisely those functionsf on X such that (i) f is µ-
measurable as a function onX and (ii) µ

({
x ∈ X : | f (x)| ≥ n

})
→ 0 asn→∞.
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5) Let H be the underlying Hilbert space ofM. A subspaceD of H, not necessarily
closed, is said to beτ -denseif there exists an increasing sequence{pn} in Proj(M)

such that (i) limn→∞ τ(p⊥n ) = 0 and (ii) pnH ⊂ D.

(a) Show that a subspaceD of H is τ -dense if and only if for anyε > 0 there exists
p ∈ Proj(M) such thatτ(p⊥) < ε and pH ⊂ D.

(b) Show that if{Dn} is a sequence ofτ -dense subspaces thenD =
⋂
∞

n=1 Dn is
alsoτ -dense. (Hint: Use (a). For eachε > 0, let pn ∈ Proj(M) be such thatτ(p⊥n ) <
ε/2n and pnH ⊂ Dn. Setp =

∧
∞

n=1 pn and observeτ(p⊥) ≤
∑
∞

n=1 τ(p
⊥
n ) < ε.)

6) A sequence{An} in M(M) is said to convergeτ -nearly everywhereif there
exists aτ -dense subspaceD ⊂ H such thatD ⊂

⋂
∞

n=1 D(An) and Anξ converges
in norm for everyξ ∈ D. Define Aξ = limn→∞ Anξ for thoseξ ∈

⋂
∞

n=1 D(An)

such that limn→∞ Anξ exists.

(a) Show thatA is affiliated withM.

(b) Show that ifpH ⊂ D, p ∈ Proj(M), then‖An p‖ < +∞ and‖Ap‖ < +∞.
(Hint: Use the closed graph theorem for the boundedness ofAn p and the uniform
boundedness theorem for{An p}).

(c) Prove thatA is τ -measurable.

(d) Show that ifτ(e) < +∞, e ∈ Proj(M), then for anyε > 0 andδ > 0 there
existsN andp ∈ Proj(Me) such thatτ(e− p) < δ and

∥∥(An− A)p
∥∥ < ε, n ≥ N.

(Hint: τ(e− e ∧ q) = τ(e ∨ q − q) ≤ τ(q⊥) for thoseq with qH ⊂ D. Set
p1 = e∧ q to get p1 with τ(e− p1) < δ/2. Observe thatAn p1 converges strongly
to Ap1. Apply Lemma II.4.12 toAn p1.)

(e) Show that ifτ(e) < +∞, e ∈ Proj(M), then for anyε > 0, there exists
p ∈ Proj(Me) such that

τ(e− p) < ε and lim
n→∞

∥∥(An − A)p
∥∥ = 0 .

(f) Let M = L∞(X, µ) with {X, µ} aσ -finite measure space andτ the integration
relative toµ. Let {An} be a sequence of measurable operators and{ fn} be the cor-
responding sequence of functions onX. Show that if{ fn} convergesµ-almost ev-
erywhere, then{An} convergesτ -nearly everywhere; conversely if{An} converges
τ -nearly everywhere, then some subsequence

{
fnk

}
of { fn} converges almost ev-

erywhere, and the limit function does not depend on the choice of a convergent
subsequence.

(g) Show that ifM is non-atomic, i.e. does not admit a non-zero minimal pro-
jection then theτ -measure convergence does not imply theτ -nearly everywhere
convergence. (Hint: IfM is non-atomic, thenL∞(0,1), the algebra of essentially
bounded functions on[0,1] relative to the Lebesgue measure, can be embedded as
a von Neumann subalgebra of a reduced subalgebraMe along with the trace on
L∞(0,1) given by the Lebesgue measure. Consider the sequence{In} of intervals
defined by

I j+k (k+1)/2 =

[
j − 1

k+ 1
,

j

k+ 1

]
, 1≤ j ≤ n+ 1,
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and set
fn = |In|

−2χIn .

Then{ fn} converges to zero in measure, but notτ -nearly everywhere.)

(h) Show that ifM = L∞(0,1) andτ is the integration relative to the Lebesgue
measure, then theτ -nearly everywhere convergence does not imply the almost ev-
erywhere convergence. (Hint: In the hint for (g), setfn = χIn . Then{ fn} converges
strongly to zero, so that it converges to zeroτ -nearly everywhere. But it does not
converge to zero at any point of[0,1].)

(i) Show that theτ -nearly everywhere convergence of self-adjoint measurable op-
erators implies the resolvent convergence. (cf. A.6.(iii).)

7) For aτ -measurable operatorT , set

λt (T) = τ
(

E]t,+∞[
(
|T |
))
, t ≥ 0 ,

whereE]t,+∞[
(
|T |
)

is the spectral projection of|T | corresponding to the open half
line ]t,+∞[;

µt (T) = inf
{
‖T e‖ : e∈ Proj(M), τ (e⊥) ≤ t

}
.

Following the steps described below, prove that

µt (T) = inf
{

s ≥ 0 : λs(T) ≤ t
}
; λµt (T)(T) ≤ t, t > 0. [517]

(a) First, observe thats 7→ λs(T) is continuous from the right. Witha =
inf
{

s ≥ 0 : λs(T) ≤ t
}

andE = E[0,a](|T |), prove

‖T E‖ ≤ a and τ(1− E) ≤ t.

(b) Givenε > 0, let E ∈ Proj(M) such thatτ(1− E) ≤ t and

‖T E‖ < µt (T)+ ε = α .

Show thatE ∧ E]α,∞[
(
|T |
)
= 0. (Hint: If ξ ∈ EH ∩ E]α,∞[(|T |)H, ‖ξ‖ = 1, then

(T∗Tξ | ξ) ≥ α2 > ‖Tξ‖2 = (T∗Tξ | ξ).)

(c) Show thatτ(E]α,∞[
(
|T |)

)
≤ t . (Hint: λα(T) = τ(E]α,∞[(|T |)) ≤ t , soa ≤ α.)

(d) Show that ifT is a positiveτ -measurable operator, then

τ(T) =

∞∫
0

µt (T) dt ; µt
(

f (T)
)
= f

(
µt (T)

)
for any continuous increasing functionf on [0,∞[ with f (0) ≥ 0;

µt (T) ≤ µt (S); τ
(

f (T)
)
≤ τ

(
f (S)

)
if 0 ≤ T ≤ S in addition.
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8) Let {M,H} be a semi-finite von Neumann algebra equipped with a faithful
semi-finite normal traceτ . Let N be the commutantπτ (M)′ of M represented on
L2(M, τ ) and letτN be the trace onN opposite toτ .

(a) Show that there exists a unique faithful semi-finite normal traceτH on the com-
mutantπH(M)′ of M onH such that

τH(yy∗) = τN (y
∗y)

for everyy ∈ L
(
L2(M, τ ),H

)
such thatxy= yπτ (x), x ∈M.

(b) Observe that for everyξ ∈ H there exists a uniquehξ ∈ L2(M, τ )+ such that
(xξ | ξ) =

(
xhξ

∣∣ hξ
)
τ
, x ∈ M. Show that eachξ ∈ H gives rise to an operator:

ητ (x) 7→ xξ , x ∈ nτ , which is preclosed.

(c) Let K be another Hilbert space on whichM acts faithfully and normally.
Normalize the faithful semi-finite normal traceτK on the commutant{M′K,K} of
πK(M) according to (a). Show that ify ∈ L(H,K) intertwines the actions ofM,
i.e. yπH(x) = πK(x)y, x ∈ M, then τH(y∗y) = τK(yy∗). Set IM(H,K) ={

y ∈ L(H,K) : yπH(x) = πK(x)y, x ∈M
}
.

(d) Define the measure topology onIM(H,K) by the family of a neighborhood
system

{
N(ε, δ) : ε > 0, δ > 0

}
of 0 given by:

N(ε, δ) =
{

y ∈ IM(H,K) : ‖yp‖ < ε andτH(p
⊥) < δ for somep ∈ Proj(M′H)

}
.

Prove the statements onIM(H,K) corresponding to Theorem 2.2 with respect to the
measure topology defined above. But the measure topology on bothH andK should
be referred to

{
M′H, τH

}
and

{
M′K, τK

}
respectively instead ofM. (Hint: Consider

the direct sum̃H = L2(M, τ )⊕H⊕ K, πH̃ = πτ ⊕ πH ⊕ πK andM′
H̃
= πH̃(M)′

and identifyIM(H,K) = pKM′
H̃

pH wherepH and pK are the projections from̃H
ontoH andK respectively.)

(e) LetMM(H,K) be the completion ofIM(H,K) relative to the measure topology.
Prove the statements onMM(H,K) corresponding to Theorem 2.5.

(f) Prove that eachξ ∈ H gives rise to an elementR(ξ) ∈MM
(
L2(M, τ ),H

)
such

that R(ξ)ητ (x) = xξ , x ∈ nτ .

(g) Prove thatR(ξ)∗R(ξ) ∈ L1(N , τN ).

(h) Prove that everyR ∈ MM
(
L2(M, τ ),H

)
with τN (R∗R) < ∞, calledsquare

integrable, corresponds uniquely to a vectorξ ∈ H such thatR = R(ξ). Let
L2

M(H) =
{

R ∈MM
(
L2(M, τ ),H

)
: τN (R∗R)1/2 = ‖R‖2 <∞

}
.

(i) Prove thatξ ∈ H 7→ R(ξ) ∈ L2
M(H) is a surjective isometry ofH ontoL2

M(H).

(j ) Observe that on the Hilbert spaceL2
M(H), M′H acts from the left andN acts

from the right by operator multiplication.

(k) Observe that it is possible to do the same forM′H so thatM acts onL2
M′H
(M′H, τH)

from the left. This will be studied more in detail in the next section.
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§ 3 Bimodules, Spatial Derivatives
and Relative Tensor Products

We are going to consider a right action of a von Neumann algebra on a Hilbert space.
To this end, we first set:

Definition 3.1.

(i) Given a von Neumann algebraN , the oppositevon Neumann algebraN ◦

means the von Neumann algebra obtained by reversing the product inN , i.e.
as a linear space equipped with the∗-operation we takeN to beN ◦, denote
by x◦ the element inN ◦ corresponding tox ∈ N and then define the product
in N ◦ by:

x◦y◦ = (yx)◦, x, y ∈ N . (1)

(ii) A right N -modulemeans a Hilbert spaceH equipped with a normal anti-
representation,π ′H, of N on H, equivalently a Hilbert space equipped with
a normal representation ofN ◦. To avoid uninteresting notational complexity,
we consider onlyfaithful right N -modulesH in the sense thatπ ′H(x) 6= 0 for
every non-zerox ∈ N . We denote the rightN -moduleH by HN to emphasize
thatH is being viewed as a rightN -module.

(iii) For a pairM, N of von Neumann algebras, anM-N -bimodulemeans a
Hilbert spaceH, denoted byMHN , equipped with a normal representation
of π of M on H and a normal anti-representationπ ′ of N on H such that
π(M) andπ ′(N ) commute. We write:

xξy = π(x)π ′(y)ξ, x ∈M, y ∈ N . (2)

The commutativity ofπ(M) and π ′(N ) is equivalent to the associativity:
x(ξy) = (xξ)y, x ∈ M and y ∈ N . Once again, we are going to consider only
faithful modules. In the case thatπ(M)′ = π ′(N ), the bimoduleMHN is said to be
full.

Let us fix von Neumann algebrasM andN . If H is anM-N -bimodule, then its
Banach space dualH̄ is canonically anN -M-bimodule by the action:

xξ̄y = y∗ξx∗, x ∈M, y ∈ N , (3)

whereξ̄ means the vector inH corresponding toξ ∈ H by the pairing:〈η, ξ̄〉 = (η |
ξ), η ∈ H andξ̄ ∈ H̄. ThisM-N -moduleH̄ will be called theconjugatebimodule
or the bimoduledual to the original bimoduleH.

Of special interest is a von Neumann algebra in a standard form. Let us fix a
faithful semi-finite normal weightψ on N and consider the standard form, which
we will denote by

{
L2(N ), L2(N )+, J

}
. The right action ofN is given by:

ξx = J x∗Jξ, x ∈ N . (4)

Thus we obtain anN -N -bimoduleL2(N ), which will be called thestandard bi-
module. Sometimes, we writeξ∗ for Jξ , ξ ∈ L2(N ). We state here the following
easy but important proposition:
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Proposition 3.2. For a von Neumann algebraN , the standard bimodule L2(N )

is self-dual under the correspondence:ξ∗←→ ξ̄ , ξ ∈ L2(N ) .

The proof is straightforward, so it will be left to the reader.

With ψ a faithful semi-finite normal weight onN , the left action onL2(N ) is
nothing but the semi-cyclic representationπψ on Hψ . The right actionπ ′ψ of N is
then given by:

π ′ψ (x) = Jπψ (x
∗)J, x ∈ N . (5)

It then follows from Lemma VIII.3.18 that the right action ofN is given by the
following:

ηψ (x)b = ηψ
(
xσψ
−

i
2
(b)
)
, x ∈ nψ , b ∈ D

(
σ
ψ

−
i
2

)
. (6)

This twist on the right action suggests that we writexψ1/2 for ηψ (x), x ∈ nψ ,
viewingψ1/2 as an infinitely long vector “in”L2(N ). Then the formula (6) is sim-
ply:

xψ
1
2 b =

(
xψ

1
2 bψ−

1
2
)
ψ

1
2 =

(
xσψ
−

i
2
(b)
)
ψ

1
2 , x ∈ nψ , b ∈ D

(
σ
ψ

−
i
2

)
. (6′)

We then introduce a new notation:

η′ψ (x) = Jηψ (x
∗), x ∈ n∗ψ , (7)

which can be written asψ1/2x, x ∈ n∗ψ . This new mapη′ψ : x ∈ n∗ψ 7→ η′ψ (x) ∈

L2(N ) allows us to write (5) in a simple form:

π ′ψ (b)η
′
ψ (x) = η

′
ψ (xb) = η′ψ (x)b, x ∈ n∗ψ , b ∈ N . (8)

We now consider a general rightN -moduleH. First, we set for a pair{H1,H2} of
right N -modules:

L
(
H1,N , H2,N

)
=
{

T ∈ L(H1,H2) : T(ξy) = (Tξ)y, y ∈ N
}

(9)

and forL
(
HN , HN

)
, we write simplyL(HN ). With this notation, the rightN -mod-

uleH becomes canonically anL(HN)-N -bimodule. Also, we note thatL
(
L2(N )N

)
= N , a fact that will be used heavily later. For the pair{H1,H2}, we consider the
direct sum rightN -module:HN = H1 ⊕ H2 and lete1 ande2 be the projection of
H to H1 andH2 respectively. Then we haveL

(
H1,N , H2,N

)
= e2L(HN )e1.

Now let {M,H} be a von Neumann algebra. We want to study the relation be-
tween a semi-finite normal weightϕ onM and a faithful semi-finite normal weight
ψ ′ on M′. SetN = (M′)◦, which allows us to viewH as anM-N -bimodule. Let
ψ be the weight onN defined byψ(y) = ψ ′(y◦), y ∈ N . We first relate the
von Neumann algebra{M,H} to the one in a standard form. LetH̃ = L2(N ) ⊕ H
as a rightN -module. LetR = L(H̃N ). It is then straightforward to observe that
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L
(
L2(N )N , HN

)
= f Re, wheree and f are the projections of̃H onto L2(N )

andH respectively. The semi-finite normal weightsψ on N andϕ on M give rise
to a semi-finite normal weightρ onR by: ρ(x) = ψ(exe)+ ϕ( f x f ), x ∈ R. We
set

nψ (H) = f
(
R ∩ nρ

)
e=

{
x ∈ L

(
L2(N )N , HN

)
: ψ(x∗x) <∞

}
;

D(H, ψ) =
{
ξ ∈ H : ‖ξx‖ ≤ Cξ

∥∥η′ψ (x)∥∥, x ∈ n∗ψ for someCξ ≥ 0
}
.

 (10)

Eachξ ∈ D(H, ψ) gives rise to an operator, denoted byLψ (ξ), which belongs to
L
(
L2(N )N , HN

)
, defined by the equation:

Lψ (ξ)η
′
ψ (x) = ξx, x ∈ n∗ψ , ξ ∈ D(H, ψ). (11)

Lemma 3.3.

(i) We have

nψ (H) = L
(
L2(N )N , HN

)
nψ and D(H, ψ) = L

(
L2(N )N , HN

)
Bψ ,

whereBψ = ηψ (nψ ) in L2(N ) .

(ii) The mapηψ : (x, y) ∈ L
(
L2(N )N ,HN

)
× nψ 7→ xηψ (y) ∈ D(H, ψ) gives

rise to a map, denoted byηψ again, fromnψ (H) onto D(H, ψ) such that

ηψ (ax) = aηψ (x), a ∈M, x ∈ nψ (H);

ηψ
(
xσψ
−

i
2
(b)
)
= ηψ (x)b, x ∈ nψ (H), b ∈ D

(
σ
ψ

−
i
2

)
.

 (12)

(iii) D(H, ψ) is dense inH .

(iv) The maps Lψ : ξ ∈ D(H, ψ) 7→ Lψ (ξ) ∈ nψ (H) and ηψ : x ∈ nψ (H) 7→
ηψ (x) ∈ D(H, ψ) are the inverse of each other.

(v)
Lψ
(
ξσ

ψ
i
2
(b)
)
= Lψ (ξ)b, ξ ∈ D(H, ψ), b ∈ D

(
σ
ψ
i
2

)
. (12′)

(vi) With the semi-finite normal weight̄ψ on R defined by

ψ̄(x) = ψ(exe) = ρ(exe), x ∈ R,

we havenψ̄ = nψ ⊕ nψ (H) ⊕R f , R f ⊂ Nψ̄ where N̄ψ means the left

kernel
{

y ∈ N : ψ̄(y∗y) = 0
}

of ψ̄ and the action ofR on H̃ is semi-
cyclic relative to the semi-finite normal weightψ̄ under the identification:

ηψ̄ (x+y) ∈ Hψ̄ ←→ ηψ (x)⊕ηψ (y) ∈ L2(N )⊕H, x ∈ nψ , y ∈ nψ (H).

PROOF:
(i) If x is in nψ (H), then the absolute value|x| belongs tonψ by definition,

so that the polar decomposition ofx shows thatx belongs toL
(
L2(N )N , H

)
nψ .

Conversely, ifa ∈ L
(
L2(N )N , HN

)
andx ∈ nψ , then the inequality:x∗a∗ax ≤

‖a‖2x∗x implies thatax ∈ nψ (H). If ξ ∈ nψ (H), thena = Lψ (ξ) belongs to
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L
(
L2(N )N , H

)
and with the polar decompositiona = uh we conclude first thath

belongs tonψ and also thatξ = uηψ (h) ∈ L
(
L2(N )N , H

)
Bψ .

(ii) If xy = 0 with x ∈ L
(
L2(N )N , HN

)
andy ∈ nψ , then withx = uh the

polar decomposition we havehy= 0 and

xηψ (y) = uhηψ (y) = uηψ (hy) = 0.

This means that ifx1y1 = x2y2 with x1, x2 ∈ L
(
L2(N )N , HN

)
andy1, y2 ∈ nψ ,

then we havex1ηψ (y1) = x2ηψ (y2), so that the mapηψ is well-defined. The rest
follows easily.

(iii) From (i) it follows that[
D(H, ψ)

]
=
[
D(H, ψ)Bψ

]
=
[
D(H, ψ)L2(N )

]
.

Let ξ ∈ H. Considerω = ωξ as a functional overN . Let ξ(ω) be the represent-
ing vector in L2(N )+ of ω for the right action ofN on L2(N ). Then we have
a partial isometryu in L

(
L2(N )N , HN

)
such thatuξ(ω) = ξ . This means that

L
(
L2(N )N , HN

)
L2(N ) = H; henceD(H, ψ) is dense inH. The first formula

of (9) follows from the construction of the mapηψ .
(iv) Let ξ = ηψ (x) with x ∈ nψ (H) andx = uh be the polar decomposition.

Thenh ∈ nψ andu ∈ L
(
L2(N )N , HN

)
andξ = uηψ (h) by (ii). Now for each

y ∈ nψ ∩ n∗ψ ∩D
(
σ
ψ

−i/2

)
such thatσψ

−i/2(y) ∈ nψ , we have

Lψ (ξ)Jηψ (y
∗) = ξy = uηψ (h)y = uηψ

(
hσψ
−

i
2
(y)
)

by (5)

= uhηψ
(
σ
ψ

−
i
2
(y)
)
= x∆

1
2
ψηψ (y) = x Jηψ (y

∗).

Therefore, we havex = Lψ (ξ). Conversely, supposex = Lψ (ξ)with ξ ∈ D(H, ψ).

With x = uh polar decomposition, we have, for eachy ∈ nψ ∩n∗ψ ∩D
(
σ
ψ

−i/2

)
such

thatσψ
−i/2(y) ∈ nψ ,

h Jηψ (y
∗) = u∗x Jηψ (y

∗) = u∗(ξy) = (u∗ξ)y,

so that the vectoru∗ξ ∈ L2(N ) is left bounded relative to the left Hilbert algebra
Aψ andh = π`(u∗ξ). This means thath ∈ nψ , and sox ∈ nψ (H). It is easy to see
now thatξ = ηψ (x).

(v) This follows from (ii), (iv) and Lemma VIII.3.18.
(vi) By now, the assertion follows from a routine calculation of actions ofR

on H̃ andHψ̄ . Q.E.D.

We continue to study the action ofR on H̃. The direct sum decomposition,
H̃ = L2(N )⊕ H, entails the matrix representation ofR:

x =

(
x11 x12
x21 x22

)
,

x11 ∈ N , x12 ∈ L
(
L2(N )N , HN

)
,

x21 ∈ L
(
HN , L2(N )N

)
, x22 ∈M = L(HN )

for eachx ∈ R.
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We have seen thataψ = nψ ∩ n∗ψ or more precisely its imageηψ (aψ ) form a

left Hilbert algebra. Likewise,A = D
(
σ
ψ

−i/2

)
∩D

(
σ
ψ

i/2

)
= D

(
σ
ψ

i/2

)
∩D

(
σ
ψ

i/2

)∗
is a self-adjoint subalgebra ofN which multipliesaψ andn∗ψ from both sides. We
then have the following tautological statement:

Lemma 3.4. The anti-representationπ ′ψ of A defined by:

π ′ψ (b)ηψ (x) = ηψ
(
xσψ
−

i
2
(b)
)
, x ∈ nψ (H), b ∈ A, (12′′)

extends to the original right action ofN on H .

PROOF: Our assertion follows directly from (6), (12) and (12′). We leave the detail
to the reader. Q.E.D.

Observe that we have used only the semi-finite normal weightψ on N and not
at all the semi-finite normal weightϕ onM. The “balanced” weightρ = ψ ⊕ ϕ on
R then gives a semi-cyclic representation

{
πρ,Hρ

}
of R. We want to identify the

representationπρ in terms ofH andπϕ . First we consider the weights̄ψ andϕ̄ on
R given byψ̄(x) = ψ(exe) andϕ̄(x) = ϕ( f x f ), x ∈ R. We have now:

Hρ =

ηρ(eRe∩ nρ
)
+ ηρ

(
eR f ∩ nρ

)
+

ηρ
(

f Re∩ nρ
)
+ ηρ

(
f R f ∩ nρ

)


=

L2(N ) ⊕
[
ηρ(eR f ∩ nρ)

]
⊕

H ⊕ Hϕ

 ,
(13)

where[ · ] stands for the closure in the Hilbert space as usual. We have seen already
thatηρ

(
f Re∩nρ

)
= D(H, ψ) and f Re∩nρ = nψ (H). Also we knew thatf Re=

L
(
L2(N )N , HN

)
andeR f = L

(
HN , L2(N )N

)
. We now want to know about

nρ ∩ eR f and its image under the mapηρ . As we did not assume the faithfulness
for ϕ, we don’t have symmetry betweenϕ andψ . At any rate, we have

eR f ∩ nρ =
{

y ∈ L
(
HN , L2(N )N

)
: ϕ(y∗y) <∞

}
=

{
x∗ : x ∈ L

(
L2(N )N , HN

)
with ϕ(xx∗) <∞

}
.

(10′)

Following the decomposition (13), we naturally set:

H1,1 = L2(N ), H1,2 =
[
ηρ(eR f ∩ nρ)

]
H2,1 = H, H2,2 = Hϕ .

Lemma 3.5.

(i) The restriction ofπρ to the second column space of(13), H1,2 ⊕ H2,2 , is
semi-cyclic relative to the weight̄ϕ .
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(ii) The Hilbert spaceH1,2 is isomorphic tos(ϕ)H2,1 dual to s(ϕ)H2,1 as an
N -Ms(ϕ)-bimodule under the natural map.

PROOF: First consider the case thatϕ is faithful. Then withaρ = nρ∩n∗ρ andAρ =

ηρ(aρ), we have a left Hilbert algebraAρ . Furthermore, theR-R-bimoduleL2(R)
is naturally identified withHρ . Then the components ofHρ of (13) are identified
with

H1,1 = eL2(R)e, H1,2 = eL2(R) f,

H2,1 = f L2(R)e, H2,2 = f L2(R) f.

The modular conjugationJ implements the desired isomorphism betweenH̄2,1 and
H1,2. This proves the assertion (ii) for the faithful case. The assertion (i) follows
from the symmetry betweenψ onN andϕ◦ onM◦.

If ϕ is not faithful, then withq = s(ϕ) we consider an auxiliary semi-finite
normal weightϕ1 on M with e1 = s(ϕ1) = 1H − q ≤ e to have a faithful semi-
finite normal weightρ1 = ρ + ϕ̄1 on R such thats(ϕ̄1) belongs toRρ1 whereϕ̄1
is given byϕ̄1(x) = ϕ1(exe), x ∈ R+. Observe thatηρ andηρ1 agree oneRe and
f Re and that we haveηρ(x) = ηρ1(xq), x ∈ (eR f + f R f ) ∩ nρ . Hence we get

H1,1 = eL2(R)e, H2,1 = f L2(R)e,

H1,2 = eL2(R)q, H2,2 = f L2(R)q.

Therefore, we haveJqH2,1 = JqL2(R)e = eL(R)q = H1,2. This completes the
proof for (i). For (ii), we haveH1,2 ⊕ H2,2 = L2(R)q as anN -Mq-bimodule.
Therefore, the representation

{
πρ , H1,2⊕H2,2

}
is nothing but the semi-cyclic rep-

resentation
{
πϕ̄, Hϕ̄, ηϕ̄

}
. Q.E.D.

If we look at the origin of the above proof, we recognize that the conjugation
operatorJ comes from the conjugate linear operator

Sϕ,ψ : ηψ (x) ∈ ηψ
(
L
(
L2(N )N , HN

)
∩ nρ ∩ n∗ρ

)
7→ ηϕ(x

∗) ∈ H1,2,

which is the restriction of theSϕ̄1,ψ̄
-map forρ1 to the smaller domainqL2(R)e, i.e.

Sϕ,ψ can be directly defined as the closure of the operator given bySϕ,ψηψ (x) =
ηϕ(x∗) for x ∈ nψ (H) ∩ nϕ(H)

∗, where

nϕ(H) =
{

x ∈ L
(
HN , L2(N )N

)
: ϕ(x∗x) <∞

}
.

Thus we come to the following:

Definition 3.6. The absolute value∆ϕ,ψ of Sϕ,ψ is calledspatial derivativeof the
semi-finite normal weightϕ onM relative to the faithful semi-finite normal weight
ψ ′ on the commutantM′ and denoted bydϕ

dψ ′ as it is determined byψ ′ on M′ and
ϕ onM.
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Dualizing (10), we set:

D′(H, ϕ) =

{
ξ ∈ H :

‖xξ‖2 ≤ Cξϕ(x
∗x), x ∈M,

for some constantCξ ≥ 0

}
. (10′′)

To eachξ ∈ D′(H, ϕ) there corresponds an operatorRϕ(ξ) defined by

Rϕ(ξ)ηϕ(x) = xξ, x ∈ nϕ,

which belongs toL
(
ML2(M), MH

)
. As ϕ is not assumed to be faithful,ψ andϕ

are not symmetric. In fact, we have the following:

Lemma 3.7. The closure ofD′(H, ϕ) is the range of the projection s(ϕ) , i.e[
D′(H, ϕ)

]
= s(ϕ)H .

PROOF: If ξ ∈ D′(H, ϕ), then we have∥∥(1− s(ϕ)
)
ξ
∥∥2
≤ Cξϕ

(
(1− s(ϕ)

)
= 0.

HenceD′(H, ϕ) ⊂ s(ϕ)H. Conversely, supposeξ ⊥ D′(H, ϕ). WithΦ =
{
ω : ω ≤

ϕ
}
, we knowϕ = supΦ, and that

η ∈ D′(H, ϕ)⇐⇒ ωη ∈
⋃
C>0

CΦ.

Also everyω ∈ Φ is a countable sum ofωηn with ηn ∈ D′(H, ϕ), so thats(ϕ) =
sup

{
s(ωη) : η ∈ D′(H, ϕ)

}
; thus we haves(ϕ)ξ = 0. Q.E.D.

We now state one of the main results of the section:

Theorem 3.8. Let {M,H} be a von Neumann algebra,ϕ a semi-finite normal
weight onM and ψ ′ a faithful semi-finite normal weight on the commutantM′ .
Then the spatial derivativedϕ/dψ ′ has the following property:

(i) The support s
(
dϕ/dψ ′

)
of the spatial derivativedϕ/dψ ′ 4 is equal to s(ϕ) .

(ii) On the reduced von Neumann algebra
{
Ms(ϕ), s(ϕ)H

}
and its commutant

M′s(ϕ) , we have:(
dϕ

dψ ′

)i t

x

(
dϕ

dψ ′

)−i t

= σ
ϕ
t (x), x ∈Ms(ϕ),(

dϕ

dψ ′

)i t

y

(
dϕ

dψ ′

)−i t

= σ
ψ ′

−t (y), y ∈M′s(ϕ).

 (14)

(iii) If ϕ1 and ϕ2 are faithful semi-finite normal weights onM , then(
dϕ2

dψ ′

)i t

=
(
Dϕ2 : Dϕ1

)
t

(
dϕ1

dψ ′

)i t

. (15)

4 The support of a self-adjoint operator means the projection to the closure of the range.



§ 3 Bimodules, Spatial Derivatives and Relative Tensor Products 193

(iv) If ϕ is also faithful , then

dψ ′

dϕ
=

(
dϕ

dψ ′

)−1

. (16)

(v) With N = (M′)◦ and ψ = (ψ ′)◦ , the square root of the spatial derivative,(
dϕ/dψ ′

)1/2
, is essentially self-adjoint on

Dϕ,ψ (H) =
{
ξ ∈ D(H, ψ) : Lψ (ξ) ∈ n∗ϕ

}
and determined by:((

dϕ

dψ ′

) 1
2

ξ

∣∣∣∣ ( dϕ

dψ ′

) 1
2

η

)
= ϕ(Lψ (ξ)Lψ (η)

∗), ξ, η ∈ Dϕ,ψ (H). (17)

Therefore, the spatial derivativedϕ/dψ ′ of ϕ relative toψ ′ is directly com-
putable fromϕ and ψ ′ .

PROOF: From the previous arguments toM, N , ϕ andψ , we know that the spa-
tial derivative dϕ/dψ ′ is defined to be the relative modular operator∆ϕ,ψ on the
subspaces(ϕ)H. Now we replaceH by s(ϕ)H and assume thatϕ is faithful. Then
the assertions (i), (ii), (iii) and (iv) are nothing but the statements about the relative
modular operator which was already proven in the last chapter. Statement (v) also
follows from the definition of the relative modular operator∆ϕ,ψ in the last chapter,

i.e.∆1/2
ψ,ϕ is the absolute value ofSϕ,ψ . Q.E.D.

From the statement (v) in the above theorem it follows that the spatial derivative
dϕ/dψ ′ is directly determined byϕ andψ ′ without making use of the auxiliary von
Neumann algebraR in the preceding discussion.

Lemma 3.9. The linear spanJψ of Lψ (ξ)Lψ (η)∗ , ξ, η ∈ D(H, ψ) , is a σ -
weakly dense ideal ofM and we have:

J+ψ =

{ n∑
i=1

Lψ (ξi )Lψ (ξi )
∗
: ξi ∈ D(H, ψ), i = 1, . . . ,n

}
.

PROOF: It is easy to see thatLψ (aξ) = aLψ (ξ) for anya ∈M andξ ∈ D(H, ψ).
HenceJψ is an ideal ofM. The rest follows from the polarization techniques
which we have been using repeatedly. See for example, Chapter VII, §1. As
Lψ
(
D(H, ψ)

)
= nψ (H), for the σ -weak density ofJψ it suffices to prove that

anψ (H) = {0}, a ∈ M, implies thata = 0. Supposeanψ (H) = {0}, a ∈ M. This
means thataLψ (ξ) = 0 for everyξ ∈ D(H, ψ). Thus for everyx ∈ n∗ψ we have

0= aLψ (ξ)η
′
ψ (x) = a(ξx) = (aξ)x.

As π ′H(n
∗
ψ ) is σ -weakly dense inπ ′H(N ), we haveaξ = 0. The density ofD(H, ψ)

in H impliesa = 0. Q.E.D.
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Proposition 3.10. The spatial derivative(dϕ/dψ ′) has the following properties
further:

(i) ϕ1 ≤ ϕ2 ⇐⇒
dϕ1

dψ ′
≤

dϕ2

dψ ′
.

(ii) If ϕ1 and ϕ2 are both finite, then

d(ϕ1+ ϕ2)

dψ ′
=

dϕ1

dψ ′
+

dϕ2

dψ ′
, (18)

where the above sum is a form sum, see A.9.
(iii) If a ∈M is invertible, then

d(aϕa∗)

dψ ′
= a

(
dϕ

dψ ′

)
a∗. (19)

(iv) The support of dϕ
dψ ′ is equal to the support s(ϕ) of ϕ , where the support

of dϕ
dψ ′ is the projection to the closure of the range of the operatordϕ

dψ ′ and

denoted by s
( dϕ

dψ ′
)

.

PROOF:
(i) Supposeϕ1 ≤ ϕ2. Then we have∣∣∣∣( dϕ1

dψ ′

) 1
2

ξ

∣∣∣∣2 = ϕ1
(
Lψ (ξ)Lψ (ξ)

∗
)
≤ ϕ2

(
Lψ (ξ)Lψ (ξ)

∗
)
=

∣∣∣∣( dϕ2

dψ ′

) 1
2

ξ

∣∣∣∣2
for eachξ ∈ D(H, ψ). Hence dϕ1/dψ ≤ dϕ2/dψ follows.

Conversely, suppose dϕ1/dψ ′ ≤ dϕ2/dψ ′ . It then follows thatϕ1(a) ≤ ϕ2(a)
for everya ∈M+ of the forma =

∑n
i=1 Lψ (ξi )Lψ (ξi )∗. Our assertion then follows

from the last lemma.
(ii) Suppose thatϕ1, ϕ2 ∈M+∗ andϕ = ϕ1 + ϕ2. The boundedness ofϕ1 and

ϕ2 imply thatϕ is bounded and the square roots of all the spatial derivativesdϕ1
dψ ′ ,

dϕ2
dψ ′ and dϕ

dψ ′ are essentially self-adjoint onD(H, ψ). Let H1 = dϕ1/dψ ′ , H2 =

dϕ2/dψ ′ andH = dϕ/dψ ′ . Then we have
∥∥H1/2ξ

∥∥2
=
∥∥H1/2

1 ξ
∥∥2
+
∥∥H1/2

2 ξ
∥∥2,

ξ ∈ D(H, ψ). Hence our assertion follows.
(iii) Let H = dϕ/dψ ′ . It follows thataHa∗ is a positive self-adjoint operator

with domaina∗
−1

D(H), and that for eachξ ∈ D(H, ψ)∥∥H
1
2 a∗ξ

∥∥2
= ϕ

(
Lψ (a

∗ξ)Lψ (a
∗ξ)∗

)
= ϕ

(
a∗Lψ (ξ)Lψ (ξ)

∗a
)

= (aϕa∗)
(
Lψ (ξ)Lψ (ξ)

∗
)
. 5

Sincea is invertible,D
(
(aHa∗)1/2) = D

(
H1/2a∗

)
and the absolute value of

H1/2a∗ is precisely(aHa∗)1/2. Hence we conclude (19).

5
∥∥H1/2a∗ξ

∥∥2 can be+∞ if ϕ is not finite. In fact,
∥∥H1/2a∗ξ

∥∥2
< +∞ if and only if

a∗ξ ∈ D
(
H1/2).
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(iv) Let p be the support ofH = dϕ/dψ ′ andq = s(ϕ). Thenp is character-
ized by the fact that 1− p is the projection ofH onto the null space ofH , i.e. onto
the subspace:N =

{
ξ ∈ H : Hξ = 0

}
. Let A1 be the maximal Tomita algebra

associated with the left Hilbert algebraAρ1 = ηρ1

(
nρ1 ∩ n∗ρ1

)
. As f ∈ Rρ1, we

have, with f ′ = J f J, f ′A1 = JA1 ⊂ A1. If ξ ∈ N, then there exists a sequence
{ξn} in D(H, ψ) such thatξ = lim ξn and limHξn = 0 asD(H, ψ) is a core forH .
For eachη ∈ f ′A1, we haveπr (η)ξ = limn πr (η)ξn and∥∥H

1
2πr (η)ξ

∥∥2
= lim

∥∥H
1
2πr (η)ξn

∥∥2
= lim

∥∥H
1
2π`(ξn)η

∥∥2

= lim ϕ
(
π`(ξnη)π`(ξnη)

∗
)

≤
∥∥π`(η)∥∥2 lim ϕ

(
π`(ξn)π`(ξn)

∗
)
= 0,

so thatπr (η)ξ ∈ N. Since
{
πr (η)e : η ∈ f ′A1

}
is σ -weakly dense inN , the

projectionp belongs toM = N ′.
If ξ ∈ (1− q)D(H, ψ), then

ϕ
(
Lψ (ξ)Lψ (ξ)

∗
)
= ϕ

(
qLψ (ξ)Lψ (ξ)

∗q
)
= ϕ

(
Lψ (qξ)Lψ (qξ)

∗
)
= 0,

so
( dϕ

dψ ′
)1/2

ξ = 0. If ξ ∈ (1− q)H, then we choose a sequenceξn ∈ D(H, ψ) with

ξ = lim ξn. It follows thatξ = lim(1− q)ξn and
(
dϕ/dψ ′

)1/2
(1− q)ξn = 0, so

thatξ ∈ D
(
(dϕ/dψ ′)1/2

)
and

(
dϕ/dψ ′

)1/2
ξ = 0. Thus 1−q ≤ 1− p, i.e. p ≤ q.

On the other hand,ϕ is a faithful weight onMq. It is then easy to check that we can
view the weightψ as one onNs(ϕ) without changing dϕ/dψ ′ other than changing
the space fromH to s(ϕ)H. By Theorem 3.8, dϕ/dψ ′ is non-singular ons(ϕ)H,
which meansp = s(ϕ). Q.E.D.

Theorem 3.11. Let {M,H} and N =M′ be as before and fix a faithful weightψ
on N . For a positive self-adjoint operator H onH , the following three conditions
are equivalent:

(i) There exists a weightϕ on M with H = dϕ/dψ ′ ;
(ii) For every y∈ N , H i tσ

ψ
t (y) = yH i t , t ∈ R , where Hi t is considered

only on the closure of the range of H;
(iii) D(H, ψ) ∩D

(
H1/2

)
is a core for H1/2 and the scalar

∑n
i=1

∥∥H1/2ξi
∥∥2

de-
pends only on the operator:

n∑
i=1

Lψ (ξi )Lψ (ξi )
∗ for ξ1, . . . , ξn ∈ D(H, ψ) ∩D

(
H

1
2
)
.

PROOF:
(i) ⇐⇒ (ii): Let p be the support ofH . Each of conditions (i) and (ii) implies

p ∈ M. Hence we may and do assume the non-singularity ofH . The implication
(i) H⇒ (ii) follows from Theorem 3.8. Now assume (ii), and take any faithful weight
ϕ1 onM. PutH1 = dϕ1/dψ ′ , andut = H i t H−i t

1 , t ∈ R. It then follows thatut is
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a
{
σ
ϕ1
t
}
-cocycle inM. By Theorem VIII.3.7 there exists a faithful weightϕ on M

with (Dϕ : Dϕ1)t = ut , t ∈ R, and henceH = dϕ/dψ ′ .
(i) H⇒ (iii): By construction, we have

n∑
i=1

∥∥H
1
2 ξi
∥∥2
= ϕ

( n∑
i=1

Lψ (ξi )Lψ (ξi )
∗

)
, ξ1, . . . , ξn ∈ D(H, ψ),

so that the assertion follows.
(iii) H⇒ (i): We need only to construct a semi-finite normal weightϕ on M

such that ∥∥H
1
2 ξ
∥∥2
= ϕ

(
Lψ (ξ)Lψ (ξ)

∗
)
, ξ ∈ D(H, ψ) ∩D

(
H

1
2
)
.

The weight with this property is automatically semi-finite becauseD
(
H1/2

)
∩

D(H, ψ) is dense inH which means that
{

Lψ (ξ)Lψ (ξ)∗ : ξ ∈ D
(
H1/2

)
∩

D(H, ψ)
}

is non-degenerate. The rest of the proof then follows from the next result.
Q.E.D.

Lemma 3.12.

(i) Let H be as in Theorem3.11.(iii) . Then there exists a weight6 ϕ1 on Jψ
such that

ϕ1
(
Lψ (ξ)Lψ (ξ)

∗
)
=
∥∥H

1
2 ξ
∥∥2
, ξ ∈ D(H, ψ), (20)

where
∥∥H1/2ξ

∥∥2
= +∞ if ξ /∈ D

(
H1/2

)
. The weightϕ1 has the property

that for any net{xi } of M converging strongly to1

lim inf ϕ1
(
xi yx∗i

)
≥ ϕ1(y), y ∈ J+ψ . (21)

(ii) Any weightϕ1 on Jψ with the above property extends to a normal weightϕ

on M .

PROOF:
(i) By assumption,ϕ1 defined by (20) onLψ (ξ)Lψ (ξ)∗ extends to a weight

on J+ψ by Lemma 3.5.(ii), which is denoted again byϕ1. Supposey =
∑n

k=1

Lψ (ξk)Lψ (ξk)∗ ∈ J+ψ . We then have

xi yx∗i =
n∑

k=1

Lψ (xi ξk)Lψ (xi ξk)
∗

so that

ϕ(xi yx∗i ) =
n∑

k=1

∥∥H
1
2 xi ξk

∥∥2
.

Hence the inequality (21) follows from the lower semi-continuity of the positive
quadratic form associated withH , see A.8.

6 We do not consider the normality nor the semi-finiteness forϕ1 here.
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(ii) SinceJψ is aσ -weakly dense ideal ofM, every element ofM+ is approx-
imated byJ+ψ from below. So we put

ϕ(x) = sup
{
ϕ1(y) : y ∈ J+ψ , y ≤ x

}
, x ∈M+.

It follows thatϕ agrees withϕ1 onJ+ϕ . Sincexi ↗ x andyi ↗ y imply (xi + yi )↗

(x + y), the additivity ofϕ follows from that ofϕ1. We only have to check the
normality of ϕ. Suppose thatxi ↗ x in M+. Thenx1/2

i = ai x1/2 for a unique
ai ∈ M with sr (ai ) ≤ s(x). Put bi = ai +

(
1 − s(x)

)
. Then xi = bi xb∗i and

{bi } converges strongly to 1. For anyy ∈ J+ψ with y ≤ x we must show that
supϕ(xi ) ≥ ϕ1(y). But we have, by (21),

ϕ1(y) ≤ lim inf ϕ1(bi yb∗i ) ≤ lim inf ϕ(bi xb∗i ),

andbi xb∗i = xi . Q.E.D.

Corollary 3.13. Let M , N and H be as before, andψ ′ a fixed faithful weight
on M′ . If {ϕn} is an increasing sequence of faithful weights onM and if ϕ =
supϕn is semi-finite, then

{
dϕn/dψ ′

}
is increasing and converges todϕ/dψ ′ in

the strong resolvent sense, and therefore
{
σ
ϕn
t
}

converges to
{
σ
ϕ
t
}

in Aut(M)

uniformly on any finite interval of t .

PROOF: Let Hn = dϕn/dψ ′ . By Proposition 3.10,{Hn} is increasing and bounded
by H = dϕ/dψ ′ from above. Hence{Hn} converges to a positive self-adjoint oper-
ator K in the strong resolvent sense by A.11. SinceH i t

n yH−i t
n = σ

ψ
−t (y) for every

y ∈ N , K i t yK i t
= σ

ψ
−t (y), y ∈ N . By Theorem 3.11, there exists uniquely a

weight ρ on M with K = dρ/dψ ′ . The inequalities,Hn ≤ K ≤ H , show that
ϕn ≤ ρ ≤ ϕ. Henceρ = ϕ and K = H . The rest follows from the general fact
about monotone convergence, see A.11. Q.E.D.

We are now going to study a very special case thatM andN are both finite.

Theorem 3.14. Suppose that a finite von Neumann algebra{M,H} has finite com-
mutantM′ = N ◦ . If τ and τ ′ are both faithful normal tracial states onM and on
M′ respectively which agree on the centerZ =M∩M′ , then the spatial derivative
dτ
dτ ′ is equal to the coupling operator cM in the sense of §3 of Chapter V.

PROOF: To avoid possible confusions, we use the notationsϕ for τ andψ ′ for τ ′

and setψ = ψ ′◦ on N . First we note that as the modular automorphism groups of
ϕ andψ ′ are both trivial, the spatial derivative

( dϕ
dψ ′
)i t must belong to the centerZ

of M. Hence dϕ
dψ ′ is affiliated withZ.

As in the previous arguments, we consider the von Neumann algebraR =

L
(
(L2(N ) ⊕ H)N

)
. The projectionse and f of H̃ = L2(N ) ⊕ H onto L2(N )

and H respectively are both finite inR. As 1 = e+ f , we conclude by Theo-
rem V.1.37 thatR is finite andσ -finite. Let ρ̃ be a normalized faithful normal trace
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onR. Then there exist non-singular positive self-adjoint operatorsa andb affiliated
with Z such thatϕ̄ = ρ̃(ae · ) andψ̄ = ρ̃(bf · ), whereϕ̄ andψ̄ mean the ones we
have defined above. Recall also the decomposition (13) ofHρ with ρ = ϕ̄ + ψ̄ .

Chooseξ ∈ H and consider its polar decomposition:ξ = u|ξ | in L2(R). As
ξ ∈ H = H2,1, its absolute value|ξ | belongs toL2(N )+ and|ξ∗| ∈ L2(M)+. The
initial projection p = u∗u of u is equal toπψ

(
s(ωξ |M′)◦

)
and the final projection

q = uu∗ of u is equal toπϕ
(
s(ωξ |M)

)
. Hence, withTR the center valued trace ofR,

we haveTR(p) = TR(q), so thatϕ
(
s(ωξ |M)a−1x

)
= ψ

(
s(ωξ |M′)◦b−1x

)
, x ∈ Z.

Thus we have

TM
(
s(ωξ |M)a

−1)
= T(M′)◦

(
s(ωξ |M′)

◦b−1)
= TM′

(
s(ωξ |M′)b

−1).
Therefore, we conclude thatcM = ab−1.

Suppose now thatξ, η ∈ Dψ,ϕ(H). Let {zn} be an increasing sequence of pro-
jections inZ convergingσ -strongly to 1R such thatazn ∈ Z, bzn ∈ Z and( dϕ

dψ ′
)
zn ∈ Z for eachn ∈ N. Then we have

ρ

(
b

(
dϕ

dψ ′

)
znLψ (η)

∗Lψ (ξ)

)
= ψ

((
dϕ

dψ ′

)
znLψ (η)

∗Lψ (ξ)

)

=

((
dϕ

dψ ′

)
ηψ
(
Lψ (ξ)

) ∣∣∣∣ ηψ(Lψ (ξ)))

=

((
dϕ

dψ ′

)
znξ

∣∣∣∣ η) = ϕ(znLψ (ξ)Lψ (η)
∗
)

= ρ
(
aznLψ (ξ)Lψ (η)

∗
)
.

As
(
nρ ∩ n∗ρ ∩ f Re

)∗(
nρ ∩ n∗ρ ∩ f Re

)
is σ -weakly dense inRe and also the same

is true for
(
nρ ∩ n∗ρ ∩ f Re

)(
nρ ∩ n∗ρ ∩ f Re

)∗ in R f , the above calculation shows

thatb
( dϕ

dψ ′
)
zn = azn. Hence we havedϕ

dψ ′ = ab−1
= cM. Q.E.D.

We now move on to relative tensor products of a right module and a left module
over the same von Neumann algebraN . Unlike the ordinary tensor product case, the
construction of the relative tensor product depends on the choice of a faithful semi-
finite normal weight onN as mentioned above. Furthermore, the tensor product of
an arbitrary pair of vectors ofH andK cannot be defined. It is restricted to certain
pairs of vectors ofH andK depending on the faithful semi-finite normal weight.
It behaves like the product of closed unbounded operators. Let us prepare some
notations first.

As in the case of right modules, for two leftN -modulesN K1 and N K2 we
considerL(N K1,N K2) =

{
T ∈ L(K1,K2) : T aη = aTη, η ∈ K1, a ∈ N

}
.

For L(N K, N K) we write simplyL(N K). Throughout the rest of this section, we
denote byH a rightN -module and byK a left N -module. Observe that a rightN -
moduleH means canonically anL(HN )-N -bimodule and a leftN -moduleK means
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canonically anN -L(N K)◦-bimodule. We are now going to construct the relative
tensor productH ⊗ψ K of a rightN -moduleH and a leftN -moduleK which will
depend on the choice of a faithful semi-finite normal weightψ onN . To put things
in perspective, let us consider a standard von Neumann algebra

{
R, L2(R)

}
and a

pair of projectionse, f ∈ R such that
{
N ,K

}
∼=
{
ReJ f J, eL2(R) f

}
andN ∼=

Re. Here we are considering the case that the bothH andK are faithful modules,
so that the central supportc(e) andc( f ) are both the identity. Thus after identifying
N with Re as an abstract von Neumann algebra, the leftN -moduleK is identified
with eL2(R) f . This identification identifies alsoL(N K)with

{
R′eJ f J, eL2(R) f

}
.

Also the rightN -moduleH is identified withgL2(R)e for another projectiong ∈
R which yields the identification ofL(HN ) with

{
Rg, gL2(R)e

}
. The relative

tensor product ofH andK means roughly the Hilbert spaceg
[
L2(R)eL2(R)

]
f =

gL2(R) f with the Rg-R f -bimodule structure. Here we observe that we cannot
multiply an arbitrary pairξ ∈ gL2(R)e andη ∈ gL2(R) f to have a vector “ξη” ∈
gL(R) f . To associate the third vector “ξ⊗N η” in gL2(R) f , one needs to convertξ
into an operatorπ`(ξ), which belongs toN , after fixing a faithful semi-finite normal
weightψ on N , and then setξ ⊗N η to beπ`(ξ)η. In doing this, we see that only
certain vectorsξ can be converted toπ`(ξ), i.e. ξ must be left bounded relative to
a certain left Hilbert algebra. However, in this way we will have too many choices.
First, the projectionse, f , g are determined only up to equivalence. The modulesH
andK alone can not determine them. So we have to take an approach which relates
the construction more directly to the modulesH andK.

We fix a von Neumann algebraN , a rightN -moduleH and a leftN -module
K. We also need a faithful semi-finite normal weightψ onN to be fixed. We know
from Lemma 3.3 that the right moduleH can be recovered fromD(H, ψ) and that
the left moduleK is also recoverable fromD′(K, ψ) (observe thatψ andψ◦ are
symmetric as they are both faithful, unlike the previous case ofϕ). We collect here
a few facts aboutD(H, ψ) (resp.D′(H, ψ)) andLψ (resp.Rψ ) which have been
implicit in the previous arguments:(

ξ1
∣∣ ξ2) = ψ(Lψ (ξ2)∗Lψ (ξ1)), ξ1, ξ2 ∈ D(H, ψ)(

resp.
(
η1
∣∣ η2

)
= ψ

(
J Rψ (η1)

∗Rψ (η2)J
)
, η1, η2 ∈ D′(K, ψ)

)
;

ηψ
(
Lψ (ξ2)

∗Lψ (ξ1)
)
= Lψ (ξ2)

∗ξ1, ξ1, ξ2 ∈ D(H, ψ)(
resp.η′ψ

(
J Rψ (η1)

∗Rψ (η2)J
)
= Rψ (η2)

∗η1, η1, η2 ∈ D′(K, ψ)
)
.


(22)

It is easy to see that ifH = L2(N , ψ) with the right action ofN (resp.K =
L2(N , ψ) with the left action ofN ) as a right (resp. left) module, then

D(H, ψ) = ηψ (nψ ) = Bψ , Lψ (ξ) = π`(ξ), ξ ∈ Bψ(
resp. D′(K, ψ) = B′ψ , Rψ (η) = πr (η), η ∈ B′ψ

)
,

whereBψ (resp.B′ψ ) means the algebra of all left (resp. right) bounded vectors in

L2(N , ψ).
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Proposition 3.15.

(i) The sesquilinear form, say B, on the algebraic tensor productD(H, ψ)⊗algK
determined by:

B
(
ξ1⊗ η1, ξ2⊗ η2

)
=

(
πK
(
Lψ (ξ2)

∗Lψ (ξ1)
)
η1

∣∣∣ η2

)
∈ C (23)

is positive, so that it defines an inner product onD(H, ψ)⊗alg K , which is in
many cases degenerated.

(ii) If ξ1, ξ2 ∈ D(H, ψ) and η1, η2 ∈ D′(K, ψ) , then(
πK
(
Lψ (ξ2)

∗Lψ (ξ1)
)
η1

∣∣∣ η2

)
=

(
π ′H

(
J Rψ (η1)

∗Rψ (η2)J
)
ξ1

∣∣∣ ξ2). (24)

(i′) Dual to (i), the sesquilinear form B′ on H⊗alg D′(K, ψ) determined by:

B′
(
ξ1⊗ η1, ξ2⊗ η2

)
=

(
πK
(
J Rψ (η1)

∗Rψ (η2)J
)
ξ1

∣∣∣ ξ2) ∈ C (23′)

is positive and agrees with B onD(H, ψ)⊗alg D′(K, ψ) .

PROOF:
(i) Suppose thatξ1, . . . , ξn ∈ D(H, ψ). Let ak, j = Lψ (ξk)∗Lψ (ξ j ), k, j =

1, . . . ,n, anda = [ak, j ] be ann×n matrix overN . If x1, . . . , xn ∈ A = D(σ
ψ

i/2)∩

D(σ
ψ

−i/2), then we have, by (12′),

n∑
k, j=1

x∗j Lψ (ξ j )
∗Lψ (ξk)xk =

n∑
k, j=1

Lψ
(
ξ j σ

ψ
i
2
(x j )

)∗
Lψ
(
ξkσ

ψ
i
2
(xk)

)

=

( n∑
k=1

Lψ
(
ξkσ

ψ
i
2
(xk)

))∗( n∑
k=1

Lψ
(
ξkσ

ψ
i
2
(xk)

))
≥ 0.

AsA isσ -weakly dense inN , the matrixa is positive inMn(N ), so that there exists
b = [bk, j ] ∈ Mn(N ) such thata = b∗b, i.e.,

ak, j =

n∑
`=1

b∗`,kb`, j , k, j = 1, . . . ,n.

We then have, forη1, . . . , ηn ∈ K,

B

( n∑
k=1

ξk ⊗ ηk,

n∑
k=1

ξk ⊗ ηk

)
=

n∑
k, j=1

(
ak, j η j

∣∣ ηk
)
=

n∑
k=1

∥∥∥∥∑
j=1

bk, j η j

∥∥∥∥2

≥ 0.

Hence the sesquilinear formB is positive.
(ii) Suppose thatξ ’s and η’s are as in the Proposition. We then have, as

Lψ (ξ2)∗Lψ (ξ1) ∈ mψ ⊂ nψ ∩ n∗ψ and alsoJ Rψ (η2)
∗Rψ (η1)J ∈ mψ ,
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πK
(
Lψ (ξ2)

∗Lψ (ξ1)
)
η1

∣∣∣ η2

)
=

(
Rψ (η1)ηψ

(
Lψ (ξ2)

∗Lψ (ξ1)
) ∣∣∣ η2

)
=
(
Lψ (ξ2)

∗ξ1
∣∣ Rψ (η1)

∗η2
)
=

(
Lψ (ξ2)

∗ξ1

∣∣∣ η′ψ(J Rψ (η2)
∗Rψ (η1)J

))
=

(
ξ1

∣∣∣ Lψ (ξ2)η
′
ψ

(
J Rψ (η2)

∗Rψ (η1)J
))

=

(
ξ1

∣∣∣ π ′H(J Rψ (η2)
∗Rψ (η1)J

)
ξ2

)
=

(
π ′H

(
J Rψ (η1)

∗Rψ (η2)J
)
ξ1

∣∣∣ ξ2).
(i′) The positivity follows from (i) by symmetry. The second assertion follows

from (ii). Q.E.D.

Definition 3.16. Let N be the subspace ofD(H, ψ) ⊗alg K consisting of those
vectorsζ with B(ζ, ζ ) = 0. The Hilbert space obtained as the completion of the
quotient spaceD(H, ψ)⊗alg K/N relative to the inner product induced by the pos-
itive sequilinear form B will be called therelative tensor productof the rightN -
moduleH and the leftN -moduleK with respect to the faithful semi-finite normal
weightψ and will be written asH ⊗ψ K and the image ofξ ⊗ η asξ ⊗ψ η for
ξ ∈ D(H, ψ), η ∈ K. By Proposition 3.15, the relative tensor productH ⊗ψ K
can also be obtained as the completion of the quotient space of the algebraic tensor
productH⊗alg D′(K, ψ) by the subspaceN′ consisting of null vectors with respect
to the positive sequilinear formB′. In this way, we can consider the tensor product
ξ ⊗ψ η for a pairξ ∈ H, η ∈ D′(K, ψ).

Theorem 3.17. Let N be a von Neumann algebra equipped with a faithful semi-
finite normal weightψ , H a right N -module andK a left N -module. SetP =
L(HN ) and Q = L(N K) . Consider the direct sum:̃H = L2(N , ψ)⊕ H⊕ K̄ as
a right N -module and alsoR = L(H̃N ) together with the “balanced” faithful
semi-finite normal weightρ = ψ ⊕ ϕ ⊕ ν whereϕ is a faithful semi-finite normal
weight onP and ν is a faithful semi-finite normal weight onQ . Let e , f and
g be respectively the projections ofH̃ onto L2(N , ψ) , H and K̄ , which belong
to R . Represent the standard Hilbert spaceHρ as the space of3× 3 matrices:

Hρ =

L2(N , ψ) H̄ K

H L2(P , ϕ) H2,3

K̄ H3,2 L2(Q, ν)

 . (13′)

Then there exists a natural isomorphism betweenH⊗ψ K and H2,3 .

PROOF: Let A(= Aρ) be the left Hilbert algebra associated withρ, B (= Bρ) the
algebra of left bounded elements inL2(R, ρ) andnρ =

{
x ∈ R : ϕ(x∗x) < ∞

}
.

As e and f are both inRρ , A andB are both decomposed into the matrix direct
sum relative to (13′):

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ; B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 . (13′′)
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It follows from Lemma 3.3 thatB21 = D(H, ψ) andB31 = D(K̄, ψ). Also we
haveLψ (ξ) = π`(ξ)|H11, ξ ∈ D(H, ψ) = B21 and Lψ (η̄) = π`(η̄)|H12, η̄ ∈
D(K̄, ψ) = B31, whereπ` means the left multiplication representation ofB on
Hρ . At this point, one should note that the right Hilbert algebraA′ and the algebra
B′ of right bounded vectors admit also the similar matrix decompositions and that
B′21 = D′(H̄, ψ), B′31 = D′(K, ψ) andRψ (η) = πr (η)|H11, η ∈ D′(K, ψ).

We claim thatξ ⊗ψ η, with ξ ∈ D(H, ψ) andη ∈ K, is identified withπ`(ξ)η ∈
H23. Let U0 be the map fromD(H, ψ)⊗alg K into Hρ determined byU0(ξ ⊗ η) =

π`(ξ)η for ξ ∈ D(H, ψ), η ∈ K. As ξ ∈ B21 andη ∈ K = H13, π`(ξ)η belongs to
H23. Now we have, forξ1, ξ2 ∈ D(H, ψ) andη1, η2 ∈ K,(

U0(ξ1⊗ η1)
∣∣ U0(ξ2⊗ η2)

)
=
(
π`(ξ1)η1

∣∣ π`(ξ2)η2
)
=
(
π`(ξ2)

∗π`(ξ1)η1
∣∣ η2

)
=

(
πK
(
Lψ (ξ2)

∗Lψ (ξ1)
)
η1

∣∣∣ η2

)
=
(
ξ1⊗ψ η1

∣∣ ξ2⊗ψ η2
)
.

Therefore, the mapU0 gives rise to an isometryU of H ⊗ψ K into H23. Let M =
U (H ⊗ψ K) =

[
π`(B21)K

]
. First, we observeH23 = eL2(R, ψ)g, P = Re and

Q = Rg. HenceπH23(P )
′
= π ′H23

(Q). We know thatM is invariant under the
right action ofQ. Hence the projectionp of H23 ontoM belongs toπH23(P ), i.e.
p can be identified with the left multiplication by a projection inP , which will
be denoted byp again. This means thatM = pH23 with p ∈ (ProjP ). But as
π`(aξ) = aπ`(ξ) for a ∈ P andξ ∈ D(H, ψ) = B21, B23 is invariant under
the left multiplication byP , which in turn implies the invariance ofM under the
left multiplication byP . Hence, the projectionp belongs to the centerCP of P ,
which is of the form:CP = (CR) f . Thus p can be viewed as a projection inCR.
Now we have(1− p)M = {0}, so that 0= (1− p)π`(ξ)η = π`

(
(1− p)ξ

)
η for

everyξ ∈ B21 andη ∈ K. Thus,πK
(
π`((1− p)ξ)∗π`((1− p)ξ)

)
= 0. AsK is a

faithful left N -module, we haveπ`
(
(1− p)ξ

)
= 0, ξ ∈ D(H, ψ), which means

that 1− p = 0. Therefore, we haveM = H23.
Thus under the isometryU , H⊗ψ K is identified withH23. Q.E.D.

Corollary 3.18.

(i) If H and K are respectively a rightN -module and a leftN -module for a
von Neumann algebraN equipped with a faithful semi-finite normal weight
ψ , then the relative tensor productH⊗ψ K is naturally anL(HN )-L(N K)◦-
bimodule which is determined by:

a(ξ ⊗ψ η)b = (aξ)⊗ψ (ηb),

a ∈ L(HN ), b ∈ L(N K)◦, ξ ∈ D(H, ψ), η ∈ K.
(25)

(ii) In terms of operators acting from the left as usual, if x∈ L(HN ) and y ∈
L(N K) , then there exists a unique operator x⊗ψ y ∈ L(H⊗ψ K) such that:

(xξ)⊗ψ (yη) = (x ⊗ψ y)(ξ ⊗ψ η), ξ ∈ D(H, ψ), η ∈ K. (26)

The map: (x, y) ∈ L(HN ) × L(N K) 7→ x ⊗ψ y ∈ L(H ⊗ψ K) extends
canonically to an injective∗-homomorphism from the algebraic tensor prod-
uct, L(HN )⊗alg L(N K) , into L(H⊗ψ K) .
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(iii) AlthoughN does not act on the relative tensor productH⊗ψ K , we have:

(ξb)⊗ψ η = ξ ⊗ψ
(
σ
ψ
i
2
(b)η

)
, b ∈ D

(
σ
ψ
i
2

)
, ξ ∈ D(H, ψ), η ∈ K. (27)

We leave the proof to the reader as an exercise.

Summarizing the above arguments, we restate the matrix decomposition ofHρ
in the following form:

L2(R, ρ) =

L2(N , ψ) H̄ K

H L2(P , ϕ) H⊗ψ K

K̄ K̄⊗ψ H̄ L2(Q, ν)

 . (28)

Proposition 3.19.

(i) Viewing L2(N , ψ) as a right N -module, the map

Vψ

K : ηψ (y)⊗ψ η ∈ L2(N , ψ)⊗ψ K 7→ yη ∈ K, y ∈ nψ , η ∈ K,

gives rise to an isomorphism of L2(N , ψ) ⊗ψ K onto K as N -L(N K)◦-
bimodules.

(ii) If we look at L2(N , ψ) as a leftN -module, then the map UψH :

ξ ⊗ψ η
′
ψ (y) ∈ H⊗ψ L2(N , ψ) 7→ ξy ∈ H, ξ ∈ H, y ∈ n∗ψ

extends to an isomorphism ofH⊗ψ L2(N , ψ) onto H as L(HN )-N -bimod-
ules.

The proof is now routine, so we leave it to the reader.

Also routine arguments show the following identities with canonical identifica-
tions: (

H1⊕ H2
)
⊗ψ K =

(
H1⊗ψ K

)
⊕
(
H2⊗ψ K

)
;

H⊗ψ
(
K1⊕ K2

)
=
(
H⊗ψ K1

)
⊕
(
H⊗ψ K2

)
,

}
(29)

whereH, H1 andH2 are rightN -modules whilstK, K1 andK2 are leftN -modules.

Theorem 3.20. Let M and N be two von Neumann algebras equipped with faith-
ful semi-finite normal weightsϕ and ψ respectively. IfH , K and M are respec-
tively a right M-module, anM-N -bimodule and a leftN -module. Then under a
natural identification we have(

H⊗ϕ K
)
⊗ψ M = H⊗ϕ

(
K⊗ψ M

)
(30)

as L(HM)-L(N M)◦-bimodules.
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PROOF: For eachξ ∈ D(H, ϕ), η ∈ K andζ ∈ D′(M, ψ), set

U
(
(ξ ⊗ϕ η)⊗ψ ζ

)
= ξ ⊗ϕ (η ⊗ψ ζ ).

Let ξ ’s, η’s andζ ’s be as above. We want to show that:(
U
(
(ξ1⊗ϕη1)⊗ψ ζ1

) ∣∣∣U((ξ2⊗ϕη2)⊗ψ ζ2
))
=

((
ξ1⊗ϕη1

)
⊗ψ ζ1

∣∣∣ (ξ2⊗ϕη2
)
⊗ψ ζ2

)
,

as this shows thatU is well-defined and a unitary. Let us compute:(
U
(
(ξ1⊗ϕ η1)⊗ψ ζ1

) ∣∣∣ U
(
(ξ2⊗ϕ η2)⊗ψ ζ2

))
=
(
ξ1⊗ϕ (η1⊗ψ ζ1)

∣∣ ξ2⊗ϕ (η2⊗ψ ζ2)
)

=

(
πK⊗ψM

(
Lϕ(ξ2)

∗Lϕ(ξ1)
)
(η1⊗ψ ζ1)

∣∣∣ η2⊗ψ ζ2

)
=

((
πK
(
Lϕ(ξ2)

∗Lϕ(ξ1)
)
η1

)
⊗ψ ζ1

∣∣∣∣ η2⊗ψ ζ2

)
=

(
π ′K

(
J Rψ (ζ1)

∗Rψ (ζ2)J
)
πK
(
Lϕ(ξ2)

∗Lϕ(ξ1)
)
η1

∣∣∣ η2

)
by (24)

=

(
πK
(
Lϕ(ξ2)

∗Lϕ(ξ1)
)
π ′K

(
J Rψ (ζ1)

∗Rψ (ζ2)J
)
η1

∣∣∣ η2

)
=

(
ξ1⊗ϕ

(
π ′K

(
J Rψ (ζ1)

∗Rψ (ζ2)J
)
η1

∣∣∣∣ ξ2⊗ϕ η2

)
=

(
π ′H⊗ϕK

(
J Rψ (ζ1)

∗Rψ (ζ2)J
)(
ξ1⊗ϕ η1

) ∣∣∣ ξ2⊗ϕ η2

)
=

((
ξ1⊗ϕ η1

)
⊗ψ ζ1

∣∣∣ (ξ2⊗ϕ η2
)
⊗ψ ζ2

)
.

Now we have, for eacha ∈ L(HM) andb ∈ L(N M)◦,

U
(
a
(
(ξ ⊗ϕ η)⊗ψ ζ

)
b
)
= U

((
(aξ)⊗ϕ η

)
⊗ψ (ζb)

)
= (aξ)⊗ϕ

(
η ⊗ψ (ζb)

)
= a

(
ξ ⊗ϕ (η ⊗ψ ζ )

)
b = a

(
U
(
(ξ ⊗ϕ η)⊗ψ ζ

))
b.

Therefore,U is indeed an isomorphism of(H⊗ϕ K)⊗ψ M ontoH⊗ϕ (K⊗ψ M)

asL(HM)-L(N M)◦-bimodules. Q.E.D.

We now want to study what happens on relative tensor products when we change
the reference faithful semi-finite normal weightψ on a von Neumann algebraN .
To this end, we first fix a couple of notations. LetW(M) denote the set of all semi-
finite normal weights on a von Neumann algebraM, andW0(M) the set of all
faithful semi-finite normal weights onM. With a fixed von Neumann algebraN ,
we continue to study the relative tensor product of a rightN -moduleH and a left
N -moduleK relative to a faithful semi-finite normal weightψ .
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Theorem 3.21. Let N be a von Neumann algebra,H and K be respectively
right and left N -modules. To each pair(ψ1, ψ2) ∈W0(N )×W(N ) , there corre-
sponds uniquely anL(HN )-L(N K)◦-bimodule isomorphism Uψ2,ψ1

H,K of H ⊗ψ1 K
onto H ⊗ψ2 K which makes the following diagram commutative for every pair
(ai ,bi ) ∈ L

(
HN , L2(N , ψi )N

)
× L

(
N L2(N , ψi ),N K

)
, i = 1,2 , such that

a2 = Uψ2,ψ1a1 , b2 = b1Uψ2,ψ1 with Uψ2,ψ1 the canonical unitary imple-
menting the equivalence of the standard forms

{
N , L2(N , ψ1), Pψ1, Jψ1

}
and{

N , L2(N , ψ2), Pψ2, Jψ2

}
:

H⊗ψ1 K
U
ψ2,ψ1
H,K

−−−−−−−−−→ H⊗ψ2 K

(a1⊗ψ1b∗1)
y (a2⊗ψ2b∗2)

y
L2(N , ψ1)⊗ψ1 L2(N , ψ1) L2(N , ψ2)⊗ψ2 L2(N , ψ2)

U
ψ1
L2(N ,ψ1)

y U
ψ2
L2(N ,ψ2)

y
L2(N , ψ1)

Uψ2,ψ1
−−−−−−−−→ L2(N , ψ2)


(31)

The correspondence:(ψ1, ψ2) ∈W0(N )×W0(N ) 7→ Uψ2,ψ1
H,K satisfies the chain

rule:
Uψ3,ψ2

H,K Uψ2,ψ1
H,K = Uψ3,ψ1

H,K , ψ1, ψ2, ψ3 ∈W0(N ). (32)

PROOF: Existence: We use the notations of Theorem 3.17. Choose faithful semi-
finite normal weightsϕ ∈ W0(P ) and ν ∈ W(Q) for i = 1,2 and setρi =

ψi ⊕ ϕ ⊕ ν, i = 1,2 onR, where one should observe that the construction ofR
does not depend on the choice of the faithful semi-finite normal weightsψ ’s. We
then have the canonical isometryUρ2,ρ1 from L2(R, ρ1) ontoL2(R, ρ2) which im-
plements anR-R-bimodule isomorphism. As the projectionse, f andg commute
with the faithful semi-finite normal weightsρ1 andρ2, it is easy to check that the uni-
taryUρ2,ρ1 preserve the matrix decompositions (13′) of L2(R, ρi ), i = 1,2. With J
the conjugation operator:̄η ∈ K̄ 7→ η ∈ K, setb◦i = Jb∗i J ∈ L

(
K̄N , L2(N , ψi )

)
,

i = 1,2. Then we haveAi =

(
0 ai 0
0 0 0
0 0 0

)
, Bi =

(
0 0 b◦i
0 0 0
0 0 0

)
∈ R, i = 1,2.

We then see that the restriction of the operatorπρi (Ai )π
′
ρi
(Bi )

∗ to the (2,3)-

component ofL2(R, ρi ) is equal toUψi

L2(N ,ψi )

(
a⊗ψi b∗i

)
, with π ′ρi

the semi-cyclic

anti-representation ofR defined byπ ′ρi
(x) = Jπρi (x)

∗J, x ∈ R. As Uρ2,ρ1 is
anR-R-bimodule isomorphism ofL2(R, ρ1) onto L2(R, ρ2) and carries the ma-
trix decomposition (13′) of L2(R, ρ1) onto that ofL2(R, ρ2), its restrictions to the
(1,1)-component and (2,3)-component of (13′) givesUψ2,ψ1 and the one forUψ2,ψ1

H,K
which satisfy (31).

Uniqueness: LetAi (= Aψi ), i = 1,2, be the left Hilbert algebra associated wtih
{N , ψi } andA0

i be the associated Tomita algebra. Setai = nψ i ∩ nψ
∗

i = π`(Ai )



206 IX Non-Commutative Integration

anda0
i = π`(A

0
i ), i = 1,2. For eachξ ∈ D(H, ψ1), η ∈ D′(K, ψ1) and each

y1, y2 ∈ a0
i , we have witha1 = Lψ1(ξ)

∗ andb1 = Rψ1(η) in (31):

Uψ2,ψ1
H,K

(
ξy1⊗ψ1 y2η

)
= Uψ2,ψ1

H,K

(
Lψ1(ξ)η

′
ψ1
(y1)⊗ψ1 Rψ1(η)ηψ1(y2)

)
= Uψ2,ψ1

H,K

(
Lψ1(ξ)⊗ψ1 Rψ1(η)

)(
η′ψ1

(y1)⊗ψ1 ηψ1(y2)
)

= Uψ2,ψ1
H,K

(
a∗1 ⊗ψ1 b1

)(
Uψ1

L2(N ,ψ1)

)∗(
σ
ψ1

−
i
2
(y1)ηψ1(y2)

)
=
(
a∗2 ⊗ψ2 b2

)(
Uψ2

L2(N ,ψ2)

)∗
Uψ2,ψ1

(
σ
ψ1

−
i
2
(y1)ηψ1(y2)

)
.

This means thatUψ2,ψ1
H,K is uniquely determined on the vectors of the form:ξy1⊗ψ1y2η

with ξ , η, y1 andy2 as above, which are dense inH⊗ψ1K. Hence,Uψ2,ψ1
H,K is uniquely

determined by the commutative diagram of (31).
The chain rule (32) follows from the uniqueness ofUψ2,ψ1

H,K . Q.E.D.

Remark 3.22. The bimodule isomorphismUψ2,ψ1
H,K does not sendξ ⊗ψ1 η into

ξ ⊗ψ2 η for ξ ∈ H andη ∈ K.

At this point, one might puzzle if one can construct the relative tensor products
H ⊗N K directly from the rightN -moduleH and the leftN -moduleK. It is in
fact possible to do so if one gives up the tensor productξ ⊗N η of vectors. We
will discuss a weight free construction of the relative tensor productH⊗N K in the
exercise.

Before closing the section, we discuss an example. LetA be an abelian separable
von Neumann algebra and let it act on a separable Hilbert spaceH. As A is abelian,
H can be viewed as two sided module overA. Let K be another separable Hilbert
space on whichA acts. Now we viewH as a rightA-module andK as a leftA-
module. Letψ be a faithful semi-finite normal weight onA and considerH⊗ψ K.
We want to identifyH⊗ψ K more explicitly. First, consider the direct disintegration
of H andK relative toA:

H =

∫
⊕

Γ

H(γ ) dµ(γ ); K =

∫
⊕

Γ

K(γ ) dµ(γ ),

whereA = L∞(Γ, µ) is the measure theoretic spectral representation ofA andµ
is the measure corresponding to the weightψ .

Proposition 3.23. Under the above situation:

H⊗ψ K =

∫
⊕

Γ

H(γ )⊗ K(γ ) dµ(γ )

and

ξ ⊗ψ η =

∫
⊕

Γ

ξ(γ )⊗ η(γ ) dµ(γ )
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if

ξ =

∫
⊕

Γ

ξ(γ ) dµ(γ ) ∈ H; η =

∫
⊕

Γ

η(γ ) dµ(γ ) ∈ K

are such that
∫
Γ

∥∥ξ(γ )∥∥2 ∥∥η(γ )∥∥2 dµ(γ ) <∞ .

We leave the proof to the reader as it is an easy good exercise. Here the reader
should note why the relative tensor product of an arbitrary pair of vectors does not
make sense and also why one need to fix a faithful semi-finite normal weight onA
before considering the relative tensor product of vectors.

Exercise IX.3

Throughout this exercise, letM be a fixed von Neumann algebra.

1) In the positive coneM+∗ , denote each element ofM+∗ by ϕ1/2, ϕ ∈M+∗ . Define
for each pairϕ,ψ ∈M+∗ :

ϕ
1
2 + ψ

1
2 = χ,

whereχ ∈M+∗ is given by

χ(x) = (ϕ + ψ)(a∗xa), x ∈M,

a =
(
Dϕ : D(ϕ + ψ)

)
−

i
2
+
(
Dψ : D(ϕ + ψ)

)
−

i
2
;

λ · ϕ
1
2 =

(
λ2ϕ

) 1
2 , λ ≥ 0;(

ϕ
1
2
∣∣ ψ 1

2
)
= (ϕ + ψ)(a∗a).

(a) Let
{
M, H, J, P

}
be a standard form and, for eachϕ ∈ M+∗ , ξ(ϕ) be the

representing vector ofϕ in P . By making use of the map:ϕ ∈ M+∗ → ξ(ϕ) ∈ P ,
show that

ϕ
1
2 + ψ

1
2 = ψ

1
2 + ϕ

1
2 ;

ϕ
1
2 + 0

1
2 = ϕ

1
2 ;(

ϕ
1
2 + ψ

1
2
)
+ χ

1
2 = ϕ

1
2 +

(
ψ

1
2 + χ

1
2
)
;

ϕ
1
2 + χ

1
2 = ψ

1
2 + χ

1
2 ⇐⇒ ϕ = ψ;

0 · ϕ
1
2 = 0

1
2 ;

(λµ) · ϕ
1
2 = λ ·

(
µ · ϕ

1
2
)
;

(λ+ µ) · ϕ
1
2 = λ · ϕ

1
2 + µ · ϕ

1
2 ;

λ ·
(
ϕ

1
2 + ψ

1
2
)
= λ · ϕ

1
2 + λ · ϕ

1
2 .
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(b) Show that the relation:
(
ϕ

1/2
1 , ψ

1/2
1

)
∼
(
ϕ

1/2
2 , ψ

1/2
2

)
in M+∗ ×M+∗ defined by

ϕ
1/2
1 + ψ

1/2
2 = ϕ

1/2
2 + ψ

1/2
1 is an equivalence relation. Denote the equivalence class

of
(
ϕ1/2, ψ1/2

)
by ϕ1/2 − ψ1/2.

(c) Show that the quotient spaceM+∗ ×M+∗
/

“∼” is a real Hilbert space under the
inner product:(

ϕ
1
2
1 − ψ

1
2
1

∣∣ ϕ 1
2
2 − ψ

1
2
2

)
=
(
ϕ

1
2
1

∣∣ ϕ 1
2
2

)
− 2

(
ϕ

1
2
1

∣∣ ψ 1
2
2

)
+
(
ψ

1
2
1

∣∣ ψ 1
2
2

)
,

and the multiplication by scalars:

(λ− µ) ·
(
ϕ

1
2 − ψ

1
2
)
= λ · ϕ

1
2 + µ · ψ

1
2 − λ · ψ

1
2 − µ · ϕ

1
2

for λ,µ ≥ 0. Denote this real Hilbert space byL2
R(M), and the complexified Hilbert

space:L2
R(M)⊗R C simply by L2(M).

(d) Observe that the canonical Hilbert spaceL2(M) constructed above is indeed
canonical to the von Neumann algebraM which depends solely onM alone but
nothing else.

(e) Let L2(M)+ denote the convex cone
{
ϕ1/2
: ϕ ∈M+∗

}
in L2(M), and define:

JM(ξ + iη) = ξ − iη, ξ, η ∈ L2
R(M).

2) Considering a standard form
{
M, H, J, P

}
, proceed the following.

(a) For a fixedϕ ∈M+∗ andx, y ∈M, show that the function:

f ϕx,y(t) = ϕ
(
σ
ϕ
−t (x) x∗ y xσ ϕt (x)

)
, t ∈ R,

can be extended to a functionf ϕx,y ∈ A
(
D1/2

)
, whereD1/2 is the horizontal strip

bounded byR andR − i
2 andA

(
D1/2

)
is the space of functions homomorphic on

D1/2, bounded and continuous on the closureD1/2.

(b) Show that the map:y ∈ M → f ϕx,y
(
−

i
2

)
=
(
α(x)ϕ

)
(y) is a positive linear

functional ofy, so thatα(x)ϕ ∈M+∗ . (Hint: ξ(α(x)ϕ) = xξ(ϕ)x∗.)

(c) Show that the mapρ(x) : ϕ1/2
∈ L2(M)+ →

(
α(x)ϕ

)1/2
∈ L2(M)+ can be

uniquely extended to a bounded linear operator, denoted again byρ(x), on L2(M).

(d) Show thatρ(x1x2) = ρ(x1)ρ(x2) for x1, x2 ∈M andρ(1) = 1.

(e) Show that for eachx ∈M,
{
ρ(expt x)

}
t∈R is a norm continuous one parameter

group inL
(
L2(M)

)
. (Hint: ρ(expt x) corresponds to exp(t x)J exp(t x)J.)

(f) Setδ(x) = d
dt

(
ρ(expt x)

)∣∣
t=0, x ∈M. Show thatδ is a real linear Lie algebra

homomorphism ofM into L(L2)
)
. (Hint: Recall Exercise IX.1.)

(g) Set

π(x) = δ(x)− iδ(ix), x ∈M;

π ′(x) = δ(x∗)+ iδ(ix∗).
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Prove thatπ (resp.π ′) is a faithful normal representation (resp. anti-representation)
of M on L2(M) such that

{
π(M), L2(M), JM, L2(M)+

}
is a standard from ofM

and
JMπ(x)

∗JM = π
′(x), x ∈M.

We call
{
π(M), L2(M), JM, L2(M)+

}
thestandard form ofM.

3) For a semi-finite normal weightϕ on M, the mapηϕ : x ∈ nϕ → ηϕ(x) ∈ Hϕ
can be interpreted asxϕ1/2, viewing ϕ1/2 as an infinitely long vector ofL2(M)

unlessϕ is finite, i.e. ∥∥ϕ 1
2
∥∥

L2(M)
= ϕ(1)

1
2 = +∞.

Observe that this new interpretation ofηϕ(x) asxϕ1/2 is consistent with the previ-
ously established concepts and notations.

4†) It is also possible to construct two sided BanachM-modulesL p(M), p ≥ 1,
from

{
ϕ : ϕ ∈M+∗

}
, [596].

5) Let {M,H} be a von Neumann algebra and setN = (M′)◦. View H as anM-
N -bimodule. Letψ ′ be a faithful semi-finite normal weight onM′ andψ = (ψ ′)◦

on N . With ϕ a faithful semi-finite normal weight onM, let H̃, R, ρ and others
as in the earlier part of the section. Prove that ifξ ∈ D(H, ψ) = H ∩ B, then
π`(ξ) = f π`(ξ)e andLψ (ξ) = π`(ξ)

∣∣
L2(N ,ψ)

.

6) In the previous problem, consider the relative tensor product:H ⊗ψ H̄. Let J
be the conjugate linear involution ofH ⊗ψ H̄ defined byJ(ξ ⊗ψ η̄) = (η ⊗ψ ξ̄ ),
ξ, η ∈ D(H, ψ) and(H⊗ψ H̄)+ be the closed convex cone inH⊗ψ H̄ generated by{
ξ ⊗ψ ξ̄ : ξ ∈ D(H, ψ)

}
. Prove that

{
H⊗ψ H̄, (H⊗ψ H̄)+, J

}
is isormorphic to

the standard form
{
L2(M), L2(M)+, J

}
of M as anM-M-bimodule.

7) Keep the set-up of the last two problems. LetL2(N ) be the standard form of
N . Let H̃ = L2(N ) ⊕ H andR = L(H̃N ). Notice that in doing this we do not
pick up a semi-finite normal weightψ onN unlike the last problem or in the main
part of the section. Following the steps described below, show thatH̃ can be canon-
ically embedded into the standard formL2(R) such a way thatJH̃ = L2(R)⊕ H̄:
J(ξ ⊕ η) = ξ∗ ⊕ η̄, ξ ∈ L2(N ), η ∈ H, whereξ∗ means the modular conjugation
in L2(N ) andη̄means the element in̄H corresponding toη ∈ H under the canonical
conjugation.

(a) To eachξ ∈ H̃, there corresponds a unique element|ξ | ∈ L2(N )+ and a partial
isometryu ∈ R such that(ξx | ξ) =

(
|ξ |x

∣∣ |ξ |), x ∈ N , ξ = u|ξ | andu∗u is

the projection fromH̃ onto
[
|ξ |N

]
, the smallest closed linear subspace containing

|ξ |N .

(b) As N = Re, wheree is the projection ofH̃ onto L2(N ) as before, we have
L2(N ) = eL2(R)e.
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(c) SetUξ = u|ξ |, ξ ∈ H̃ and show thatU is the required isometry embeddingH̃
into L2(R) andUH = f L2(R)e.

8) Let N be a von Neumann algebra,H a rightN -module andK a leftN -module.
Let H̃ = L2(N ) ⊕ H ⊕ K̄ andR = L(H̃N ). By (7), we viewL2(N ), H andK̄ as
closed subspaces ofL2(R) and lete, f andg be respectively the projection from
L2(R) onto these subspaces. With this identification, we haveH = f L2(R)e and
K̄ = gL2(R)e, which means thatK = eL2(R)g. Define the relative tensor product
of H andK with respect toN in the following way:

H⊗N K = f L2(R)g,

which is anL(HN )-L(N K)◦-bimodule in the natural fashion. In this way, we elim-
inated the dependence of the relative tensor product on faithful semi-finite normal
weights onN . Prove that there exists a natural bimodule isomorphism ofH ⊗ψ K
ontoH⊗N K.

9) Assume thatN is equipped with faithful semi-finite normal traceτN . Let H be
a rightN -module andM = L(HN ). ConsiderH̃ andR as before. Normalize the
traceτM onM so that

τM(xx∗) = τ ′N (x
∗x), x ∈ L

(
L2(N , τN )N ,HN

)
, τR = τN ⊕ τM,

and

τR

(
x11 x12
x21 x22

)
= τN (x11)+ τM(x22).

Identify H with the(2,1)-component ofL2(R, τR) andL2(M, τM) with the(2,2)-
component ofL2(R, τR) so thatH can be viewed as theL2-space of measurable
operators fromL2(N , τN ) into L2(M, τM) relative to the traceτR.

10) Consider a standard von Neumann algebra
{
N , L2(N ), J, L2(N )+

}
and the

standard bimoduleN L2(N )N . For eachα ∈ Aut(N ), let H(α) be theN -N full
bimodule obtained by:

xξy = x Jα(y∗)Jξ, x, y ∈ N , ξ ∈ L2(N ).

Prove that ifα, β ∈ Aut(N ), thenH(α)⊗N H(β) = H(αβ).

11) Show that ifH is a full N -bimodule, then there existsα ∈ Aut(N ) such that
H = H(α).

§ 4 Conditional Expectations and Operator Valued Weights

In probability theory, conditional expectations play a fundamental role. We discuss
a non-commutative analogue of conditional expectations. In fact, it will play a key
role in the structure theory of factors.
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Definition 4.1. Let ϕ be a faithful (semi-finite normal) weight on a von Neumann
algebraM andN be a von Neumann subalgebra ofM such that the restrictionϕ|N
of ϕ to N is semi-finite. A linear mapE of M onto N is called theconditional
expectation ofM ontoN with respect toϕ if the following conditions are satisfied:

‖E(x)‖ ≤ ‖x‖, x ∈M; (1)

E(x) = x, x ∈ N ; (2)

ϕ = ϕ ◦ E . (3)

By Theorem III.3.4, a conditional expectationE of M ontoN enjoys the fol-
lowing properties:

E(x∗x) ≥ 0, x ∈M;

E(axb) = aE(x)b, a,b ∈ N , x ∈M;

E(x)∗E(x) ≤ E(x∗x), x ∈M.

 (4)

In fact, a conditional expectation is completely positive.

Theorem 4.2. Let M , N and ϕ be as in Definition4.1. The existence of a con-
ditional expectationE of M onto N with respect toϕ is equivalent to the global
invariance,σ ϕt (N ) = N , t ∈ R , of N under the modular automorphism group.
If this is the case, then the conditional expectationE is normal and uniquely deter-
mined byϕ .

PROOF: ExistenceH⇒ Invariance: Assume thatE exists andϕ = ϕ ◦ E . Let A
andB be the full left Hilbert algebras corresponding to{M, ϕ}, and

{
N , ϕ|N

}
. It

follows thatB is a self-adjoint subalgebra ofA. Let H andK be the completions of
A andB respectively, andE be the projection ofH ontoK. For eachx ∈ nϕ and
y ∈ N ∩ nϕ , we have(

ηϕ(x)
∣∣ ηϕ(y)) = ϕ(y∗x) = ϕ(E(y∗x)) = ϕ(y∗E(x))

=

(
ηϕ
(
E(x)

) ∣∣∣ ηϕ(y)) by (4),

so that
Eηϕ(x) = ηϕ

(
E(x)

)
, x ∈ nϕ .

SinceE preserves the∗-operation, we have

Eξ ] = (Eξ)], ξ ∈ A.

Employing the notationsD](A), D](B), . . . to indicate the natural objects corre-
sponding toA andB, we have

E Sξ = SEξ, ξ ∈ D](A).
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Namely,E leavesD](A) invariant globally andE S⊂ SE. Hence we get(1− 2E)S
⊂ S(1− 2E). Applying (1− 2E) from the right, we get(1− 2E)S(1− 2E) ⊂ S,
so that

S= (1− 2E)2S(1− 2E)2 ⊂ (1− E)S(1− E) ⊂ S,

hence we conclude
S= (1− 2E)S(1− 2E), (5)

consequently

F = (1− 2E)F(1− 2E), ∆ = (1− 2E)∆(1− 2E). (6)

Hence∆ andE commute, so∆i t leavesK invariant. SinceEηϕ(nϕ) = ηϕ
(
nϕ ∩N

)
by (3), EA = B and

∆i tB = ∆i t EA = E∆i tA = EA = B.

Hence∆i t leavesB invariant. Hence with the equation:

ηϕ
(
σ
ϕ
t (x)

)
= ∆i tηϕ(x), x ∈ nϕ ∩ n∗ϕ ∩N ,

we conclude that
{
σ
ϕ
t
}

leavesnϕ ∩ n∗ϕ ∩N invariant. Thus the semi-finiteness ofϕ
onN yields the invariance ofN under

{
σ
ϕ
t
}

by theσ -weak density ofnϕ ∩n∗ϕ ∩N
in N .

InvarianceH⇒ Existence: Supposeσ ϕt (N ) = N , t ∈ R. We use the notations:
A, B, H, K, ∆A, ∆B and so on as before. For eachx ∈ nϕ ∩ n∗ϕ , we have

∆i t
Aηϕ(x) = ηϕ

(
σ
ϕ
t (x)

)
, so that∆i t

AB = B. Hence∆i t
AK = K, so the projectionE

of H ontoK and∆i t
A commute. Since the modular automorphism group ofϕ|N is

the restriction of
{
σ
ϕ
t
}

to N , ∆i t
B is nothing but the restriction of∆i t

A to K. Hence

D](B) = D
(
∆

1
2
B

)
= D

(
∆

1
2
A

)
∩ K = D](A) ∩ K, (7)

which means that∆1/2
B is precisely the restriction of∆1/2

A to K and SB = SA

∣∣
K.

Therefore, we getJB = JA. Thus, we denote them simply bySandJ. Furthermore,
we have

D[(B) = D[(A) ∩ K = D
(
∆
−

1
2

A

)
∩ K. (8)

Therefore, we can safely omit the subscriptsA andB from∆, K and others as well.
We now prove

B = A ∩ K, B′ = A′ ∩ K. (9)

ClearlyB ⊂ A ∩ K. Supposeξ ∈ A′ ∩ K. There exists a constantγ > 0 such that∥∥πA
` (η)ξ

∥∥ ≤ γ ‖η‖ for everyη ∈ A. In particular,
∥∥πB

` (η)ξ
∥∥ ≤ γ ‖η‖ for every

η ∈ B. Henceξ is right bounded with respect toB. Sinceξ ∈ D[(A)∩K = D[(B),
we haveξ ∈ B′. ThusA′ ∩ K ⊂ B′. Applying J, we get

A ∩ K = J(A′ ∩ K) ⊂ JB′ = B.

ThusA ∩ K = B. Applying J once again, we concludeB′ = A′ ∩ K.
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Now, we consider the associated Tomita algebrasA0 andB0 respectively. By
definition, we have

A0 =

{
ξ ∈

⋂
n∈Z

D(∆n) : ∆nξ ∈ A

}
.

HenceB0 = A0 ∩ K follows from the previous discussion. We now prove

B = EA, B′ = EA′, B0 = EA0;

E(ξη) = ξEη, ξ ∈ B, η ∈ A;

E(ξη) = (Eξ)η, ξ ∈ A, η ∈ B′.

 (10)

First, we note thatK is invariant underπA
` (B) andπA

` (B) andπA
r (B

′) by (9).
HenceE andπA

` (B) (resp.πA
r (B

′)) commute, which means precisely the last
two identities in (10). Ifξ ∈ A andη ∈ B′, then∥∥πB

r (η)Eξ
∥∥ = ∥∥EπA

r (η)ξ
∥∥ = ∥∥EπA

` (ξ)η
∥∥ ≤ ∥∥πA

` (ξ)
∥∥‖η‖,

so thatEξ is left bounded with respect toB. SinceB = EB ⊂ EA, we conclude
EA = B. Applying J, we getEA′ = B′. Now, the last claimEA0 = B0 in (10)
follows from the construction of Tomita algebras and the above established facts.
Thus (10) now follows.

The second formula in (10) means

πB
` (ξ)E = EπA

` (ξ)E, ξ ∈ B. (11)

Hence we haveER`(A)E
∣∣
K = R`(B). With π = πϕ

∣∣
N

, we set

E(x) = π−1(Eπϕ(x)E), x ∈M. (12)

It then follows thatE is a normal projection of norm one fromM ontoN .
If x ∈M andy, z ∈ nϕ ∩N , then

ϕ(z∗xy) =
(
πϕ(x)ηϕ(y)

∣∣ ηϕ(z)) = (Eπϕ(x)Eηϕ(y) ∣∣ ηϕ(z))
=

(
πϕ
(
E(x)

)
ηϕ(y)

∣∣∣ ηϕ(z)) = ϕ(z∗E(x)y),
so we get

ϕ(z∗xy) = ϕ
(
z∗E(x)y

)
, x ∈M, y, z ∈ nϕ ∩N .

We now prove

ϕ(x) = sup
{ (
πϕ(x)η

∣∣ η) : η ∈ B′,
∥∥πB

r (η)
∥∥ < 1

}
, x ∈ m+ϕ . (13)

SinceB′ = A′ ∩K and
∥∥πB

r (η)
∥∥ = ∥∥πA

r (η)
∥∥ for η ∈ B′, it follows from the proof

of Theorem VII.1.17 that the left hand side of (13) majorizes the right hand side
of (13). If ξ ∈ m+ϕ , then the non-degeneracy ofπA

r (B
′) yields
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ϕ(x) =
∥∥ηϕ(x 1

2 )
∥∥2
= sup

{ ∥∥πA
r (η)ηϕ(x

1
2 )
∥∥2
: η ∈ B′,

∥∥πA
r (η)

∥∥ < 1
}

= sup
{ ∥∥πϕ(x 1

2 )η
∥∥2
: η ∈ B′,

∥∥πB
r (η)

∥∥ < 1
}

= sup
{ (
πϕ(x)η

∣∣ η) : η ∈ B′,
∥∥πB

r (η)
∥∥ < 1

}
.

Hence (13) follows.
Now, if x ∈ m+ϕ , then we have

ϕ(x) = sup
{ (
πϕ(x)η

∣∣ η) : η ∈ B′,
∥∥πB

r (η)
∥∥ < 1

}
= sup

{ (
Eπϕ(x)Eη

∣∣ η) : η ∈ B′,
∥∥πB

r (η)
∥∥ < 1

}
= sup

{(
πϕ
(
E(x)

)
η

∣∣∣ η) : η ∈ B′,
∥∥πB

r (η)
∥∥ < 1

}
= ϕ ◦ E(x).

If E(x) = 0 for an x ∈ M+, then Eπϕ(x)E = 0. Sinceπϕ(x) ≥ 0,
πϕ(x)K = {0}. Namely,xy = 0 for everyy ∈ nϕ ∩ N . But nϕ ∩ N is σ -weakly
dense inN , so that 1 is in theσ -weak closure ofnϕ ∩N ; thusx = 0. Therefore,E
is faithful.

Finally, we complete the proof of the theorem by showingϕ = ϕ◦E . To this end,
setψ = ϕ ◦ E . The commutativity of∆ andE implies the invariance ofψ under{
σ
ϕ
t
}
. Hence Corollary VIII.3.6 implies the existence of a non-singular positive

self-adjoint operatorh affiliated withMϕ such thatψ = ϕh. As seen above,ϕ(x) =
ψ(x) for everyx ∈ mϕ , so that for eachx ∈ nϕ we have, withhε = h (1+ εh)−1,

lim
ε→0

(
πϕ(hε)ηϕ(x)

∣∣ ηϕ(x)) = ϕh(x
∗x) = ψ(x∗x) = ϕ(x∗x) =

∥∥ηϕ(x)∥∥2
.

Henceηϕ(nϕ) ⊂ D
(
πϕ(h)1/2

)
and

∥∥πϕ(h)1/2ηϕ(x)∥∥2
=
∥∥ηϕ(x)∥∥2, x ∈ nϕ . Hence

h = 1, soϕ = ψ . Q.E.D.

Proposition 4.3. Let M be a von Neumann algebra, andN be a von Neumann
subalgebra such thatN ′ ∩M = CN ⊂ N . If E is a normal projection of norm
one fromM onto N , thenE is necessarily faithful and unique. Furthermore, ifψ
is a faithful semi-finite normal weight onN , then E is the conditional expectation
of M onto N relative to ϕ = ψ ◦ E .

PROOF: Let ψ be a faithful semi-finite normal weight onN and putϕ = ψ ◦ E .
Thenϕ is semi-finite and normal. LetNϕ be the left kernel ofϕ, i.e.Nϕ =

{
x ∈M :

ϕ(x∗x) = 0
}
. Then withe= s(ϕ), the support ofϕ, we haveNϕ = M(1− e). As

ψ is faithful, x ∈ M belongs toNϕ if and only if E(x∗x) = 0. If b ∈ N , then for
anyx ∈ Nϕ we haveE

(
(xb)∗(xb)

)
= b∗E(x∗x)b = 0, so thatNϕ is invariant under

the multiplication ofN from the right. This means thate commutes withN , so that
by the assumption on the relative commutant ofN , e belongs to the centerCN of
N . Butψ andϕ agree onN , so thate= 1. Thusϕ is faithful.
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SupposeE1 is another normal projection of norm one fromM onto N . Set
ϕ1 = ψ ◦ E1. As σ ϕt

∣∣
N
= σ

ψ
t = σ

ϕ1
t

∣∣
N

, we have
(
Dϕ1 : Dϕ

)
t ∈ N ′ ∩M = CN .

As σ ϕt acts trivially onCN , being the same asσψt on CN ,
{
(Dϕ1 : Dϕ)t

}
is a

one parameter unitary group inCN , so that there exists a self-adjoint non-singular
positive operatorh affiliated withCN such that

(
Dϕ1 : Dϕ

)
t = hi t , which means

thatϕ1 = ϕ(h · ). Butϕ1 andϕ are preciselyψ onN , so thath = 1. Henceϕ1 = ϕ.
Thus we haveψ ◦ E1 = ψ ◦ E . Theorem 4.2 implies thatE1 = E . Q.E.D.

In this second volume, we have learned that the study of unbounded operators
and unbounded functionals – weights – provides powerful tools as well as good
insight of the subject. In this section, we just established a criteria for the existence
of conditional expectations. In this new domain, it is also true that the extension of
our study to “unbounded conditional expectations” will give us useful tools.

To study weights, we considered the extended positive real numbersR+ ∪ {∞}.
To study “unbounded conditional expectations”, we need to consider the “extended
positive part”N̂+ of the von Neumann subalgebraN of M. We begin by the fol-
lowing:

Definition 4.4. For a von Neumann algebraM, theextended positive conêM+ of
M is the set of mapsm: M+∗ 7→ [0,∞] with the following properties:

(i) m(λϕ) = λm(ϕ), ϕ ∈M+∗ , λ ≥ 0,
(ii) m(ϕ + ψ) = m(ϕ)+m(ψ), ϕ,ψ ∈M+∗ ,
(iii) m is lower semi-continuous.

Clearly, the positive partM+ of M is a subset of̂M+. It is easy to see that̂M+ is
closed under addition, multiplication by non-negative scalars and increasing limits.

Example 4.5. Let {M,H} be a von Neumann algebra andA a positive self-adjoint
operator onH affiliated withM. Suppose that

A =

∞∫
0

λ de(λ) (14)

is the spectral decomposition ofA. For eachϕ ∈M+∗ , put

mA(ϕ) =

∞∫
0

λ dϕ
(
e(λ)

)
. (15)

ThenmA satisfies the conditions (i), (ii) and (iii) of Definition 4.4. The last condi-
tion, the lower semi-continuity, follows from

mA(ϕ) = sup
n
ϕ(An) with An =

n∫
0

λ de(λ) ∈M+.
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It now follows that

mA(ωξ ) =

∞∫
0

λ d
(
e(λ)ξ

∣∣ ξ) = {‖A1
2 ξ‖2, ξ ∈ D

(
A

1
2
)
,

+∞, ξ /∈ D
(
A

1
2
)
.

(16)

Hence ifB is another positive self-adjoint operator onH affiliated withM, then the
equalitymA = mB means preciselyA = B. Hence the map:A 7→ mA ∈ M̂+ is
injective. Thus, the set of positive self-adjoint operators affiliated withM can be
identified with a subset of the extended positive coneM̂+.

Definition 4.6. For m,n ∈ M̂+, λ ≥ 0 anda ∈ M, we define the following
operations:

(λm)(ϕ) = λm(ϕ), ϕ ∈M+∗ ,

(m+ n)(ϕ) = m(ϕ)+ n(ϕ), ϕ ∈M+∗ ,

(a∗ma)(ϕ) = m(aϕa∗), ϕ ∈M+∗ .

 (17)

We also note here that supmi of an increasing net in̂M+ can be naturally de-
fined.

Lemma 4.7. Let {M,H} be a von Neumann algebra. To each m∈ M̂+ , there
corresponds uniquely a pair{A,K} of a closed subspaceK of H and a positive
self-adjoint operator onK such that:

(i) K is affiliated with M , in the sense that the projection toK belongs toM ,
and A is affiliated withM ;

(ii)

m(ωξ ) =


∥∥A

1
2 ξ
∥∥2
, ξ ∈ D

(
A

1
2
)
,

+∞, otherwise,
(18)

whereωξ means, of course, the functional x∈M 7→ (xξ | ξ) .

PROOF: Consider the extended positive real valued functionq : ξ ∈ H 7→ m(ωξ ).
Then it follows easily thatq is a lower semi continuous quadratic form invariant
under the unitary groupU(M′) of M′, cf. A.7–A.8. LetK be the closure ofD(q).
ThenK is affiliated withM by the invariance ofq underU(M′). Then by A.8, there
exists a densely defined self-adjoint positive operatorA on K such thatD

(
A1/2

)
=

D(q) and
∥∥A1/2ξ

∥∥2
= q(ξ), ξ ∈ K. Once again, the invariance ofq implies thatA

is affiliated withM. Q.E.D.

We say that an elementm ∈ M̂+ is semi-finiteif
{
ϕ ∈ M+∗ : m(ϕ) < +∞

}
is

dense inM+∗ ; faithful if m(ϕ) > 0 for every non-zeroϕ ∈M+∗ .

Theorem 4.8. Let M be a von Neumann algebra. Each m∈ M̂+ has a unique
spectral decomposition of the form:
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m(ϕ) =

∞∫
0

λ dϕ
(
e(λ)

)
+∞ϕ(p), ϕ ∈M+∗ , (19)

where
{

e(λ) : λ ∈ R+
}

is an increasing family of projections inM which is
σ -strongly continuous from the right, and p= 1 − limλ→∞ e(λ) . Furthermore,
e(0) = 0 if and only if m is faithful, and p= 0 if and only if m is semi-finite.

PROOF: RepresentingM on a Hilbert spaceH, we apply Lemma 4.7 tom, so that
we obtain the pair{A,K} of the lemma. LetA =

∫
+∞

0 λ de(λ) be the spectral
decomposition ofA and let p be the projection ofH ontoK⊥. Sincee(λ) ∈ MK,
e(λ) may be regarded as a projection ofM. Now we have

A
1
2 =

∞∫
0

√
λ de(λ),

D
(
A

1
2
)
=

{
ξ ∈ K :

∞∫
0

λ d
(
e(λ)ξ

∣∣ ξ) <∞}
,

∥∥A
1
2 ξ
∥∥2
=

∞∫
0

λ d
(
e(λ)ξ

∣∣ ξ), ξ ∈ D
(
A

1
2
)
.

Hence, we get

m(ωξ ) =

∞∫
0

λ d
(
e(λ)ξ

∣∣ ξ), ξ ∈ K,

and if pξ 6= 0, thenm(ωξ ) = +∞, so that we obtain the formula:

m(ωξ ) =

∞∫
0

λ d
(
e(λ)ξ

∣∣ ξ)+∞ (
pξ
∣∣ ξ), ξ ∈ H.

If we choose the semi-cyclic representation induced by a faithful semi-finite normal
weight for{M,H}, then everyϕ∈M+∗ is a vectorial functional by Theorem VIII.3.2.
Thus the formula (19) follows.

The uniqueness of
{
e(λ)

}
follows from the uniqueness of{A,K} and the unique-

ness of the spectral decomposition ofA.
Now, we have the implications:

e(0) = 0 ⇐⇒ A is nonsingular⇐⇒ m(ωξ ) > 0, ξ 6= 0.

If p = 0, thenK = H; soD
(
A1/2

)
is dense inH; hence

{
ϕ : m(ϕ) < +∞

}
is

dense inM+∗ , which means the semi-finiteness ofm. If p 6= 0, thenm(ϕ) = ∞ for
every non-zeroϕ ∈ pM+∗ p. But we have{

ψ ∈M+∗ : m(ψ) < +∞
}
⊂ (1− p)M+∗ (1− p),

so thatm is not semi-finite. Q.E.D.
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To simplify the notation, we write

m= h+∞p, h =

∞∫
0

λ de(λ), (19′)

whenm has the form of (19). We keep the convention: 0· (+∞) = 0. Although we
considerh as an operator affiliated withM, we use the following abuse notation:

D
(
h

1
2
)
=
{
ξ ∈ H : m(ωξ ) < +∞

}
,

as long as the circumstance allows us to do this.

Corollary 4.9. Any normal weightϕ on M has a unique extension, denoted byϕ
again, to M̂+ such that

ϕ(λm) = λϕ(m), λ ≥ 0, m ∈ M̂+;

ϕ(m+ n) = ϕ(m)+ ϕ(n), m,n ∈ M̂+;

ϕ
(
supmi

)
= supϕ(mi )

for any increasing net{mi } in M̂+ in the sense that
{
mi (ω)

}
is increasing for

everyω ∈M+∗ .

We leave the proof to the reader as an exercise.

We observed that the extended positive coneM̂+ of M is nothing but the set
of pairs(A,K) of closed subspacesK and positive self-adjoint operatorsA, both of
which are affiliated withM. One of the main advantages of̂M+ over the collection
of pairs{A,K} is that one can freely add elements in̂M+ without worrying about
domains. Of course, the sum of two semi-finite elements ofM̂+ need not be semi-
finite. In the theory of unbounded operators, there are several ways to define the
“sum” of two positive self-adjoint operatorsA and B. When we defineA +̇ B as
the operator corresponding tomA +mB, the operatorA +̇ B is called theform sum
of A and B, which is not, in general, the closure of the algebraic sumA+ B. It is
completely possible thatA +̇ B has no definition domain other than just{0}.

Now, for eachm= h+∞p, we put

m0 = (1+ h)−1(1− p), (20)

mε = h (1+ εh)−1(1− p)+
1

ε
p, ε > 0. (21)

We notice that bothm0 andmε are bounded.

Lemma 4.10.

(i) For each m,n ∈ M̂+ , we have the following equivalence:

m≤ n ⇐⇒ m0 ≥ n0 ⇐⇒ mε ≤ nε, ε > 0. (22)
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(ii) Let
{
mi
}
= {hi +∞pi } be an increasing net inM̂+ and m= h +∞p .

Then we have

mi ↗ m ⇐⇒ (mi )0↘ m0 ⇐⇒ (mi )ε ↗ mε, ε > 0. (23)

PROOF:
(i) Supposem ≤ n. Let m = h+∞p andn = k+∞q. By assumption, we

havep ≤ q. Let K = (1− p)H andM = (1− q)H, whereH means of course the
underlying Hilbert space ofM. For anyξ ∈ M, setη = (ε + h)−1ξ ∈ D(h) and
ζ = (ε + k)−1ξ ∈ D(k). We then have(

(ε + k)−1ξ
∣∣ ξ)2 = (ξ ∣∣ (ε + k)−1ξ

)2
=
(
(ε + h)η

∣∣ ζ )2
=
(
(ε + h)

1
2η
∣∣ (ε + h)

1
2 ζ )2(

ζ ∈ D(k) ⊂ D
(
k

1
2
)
⊂ D

(
h

1
2
)
= D

(
(ε + h)

1
2
) )

≤
∥∥(ε + h)

1
2η
∥∥2∥∥(ε + h)

1
2 ζ
∥∥2

=
(
(ε + h)η

∣∣ η)((ε + h)ζ
∣∣ ζ )

≤
(
(ε + h)η

∣∣ η)((ε + k)ζ
∣∣ ζ )

=
(
ξ
∣∣ (ε + h)−1ξ

)(
ξ
∣∣ (ε + k)−1ξ

)
,

so that (
(ε + k)−1ξ

∣∣ ξ) ≤ ((ε + h)−1ξ
∣∣ ξ), ξ ∈M.

Hence we getn0(ωξ ) ≤ m0(ωξ ) for anyξ ∈M by settingε = 1. If ξ ∈M⊥, then
n0(ωξ ) = 0. Thus we concluden0 ≤ m0.

Supposen0 ≤ m0. It follows that p ≤ q. Let K and M be as before. The
assumption means that(

(1+ h)−1ξ
∣∣ ξ) ≥ ((1+ k)−1ξ

∣∣ ξ), ξ ∈ H.

Setting(1+ k)−1ξ = 0 for ξ ∈ M⊥ ∩ K, we view(1+ k)−1 as an operator onK
and have(1+ h)−1

≥ (1+ k)−1. Then we have(1+ h)−1/2
≥ (1+ k)−1/2 (see

Proposition I.6.3), and

D
(
h

1
2
)
= (1+ h)−

1
2 K ⊃ (1+ k)

1
2 K = D

(
k

1
2
)
.

The argument in the first paragraph shows

(1+ h)
(
1+ ε(1+ h)−1)−1

=
(
ε + (1+ h)−1)−1

≤
(
ε + (1+ k)−1)−1

= (1+ k)
(
1+ ε(1+ k)−1).
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If ξ ∈ D
(
k1/2

)
, we have∥∥(1+ k)

1
2 ξ
∥∥2
= lim
ε→0

∥∥∥(1+ k)
1
2
(
1+ ε(1+ k)−1)− 1

2 ξ

∥∥∥2

≥ lim
ε→0

∥∥∥(1+ h)
1
2
(
1+ ε(1+ h)−1)− 1

2 ξ

∥∥∥2
=
∥∥(1+ h)

1
2 ξ
∥∥2
,

so that we conclude 1+ n ≥ 1+m, equivalentlyn ≥ m.
Now we have seen the equivalence:m ≤ n ⇐⇒ m0 ≥ n0. For a fixedε > 0,

we have then

m≤ n ⇐⇒ εm≤ εn ⇐⇒ (εm)0 ≥ (εn)0

⇐⇒ 1− (εm)0 ≤ 1− (εn)0

⇐⇒ mε =
1

ε

(
1− (εm)0

)
≤

1

ε

(
1− (εn)0

)
= nε.

(ii) By (i), the net
{
(mi )0

}
is decreasing. If̀ = inf(mi )0, then there exists

n ∈ M̂+ such thatn0 = ` because(mi )0 ≤ 1 implies` ≤ 1. If m= supmi , then we
havem0 ≤ (mi )0, som0 ≤ n0, which impliesn ≤ m by (i). Hencem0 = inf(mi )0 =

lim(mi )0. Thus we proved the equivalence:mi ↗ m ⇐⇒ (mi )0 ↘ m0. Finally,
the equality:

mε =
1

ε

(
1− (εm)0

)
(24)

shows the remaining equivalence. Q.E.D.

Proposition 4.11. Let ϕ be a faithful semi-finite normal weight onM , and set
N =Mϕ . For each m∈ N̂+ , set

ϕm(x) = lim
ε→0

ϕmε (x), x ∈M+. (25)

Then the map: m∈ N̂+ 7→ ϕm is an order preserving bijection from̂N+ onto the
set of all

{
σ
ϕ
t
}
-invariant, not necessarily faithful nor semi-finite, normal weights on

M . Furthermore, we have

mi ↗ m in N̂+ ⇐⇒ ϕmi ↗ ϕm pointwise onM+.

PROOF: For a fixedx ∈M+, we define a normal weightϕx onN by:

ϕx(a) = ϕ
(
a

1
2 xa

1
2
)
, a ∈ N+. (26)

If we prove the additivity ofϕx, then the normality follows from that ofϕ. Leta,b ∈
N+ andc = a+b. Chooses, t ∈ N as usual so thata1/2

= sc1/2, b1/2
= tc1/2 and

s∗s+ t∗t is the range projection ofc. If ϕx(c) < +∞, theny = c1/2xc1/2
∈ mϕ ;

sosys∗ andtyt∗ both belong tomϕ by Lemma VIII.2.4.(ii), and we get

ϕ(sys∗)+ ϕ(tyt∗) = ϕ(ys∗s)+ ϕ(yt∗t) = ϕ
(
y(s∗s+ t∗t)

)
= ϕ(y) = ϕx(c);
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ϕ(sys∗) = ϕ
(
a

1
2 xa

1
2
)
= ϕx(a); ϕ(tyt∗) = ϕ

(
b

1
2 xb

1
2
)
= ϕx(b).

Thus,ϕx(a)+ ϕx(b) = ϕx(c). Now, we have

s= lim
ε→0

a
1
2 (c+ ε)−

1
2 , t = lim

ε→0
b

1
2 (c+ ε)−

1
2 ,

so that

c
1
2 xc

1
2 = lim

ε→0
(c+ ε)−

1
2 cxc(c+ ε)−

1
2

= lim
ε→0

(c+ ε)−
1
2 (a+ b)x (a+ b)(c+ ε)−

1
2

≤ 2 lim
ε→0

(c+ ε)−
1
2
[
axa+ bxb

]
(c+ ε)−

1
2

= 2
(
s∗a

1
2 xa

1
2 s+ t∗b

1
2 xb

1
2 t
)
.

Therefore, ifϕx(a) < +∞ andϕx(b) < +∞, thenϕx(c) < +∞; henceϕx(a+ b)
= ϕx(a)+ ϕx(b) for a,b ∈ N+.

Now, for eachm ∈ N̂+, we set

ϕm(x) = ϕx(m), x ∈M+. (27)

This makes sense by Corollary 4.9. First, by Corollary 4.9, we have

ϕx
(
supmi

)
= supϕx(mi ) if mi ↗ m.

Hence we have

ϕm(x) = ϕx(m) = lim
ε→0

ϕx(mε) = lim
ε→0

ϕmε (x).

If {xi } ↗ x in M+, then

ϕx(m) = sup
ε>0

ϕmε (x) = sup
ε>0

sup
i
ϕmε (xi )

= sup
i

sup
ε>0

ϕmε (xi ) = sup
i
ϕm(xi ),

so thatϕm is normal. The additivity ofϕm follows from the convergence (25).
The invariance ofϕm under

{
σ
ϕ
t
}

follows from that ofϕmε . The rest is now easy.
Q.E.D.

Definition 4.12. Let M be a von Neumann algebra andN a von Neumann sub-
algebra ofM. An operator valued weightfrom M to N is a mapT : M+ 7→ N̂+
which satisfies the following conditions:

(a) T(λx) = λT(x), λ ≥ 0, x ∈M+

(b) T(x + y) = T(x)+ T(y), x, y ∈M+

(c) T(a∗xa) = a∗T(x)a, x ∈M+, a ∈ N .

 (28)
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We say thatT is normal if

(d) T(xi )↗ T(x) whenever xi ↗ x, xi , x ∈M+.

As in the case of ordinary weights, we set

nT =

{
x ∈M :

∥∥T(x∗x)
∥∥ < +∞ }

mT = n∗TnT =

{ n∑
i=1

y∗i xi : x1, . . . , xn, y1, . . . , yn ∈ nT

}
.

 (29)

By now, the next lemma is an easy exercise:

Lemma 4.13.

(i) mT is spanned by its positive part:

m+T =
{

x ∈M+ :
∥∥T(x)

∥∥ < +∞ }
.

(ii) mT and nT are two sided modules overN .
(iii) T has a unique linear extensioṅT : mT 7→ N , which enjoys the module map

property:
Ṫ(axb) = aṪ(x)b, a,b ∈ N , x ∈ mT . (30)

In particular, if T(1) = 1 , then T is a projection of norm one fromM
onto N .

In the sequel, we shall not distinguishT andṪ unless we need to.

Definition 4.14. We say thatT is semi-finiteif nT isσ -weakly dense inM; faithful
if T(x∗x) 6= 0 for x 6= 0. We denote byW(M,N ) (resp.W0(M,N )) the set of
(resp. faithful semi-finite) normal operator valued weights fromM to N . In the case
thatN = C, we writeW(M) (resp.W0(M)) for (W(M,C) (resp.W0(M,C)).

Remark 4.15. If T : M+ 7→ N̂+ is a normal operator valued weight, it can be
naturally extended to a normal “linear” map from̂M+ 7→ N̂+. Therefore, ifP ⊂
N ⊂M and ifT ∈W(M,N ) andS∈W(N ,P ) then we haveS◦T ∈W(M,P ).

Proposition 4.16. If P ⊂ N ⊂ M are von Neumann subalgebras and if T∈
W0(M,N ) and S∈W0(N ,P ) , then S◦ T ∈W0(M,P ) .

PROOF: The only non-trivial part is the semi-finiteness ofS◦ T . If x ∈ nT , then
T(x∗x) ∈ N+. Choose a net{ai } in nS such thatai → 1 σ -strongly. Then we have

S◦ T
(
a∗i x∗xai

)
= S

(
a∗i T(x∗x)ai

)
≤
∥∥T(x∗x)

∥∥S(a∗i ai ),

so thatxai ∈ nS◦T . HencenS◦T is σ -strongly dense inM becausenT is. Q.E.D.
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Proposition 4.17. If N ⊂M are von Neumann algebras and if T∈W0(M,N ) ,
then

(i) Ṫ(mT ) is a σ -weakly dense ideal ofN ;
(ii) After extending T to the map of̂M+ to N̂+ , as in Remark4.15,

T(M̂+) = N̂+ .

PROOF:
(i) From the module map property ofT :

Ṫ(axb) = aṪ(x)b, a,b ∈ N , x ∈ mT ,

it follows that Ṫ(mT ) is an ideal ofN . Let z denote the greatest projection of the
σ -weak closure oḟT(mT ), which is central inN . Assumez 6= 1. AsnT isσ -weakly
dense inM, there existsx ∈ nT with x (1− z) 6= 0, so that(1− z)x∗x (1− z) ∈
mT \ {0} and asT is faithful

0 6= T
(
(1− z)x∗x(1− z)

)
= (1− z)T(x∗x)(1− z) = 0,

which is a contradiction. Hencez= 1, which means thaṫT(mT ) is σ -weakly dense
in N .

(ii) Let b ∈ Ṫ(mT )+. Thenb is of the formb = Ṫ(h), h ∈ mT . Replacing
h by 1

2(h + h∗), h can be chosen to be self-adjoint. Asb ≤ T
(
|h|
)
, we can find

s ∈ N such thatb = sT
(
|h|
)
s∗. With a = s|h|s∗, we haveb = T(a), a ∈ m+T .

HenceṪ(mT )+ = Ṫ(m+T ).
Let {bi }i∈I be a maximal family in the ideal̇T(mT )+ such that

∑
i∈I bi ≤ 1.

The maximality and Proposition II.3.13 entail 1=
∑

i∈I bi in theσ -strong topology.
Every y ∈ N+ is then of the form:y =

∑
i∈I y1/2bi y1/2, so that it is of the form:

y =
∑

i∈I T xi with {xi } ⊂ m+T .
Let z ∈ N̂+. From Theorem 4.8, it follows that there exists a sequenceyn ∈ N+

such thatyn ↗ z. Set z1 = y1 and zn = yn − yn−1, n ≥ 2. Then we have
z =

∑
∞

n=1 yn. Eachyn is of the form:yn =
∑

T xn,i with {xn,i } ⊂ m+T . Hence we
have

z= T

( ∞∑
n=1

∑
i

xn,i

)
,

whereT means the extended one tôM+. ThusT mapsM̂+ ontoN̂+. Q.E.D.

The next theorem generalizes Theorem 4.2.

Theorem 4.18. Let M ⊃ N be von Neumann algebras. There exists a faithful
semi-finite normal operator valued weight T: M+ 7→ N̂+ if and only if there exist
faithful semi-finite normal weights̃ϕ on M and ϕ on N such that

σ
ϕ
t (x) = σ

ϕ̃
t (x), x ∈ N . (31)

If this condition is satisfied, then T can be chosen such a way thatϕ̃ = ϕ ◦ T , and
T is uniquely determined by this identity.
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Lemma 4.19. Let m: M+∗ 7→ [0,+∞] be an extended positive real valued func-
tion such that

m(λϕ) = λm(ϕ), λ ≥ 0, ϕ ∈M+∗ ;

m(ϕ + ψ) = m(ϕ)+m(ψ), ϕ, ψ ∈M+∗

is lower semi-continuous; hence a member of the extended positive coneM̂+ if and
only if m is countably additive in the sense that

m

( ∞∑
n=1

ϕn

)
=

∞∑
n=1

m(ϕn)

for every {ϕn} ⊂M+∗ with
∑
∞

n=1‖ϕn‖ < +∞ .

PROOF: The “only part” is trivial, so we prove the only “if” part. Supposem
is countably additive. RepresentM on a Hilbert spaceH and considerm̄: ω ∈
L(H)+∗ 7→ m(ω|M) ∈ [0,+∞]. We claim first thatm is lower semi continuous
if m̄ is. Supposem̄ is lower semi-continuous. Then by Lemma 4.7, there exists
a unique pair{A,K} of a closed subspaceK of H and a positive self-adjoint op-
erator A on K such that (18) holds. Asuωu∗

∣∣
M
= ω|M for every u ∈ U(M′),

u∗m̄u = m̄, so that{A,K} is affiliated toM, andm = mA. Thus,m is a member
of M̂+. Therefore, it suffices to prove the lemma forM = L(H). Replacingm by
m′ defined bym′(ϕ) = m(ϕ) + ϕ(1), we may assumem(ϕ) ≥ ‖ϕ‖, ϕ ∈ M+∗ . As
M∗ = L1(M,Tr) is an ideal ofM, we can define a mapϕ : x ∈ M+ 7→ [0,+∞]
by

ϕ(x) =

{
m(ωx), x ∈ L1(M,Tr)+;

+∞ otherwise,

whereωx(a) = Tr(ax), a ∈ M, x ∈ L1(M,Tr). Thenϕ is a weight onM, and
ω ≥ Tr. Let {xi }i∈I be a family of positive operators withx =

∑
xi ∈ M+. If

Tr(x) = +∞, then
∑

i Tr(xi ) = ∞ and

∞ =

∑
Tr(xi ) ≤

∑
ω(xi ) ≤ ω(x),

so thatω(x) = ∞ =
∑
ω(xi ). If Tr(x) < +∞, then

∑
Tr(xi ) < +∞, so that

xi 6= 0 for at most countably infinitei ’s. Hence we have∑
i∈I

ϕ(xi ) =
∑

i

m(ωxi ) = m

(∑
ωxi

)
= m(ωx) = ϕ(x).

Thus,ϕ is a completely additive weight onM. By Theorem VII.1.11,ϕ is normal. If
{xn} is a sequence inL1(M,Tr)+ with limn→∞

∥∥x− xn
∥∥

1 = 0, then{xn} converges
to x σ -weakly, so that

m(ωx) = ϕ(x) ≤ lim inf
n→∞

ϕ(xn) = lim inf
n→∞

m(ωxn).

Hencem is lower semi-continuous. Q.E.D.



§ 4 Conditional Expectations and Operator Valued Weights 225

Lemma 4.20. Let ϕ ∈ W(M) and {an} be a sequence inMs(ϕ) . The following
two conditions are equivalent:

(i) ϕ(x) =
∑
∞

n=1 ϕ(anxa∗n) , x ∈M+ ; (32)

(ii) {an} ⊂ D
(
σ
ϕ
−i/2

)
and

∑
∞

n=1 σ
ϕ
−i/2(an)

∗ σ
ϕ
−i/2(an) = s(ϕ) . (33)

PROOF: As we can view the problem in the reduced algebraMs(ϕ), we may assume
thatϕ is faithful.

(i) H⇒ (ii): By Theorem VIII.3.17, eachan belongs toD
(
σ
ϕ
−i/2

)
and satisfies

the inequality
∥∥σ ϕ
−i/2(an)

∥∥ ≤ 1. We then have, for eachx ∈ nϕ ,

∥∥ηϕ(x)∥∥2
= ϕ(x∗x) =

∞∑
n=1

ϕ
(
anx∗xa∗n

)
=

∞∑
n=1

∥∥ηϕ(xa∗n)
∥∥2

=

∞∑
n=1

∥∥Jσ ϕ
−i/2(an)Jηϕ(x)

∥∥2 by (VIII.3.49)

=

(
J
∞∑

n=1

σ
ϕ
−i/2(an)

∗σ
ϕ
−i/2(an)Jηϕ(x)

∣∣∣∣ ηϕ(x)).
Hence we have

1=
∞∑

n=1

σ
ϕ
−i/2(an)

∗σ
ϕ
−i/2(an).

(ii) H⇒ (i): This implication follows from the above computation traced back-
ward. Q.E.D.

PROOF OFTHEOREM 4.18: Suppose thatM ⊃ N are von Neumann algebras,
and

σ
ϕ̃
t (x) = σ

ϕ
t (x), x ∈ N ,

for someϕ̃ ∈W0(M) andϕ ∈W0(N ). We fix ϕ̃ andϕ. For eachψ ∈W(N ), we
have the cocycle derivativeut = (Dψ : Dϕ)t ∈ N , t ∈ R. By Theorem VIII.3.21,
there corresponds̃ψ ∈ W(M) such thats(ψ̃) = s(ψ) and(Dψ̃ : Dϕ̃ )t = ut =

(Dψ : Dϕ)t . As we have(
D(λψ) : Dϕ

)
t = λ

i t(Dψ : Dϕ
)
t = λ

i t(Dψ̃ : Dϕ̃
)
t =

(
D(λψ̃) : Dϕ̃

)
t ,

we obtainλ̃ψ = λψ̃ , λ > 0.
By the chain rule for cocycle derivatives, we have(Dψ̃1 : Dψ̃2)t=(Dψ1 : Dψ2)t

for anyψ1 ∈ W(N ) andψ2 ∈ W0(N ). Let {ψn} be a sequence inN +∗ such that
ψ =

∑
∞

n=1ψn ∈ N +∗ . Let un
t = (Dψn : Dψ)t by restricting our consideration to

Ns(ψ) andMs(ψ̃). Then by Theorem VIII.3.17,un
−i/2 is defined and

ψn(x) = ψ
((

un
−i/2

)∗
x
(
un
−i/2

))
, x ∈ N .
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Therefore, Lemma 4.20 entails that

s(ψ) =
∞∑

n=1

σ
ψ

−i/2

((
un
−i/2

)∗)∗
σ
ψ

−i/2

((
un
−i/2

)∗)

=

∞∑
n=1

σ
ψ

i/2

(
un
−i/2

)
σ
ψ

i/2

(
un
−i/2

)∗
=

∞∑
n=1

σ
ψ̃

i/2

(
(Dψ̃n : Dψ̃ )−i/2

)
σ
ψ̃

i/2

(
(Dψ̃n : Dψ̃ )−i/2

)∗
.

As s(ψ) = s(ψ̃), the above calculation shows that

ψ̃(x) =
∞∑

n=1

ψ̃n(x), x ∈M+.

Hence the map:ψ ∈ N +∗ 7→ ψ̃ ∈ W(M) is homogeneous and countably additive.
Hence, the map:ψ ∈ N +∗ 7→ ψ̃(x) ∈ [0,+∞], x ∈ M+, gives rise to a map
T : M+ 7→ N̂+ by Lemma 4.19.

For everyu ∈ U(N ), we have(
D(uψu∗)∼ : Dϕ̃

)
t =

(
D(uψu∗) : Dϕ

)
t = u (Dψ : Dϕ)t σ

ϕ
t (u
∗)

= u
(
Dψ̃ : Dϕ̃

)
tσ
ϕ̃
t (u
∗),

so that(uψu∗)∼ = uψ̃u∗, u ∈ U(N ). Thus, we haveT(uxu∗) = uT(x)u∗,
x ∈M+, u ∈ U(N ). HencenT is invariant by the right multiplication ofU(N ),
andT(ux) = uT(x), T(xu) = T(x)u for everyx ∈ mT = n∗TnT andu ∈ U(N ).
As U(N ) spansN linearly, mT is a two sided module overN and T(axb) =
aT(x)b for a,b ∈ N andx ∈ mT .

We now want to prove

T(axa∗) = aT(x)a∗, a ∈ N , x ∈M+. (34)

First, we observe that ifa ∈ Nψ with ψ faithful, then
(
Da∗ψa : Dψ

)
t =

(
a∗a

)i t ,

where
(
a∗a

)i t should be considered in the reduced algebraNsr (a) by the right sup-
portsr (a) of a, so that(

D(a∗ψa)∼ : Dψ̃
)
t =

(
Da∗ψa : Dψ

)
t =

(
a∗a

)i t
;

hence(a∗ψa)∼ = a∗ψa. If ψ is not faithful, then we considerψ ′′ = ψ + ψ ′

with ψ ′ ∈ W(N ) such thats(ψ ′) = 1− s(ψ); and apply the above argument to
ψ to conclude that(a∗ψa)∼ = a∗ψ̃a, a ∈ Nψ . Now, we apply the above whole
argument toN ⊗M2(C) andM⊗M2(C) with ψ ⊗Tr andψ̃ ⊗Tr and observe that
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σ
ψ⊗Tr
t (x) = σ ψ̃⊗Tr

t (x) for everyx ∈ N ⊗ M2(C). This implies that there exists a
mapS: (M ⊗ M2)+ 7→ (N ⊗ M2)̂+ such that(

ψ ⊗ Tr
)
◦ S(x) =

(
ψ̃ ⊗ Tr

)
(x), x ∈ (M ⊗ M2)+.

As C⊗ M2 ⊂ Nψ for any faithfulψ , we have(ψ ⊗ Tr)∼ = ψ̃ ⊗ Tr. If a ∈ N has
‖a‖ ≤ 1, then set

u =

 a
(
1− aa∗

) 1
2

−
(
1− a∗a

) 1
2 a∗

 ∈ N ⊗ M2.

Thenu is unitary. Therefore, we have(
u∗(ψ ⊗ Tr)u

)∼
= u∗

(
ψ̃ ⊗ Tr

)
u.

With {ei, j } the standard matrix unit ofM2, we have[(
1⊗ ei j

)∗(
ψ ⊗ Tr

)(
1⊗ ei j

)]∼
=
(
1⊗ ei j

)∗(
ψ̃ ⊗ Tr

)(
1⊗ ei j

)
as(1⊗ ei j ) ∈ (N ⊗ M2)ψ⊗Tr. Hence we conclude that[(

1⊗ e11
)
u∗
(
1⊗ e11

)(
ψ ⊗ Tr

)(
1⊗ e11

)
u
(
1⊗ e11

)]∼
=
(
a⊗ e11

)∗(
ψ̃ ⊗ Tr

)(
a⊗ e11

)
,

i.e. [(
a∗ ⊗ e11

)(
ψ ⊗ Tr

)(
a⊗ e11

)]∼
=
(
a∗ ⊗ e11

)(
ψ̃ ⊗ Tr

)(
a⊗ e11

)
.

This means that
(a∗ψa)∼ = a∗ψ̃a

for everya ∈ N with ‖a‖ ≤ 1, which entails (34). ThereforeT is an operator
valued weight ofM+ ontoN̂+ such thatψ̃ = ψ ◦T , ψ ∈W0(N ). As ψ̃ is faithful
for anyψ ∈W0(N ), T is faithful.

The semi-finiteness and the uniqueness ofT together with the converse follow
from the following lemma. Q.E.D.

Lemma 4.21. Let N ⊂ M be von Neumann algebras and T: M+ → N̂+ be a
normal operator valued weight.

(i) If ψ ◦ T is semi-finite for someψ ∈W0(N ) , then T is semi-finite;

(ii) If ψ ∈W0(N ) and S∈W(M,N ) satisfyψ ◦ T = ψ ◦ S , then T= S;

(iii) If T ∈W0(M,N ) , then

σ
ψ◦T
t (x) = σψt (x), x ∈ N . (35)
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PROOF:
(i) Setψ̃ = ψ ◦ T . Let h ∈ m+

ψ̃
and

T(h) =

∞∫
0

λ de(λ)+∞p

be the spectral decomposition. Asψ ◦ T(h) < +∞, andψ is faithful, we have
p = 0. Hencee(λ) ↗ 1 asλ ↗ ∞, so thate(λ)he(λ) → h strongly asλ ↗ ∞,
andT

(
e(λ)he(λ)

)
= e(λ)T(h)e(λ) ∈ N+; hencee(λ)he(λ) ∈ m+T . Thereforem+T

is σ -strongly dense inM+.
(ii) For anyx ∈M+ anda ∈ N , we have

ψ
(
a∗T(x)a

)
= ψ

(
T(a∗xa)

)
= ψ

(
S(a∗xa)

)
= ψ

(
a∗S(x)a

)
,

so thataψa∗ ◦ T = aψa∗ ◦ S for any a ∈ N . Therefore ifx ∈ m+T ∪ m+S , then
T(x) = S(x) since

{
aψa∗ : a ∈ nψ

}
is a dense subset ofN +∗ . For a general

x ∈M+, consider the spectral decomposition:

m= S(x) =

∞∫
0

λ de(λ)+∞p ∈ N̂+ ;

n = T(x) =

∞∫
0

λ d f (λ)+∞q ∈ N̂+.

Then we havee(λ)xe(λ) ∈ mS∩mT and

me(λ) = e(λ)S(x)e(λ) = S
(
e(λ)xe(λ)

)
= T

(
e(λ)xe(λ)

)
= e(λ)T(x)e(λ) = e(λ)ne(λ);

similarly
n f (λ) = f (λ)m f(λ), λ ≥ 0.

Hence we have, for everyξ ∈
⋃
λ≥0 e(λ)Hψ ,∥∥m

1
2 ξ
∥∥2
= m(ωξ ) = n(ωξ ) =

∥∥n
1
2 ξ
∥∥2
;

similarly ∥∥m
1
2 ξ
∥∥2
=
∥∥n

1
2 ξ
∥∥2
, ξ ∈

⋃
λ≥0

f (λ)Hψ .

But m1/2 (resp.n1/2) is essentially self-adjoint on
⋃

e(λ)Hψ (resp.
⋃

f (λ)Hψ ),
so we get ∥∥m

1
2 ξ
∥∥2
=
∥∥n

1
2 ξ
∥∥2
, ξ ∈ D

(
m

1
2
)
∪D

(
n

1
2
)
.

Hence there exists a partial isometryu ∈ N such thatm1/2
= un1/2 andn1/2

=

u∗m1/2, so that the uniqueness of the polar decomposition impliesm1/2
= n1/2 and

(1− p) = (1− q). Thusm= n as elements of̂N+. HenceS= T .



§ 4 Conditional Expectations and Operator Valued Weights 229

(iii) We proveG
(
σ
ψ

−i

)
⊂ G

(
σ
ψ◦T
−i

)
. Let ψ̃ = ψ ◦ T , and(a,b) ∈ G

(
σ
ψ

−i

)
. As

a ∈ D
(
σ
ψ

−i/2

)
andb∗ ∈ D

(
σ
ψ

−i/2

)
= D

(
σ
ψ

i/2

)∗, by Lemma VIII.3.18, there exists
M ≥ 0 such that for everyx ∈ N+

ψ(axa∗) ≤ M2ψ(x), ψ(b∗xb) ≤ M2ψ(x).

Taking increasing limit, we see that the above inequalities are valid for everyx∈N̂+,
so that

ψ̃(axa∗) ≤ M2ψ̃(x), ψ̃(b∗xb) ≤ M2ψ̃(x) (36)

for everyx ∈M+; thereforenψ̃a∗ ⊂ nψ̃ , nψ̃b ⊂ nψ̃ and∥∥ηψ̃ (xa∗)
∥∥ ≤ M‖ηψ̃ (x)‖;∥∥ηψ̃ (xb)
∥∥ ≤ M‖ηψ̃ (x)‖, x ∈ nψ̃ .

 (36′)

We will prove that(a,b) ∈ G
(
σ
ψ̃

−i

)
. By Theorem VIII.3.25, it suffices to show

ψ̃(ax) = ψ̃(xb), x ∈ mψ̃ . (37)

Fix x0 = y∗0z0 with y0, z0 ∈ nψ̃ ∩ nT . As nψ̃a∗ ⊂ nψ̃ andnT is a rightN -module,
we have

ax0 =
(
y0a∗

)∗
z0 ∈

(
nψ̃ ∩ nT

)∗(
nψ̃ ∩ nT

)
⊂ mψ̃ ∩mT .

Similarly, we get
x0b = y∗0(z0b) ∈ mψ̃ ∩mT .

Since(a,b) ∈ G
(
σ
ψ

−i

)
, we have

ψ ◦ Ṫ(ax0) = ψ
(
aṪ(x0)

)
= ψ

(
Ṫ(x0)b

)
= ψ ◦ Ṫ(x0b),

so that
ψ̃(ax0) = ψ̃(x0b). (38)

Now supposex = y∗z with y, z ∈ nψ̃ . Sinceψ ◦ T(y∗y) < +∞, we have the

spectral decomposition ofT(y∗y): T(y∗y) =
∫
∞

0 λ de(λ). For anyλ > 0, we
haveye(λ) ∈ nT and

ψ ◦ T
(
e(λ)y∗ye(λ)

)
= ψ

(
e(λ)T(y∗y)e(λ)

)
≤ ψ ◦ T(y∗y) < +∞,

so thatye(λ) ∈ nψ̃ . Furthermore,∥∥∥ηψ̃(ye(λ)− y
)∥∥∥2
= ψ ◦ T

((
ye(λ)− y

)∗(
ye(λ)− y

))
= ψ

((
1− e(λ)

)
T(y∗y)

)(
1− e(λ)

)
= ψ

( ∞∫
λ

µ de(µ)

)
→ 0 as λ→∞.
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Similarly, with the spectral decomposition ofT(z∗z):

T(z∗z) =

∞∫
0

λ d f (λ),

we havez f(λ) ∈ nψ̃ ∩ nT and

lim
λ→∞

∥∥∥ηψ̃(z f(λ)− z
)∥∥∥ = 0.

By (36′), we get

lim
λ→∞

∥∥∥ηψ̃(ye(λ)a∗
)
− ηψ̃

(
ya∗

)∥∥∥ = 0; lim
λ→∞

∥∥∥ηψ̃(z f(λ)b
)
− ηψ̃ (zb)

∥∥∥ = 0.

Therefore, we have, by the previous arguments forx0,

ψ̃(ax) =
(
ηψ̃ (z)

∣∣ ηψ̃ (ya∗)
)
= lim
λ→∞

(
ηψ̃

(
z f(λ)

) ∣∣∣ ηψ̃(ye(λ)a∗
))

= lim
λ→∞

ψ̃
(
a
(
ye(λ)

)∗(
z f(λ)

))
= lim
λ→∞

ψ̃
((

ye(λ)
)∗(

z f(λ)
)
b
)

= lim
λ→∞

(
ηψ̃

(
z f(λ)b

) ∣∣∣ ηψ̃(ye(λ)
))
=
(
ηψ (zb)

∣∣ ηψ (y)) = ψ̃(xb).

Therefore, we conclude that(a,b) ∈ G
(
σ
ψ̃

−i

)
, i.e.G

(
σ
ψ

−i

)
⊂ G

(
σ
ψ̃

−i

)
.

As seen in the proof of Proposition VIII.3.24,x ∈ M is of exponential type

relative to
{
σ
ψ̃
t
}

if and only if

x ∈
⋂
n∈Z

D
(
σ
ψ̃

−ni

)
, sup

n∈Z

∥∥σ ψ̃
−ni (x)

∥∥e−c|n| < +∞ (39)

for somec > 0. HenceN ψ
exp⊂M

ψ̃
exp. For eachx ∈ N

ψ
exp, we consider

y(α) = σψα (x)− σ
ψ̃
α (x), α ∈ C.

From the above arguments, it follows that the functionf : α ∈ C 7→ ω
(
y(α)

)
∈ C

for anyω ∈ M∗ is an entire function of exponential type and thatf (−in) = 0,
n ∈ Z. Hence f (α) = 0 for everyα ∈ C, thusy(α) = 0. This means that

σ
ψ
t (x) = σ

ψ̃
t (x), x ∈ N ψ

exp.

As N
ψ
exp is σ -weakly dense inN , we conclude (35). Q.E.D.

Corollary 4.22. SupposeN ⊂ M is a pair of von Neumann algebras, and T∈
W0(M,N ) .

(i) For everyϕ ∈W0(N ) ,

σ
ϕ◦T
t (x) = σ ϕt (x), x ∈ N ; (35)
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(ii) For every pairϕ,ψ ∈W0(N ) ,(
Dψ ◦ T : Dϕ ◦ T

)
t =

(
Dψ : Dϕ

)
t , t ∈ R. (40)

(iii) If S is another element ofW0(M,N ) , then for anyϕ ∈W0(N ) ,
(
Dϕ ◦ T :

Dϕ ◦ S
)
t , t ∈ R , belongs toN c

= N ′ ∩M and does not depends on the
choice ofϕ ∈W0(N ) , i.e.(

Dϕ ◦ T : Dϕ ◦ S
)
t =

(
Dψ ◦ T : Dψ ◦ S

)
t , t ∈ R

for any otherψ ∈W0(N ) .

PROOF: We have proved (i) in Lemma 4.21.
(ii) Consider the 2× 2-matrix algebrasN ⊗ M2 ⊂ M ⊗ M2. As σ ϕ⊗Tr

t =

σ
ϕ
t ⊗ id and σ (ϕ◦T)⊗Tr

t = σ
ϕ◦T
t ⊗ id agree onN ⊗ M2, there existsT ′ ∈

W0
(
M ⊗ M2,N ⊗ M2

)
by Theorem 4.18 such that

(ϕ ◦ T)⊗ Tr = (ϕ ⊗ Tr) ◦ T ′.

We denote thisT ′ by T ⊗ id. Now consider the balanced weightρ = ϕ ⊕ ψ on
N ⊗ M2 andρ̃ = ρ ◦ (T ⊗ id), and observe that̃ρ = ϕ̃ ⊕ ψ̃ , whereϕ̃ = ϕ ◦ T and
ψ̃ = ψ ◦ T . As (1⊗ e21) ∈ N ⊗ M2, we have(

Dψ ◦ T : Dϕ ◦ T
)
t = σ

ρ̃
t (1⊗ e21) = σ

ρ
t (1⊗ e21) = (Dψ : Dϕ)t

by (i).
(iii) For x =

∑
xi j ⊗ ei j ∈M ⊗ M2, set

R

( 2∑
i, j=1

xi j ⊗ ei j

)
=
(
T(x11)+ S(x22)

)
⊗ 1.

Then it follows thatR ∈ W0
(
M ⊗ M2,N ⊗ C

)
. Identifying N with N ⊗ C, we

considerϕ ◦ R and observe thatϕ ◦ R= ϕ ◦ T ⊕ ϕ ◦ S. Hence(
Dϕ ◦ T : Dϕ ◦ S

)
t ⊗ e12 = σ

ϕ◦R
t (1⊗ e12).

As 1⊗e12 ∈
(
N ⊗C

)′
∩M⊗M2 andσ ϕ◦Rt leavesN ⊗C invariant,σ ϕ◦Rt (1⊗e12)

belongs to
(
N ⊗ C

)′
∩M ⊗ M2 = N c

⊗ M2, which means that(
Dϕ ◦ T : Dϕ ◦ S

)
t ∈ N c.

For anotherψ ∈W0(N ), we have(
Dψ ◦ T : Dψ ◦ S

)
t

=
(
Dψ ◦ T : Dϕ ◦ T

)
t

(
Dϕ ◦ T : Dϕ ◦ S

)
t

(
Dϕ ◦ S : Dψ ◦ S

)
t

= (Dψ : Dϕ)t
(
Dϕ ◦ T : Dψ ◦ S

)
t (Dϕ : Dψ)t

= (Dψ : Dϕ)t (Dϕ : Dψ)t
(
Dϕ ◦ T : Dϕ ◦ S

)
t

=
(
Dϕ ◦ T : Dϕ ◦ S

)
t

because
(
Dϕ ◦ T : Dϕ ◦ S

)
t ∈ N c. Q.E.D.
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Definition 4.23. Let N ⊂M be von Neumann algebras.

(i) For T ∈ W0(M,N ), let σ T
t be the restriction ofσ ϕ◦Tt , ϕ ∈ W0(M), to the

relative commutantN c
= N ′ ∩M, which is independent of the choice ofϕ.

We call it themodular automorphism groupof T .
(ii) For T1, T2 ∈W0(M,N ), we set(

DT1 : DT2
)
t =

(
Dϕ ◦ T1 : Dϕ ◦ T2

)
t , t ∈ R,

with ϕ ∈ W0(N ) which does not depend on the choice ofϕ, and call it the
cocycle derivativeof T1 relative toT2.

Theorem 4.24. Let N ⊂ M be von Neumann algebras. There exists a bijection:
T ∈W0(M,N )←→ T ′ ∈W0(N

′,M′) such that

σ T
t = σ

T ′
−t , T ∈W0(M,N );(

DT1 : DT2
)
t =

(
DT ′2 : DT ′1

)
−t , T1, T2 ∈W0(M,N ).

In particular, W0(M,N ) 6= ∅ if and only if W0(N
′,M′) 6= ∅ .

PROOF: SupposeW0(M,N ) 6= ∅. Let T ∈ W0(M,N ). Fix ϕ ∈ W0(N ), and
ψ ∈W0(M

′). We then have, by Theorem 3.8, withH = dϕ ◦ T /dψ , that

H i t x H−i t
= σ

ϕ◦T
t (x), x ∈M, H i t yH−i t

= σ
ψ
−t (y), y ∈M′.

Chooseω ∈W0(N
′) and letK = dϕ/dω. Then

K i t x K−i t
= σ

ϕ
t (x) = H i t x H−i t , x ∈ N ; K i t yK−i t

= σω−t (y), y ∈ N ′.

Henceut = H−i t K i t belongsN ′ and

us+t = H−isH−i t K isK i t
= H−isK isK−isH−i t K i t K is

= usσ
ω
s (ut ), s, t ∈ R.

Hence{us} is a one cocycle forσω, so that there exists̃ψ ∈ W0(N
′) such that(

Dψ̃ : Dω
)
t = ut . Then we have for everyy ∈ N ′

σ
ψ̃
t (y) =

(
Dψ̃ : Dω

)∗
t σ

ω
t (y)

(
Dψ̃ : Dω

)∗
t

= H−i t K i t K−i t yK i t K−i t H i t
= H−i t yH i t .

Therefore, we obtainσ ψ̃t (y) = σ
ψ
t (y) for everyy ∈ M′. Theorem 4.18 entails the

existence ofT ′ ∈W0(N
′,M′) such thatψ̃ = ψ ◦ T ′.

Now for x ∈ N c
= N ′ ∩M = (M′)′ ∩N ′,

σ T
t (x) = σ

ϕ◦T
t (x) = H i t x H−i t

= σ
ψ◦T ′

−t (x) = σ T ′
−t (x).
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Choose anotherS ∈ W0(M,N ) and observe thatut = (DS : DT )t =(
Dϕ ◦ S : Dϕ ◦ T

)
t belongs toN c, and it is aσ ϕ◦T -cocycle. Namely,

us+t = usσ
ϕ◦T
s (ut ) = usH isut H−is.

Setvt = u∗−t = (DT : DS)−t . Then we have

vs+t = u∗
−(s+t) = u∗−tσ

ϕ◦T
−t (u∗−s) = vt H−i tu∗−sH i t

= vtσ
ψ◦T
t (u∗−s) = vtσ

ψ◦T
t (vt ).

Hence there existsω ∈ W0(N
′) with vt = (Dω : Dψ ◦ T )t . Then we have, for

everyy ∈M′,

σωt (y) = vtσ
ψ◦T ′
t (y)v∗t = vtσ

ψ
t (y)v

∗
t = σ

ψ
t (y)

becausevt ∈ M. Hence there existsS′ ∈ W0(N
′,M′) by Theorem 4.18 such that

ω = ψ ◦ S′. We therefore obtain

(DS′ : DT ′)t =
(
Dψ◦S′ : Dψ◦!T ′

)
t =

(
Dω : D(ψ◦T)

)
t = vt = (DT : DS)−t .

As S′ is uniquely determined by the formulaω = ψ ◦ S′, S′ is determined by
(DS′ : DT ′)t . Therefore, the map:S ∈ W0(M,N ) 7→ S′ ∈ W0(N

′,M′) is an
injection. By symmetry, this correspondence is bijective. Q.E.D.

Corollary 4.25. Let {M,H} be a von Neumann algebra. Then there exists a bijec-
tion: ϕ ∈W0(M) 7→ Tϕ ∈W0

(
L(H),M′

)
such that

σ
ϕ
t = σ

Tϕ
−t ;

(Dψ : Dϕ)t = (DTϕ : DTψ )−t , t ∈ R;

ψ ◦ Tϕ = Tr

((
dψ

dϕ

)
·

)
, ψ ∈W0(M

′),

where the weightTr
(( dψ

dϕ ·
))

means the one given in LemmaVIII .2.8 relative to
the standard traceTr on L(H) .

This is an immediate consequence of Theorem 4.24 and its proof.

Exercise IX.4

1) Let N be a von Neumann subalgebra of a von Neumann algebraM. Suppose
that there exists a normal projectionE of norm one fromM onto N . Set NE ={

x ∈M : E(x∗x) = 0
}
.

(a) Show that there exists a projectione∈M ∩N ′ such that the central support of
e in N ′ is the identity andNE = (1− e)M.

(b) Prove that the mapE ′ given byE ′(x) = E(x)e, x ∈Me, is a faithful projection
of norm one fromMe ontoNe.
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(c) Prove that ifM is semi-finite, thenN must be also semi-finite. (Hint: Recall
the proof of Theorem V.2.30.)

(d) Prove that ifM is of type I, thenN must be of type I. (Hint: By (a) and (b) we
may assume thatE is faithful. By (c), there exists a finite projectione in N with the
central support inN equal to 1. RestrictingE to Me andNe, we may assume thatN
is finite. If τ is a normal trace onN , thenϕ = τ ◦ E is a normal positive functional
on M such thats(ϕ) ∈ N ′ ∩ M andMϕ ⊃ Ns(ϕ). Restricting our attention to
Ms(ϕ) andNs(ϕ), we may assume thatϕ is faithful. Thus the situation is thatτ is a
faithful norm trace onN andE is a faithful conditional expectation relative toϕ. Let
τ̃ be a faithful semi-finite normal trace onM andh be the element inL1(M, τ̃ )+
corresponding toϕ. ThenN ⊂ {h}′ ∩M. We complete the proof by showing that
Mϕ = {h}′ ∩M contains only von Neumann algebras of type I based on the fact
thath is integrable relative tõτ in the von Neumann algebra of type I, which entails
thatMϕ is finite and of type I.)

(e) Prove that ifM is atomic, thenN is also atomic.

2) Let M be a von Neumann algebra andG a group of automorphisms ofM, i.e. a
subgroup of Aut(M). Following the line of arguments suggested below, show that
if M admits sufficiently manyG-invariant normal states in the sense that for any
non-zerox ∈ M there exists a normal stateϕ such thatϕ(x∗x) > 0 andϕ ◦ α =
ϕ, α ∈ G, then there exists a unique faithful normal projectionE of norm one from
M onto the fixed point subalgebraMG

=
{

x ∈ M : α(x) = x, α ∈ G
}

such that
E ◦ α = E , α ∈ G.

(a) Let SG
∗ be the set of allG-invariant normal states. Show that the support,s(ϕ),

of eachϕ ∈ SG
∗ is a projection inMG.

(b) Let F be a maximal family of elements ofSG
∗ with orthogonal support and set

ψ =
∑
ϕ∈F ϕ. Show thatψ is a faithful semi-finite normal weight onM such that

ψ is semi-finite onMG and the modular automorphism group
{
σ
ψ
t : t ∈ R

}
leaves

MG globally invariant.

(c) Apply Theorem 4.2 toM, MG andψ .

3) Under the same hypothesis and the notations, for eachx ∈ M let K (x) be the
σ -weak convex closure of the orbit Orb(x) =

{
α(x) : α ∈ G

}
of x. Following

the arguments suggested below, i.e. without making use of theG-invariant faithful
projectionE of norm one, shown in the last problem, prove thatK (x)∩MG

6= ∅, in
fact K (x) ∩MG

=
{
E(x)

}
as this will give alternative proof, which does make use

of the modular theory, for the existence and the uniqueness of a faithfulG-invariant
normal projection of norm one.

(a) Observe first that for eachϕ ∈ SG
∗ the function:x ∈M 7→ ‖x‖ϕ = ϕ(x∗x)1/2

is lower semi-continuous.

(b) Observe that the setKF (x)=
{

y∈K (x) : ‖y‖ϕ= inf{‖z‖ϕ : z∈K (x)}, ϕ∈F
}

is a non-empty closed face of theσ -weakly compact convex setK (x) for any finite
subsetF of SG

∗ and thatα
(
KF (x)

)
= KF (x), α ∈ G.
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(c) Show thatKSG
∗
(x) =

{
y ∈ K (x) : ‖y‖ϕ = inf{ ‖z‖ϕ : z ∈ K (x) }, ϕ ∈ SG

∗

}
6= ∅ and in fact thatKSG

∗
(x) is the singleton set

{
E(x)

}
.

4) Let H = L2(R) andA = L∞(R) act onH by multiplication. Letu(t) be the
element ofA corresponding to the function:s ∈ R 7→ eist

∈ T. Letϕ be the faithful
semi-finite normal weight onA obtained by the integration relative to the Lebesgue
measure onR. Show that the operator valued weightT from L(H) to A such that
Tr = ϕ ◦ T is given byT(x) =

∫
R u(t)xu(t)∗ dt , t ∈ R, x ∈ L(H)+.

5) Let G be an abelian locally compact group witĥG the dual group. LetH =
L2(G) be the Hilbert space of square integrable functions relative to the Haar mea-
sure and set

{
u(p)ξ

}
(s) = 〈s, p〉ξ(s), ξ ∈ H, s ∈ G and p ∈ Ĝ. Let A = L∞(G)

act onH by multiplication as in the last problem. Show that ifϕ is the faithful semi-
finite normal weight onA given by the integration relative to the Haar measure on
G, then the operator valued weightT from L(H) to A such that Tr= ϕ ◦T is given
by: T(x) =

∫
Ĝ u(p)xu(p)∗ dp, x ∈ L(H)+.

6) Let G be a discrete countable group,H = `2(G) andM = R`(G). Let τ be the
normalized trace given byτ(x) =

(
xξ0

∣∣ ξ0), x ∈ M whereξ0(s) = 1 for s = e
and 0 fors 6= e. Let λ andρ be the left and right regular representations ofG onH
respectively.

(a) Show that the operator valued weightT of L(H) to M such that Tr= τ ◦ T is
given by:T(x) =

∑
s∈G ρ(s)xρ(s)

∗, x ∈ L(H)+.

(b) Show that the operator valued weightT in (a) is also given by:
x =

∑
s∈G Tr

(
λ(s)∗x

)
λ(s), x ∈ L(H)+.

Notes on Chapter IX

The conesP] andP[ were introduced by Takesaki in [708] in the case of a cyclic
and separating vector, to connect vectors in the Hilbert space and normal positive
functional on the von Neumann algebra in question. The systematic study of one pa-
rameter family of convex cones in the Hilbert spaceH, on whichM acts, with a dis-
tinguished cyclic and separating vectorξ0 was done by Araki, [424]. Independently,
Connes, [459], and Haagerup, [537], considered the natural coneP\. Theorems 1.2
and 1.14 were proven by them. The inequality (11) is referred as Powers-Størmer
inequality as it was proved first by them forL(H), [671].

Before the Tomita-Takesaki theory was established in the late sixties and the
early seventies, non-commutative integration meant the theory presented in Sec-
tion 2. One can trace the history of the subject to the work of Murray and von Neu-
mann. They proved for example that every symmetric closed operator affiliated with
a factor of type II1 is automatically self-adjoint and that the collection of densely
defined operators affiliated with a factor of type II1 forms an involutive algebra un-
der the natural operations. It was this fact that von Neumann thought the theory of
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operator algebras would play a significant role in quantum physics by accommo-
dating algebraic operations for unbounded physical quantities, a dream which was
not realized in its original form. Araki and Woods in a joint work, [430], showed
in 1963 that the most of factors appearing in quantum physics is either of type I
or type III, a fact that shattered the long held dream of many specialists. Neverthe-
less, the theory presented in Section 3 really tells that the theory related to traces
is indeed non-commutative analogue of the usual integration-measure theory. The
theory was completed by the hands of Dixmier, [502], Dye, [99], Segal, [326], and
many others. Theory presented here followed the approach given by Nelson, [647].

The theory of spatial derivatives is due to Connes, [472], inspired by the work
of Woronowicz on phase system, [741], and the work of Haagerup on operator val-
ued weights, [541]. The theory presented here follows the line set by Falcone in his
thesis, [518, 519], which gives more streamlined approach to the theory of relative
tensor product of Sauvageot, [688]. The theory of bimodules goes further far be-
yond the one presented here. It was originally developed by Connes although its full
account has never been published. He called it acorrespondence.The motivation
and its applications are presented in his book, [480].

The concept of conditional expectations has played significant roles in the devel-
opment of the theory of operator algebras. It was first discovered by Dixmier, [85],
in the course of his theory of non-commutative integration for traces. But it was
Umegaki, [392, 726], who viewed the projection of norm one determined by a nor-
mal tracial state as a non-commutative counter part of the conditional expectation in
probability theory. Subsequently, he developed a theory of conditional expectations
closely following the analogy with probability theory. It was, however, the remark-
able bimodule property which yielded a wide range of applications as we will see
in the later chapters in the structure theory of factors and subfactors. The theory
of operator valued weights was developed by Haagerup, [541]. But it had appeared
long in disguise before his formal treatise. For example, the theory of integrable
groups actions on a von Neumann algebra which will be treated later, Chapter X,
made use of operator valued weights without the full theory. Haagerup’s original
approach however used the structure theory of von Neumann algebras of type III,
i.e. the duality theorem, Theorem XII.1.1, applied to the modular automorphism
groups. We took an approach given by Falcone and Takesaki, [518, 519], which
develops the theory within the framework of non-commutative integration.


