
Chapter II

Domains of Holomorphy

1. The Continuity Theorem
General Hartogs Figures. The subject of this chapter is the contin-
uation of holomorphic functions. We consider domains in Cn, for n ≥ 2. A
typical example is the Euclidean Hartogs figure (Pn,H), where Pn = Pn(0, 1)
is the unit polydisk, and

H = {z ∈ Pn : |z1| > q1 or |zν | < qν for ν = 2, . . . , n}.

Here q1, . . . , qn are real numbers with 0 < qν < 1 for ν = 1, . . . , n. Every
holomorphic function f on H has a holomorphic extension f̂ on Pn.

Definition. Let g = (g1, . . . , gn) : Pn → Cn be an injective holo-
morphic mapping, P̃ := g(Pn) and H̃ := g(H). Then

(
P̃ , H̃

)
is called a

general Hartogs figure.

We use the symbolic picture that appears as Figure II.1

z1

z2, . . . , zn

g

Figure II.1. General Hartogs figure

1.1 Continuity theorem. Let G ⊂ Cn be domain,
(
P̃ , H̃

)
a general Har-

togs figure with H̃ ⊂ G, f a holomorphic function on G. If G∩P̃ is connected,
then f can be continued uniquely to G ∪ P̃ .
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Proof: Let g : Pn → Cn be an injective holomorphic mapping such that
P̃ := g(Pn) and H̃ := g(H). The function h := f ◦ g is holomorphic in
H. Therefore, there exists exactly one holomorphic function ĥ on Pn with
ĥ|H = h. Since g : Pn → P̃ is biholomorphic, the function f0 := ĥ ◦ g−1 is
defined on P̃ , and it is a holomorphic extension of f |H̃ . We define

f̂(z) :=
{

f(z) for z ∈ G,

f0(z) for z ∈ P̃ .

Since G ∩ P̃ is connected and f = f0 on H̃, it follows from the identity
theorem that f̂ is a well-defined holomorphic function on G ∪ P̃ . This is the
desired extension of f .

Example

Let n ≥ 2 and P ′ ⊂⊂ P be polydiscs around the origin in Cn. Then every
holomorphic function f on P−P ′ can be extended uniquely to a holomorphic
function on P .

For a proof we may assume that P = Pn is the unit polydisk, and P ′ =
Pn(0, r), with r = (r1, . . . , rn) and 0 < rν < 1 for ν = 1, . . . , n. It is clear
that G := P − P ′ is a domain.

Given a point z0 =
(
z(0)
1 , . . . , z(0)

n

) ∈ G with |z(0)
n | > rn, we choose real num-

bers q1, . . . , qn as follows: For ν = 1, . . . , n− 1, let qν be arbitrary numbers,
with rν < qν < 1. To obtain a suitable qn, we define an automorphism T of
the unit disk D by

T (ζ) :=
ζ − z(0)

n

z(0)
n ζ − 1

.

This automorphism maps z(0)
n onto 0 and a small disk D ⊂ {ζ ∈ C : rn <

|ζ| < 1} around z(0)
n onto a disk K ⊂ D with 0 ∈ K. Notice that 0 need not

be the center of K. We choose qn > 0 such that Dqn(0) ⊂ K.

If we define H := {z ∈ Pn : |z1| > q1 or |zν | < qν for ν = 2, . . . , n}, then
(Pn,H) is a Euclidean Hartogs figure. The mapping g : Pn → Pn defined by

g(z1, . . . , zn) := (z1, . . . , zn−1, T
−1(zn))

is biholomorphic, and
(
P̃ , H̃

)
= (Pn,g(H)) is a general Hartogs figure, with

H̃ ⊂ {z ∈ Pn : |z1| > r1 or |zn| > rn} ⊂ G.

Since P̃ ∩G = G is connected, the continuity theorem may be applied. The
preceding example is a special case of the so-called Kugelsatz which we shall
prove in Chapter VI.
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Figure II.2. A Hartogs figure for concentric polydiscs

Removable Singularities. Let G ⊂ Cn be a domain. If A ⊂ G is an
analytic set and f a holomorphic function on G−A that is locally bounded
along A, then by Riemann’s extension theorem f has a holomorphic extension
to G. If n ≥ 2 and A is a complex linear subspace of codimension greater
than or equal to 2, then every function holomorphic on G− A has such an
extension.

1.2 Theorem. Let Pn = Pn(0, 1) be the unit polydisk in Cn, n ≥ 2, k ≥ 2,
and

E := {z = (z1, . . . , zn) ∈ Cn : zn−k+1 = · · · = zn = 0}.
Then every holomorphic function f on Pn − E can be holomorphically ex-
tended to Pn.

Proof: Set P ′ := {z′ := (z1, . . . , zn−k) : |z′| < 1}, and for 0 < r ≤ 1
define P ′′

r := {z′′ = (zn−k+1, . . . , zn) : |z′′| < r}.

Let P ′′ := P ′′
1 and fix an ε with 0 < ε 	 1. Then Pn ∩E ⊂ P ′ × P ′′

ε , and for
w ∈ P ′ the function fw(z′′) := f(w, z′′) is holomorphic on P ′′ − P ′′

ε . From
the example above we know that fw has a holomorphic extension f̂w to P ′′.
Now define f̂ : Pn → C by f̂(w, z′′) := f̂w(z′′). On Pn − E, f̂ is equal to f
and is therefore holomorphic.

For w ∈ P ′ take a small open neighborhood U = U(w) ⊂⊂ P ′. Then K :=
U × ∂P ′′

ε is compact. By the maximum principle we conclude that∣∣ f̂(z′, z′′)
∣∣ =

∣∣ f̂z′(z′′)
∣∣ ≤ ‖fz′′‖∂P ′′

ε
≤ ‖f‖K < ∞, for (z′, z′′) ∈ U ×P ′′

ε −E.

From Riemann’s extension theorem it follows that f̂ is holomorphic on Pn.
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1.3 Corollary. For n ≥ 2, every isolated singularity of a holomorphic func-
tion of z1, . . . , zn is removable.

Riemann’s extension theorem is false if we drop the condition “f bounded
along the analytic set.” For example, let G ⊂ Cn be a domain, g : G → C a
holomorphic function, and let f : G−N(g) → C be defined by f(z) := 1/g(z).
Then f is holomorphic on G−N(g) but cannot be extended to any point of
N(g).

Things look quite different if there is a little hole in the hypersurface:

1.4 Proposition. Let n ≥ 2, G0 ⊂ Cn−1 a domain, g : G0 → C a contin-
uous function, and Γ := {z = (z′, zn) ∈ G0 × C : zn = g(z′)} the graph of
g in G := G0 × C. In addition, let z0 be a point of Γ and U = U(z0) ⊂ G a
small neighborhood.

If f is a holomorphic function on (G−Γ)∪U , then f has a unique holomorphic
extension to G.

Proof: The uniqueness of the extension follows from the identity theorem.
For the proof of existence (which is only a local problem) we may assume
that G0 = {z′ ∈ Cn−1 : |z′| < 1} and that there is a q with 0 < q < 1 such
that |g(z′)| < q for z′ ∈ G0. It also may be assumed that U is connected.
Then it is clear that G′ := (G− Γ) ∪ U ⊂ Pn = Pn(0, 1) is connected.

Since g : z′ �→ (z′, g(z′)) is continuous, U ′ := g−1(U) is an open neighborhood
of z′

0 with (U ′ × D) ∩ Γ ⊂ U and therefore U ′ × D ⊂ G′. For ν = 1, . . . , n− 1
let Tν be the automorphism of D defined by

Tν(ζ) :=
ζ − z(0)

ν

z(0)
ν ζ − 1

.

Then h : Pn → Pn with h(z1, . . . , zn) := (T1(z2), . . . , Tn−1(zn), z1) is holo-
morphic, h(0) = (z′

0, 0), and h({z ∈ Pn : |z1| > q}) ⊂ {w ∈ Pn : |wn| > q}.

|z′|

|zn|
q

U

Γ

z′
0

H̃

Figure II.3. Extending a holomorphic function across a hypersurface
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We define q1 := q, and for ν = 2, . . . , n choose qν such that

h(D × Dq2(0) × · · · × Dqn(0)) ⊂ U ′ × D.

Then (Pn,H) with H := {z ∈ Pn : |z1| > q1 or |zν | < qν for ν = 2, . . . , n}
is a Euclidean Hartogs figure, and

(
P̃ , H̃

)
= (Pn,h(H)) is a general Hartogs

figure, with H̃ ⊂ G′ (see Figure II.3). Since P̃ ∩ G′ = G′ is connected, the
proposition follows from the continuity theorem.

The Continuity Principle. Sometimes we wish to use a family of
analytic disks instead of a Hartogs figure.

Definition. A family of analytic disks is given by a continuous map
ϕ : D × [0, 1] → Cn such that ϕt(ζ) := ϕ(ζ, t) is holomorphic in D,
for every t ∈ [0, 1]. The set St := ϕt(D) is called an analytic disk, and
bSt := ϕt(∂D) its boundary.

Observe that in general bSt is not the topological boundary of St.

Definition. A domain G ⊂ Cn is said to satisfy the continuity prin-
ciple if for any family {St, t ∈ [0, 1]} of analytic disks in Cn with⋃

0≤t≤1 bSt ⊂ G and S0 ⊂ G, it follows that
⋃

0≤t≤1 St ⊂ G.

Example

Let Pn be the unit polydisk and {St, t ∈ [0, 1]} a family of analytic disks
in Cn with

⋃
0≤t≤1 bSt ⊂ Pn and S0 ⊂ Pn. Because S0 and the union of all

boundaries bSt are compact sets, there is an ε > 0 such that⋃
0≤t≤1

bSt ⊂ Pn(0, 1 − ε) and S0 ⊂ Pn(0, 1 − ε).

We assume that
⋃

0≤t≤1 St is not contained in Pn, and define

t0 := inf{t ∈ [0, 1] : St 
⊂ Pn}.
It is clear that t0 > 0, St0 
⊂ Pn, and St ⊂ Pn for 0 ≤ t < t0. Then St0

contains a point z0 =
(
z(0)
1 , . . . , z(0)

n

) ∈ ∂Pn. If the family of analytic disks is
given by the map ϕ : D × [0, 1] → Cn, and wµ denotes the µth coordinate
function, then fµ,t(ζ) := wµ ◦ ϕ(ζ, t) is continuous on D and holomorphic in
D. Choosing µ such that |z(0)

µ | = 1, there is a ζ0 ∈ D with fµ,t0(ζ0) = z(0)
µ and

|fµ,t0(ζ0)| = 1. But by the maximum principle we have

|fµ,t(ζ0)| ≤ sup
∂D

|fµ,t| ≤ 1 − ε, for t < t0.

Since t �→ fµ,t(ζ0) is continuous, a contradiction is reached, and therefore Pn

satisfies the continuity principle.
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Hartogs Convexity.

Definition. A domain G ⊂ Cn is called Hartogs convex if the following
holds: If

(
P̃ , H̃

)
is a general Hartogs figure with H̃ ⊂ G, then P̃ ⊂ G.

An immediate consequence of the definition is the following:

The biholomorphic image of a Hartogs convex domain is again Hartogs
convex.

1.5 Theorem. Let G ⊂ Cn be a domain that satisfies the continuity prin-
ciple. Then G is Hartogs convex.

Proof: Let
(
P̃ , H̃

)
be a general Hartogs figure with H̃ ⊂ G. We assume

that it is the biholomorphic image (g(Pn), g(H)) of a Euclidean Hartogs figure
(Pn,H) with

H = {z : |z1| > q1 or |zµ| < qµ for µ = 2, . . . , n}.

In order to define analytic disks we choose some r with q1 < r < 1 and
introduce the affine analytic disks

Dw := {z = (z1, z′′) ∈ Pn = P ′ × P ′′ : |z1| < r and z′′ = w}.

Since Dw ⊂ Pn for every w ∈ P ′′, we can define ϕw : D × [0, 1] → Cn by
setting ϕw(ζ, t) := g(rζ, tw). Then a family {St(w) : 0 ≤ t ≤ 1} of analytic
disks in P̃ is given by

St(w) := ϕw(D × {t}) = g(Dtw).

It follows that bSt(w) ⊂ G for every w ∈ P ′′ and every t ∈ [0, 1], and in
addition, S0(w) = g(D0) ⊂ G. The situation is illustrated in Figure II.4.

|z1|

z′′

�w
St(w) bSt(w)

Figure II.4. Analytic disks in a Hartogs figure
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Since G satisfies the continuity principle, we obtain that g(Dw) = S1(w) is
contained in G. This is valid for every w ∈ P ′′. Therefore, P̃ ⊂ G, and G is
Hartogs convex.

1.6 Corollary. The unit polydisk Pn is Hartogs convex.

Domains of Holomorphy

Definition. Let G ⊂ Cn be a domain, f holomorphic in G, and z0 ∈
∂G a point. The function f is called completely singular at z0 if for
every connected neighborhood U = U(z0) ⊂ Cn and every connected
component C of U ∩G there is no holomorphic function g on U for which
g|C = f |C .

Example

Let G := C − {x ∈ R : x ≤ 0} and let f be a branch of the logarithm on
G. Then f is completely singular at z = 0 but not at any point x ∈ R with
x < 0.

Definition. A domain G ⊂ Cn is called a weak domain of holomorphy
if for every point z ∈ ∂G there is a function f ∈ O(G) that is completely
singular at z.

The domain G is called a domain of holomorphy if there is a function
f ∈ O(G) that is completely singular at every point z ∈ ∂G.

Examples

1. Since Cn has no boundary point, it trivially satisfies the requirements of
a domain of holomorphy.

2. It is easy to see that every domain G ⊂ C is a weak domain of holomor-
phy: If z0 is a point in ∂G, then f(z) := 1/(z − z0) is holomorphic in G
and completely singular at z0.

For G = D we can show even more! The function f(z) :=
∑∞

ν=0 z
ν! is

holomorphic in the unit disk and becomes completely singular at any
boundary point. Therefore, D is a domain of holomorphy. At the end of
this chapter we will see that every domain in C is a domain of holomorphy.

3. If f : D → C is a holomorphic function that becomes completely singular
at every boundary point, then the same is true for f̂ : Pn = D×· · ·×D →
C, defined by f̂(z1, . . . , zn) := f(z1)+· · ·+f(zn). In fact, if z0 is a bound-
ary point of Pn, then there exists an i such that the ith component z(0)

i is
a boundary point of D. If f̂ could be extended holomorphically across z0,
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then f̂i(ζ) := f̂(z(0)
1 , . . . , ζ, . . . , z(0)

n ) would also have a holomorphic ex-
tension. But then f could not be completely singular at z(0)

i . Therefore,
the unit polydisk is a domain of holomorphy.

4. If (Pn,H) is a Euclidean Hartogs figure, then H is not a domain of holo-
morphy.

1.7 Proposition. Let G ⊂ Cn be a domain. If for every point z0 ∈ ∂G
there is an open neighborhood U = U(z0) ⊂ Cn and a holomorphic function
f : G ∪ U → C with f(z0) = 0 and f(z) 
= 0 for z ∈ G, then G is a weak
domain of holomorphy.

Proof: We show that 1/f is completely singular at z0. For this assume that
there is a connected open neighborhood V = V (z0), a connected component
C ⊂ V ∩ G, and a holomorphic function F on V with F |C = (1/f)

∣∣
C

.
The set V ′ := V − N(f) is still connected and contains C. By the identity
theorem the functions F and 1/f must coincide in V ′. Then F is clearly not
holomorphic at z0. This is a contradiction.

1.8 Corollary. Every convex domain in Cn is a weak domain of holomor-
phy.

Proof: If z0 ∈ ∂G, then because of the convexity there is a real linear
form λ on Cn with λ(z) < λ(z0) for z ∈ G. We can write λ in the form

λ(z) =
n∑

ν=1

ανzν +
n∑

ν=1

ανzν , with α := (α1, . . . , αn) 
= 0.

So λ = Reh(z), where h(z) := 2 · ∑n
ν=1 ανzν is holomorphic on Cn.

Since the function f(z) := h(z)−h(z0) is holomorphic on Cn, f(z0) = 0, and
f(z) 
= 0 on G, the proposition may be applied.

We will show that every weak domain of holomorphy is Hartogs convex. As
a tool we need the following simple geometric lemma, which will be useful in
other situations as well.

1.9 Lemma (on boundary components). Let G ⊂ Cn be a domain,
U ⊂ Cn an open set with U ∩G 
= ∅ and (Cn − U) ∩G 
= ∅.

Then G ∩ ∂C ∩ ∂U 
= ∅ for any connected component C of U ∩G.

Proof: We choose points z1 ∈ C ⊂ U ∩G and z2 ∈ (Cn − U) ∩G. There
is a continuous path γ : [0, 1] → G with γ(0) = z1 and γ(1) = z2. Let
t0 := sup{t ∈ [0, 1] : γ(t) ∈ C} and z0 := γ(t0). Clearly, z0 ∈ ∂C ∩ G,
but z0 
∈ C. Since C is a connected component of U ∩ G, z0 cannot lie in
U ∩G and therefore even not in U . Since γ(t) ∈ U for t < t0, it follows that
z0 ∈ ∂U .
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1.10 Theorem. Let G ⊂ Cn be a weak domain of holomorphy. Then G is
Hartogs convex.

Proof: Assume that G is not Hartogs convex. Then there is a general
Hartogs figure (P,H) with H ⊂ G but P ∩ G 
= P . We choose an arbitrary
z0 in H and set C := CP∩G(z0).1 Since H lies in P ∩G and is connected, it
follows that H ⊂ C. Furthermore, C � P .

Since P ∩ G 
= ∅ and (Cn − G) ∩ P 
= ∅, by the lemma there is a point
z1 ∈ ∂C ∩ ∂G ∩ P (see Figure II.5).

�

z1
�

z0

H

GP

Figure II.5. G is not Hartogs convex

Let f be an arbitrary holomorphic function in G. Then f |C is also holomor-
phic, and by the continuity theorem it has a holomorphic extension F on P .
Since P is an open connected neighborhood of z1, we obtain that f is not
completely singular at z1. This completes the proof by contradiction.

It follows, for example, that every convex domain is Hartogs convex. As a
consequence, we see that every ball is Hartogs convex.

1.11 Theorem. Every domain of holomorphy is Hartogs convex.

The proof is trivial.

For the converse of this theorem one has to construct on any Hartogs convex
domain a global holomorphic function that becomes completely singular at
every boundary point, something that is rather difficult. It was done in 1910
by E.E. Levi in very special cases. The general case is called Levi’s problem.

In 1942 K. Oka gave a proof for n = 2. At the beginning of the 1950s Oka,
Bremermann, and Norguet solved Levi’s problem for arbitrary n. It was gen-
1 We denote by CM (z) the connected component of M containing z.
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eralized for complex manifolds (H. Grauert, 1958) and complex spaces (R.
Narasimhan, 1962). Finally, in 1965 L. Hörmander published a proof that
used Hilbert space methods and partial differential equations.

Exercises

1. Prove the following statements:
(a) Finite intersections of Hartogs convex domains are Hartogs convex.
(b) If G1 ⊂ G2 ⊂ G3 ⊂ · · · is an ascending chain of Hartogs convex

domains, then the union of all Gi is also Hartogs convex.
2. Let G ⊂ Cn be a domain, 0 ≤ r < R, and a ∈ G a point. Let U = U(a) ⊂
G be an open neighborhood and define Q := {w ∈ Cm : r < |w| < R}.
Prove that every holomorphic function on (G×Q) ∪ (U × Pm(0, R)) has
a unique holomorphic extension to G× Pm(0, R).

3. Let 0 < r < R be given. Use Hartogs figures to prove that every holo-
morphic function on BR(0) − Br(0) has a unique holomorphic extension
to the whole ball BR(0).

4. For ε ≥ 0, consider the domain

Gε := {(z, w) ∈ P2(0, 1) : |z| < |w|2 + ε}.

Prove that Gε is Hartogs convex if and only if ε = 0.
5. Let G ⊂ Cn be a domain and f : G → DR(0) ⊂ C a function, Γ =

{(z, w) ∈ G × DR(0) : w = f(z)} its graph. Sow that if there is a
holomorphic function F in G×DR(0) that is completely singular at every
point of Γ, then f is continuous. (With more effort one can show that f
is holomorphic.)

6. Show that the “Hartogs triangle” {(z, w) ∈ C2 : |w| < |z| < 1} is a weak
domain of holomorphy.

2. Plurisubharmonic Functions
Subharmonic Functions. Recall some facts from complex analysis of
one variable. A twice differentiable real-valued function h on a domain G ⊂ C
is called harmonic if hzz(z) ≡ 0 on G. The real part of a holomorphic function
is always harmonic, and on an open disk every harmonic function is the real
part of some holomorphic function.

If D = Dr(a) ⊂ C is an open disk and β : R → R a continuous periodic
function with period 2π, then there is a continuous function h : D → R that
is harmonic on D such that h(reit) = β(t) for every t (Dirichlet’s principle).

An upper semicontinuous function ϕ : G → R ∪ {−∞} is said to satisfy the
weak mean value property if the following holds:

For every a ∈ G there is an r > 0 with Dr(a) ⊂⊂ G and
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ϕ(a) ≤ 1
2π

∫ 2π

0
ϕ(a+ �eit) dt for 0 < � ≤ r.

Remarks

1. If ϕ : G → R ∪ {−∞} is an upper semicontinuous function, then the sets
Uν := {z ∈ G : ϕ(z) < ν} are open, and therefore ϕ is bounded from
above on every compact subset K ⊂ G. It follows that the integral in the
definition always exists.

2. Harmonic functions satisfy the weak mean value property (even the
stronger mean value property with “=” instead of “≤”).

3. If f : G → C is a nowhere identically vanishing holomorphic function,
then log|f | satisfies the weak mean value property. In fact, the function
ϕ := log|f | is harmonic on G − N(f), because it can be written locally
as Re(log f), with a suitable branch of the logarithm. And at any point
z0 ∈ N(f) we have ϕ(z0) = −∞, so the inequality of the weak mean
value property is satisfied.

2.1 Proposition. Let ϕ : G → R satisfy the weak mean value property. If
ϕ has a global maximum in G, then ϕ is constant.

Proof: Let a ∈ G be any point with c := ϕ(a) ≥ ϕ(z) for z ∈ G. We
choose an r > 0 such that

Dr(a) ⊂⊂ G and ϕ(a) ≤ 1
2π

∫ 2π

0
ϕ(a+ �eit) dt for 0 < � ≤ r.

Assume that there is a b ∈ Dr(a) with ϕ(b) < ϕ(a). We write b = a + �eit0

and get

ϕ(a) ≤ 1
2π

∫ 2π

0
ϕ(a+ �eit) dt <

1
2π

∫ 2π

0
ϕ(a) dt = ϕ(a).

This is a contradiction, so ϕ must be constant on Dr(a). Now we define the
set M := {z ∈ G : ϕ(z) = c}. Obviously, M is closed in G and not empty,
and we just showed that M is open. So M = G, and ϕ is constant.

Definition. Let G ⊂ C be a domain. A function s : G → R ∪ {−∞}
is called subharmonic if the following hold:
1. s is upper semicontinuous on G.
2. If D ⊂⊂ G is a disk, h : D → R continuous, h|D harmonic, and h ≥ s

on ∂D, then h ≥ s on D.

2.2 Proposition. Let sν : G → R ∪ {−∞} be a monotonically decreasing
sequence of subharmonic functions. Then s := limν→∞ sν is subharmonic.
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Proof: The limit s = limν→∞ sν = inf{sν} is upper semicontinuous. Let
D ⊂⊂ G be a disk, h : D → R continuous and harmonic on D, with s ≤ h
on ∂D. For fixed ε we consider the compact sets

Kν := {z ∈ ∂D : sν(z) ≥ h(z) + ε}.
Then Kν+1 ⊂ Kν and

⋂∞
ν=1Kν = ∅. Therefore, there is a ν0 ∈ N with

Kν = ∅ for ν ≥ ν0. This means that for ν ≥ ν0, sν < h + ε on ∂D, and
therefore the same is true on D. Since the sν are decreasing, s < h+ ε on D.
This holds for every ε > 0, and consequently s ≤ h on D.

2.3 Proposition. Let (sα)α∈A be a family of subharmonic functions on
G. If s := sup sα ist upper semicontinuous and finite everywhere, then s is
subharmonic.

Proof: If s ≤ h on ∂D, where D ⊂⊂ G and h : D → R is continuous
and harmonic on D, then sα ≤ h on ∂D for every α ∈ A. Since the sα are
subharmonic, it follows that sα ≤ h on D for every α ∈ A. But then s ≤ h
on D as well.

Examples

1. Clearly, every harmonic function is subharmonic.
2. Let s : G → R be a continuous subharmonic function such that −s is also

subharmonic. Then s is harmonic. To show this, we look at an arbitrary
point a ∈ G and choose an r > 0 such that D := Dr(a) ⊂⊂ G. Then there
is a continuous function h : D → R with h|∂D = s|∂D that is harmonic
on D (Dirichlet’s principle). It follows that s ≤ h on D. But because −h
is also harmonic, we have −s ≤ −h on D as well. Together this gives
s = h on D.

3. Let f : G → C be a holomorphic function. Then s := log|f | is subhar-
monic. In fact, if f(z) ≡ 0 on G, then we have s(z) ≡ −∞, and there is
nothing to prove. Otherwise, s is harmonic on G − N(f), and we have
only to look at an isolated zero a of f . We choose D = Dr(a) ⊂⊂ G and
a function h that is continuous on D and harmonic on D, with s ≤ h
on ∂D. We know that s, and therefore also s − h, has the weak mean
value property on D, and it is certainly not constant. So it must take its
maximum on the boundary ∂D. This means that s ≤ h on D.

4. Let G ⊂ C be an arbitrary domain. The boundary distance δG : G →
R+ ∪ {+∞} is defined by

δG(z) := sup{r ∈ R : Dr(z) ⊂ G}.
Claim: s := − log δG is subharmonic on G.

Proof: If G = C, then s(z) ≡ −∞ and there is nothing to prove.
If G 
= C, then s is real-valued and continuous. For w ∈ ∂G we define
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sw : G → R by setting sw(z) := − log|z − w|. Then s(z) = sup{sw(z) :
w ∈ ∂G}. By Proposition 2.3 the claim follows.

The Maximum Principle

2.4 Theorem. Let s : G → R ∪ {−∞} be a subharmonic function on a
domain G ⊂ C. If s takes its maximum on G, then it must be constant.

Proof: Assume that c := s(a) ≥ s(z) for every z ∈ G. As in the case of
functions that have the weak mean value property it suffices to show that s
is constant in a neighborhood of a. If this is not the case, there is a small disk
D = Dr(a) ⊂⊂ G and b ∈ ∂D with s(a) > s(b). Since s is upper semicontin-
uous, there is a continuous function h on ∂D with s ≤ h ≤ c and h(b) < c.
Solving Dirichlet’s problem we can construct a harmonic continuation of h
on D. Now

h(a) =
1
2π

∫ 2π

0
h(a+ reit) dt < c = s(a).

This is a contradiction.

For later use we give the following criterion for a function to be subharmonic:

2.5 Theorem. Let G ⊂ C be a domain and s : G → R ∪ {−∞} an upper
semicontinuous function. Suppose that for every disk D ⊂⊂ G and every
function f ∈ O(D) with s < Re(f) on ∂D it follows that s < Re(f) on D.
Then s is subharmonic.

Proof: Let D = Dr(a) ⊂⊂ G, h : D → R continuous and harmonic on D,
and s ≤ h on ∂D. For simplicity we assume a = 0.

For ν ∈ N, a harmonic function hν on Dν := D(ν/(ν−1))r(0) ⊃ D is given by

hν(z) := h
((

1 − 1
ν

)
z
)
.

Then (hν) converges on D uniformly, increasing monotonically to h. Further-
more, for every ν there is a holomorphic function fν on Dν with Re(fν) = hν .

Let ε > 0 be given. Then there is a ν0 such that |h− hν | < ε on D for ν ≥ ν0.
Therefore, s < hν + ε = Re(fν + ε) on ∂D for ν ≥ ν0. By definition it follows
that s < hν + ε on D. Since (hν) is increasing, it follows that s < h+ ε and
therefore s ≤ h on D.

Differentiable Subharmonic Functions

2.6 Lemma. Let s : G → R be a C 2 function such that szz > 0 on G. Then
s is subharmonic.
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Proof: Let D = Dr(a) ⊂⊂ G and let a continuous function h : D → R be
given such that h is harmonic on D and s ≤ h on ∂D. We define ϕ := s− h.

Assume that ϕ takes its maximum at some interior point z0 of D. Then we
look at the Taylor expansion of ϕ at z0 in a small neighborhood about z0:

ϕ(z0 + z) = ϕ(z0) + 2 ReQ(z) + ϕzz(z0)zz +R(z),

where Q(z) := ϕz(z0)z + 1
2ϕzz(z0)z2 is holomorphic and R(z)/|z|2 → 0 for

z → 0. The function ψ(z) := 2 ReQ(z) is harmonic, with ψ(0) = 0. Since
it cannot assume a maximum or a minimum, it must have zeros arbitrarily
close to but not equal to 0. On the other hand, ϕ(z0 + z) − ϕ(z0) ≤ 0 and
ϕzz(z0)zz > 0 outside z = 0. This is a contradiction. Thus ϕ must assume
its maximum on the boundary of D, and s ≤ h on D.

2.7 Theorem. Let s : G → R be a C 2 function. Then s is subharmonic if
and only if szz ≥ 0 on G.

Proof: (a) Let szz(z) ≥ 0 for every z ∈ G. Then we define sν on G by
setting sν := s + (1/ν)zz. Obviously, (sν)zz = szz + (1/ν) > 0. Then sν

is subharmonic by the above lemma. Since (sν) converges, monotonically
decreasing, to s, it follows that s is subharmonic.

(b) Let s be subharmonic on G. We assume that szz(a) < 0 for some a ∈ G.
Then there is a connected open neighborhood U = U(a) ⊂ G such that
szz < 0 on U . By the lemma it follows that −s is subharmonic on U . Then
s must be harmonic on U . So szz(a) = 0, contrary to assumption.

Plurisubharmonic Functions. We return to the study of domains in
arbitrary dimensions. Let G ⊂ Cn be a domain and (a,w) a tangent vector
at a ∈ G. We use the holomorphic mapping αa,w : C → Cn defined by
αa,w(ζ) := a + ζw.

Definition. Let G ⊂ Cn be a domain. An upper semicontinuous func-
tion p : G → R ∪ {−∞} is called plurisubharmonic on G if for every
tangent vector (a,w) in G the function

pa,w(ζ) := p ◦ αa,w(ζ) = p(a + ζw)

is subharmonic on the connected componentG(a,w) of the set α−1
a,w(G) ⊂

C containing 0.

Remarks

1. Plurisubharmonicity is a local property.
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2. If f ∈ O(G), then log|f | is plurisubharmonic.
3. If p1, p2 are plurisubharmonic, then so is p1 + p2.
4. If p is plurisubharmonic and c > 0, then c · p is plurisubharmonic.
5. If (pν) is a monotonically decreasing sequence of plurisubharmonic func-

tions, then p := limν→∞ pν is also plurisubharmonic.
6. Let (pα)α∈A be a family of plurisubharmonic functions. If p := sup(pα)

is upper semicontinuous and finite, then it is also plurisubharmonic.
7. If a plurisubharmonic function p takes its maximum at a point of the

domain G, then p is constant on G.

The Levi Form

Definition. Let U ⊂ Cn be an open set, f ∈ C 2(U ; R), and a ∈ U .
The quadratic form2 Lev(f) : Ta → R with

Lev(f)(a,w) :=
∑
ν,µ

fzνzµ(a)wνwµ

is called the Levi form of f at a.

Obviously, Lev(f) is linear in f .

Examples

1. In the case n = 1 we have Lev(s)(a,w) = szz(a)ww. So s is subharmonic
if and only if Lev(s)(a,w) ≥ 0 for every a ∈ G and w ∈ C.

2. Let f(z) := ‖z‖2 =
∑n

i=1 zizi. Then Lev(f)(a,w) = ‖w‖2 for every a.
3. If f ∈ C 2(U ; R) and � : R → R is twice continuously differentiable, then

Lev(� ◦ f)(a,w) = �′′(f(a)) · |(∂f)a(w)|2 + �′(f(a)) · Lev(f)(a,w).

4. If F : U → V ⊂ Cm is a holomorphic map and g ∈ C 2(V ; R), then

Lev(g ◦ F)(a,w) = Lev(g)(F(a),F′(a)(w)).

5. For f ∈ C 2(U ; R) the Taylor expansion at a ∈ U gives

f(z) = f(a) + 2 Re(Qf (z − a)) + Lev(f)(a, z − a) +R(z − a),

where Qf (w) =
∑n

ν=1 fzν (a)wν + 1
2

∑
ν,µ fzνzµ(a)wνwµ is a holomorphic

quadratic polynomial, and

lim
z→a

R(z − a)
‖z − a‖2 = 0.

2 If H : T × T → C is a Hermitian form on a complex vextor space, then the
associated quadratic form Q : V → R is given by Q(v) := H(v, v).
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2.8 Theorem. A function f ∈ C 2(U ; R) is plurisubharmonic if and only if
Lev(f)(a,w) ≥ 0 for every a ∈ U and every w ∈ Ta.

Proof: Let (a,w) be a tangent vector in G and α := αa,w. Then f ◦α(0) =
f(a) and

(f ◦ α)ζζ(0) = Lev(f ◦ α)(0, 1) = Lev(f)(a,w).

Now, f is plurisubharmonic if and only if f ◦α is subharmonic near 0 for any
α = αa,w. Equivalently, (f ◦ α)ζζ(0) ≥ 0 for any such α. But this is true if
and only if Lev(f)(a,w) ≥ 0 for any tangent vector (a,w) in G.

2.9 Corollary. Let G1 ⊂ Cn and G2 ⊂ Cm be domains, F : G1 → G2
a holomorphic map, and g ∈ C 2(G1; R) plurisubharmonic. Then g ◦ F is
plurisubharmonic on G1.

Proof: This is trivial, because of the formula in Example 4 above.

Exhaustion Functions. For every domain G ⊂ C the function − log δG
is subharmonic. In higher dimensions it is in general not true that this func-
tion is plurisubharmonic for every domain G.

Definition. Let G ⊂ Cn be a domain. A nonconstant continuous func-
tion f : G → R is called an exhaustion function for G if for c < supG(f)
all sublevel sets

Gc(f) := {z ∈ G : f(z) < c}
are relatively compact in G.

Example

ForG = Cn, the function f(z) := ‖z‖2 is an exhaustion function. ForG 
= Cn,
we define the boundary distance δG by

δG(z) := dist(z,Cn −G).

Then −δG is a bounded, and − log δG an unbounded, exhaustion function.
We only have to show that δG is continuous:

For every point z ∈ G there is a point r(z) ∈ Cn −G such that

δG(z) = dist(z, r(z)) ≤ dist(z,w) for every w ∈ Cn −G.

Then for two arbitrary points u,v ∈ G we have
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δG(u) = ‖u − r(u)‖ ≤ ‖u − r(v)‖ ≤ ‖u − v‖ + δG(v),
and in the same way δG(v) ≤ ‖u − v‖ + δG(u).

Therefore, |δG(u) − δG(v)| ≤ ‖u − v‖.

Definition. A function f ∈ C 2(G; R) is called strictly plurisubhar-
monic if Lev(f)(a,w) > 0 for a ∈ G, w ∈ Ta, and w 
= 0.

For a proof of the following result we refer to [Ra86], Chapter II, Proposition
4.14.

2.10 Smoothing lemma. Let G ⊂ Cn be a domain, f : G → R a continu-
ous plurisubharmonic exhaustion function, K ⊂ G compact, and ε > 0. Then
there exists a C ∞ exhaustion function g : G → R such that:

1. g ≥ f on G.
2. g is strictly plurisubharmonic.
3. |g(z) − f(z)| < ε on K.

Exercises

1. Let G ⊂ C be a domain. Prove the following statements:
(a) If f : G → C is a holomorphic function, then |f |α is subharmonic for

α > 0.
(b) If u is subharmonic on G, then up is subharmonic for p ∈ N.
(c) Let u 
≡ −∞ be subharmonic on G. Then {z ∈ G : u(z) = −∞}

does not contain any open subset.
2. Let G ⊂ C be a domain, s 
≡ −∞ a subharmonic function on G, P :=

{z ∈ G : s(z) = −∞}. Show that if u is a continuous function on G and
subharmonic on G−A, then u is subharmonic on G.

3. Let U ⊂ Cn be open, f : U → Ck a holomorphic map, and A ∈ Mk(R) a
positive semidefinite matrix. Show that ϕ(z) := f(z) · A · f(z) t is pluri-
subharmonic.

4. LetG = {(z, w) ∈ C2 : |w| < |z| < 1} be the Hartogs triangle. Prove that
there does not exist any bounded plurisubharmonic exhaustion function
on G.

5. Are the following functions plurisubharmonic (respectively strictly pluri-
subharmonic)?

p1(z) := log(1 + ‖z‖2), for z ∈ Cn,

p2(z) := − log(1 − ‖z‖2), for ‖z‖ < 1,
p3(z) := ‖z‖2e− Re(zn), for z ∈ Cn.

6. Consider a domain G ⊂ Cn and a function f ∈ C 2(G). Prove that f is
strictly plurisubharmonic if and only if for every open set U ⊂⊂ G there
is an ε > 0 such that f(z) − ε‖z‖2 is plurisubharmonic on U .



60 II. Domains of Holomorphy

3. Pseudoconvexity
Pseudoconvexity

Definition. A domain G ⊂ Cn is called pseudoconvex if there is a
strictly plurisubharmonic C ∞ exhaustion function on G.

Remarks

1. By the smoothing lemma the following is clear: If − log δG is plurisub-
harmonic, then G is pseudoconvex.

2. Pseudoconvexity is invariant under biholomorphic transformations.

3.1 Theorem. If G ⊂ Cn is a pseudoconvex domain, then G satisfies the
continuity principle.

Proof: Let p : G → R be a strictly plurisubharmonic exhaustion function.
Suppose that there exists a family {St : 0 ≤ t ≤ 1} of analytic disks given
by a continuous mapping ϕ : D × [0, 1] → Cn such that S0 ⊂ G and bSt ⊂ G
for every t ∈ [0, 1], but not all St are contained in G.

The functions p ◦ ϕt : D → G are subharmonic for every t with St ⊂ G. It
follows by the maximum principle that p|St ≤ maxbSt p for all those t.

We define t0 := inf{t ∈ [0, 1] : St 
⊂ G}. Then t0 > 0, St0 ⊂ G, and St0

meets ∂G in at least one point z0. We can find an increasing sequence (tν)
converging to t0 and a sequence of points zν ∈ Stν converging to z0. So
p(zν) → c0 := supG(p), but there is a c < c0 such that p|bSt ≤ c for every
t ∈ [0, 1]. This is a contradiction.

3.2 Corollary. If G is pseudoconvex, then G is Hartogs convex.

The Boundary Distance

3.3 Theorem. If G ⊂ Cn is a Hartogs convex domain, then − log δG is
plurisubharmonic on G.

Proof: For z ∈ G and u ∈ Cn with ‖u‖ = 1 we define

δG,u(z) := sup{t > 0 : z + τu ∈ G for |τ | ≤ t}.

Then δG(z) = inf{δG,u(z) : ‖u‖ = 1}, and it is sufficient to show that
− log δG,u is plurisubharmonic for fixed u.

(a) Unfortunately, δG,u does not need to be continuous, but it is lower semi-
continuous:
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Let z0 ∈ G be an arbitrary point and c < δG,u(z0). Then the compact set
K := {z = z0 + τu : |τ | ≤ c} is contained in G, and there is a δ > 0 such
that {z : dist(K, z) < δ} ⊂ G.

For z ∈ Bδ(z0) and |τ | ≤ c we have

‖(z + τu) − (z0 + τu)‖ = ‖z − z0‖ < δ, and therefore δG,u(z) ≥ c.

(b) The function − log δG,u is upper semicontinuous, and we have to show
that

s(ζ) := − log δG,u(z0 + ζb)

is subharmonic for fixed u, z0,b. First consider the case that u and b are
linearly dependent: b = λu, λ 
= 0.

Let G0 be the connected component of 0 in {ζ ∈ C : z0 + ζb ∈ G}. Then

δG,u(z0 + ζb) = sup{t > 0 : z0 + ζb + τu ∈ G for |τ | ≤ t}
= sup{t > 0 : ζ + τ/λ ∈ G0 for |τ | ≤ t}
= |λ| · sup{r > 0 : ζ + σ ∈ G0 for |σ| ≤ r}
= |λ| · δG0(ζ),

and this function is in fact subharmonic.

(c) Now assume that u and b are linearly independent. Since these vectors
are fixed, we can restrict ourselves to the following special situation:

n = 2, z0 = 0, b = e1, and u = e2.

Then s(ζ) = − log sup{t > 0 : (ζ, τ) ∈ G for |τ | ≤ t}. We use holomorphic
functions to show that s is subharmonic. Let R > r > 0 be real numbers such
that (ζ, 0) ∈ G for |ζ| < R, and let f : DR(0) → C be a holomorphic function
such that s < h := Re f on ∂Dr(0). We have to show that s < h on Dr(0).

We have the following equivalences:

s(ζ) < h(ζ) ⇐⇒ sup{t > 0 : (ζ, τ) ∈ G for |τ | ≤ t} > e−h(ζ)

⇐⇒ (
ζ, c · e−f(ζ)) ∈ G for c ∈ D.

(d) Define a holomorphic map F by

F(z1, z2) :=
(
rz1, z2e

−f(rz1)
)
.

Then F is well defined on a neighborhood of the unit polydisk P2 = P2(0, 1).
It must be shown that F(P2) ⊂ G. We already know the following:

1. F(z1, z2) ∈ G for |z1| = 1 and |z2| ≤ 1, because s(t) < h(t) on ∂Dr(0).
2. F(z1, 0) ∈ G for |z1| ≤ 1, because (ζ, 0) ∈ G for |ζ| ≤ r.
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These facts will be used to construct an appropriate Hartogs figure. First,
note that

JF(z1, z2) =
(
r 0
∗ e−f(rz1)

)
, so det JF(z1, z2) 
= 0.

By the inverse function theorem it follows that F is biholomorphic.

For 0 < δ < 1 we define hδ : C2 → C2 by hδ(z1, z2) := (z1, δz2) and apply hδ

to the compact set

C := {(z1, z2) ∈ C2 : (|z1| ≤ 1, z2 = 0) or (|z1| = 1, |z2| ≤ 1)} ⊂ P2 .

Consequently,

Cδ := hδ(C) = {(z1, z2) ∈ C2 : (|z1| ≤ 1, z2 = 0) or (|z1| = 1, |z2| ≤ δ)}.
Then F(Cδ) ⊂ G, as we saw above, and therefore Cδ ⊂ F−1(G).

For 0 < ε < min(δ, 1 − δ) we define a neighborhood Uε of Cδ by Uε :=

{(z1, z2) ∈ C2 : (|z1| < 1+ε, |z2| < ε) or (1−ε < |z1| < 1+ε, |z2| < δ+ε)}.
If we choose ε small enough, then Uε ⊂ F−1(G).

Finally, we define Hε := h−1
δ (Uε ∩ P2) ∩ P2 (see Figure II.6). Then

Hε = {(z1, z2) ∈ P2 : (z1, δz2) ∈ Uε ∩ P2}
=

{
(z1, z2) ∈ C2 :

(|z1| < 1, |z2| < ε

δ

)
or (1 − ε < |z1| < 1, |z2| < 1)

}
.

|z1|

|z2|

C

Hε

1 − ε

ε/δ

|z1|

|z2|

�δ

Cδ

Uε

ε

Figure II.6. Construction of the Hartogs figure

Since (P2,Hε) is a Euclidean Hartogs figure, (F ◦ hδ(P2),F ◦ hδ(Hε)) is a
general Hartogs figure with F◦hδ(Hε) ⊂ F(Uε ∩P2) ⊂ G. Since G is Hartogs
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pseudoconvex, it follows that F ◦ hδ(P2) ⊂ G. This is valid for every δ < 1.
But P2 =

⋃
0<δ<1 hδ(P2). Therefore, F(P2) ⊂ G, which was to be shown.

3.4 Theorem. The following properties of a domain G ⊂ Cn are equivalent:

1. G satisfies the continuity principle.
2. G is Hartogs pseudoconvex.
3. − log δG is plurisubharmonic on G.
4. G is pseudoconvex.

Proof:

(1) =⇒ (2) is Theorem 1.5,
(2) =⇒ (3) is Theorem 3.3,
(3) =⇒ (4) follows from the smoothing lemma,
(4) =⇒ (1) was proved in Theorem 3.1.

Properties of Pseudoconvex Domains

3.5 Theorem. If G1, G2 ⊂ Cn are pseudoconvex domains, then G1 ∩G2 is
pseudoconvex.

Proof: The statement is trivial if one uses Hartogs pseudoconvexity.

3.6 Theorem. Let G1 ⊂ G2 ⊂ . . . ⊂ Cn be an ascending chain of pseudo-
convex domains. Then G :=

⋃∞
ν=1Gν is again pseudoconvex.

Proof: This follows immediately from the continuity principle.

3.7 Theorem. A domain G ⊂ Cn is pseudoconvex if and only if there is an
open covering (Uι)ι∈I of G such that Uι ∩G is pseudoconvex for every ι ∈ I.

Proof:

“ =⇒ ” is trivial. The other direction will be proved in two steps. At first, we
assume that G is bounded.

For any point z0 ∈ ∂G there is an open set Uι such that z0 ∈ Uι and G ∩ Uι

is pseudoconvex. If we choose a neighborhood W = W (z0) ⊂ Uι so small
that dist(z, ∂Uι) > dist(z, z0) for every z ∈ W ∩G, then δG(z) = δG∩Uι(z) on
W ∩G. This shows that there is an open neighborhood U = U(∂G) such that
− log δG is plurisubharmonic on U ∩G (we use the fact that ∂G is compact).
Now, G− U ⊂⊂ G. We define
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c := sup{− log δG(z) : z ∈ G− U},

and
p(z) := max

(− log δG(z), ‖z‖2 + c+ 1
)
.

Then p is a plurisubharmonic exhaustion function, and by the smoothing
lemma, G is pseudoconvex.

If G is unbounded, we write it as an ascending union of the domains
Gν := Bν(0) ∩ G. Each Gν is bounded and satisfies the hypothesis, so is
pseudoconvex. Then G is also a pseudoconvex domain.

Exercises

1. Suppose that G1 ⊂ Cn and G2 ⊂ Cm are domains.
(a) Show that if G1 and G2 are pseudoconvex, then G1 ×G2 is a pseu-

doconvex domain in Cn+m

(b) Show that if there is a proper holomorphic map f : G1 → G2 and G2
is pseudoconvex, then G1 is also pseudoconvex.

2. Let G ⊂ Cn be a domain and � : G → R a lower semicontinuous positive
function. Prove that

Ĝ := {(z′, w) ∈ G× C : |w| < �(z′)}

is pseudoconvex if and only if − log � is plurisubharmonic.
3. A domain G ⊂ Cn is pseudoconvex if and only if for every compact set
K ⊂ G the set

K̂pl :=
{
z ∈ G : p(z) ≤ sup

K
p for all plurisubharmonic functions p on G

}
is relatively compact in G.

4. Levi Convex Boundaries
Boundary Functions

Definition. Let G ⊂ Cn be a domain. The boundary of G is called
smooth at z0 ∈ ∂G if there is an open neighborhood U = U(z0) ⊂ Cn

and a function � ∈ C ∞(U ; R) such that:
1. U ∩G = {z ∈ U : �(z) < 0}.
2. (d�)z 
= 0 for z ∈ U .

The function � is called a local defining function (or boundary function).

Remark. Without loss of generality we may assume that �yn 
= 0. Then
by the implicit function theorem there are neighborhoods
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U ′ of (z′
0, x

(0)
n ) =

(
z(0)
1 , . . . , z(0)

n−1, x
(0)
n

) ∈ Cn−1 × R, U ′′ of y(0)
n ∈ R,

and a C ∞ function γ : U ′ → U ′′ such that {(z′, xn, yn) ∈ U ′×U ′′ : �(z′, xn+
iyn) = 0} = {(z′, xn, γ(z′, xn)) : (z′, xn) ∈ U ′}.

Making the neighborhood U := {(z′, xn + iyn) : (z′, xn) ∈ U ′ and yn ∈ U ′′}
small enough and correcting the sign if necessary, one can achieve that

U ∩G = {(z′, xn + iyn) ∈ U : yn < γ(z′, xn)}.

In particular, U ∩ ∂G = {z ∈ U : �(z) = 0} is a (2n − 1)-dimensional
differentiable submanifold of U .

4.1 Lemma. Let ∂G be smooth at z0, and let �1, �2 be two local defining
functions on U = U(z0). Then there is a C ∞ function h on U such that:

1. h > 0 on U .
2. �1 = h · �2 on U .
3. (d�1)z = h(z) · (d�2)z for z ∈ U ∩ ∂G.

Proof: Define h := �1/�2 on U − ∂G. After a change of coordinates, we
have z0 = 0 and �2 = yn. Then g(t) := �1(z′, xn + it) is a smooth function
that vanishes at t = 0. Therefore,

�1(z′, zn) = g(yn) − g(0)

=
∫ yn

0
g′(s) ds = yn ·

∫ 1

0
g′(tyn) dt

= �2(z′, xn + iyn) · h(z′, zn),

where

h(z′, xn + iyn) =
∫ 1

0

∂�1

∂yn
(z′, xn + ityn) dt

is smooth.

For z ∈ ∂G we have (d�1)z = h(z) · (d�2)z. Therefore, h(z) 
= 0, and even
greater than 0, since h(z) ≥ 0 by continuity.

4.2 Theorem. Let G ⊂⊂ Cn be a bounded domain with smooth boundary.
Then ∂G is a differentiable submanifold, and there exists a global defining
function.

Proof: We can find open sets Vi ⊂⊂ Ui ⊂ Cn, i = 1, . . . , N , such that:

1. {V1, . . . , VN} is an open covering of ∂G.
2. For each i there exists a local defining function �i for G on Ui.
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3. For each i there is a smooth function ϕi : Ui → R with ϕi|Vi ≡ 1,
ϕi|Cn−Ui ≡ 0, and ϕi ≥ 0 in general.

Define ϕ :=
∑

i ϕi (so ϕ > 0 on ∂G) and ψi := ϕi/ϕ. Then
∑

i ψi ≡ 1 on
∂G. The system of the functions ψi is called a partition of unity on ∂G.

The function � :=
∑N

i=1 ψi�i is now a global defining function for G. We
leave it to the reader to check the details.

The Levi Condition. For the remainder of this section let G ⊂⊂ Cn

be a bounded domain with smooth boundary, and � : U = U(∂G) → R a
global defining function. Then at any z0 ∈ ∂G the real tangent space of the
boundary

Tz0(∂G) := {v ∈ Tz0 : (d�)z0(v) = 0}
is a (2n− 1)-dimensional real subspace of Tz0 . The space

Hz0(∂G) := Tz0(∂G) ∩ iTz0(∂G) = {v ∈ Tz0 : (∂�)z0(v) = 0}

is called the complex (or holomorphic) tangent space of the boundary at z0.
It is a (2n − 2)-dimensional real subspace of Tz0 , with a natural complex
structure, so an (n− 1)-dimensional complex subspace3.

Definition. The domain G is said to satisfy the Levi condition (respec-
tively the strict Levi condition) at z0 ∈ ∂G if Lev(�) is positive semidef-
inite (respectively positive definite) on Hz0(∂G). The domain G is called
Levi convex (respectively strictly Levi convex ) if G satisfies the Levi con-
dition (respectively the strict Levi condition) at every point z ∈ ∂G.

Remark. The Levi conditions do not depend on the choice of the boundary
function, and they are invariant under biholomorphic transformations.

If �1 = h · �2, with h > 0, then for z ∈ ∂G,

Lev(�1)(z,w) = h(z) · Lev(�2)(z,w) + 2 Re{(∂h)z(w) · (∂�2)z(w)}.

So on Hz(∂G) the Levi forms of �1 and �2 differ only by a positive constant.

Affine Convexity. Recall some facts from real analysis:

A set M ⊂ Rn is convex if for every two points x,y ∈ M , the closed line
segment from x to y is contained in M . In that case, for each point x0 ∈
Rn − M there is a real hyperplane H ⊂ Rn with x0 ∈ H and M ∩H = ∅.
This property was already used in Section 1.
3 Hz(∂G) is often denoted by T 1,0

z (∂G).
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If a ∈ Rn, U = U(a) is an open neighborhood and ϕ : U → R is at least C 2,
then the quadratic form

Hess(ϕ)(a,w) :=
∑
ν,µ

ϕxνxµ(a)wνwµ

is known as the Hessian of ϕ at a.

4.3 Proposition. Let G ⊂⊂ Rn be a domain with smooth boundary, and
� a global defining function with (d�)x 
= 0 for x ∈ ∂G. Then G is convex if
and only if Hess(�) is positive semidefinite on every tangent space Tx(∂G).

Proof: Let G be convex, and x0 ∈ ∂G an arbitrary point. Then T :=
Tx0(∂G) is a real hyperplane with T ∩G = ∅. For w ∈ T and α(t) := x0 + tw
we have

(� ◦ α)′′(0) = Hess(�)(x0,w).

Since �(x0) = 0 and � ◦ α(t) ≥ 0, it follows that � ◦ α has a minimum at
t = 0. Then (� ◦ α)′′(0) ≥ 0, and Hess(�) is positive semidefinite on T .

Now let the criterion be fulfilled, assume that 0 ∈ G, and define �ε by

�ε(x) := �(x) +
ε

N
‖x‖N .

For small ε and large N the set Gε := {x : �ε(x) < 0} is a domain. We have
Gε ⊂ Gε′ ⊂ G for ε′ < ε, and

⋃
ε>0Gε = G. Therefore, it is sufficient to

show that Gε is convex.

The Hessian of �ε is positive definite on Tx(∂G) for every x ∈ ∂G. Thus this
also holds in a neighborhood U of ∂G. If ε is small enough, then ∂Gε ⊂ U .
We consider

S := {(x,y) ∈ Gε ×Gε : tx + (1 − t)y ∈ Gε, for 0 < t < 1}.

Then S is an open subset of the connected set Gε×Gε. Suppose that S is not a
closed subset. Then there exist points x0,y0 ∈ Gε and a t0 ∈ (0, 1) with t0x0+
(1 − t0)y0 ∈ ∂Gε. So the function t �→ �ε ◦α(t), with α(t) := tx0 + (1 − t)y0,
has a maximum at t0. Then (�ε◦α)′′(t0) ≤ 0 and Hess(�ε)(α(t0),x0−y0) ≤ 0.
This is a contradiction.

A domain G = {� < 0} is called strictly convex at x0 ∈ ∂G if Hess(�) is
positive definite at x0. This property is independent of � and invariant under
affine transformations.

Now we return to Levi convexity.

4.4 Lemma. Let U ⊂ Cn be open and ϕ ∈ C 2(U ; R). Then

Lev(ϕ)(z,w) =
1
4

(Hess(ϕ)(z,w) + Hess(ϕ)(z, iw)) .
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Proof: This is a simple calculation!

4.5 Theorem. Let G ⊂⊂ Cn be a domain with smooth boundary. Then the
following statements are equivalent:

1. G is strictly Levi convex.
2. There is an open neighborhood U = U(∂G) and a strictly plurisubhar-

monic function � ∈ C ∞(U ; R) such that U ∩ G = {z ∈ U : �(z) < 0}
and (d�)z 
= 0 for z ∈ U .

3. For every z ∈ ∂G there is an open neighborhood W = W (z) ⊂ Cn,
an open set V ⊂ Cn, and a biholomorphic map F : W → V such that
F(W ∩G) is convex and even strictly convex at every point of F(W ∩∂G).

Proof:

(1) =⇒ (2) : We choose a global defining function � for G, and an open
neighborhood U = U(∂G) such that � is defined on U with (d�)z 
= 0 for
z ∈ U . Let A > 0 be a real constant, and �A := eA	 − 1. Then �A is also a
global defining function, and

Lev(�A)(z,w) = AeA	(z) [
Lev(�)(z,w) +A|(∂�)z(w)|2] .

The set K := ∂G× S2n−1 is compact, and

K0 := {(z,w) ∈ K : Lev(�)(z,w) ≤ 0}
is a closed subset. Since Lev(�) is positive definite on Hz(∂G), we have
(∂�)z(w) 
= 0 for (z,w) ∈ K0. Therefore,

M := min
K

Lev(�)(z,w) > −∞,

C := min
K0

|(∂�)z(w)|2 > 0.

We choose A so large that A · C +M > 0. Then

Lev(�A)(z,w) = A · [Lev(�)(z,w) +A|(∂�)z(w)|2] ≥ A · (M +AC) > 0

for (z,w) ∈ K0, and

Lev(�A)(z,w) > A2 · |(∂�)z(w)|2 ≥ 0

for (z,w) ∈ K −K0.

So Lev(�A)(z,w) > 0 for every z ∈ ∂G and every w ∈ Cn − {0}. By conti-
nuity, �A is strictly plurisubharmonic in a neighborhood of ∂G.

(2) =⇒ (3) : We consider a point z0 ∈ ∂G and make some simple coordinate
transformations:
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By the translation z �→ w = z − z0 we replace z0 by the origin, and a
permutation of coordinates ensures that �w1(0) 
= 0.

The linear transformation

w �→ u =
(
�w1(0)w1 + · · · + �wn(0)wn, w2, . . . , wn

)
gives u1 = w · ∇�(0) t, and therefore

�(u) = 2 Re
(
u · ∇(� ◦ w)(0) t

)
+ terms of degree ≥ 2

= 2 Re
(
u · Jw(0) t · ∇�(0) t

)
+ terms of degree ≥ 2

= 2 Re
(
w · ∇�(0) t

)
+ terms of degree ≥ 2

= 2 Re(u1) + terms of degree ≥ 2.

Finally, we write �(u) = 2 Re(u1 +Q(u)) + Lev(�)(0,u) + · · · , where Q is a
quadratic holomorphic polynomial, and make the biholomorphic transforma-
tion

u �→ v = (u1 +Q(u), u2, . . . , un).

It follows that

�(v) = 2 Re(v1) + Lev(�)(0,v) + terms of order ≥ 3.

By the uniqueness of the Taylor expansion

�(v) = D�(0)(v) +
1
2
Hess(�)(0,v) + terms of order ≥ 3 ,

and therefore Hess(�)(0,v) = 2 · Lev(�)(0,v) > 0 for v 
= 0 (in the new
coordinates). Everything works in a neighborhood that may be chosen to be
convex.

(3) =⇒ (1) : This follows from Lemma 4.4:

Hess(�) > 0 on Tz(∂G) =⇒ Lev(�) > 0 on Hz(∂G).

The latter property is invariant under biholomorphic transformations.

A Theorem of Levi . Let G ⊂⊂ Cn be a domain with smooth boundary.
If G is strictly Levi convex, then it is easy to see that G is pseudoconvex.
We wish to demonstrate that even the weaker Levi convexity is equivalent
to pseudoconvexity. For that purpose we extend the boundary distance to a
function on Cn.

dG(z) :=


δG(z) for z ∈ G,
0 for z ∈ ∂G,

−δ
Cn−G(z) for z 
∈ G.
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4.6 Lemma. −dG is a smooth defining function for G.

Proof: We use real coordinates x = (x1, . . . , xN ) with N = 2n. It is clear
that G = {x : −dG(x) < 0}.

Let x0 ∈ ∂G be an arbitrary point and � : U(x0) → R a local defining
function. We may assume that �xN

(x0) 
= 0. Then by the implicit function
theorem there is a product neighborhood U ′ × U ′′ of x0 in U and a smooth
function h : U ′ → R such that

{(x′, xN ) ∈ U ′ × U ′′ : �(x′, xN ) = 0} = {(x′, h(x′)) : x′ ∈ U ′}.
It follows that 0 = ∇x′�(x′, h(x′)) + �xN

(x′, h(x′)) · ∇h(x′).

At the point (x′, h(x′)) ∈ ∂G the gradient ∇�(x′, h(x′)) is normal to ∂G
and directed outward from G. Every point y in a small neighborhood of the
boundary has a unique representation y = x + t · ∇�(x), where t = −dG(y)
and x is the point where the perpendicular from y to ∂G meets the boundary.
Therefore, we define the smooth map F : U ′ × R → RN by

y = F(x′, t) := (x′, h(x′)) + t · ∇�(x′, h(x′)).

Then there are smooth functions A and b such that

JR,F(x′, t) =
(

EN−1 + t · A(x′) ∇x′�(x′, h(x′)) t

∇h(x′) + t · b(x′) �xN
(x′, h(x′))

)
,

and therefore

det JR,F(x′, 0) = det
(

EN−1 −�xN
(x′, h(x′)) · ∇h(x′) t

∇h(x′) �xN
(x′, h(x′))

)
= �xN

(x′, h(x′)) · det
(

EN−1 −∇h(x′) t

0′ 1 + ‖∇h(x′)‖2

)
= �xN

(x′, h(x′))(1 + ‖∇h(x′)‖2) 
= 0.

It follows that there exists an ε > 0 such that F maps U ′ × (−ε, ε) diffeo-
morphically onto a neighborhood W = W (x0), and U ′ × {0} onto ∂G ∩W .
Moreover, since dG(x + t · ∇�(x)) = −t for |t| < ε and ε small enough, it
follows that dG = (−t) ◦ F−1 is a smooth function near ∂G. If p′ is defined
by p′(x′, t) := (x′, 0), then the projection

p = p′ ◦ F−1 : x + t · ∇�(x) �→ x, for x ∈ ∂G,

is a smooth map, and dG is given by dG(y) = σ · ‖y − p(y)‖, where σ = 1
for y ∈ G and σ = −1 elsewhere.

For y 
∈ ∂G we have
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(dG)yν (y) =
σ

‖y − p(y)‖ ·
N∑

k=1

(yk − pk(y))(δkν − (pk)yν (y))

=
σ

‖y − p(y)‖ · [
yν − pν(y) − (

y − p(y)
∣∣pyν

(y)
)
N

]
,

and therefore

∇dG(y) =
σ

‖y − p(y)‖ · [y − p(y) −Dp(y)(y − p(y))] .

Since �(p(y)) ≡ 0, it follows that Dp(y)(∇�(p(y))) = 0. But y − p(y) is a
multiple of ∇�(p(y)). Together this gives

∇dG(y) = σ · y − p(y)
‖y − p(y)‖ = ± ∇�(p(y))

‖∇�(p(y))‖ .

If y tends to ∂G, we obtain that ∇dG(y) 
= 0.

E.E. Levi showed that every domain of holomorphy with smooth boundary is
Levi convex, and locally the boundary of a strictly Levi convex domain G is
the “natural boundary” for some holomorphic function in G. Here we prove
the following result, which is sometimes called “Levi’s theorem”.

4.7 Theorem. A domain G with smooth boundary is pseudoconvex if and
only if it is Levi convex.

Proof:

(1) Let G be pseudoconvex. The function −dG is a smooth boundary function
for G, and − log dG = − log δG is plurisubharmonic on G, because of the
pseudoconvexity. We calculate

Lev(− log dG)(z,w) =
1

dG(z)
· Lev(−dG)(z,w) +

1
dG(z)2

· |(∂(dG))z(w)|2.

This is nonnegative in G. If z ∈ G, w ∈ Tz, and (∂(dG))z(w) = 0, it follows
that Lev(−dG)(z,w) ≥ 0. This remains true for z → ∂G, so −dG satisfies
the Levi condition.

(2) Let G be Levi convex, and suppose that G is not pseudoconvex. Then in
any neighborhood U of the boundary there exists a point z0 where the Levi
form of − log δG has a negative eigenvalue. This means that there is a vector
w0 such that

ϕζζ(0) = Lev(log δG)(z0,w0) > 0, for ϕ(ζ) := log δG(z0 + ζw0).

Consider the Taylor expansion

ϕ(ζ) = ϕ(0) + 2 Re(ϕζ(0)ζ +
1
2
ϕζζ(0)ζ2) + ϕζζ(0)|ζ|2 + · · ·

= ϕ(0) + Re(Aζ +Bζ2) + λ|ζ|2 + · · · ,
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with complex constants A,B and a real constant λ > 0.

We choose a point p0 ∈ ∂G with δG(z0) = ‖p0 − z0‖, and an arbitrary ε > 0.
Then an analytic disk ψ : Dε(0) → Cn can be defined by

ψ(ζ) := z0 + ζw0 + exp(Aζ +Bζ2)(p0 − z0).

We have ψ(0) = p0, and we wish to show that ψ(ζ) ∈ G, for 0 < |ζ| < ε and
ε sufficiently small.

Since ϕ(ζ) ≥ ϕ(0) + Re(Aζ +Bζ2) + (λ/2)|ζ|2 near ζ = 0, it follows that

δG(z0 + ζw0) = exp(ϕ(ζ))

≥ exp(ϕ(0)) · ∣∣ exp
(
Aζ +Bζ2) ∣∣ · exp

(λ
2
|ζ|2

)
> δG(z0) · ∣∣ exp

(
Aζ +Bζ2) ∣∣

=
∥∥exp

(
Aζ +Bζ2)(p0 − z0)

∥∥,
for ζ small and 
= 0. This means that we can choose the ε in such a way
that ψ(ζ) ∈ G, for 0 < |ζ| < ε. The analytic disc is tangent to ∂G from the
interior of G.

Now f(ζ) = dG(ψ(ζ)) is a smooth function with a local minimum at ζ = 0.
Therefore (∂dG)p0(ψ

′(0)) = (∂f)0(1) = 0, and

f(ζ) = Re
(
fζζ(0)ζ2) + fζζ |ζ|2 + terms of order ≥ 3.

Since Re
(
fζζ(0)e2it

)
+ fζζ ≥ 0 for every t, it follows that

Lev(dG)(p0, ψ
′(0)) = fζζ(0) > 0.

This is a contradiction to the Levi condition at p0, because −dG is a defining
function for G.

Exercises

1. Prove Lemma 4.4.
2. Assume thatG ⊂⊂ C2 has a smooth boundary that is Levi convex outside

a point a that is not isolated in ∂G. Show that G is pseudoconvex.
3. Assume that G ⊂ C2 is an arbitrary domain and that S ⊂ G is a smooth

real surface with the following property: In every point of S the tangent
to S is not a complex line. Prove that for every compact set K ⊂ G there
are arbitrarily small pseudoconvex neighborhoods of S ∩K.

4. Assume that G ⊂⊂ C2 is a domain with smooth boundary. Then G
is strictly Levi convex at a point z0 ∈ ∂G if and only if the following
condition is satisfied:

There is a neighborhood U = U(z0), a holomorphic function ϕ : D → U
with ϕ(0) = z0 and ϕ′(0) 
= 0, and a local defining function � on U such
that (� ◦ ϕ)(ζ) > 0 on D − {0} and (� ◦ ϕ)ζζ(0) > 0.
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5. Let G ⊂⊂ Cn be a domain with smooth boundary. If G satisfies the strict
Levi condition at z0 ∈ ∂G, then prove that the following hold:
(a) There is no analytic disk ϕ : D → Cn with

ϕ(0) = z0 and lim
ζ→0

δG(ϕ(ζ))
‖ϕ(ζ) − ϕ(0)‖2 = 0 .

(b) There are a neighborhood U = U(z0) and a holomorphic function f
in U with G ∩ {z ∈ U : f(z) = 0} = {z0}.

6. A bounded domain G ⊂ Cn is called strongly pseudoconvex if there are
a neighborhood U = U(∂G) and a strictly plurisubharmonic function
� ∈ C 2(U) such that G∩U = {z ∈ U : �(z) < 0}. Notice that a strongly
pseudoconvex domain does not necessarily have a smooth boundary!

Prove the following results about a strongly pseudoconvex bounded do-
main G:
(a) G is pseudoconvex.
(b) If G has a smooth boundary, then G is strictly Levi convex.
(c) For every z ∈ ∂G there is a neighborhood U = U(z) such that U ∩G

is a weak domain of holomorphy.
7. Let G ⊂ Cn be a pseudoconvex domain. Then prove that there is a family

of domains Gν ⊂ G such that the following hold:
(a) Gν ⊂⊂ Gν+1 for every ν.
(b)

⋃∞
ν=1Gν = G.

(c) For every ν there is a strictly plurisubharmonic function fν ∈
C ∞(Gν+1) such that Gν is a connected component of the set

{z ∈ Gν+1 : fν(z) < 0} .

5. Holomorphic Convexity
Affine ConvexityWe will investigate relationships between pseudocon-
vexity and affine convexity. Let us begin with some observations about convex
domains in RN .

Let L be the set of affine linear functions f : RN → R with

f(x) = a1x1 + · · · + aNxN + b, a1, . . . , aN , b ∈ R.

If M is a convex set and x0 a point not contained in M , then there exists
a function f ∈ L with f(x0) = 0 and f |M < 0. For any c ∈ R, the set
{x ∈ RN : f(x) < c} is a convex half-space.

Definition. Let M ⊂ RN be an arbitrary subset. Then the set

H(M) :=
{
x ∈ RN : f(x) ≤ sup

M
f, for all f ∈ L

}
is called the affine convex hull of M .
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5.1 Proposition. Let M,M1,M2 ⊂ RN be arbitrary subsets. Then

1. M ⊂ H(M).
2. H(M) is closed and convex.
3. H(H(M)) = H(M).
4. If M1 ⊂ M2, then H(M1) ⊂ H(M2).
5. If M is closed and convex, then H(M) = M .
6. If M is bounded, then H(M) is also bounded.

Proof: (1) is trivial.

(2) If x0 
∈ H(M), then there is an f ∈ L with f(x0) > supM f . By conti-
nuity, f(x) > supM f in a neighborhood of x0. Therefore, H(M) is closed.

If x0,y0 are two points in H(M), then they are contained in every convex
half-space E =

{
x : f(x) < supM f

}
, and also the closed line segment from

x0 to y0 is contained in each of these half-spaces. This shows that H(M) is
convex.

(3) We have to show that H(H(M)) ⊂ H(M). If x ∈ H(H(M)) is an arbi-
trary point and f an element of L , then f(x) ≤ supH(M) f ≤ supM f , by
the definition of H(M).

(4) is trivial.

(5) Let M be closed and convex. If x0 
∈ M , then there is a point y0 ∈ M
such that dist(x0,M) = dist(x0,y0) (because M is closed). Let z0 be a point
in the open line segment from x0 to y0. Then z0 
∈ M , and there is a function
f ∈ L with f(z0) = 0 and f |M < 0. Since t �→ f(tx0 + (1 − t)y0) is a
monotone function, it follows that f(x0) > 0 and therefore x0 
∈ H(M).

(6) If M is bounded, there is an R > 0 such that M is contained in the closed
convex set BR(0). Thus H(M) ⊂ BR(0).

Remark. H(M) is the smallest closed convex set that contains M .

5.2 Theorem. A domain G ⊂ RN is convex if and only if K ⊂⊂ G implies
that H(K) ⊂⊂ G.

Proof: Let G be a convex domain, and M ⊂⊂ G a subset. Then H(M) is
closed and contained in the bounded set H(M). Therefore, H(M) is compact,
and it remains to show that H(M) ⊂ G. If there is a point x0 ∈ H(M) −G,
then there is a function f ∈ L with f(x0) = 0 and f |G < 0. It follows that
supM f < 0, and f(x0) > supM f . This is a contradiction to x0 ∈ H(M).
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On the other hand, let the criterion be fulfilled. If x0,y0 are two points of G,
then K := {x0,y0} is a relatively compact subset of G. It follows that H(K)
is contained in G. Since H(K) is closed and convex, the closed line segment
from x0 to y0 is also contained in G. Therefore G is convex.

Holomorphic Convexity. Now we replace affine linear functions by
holomorphic functions.

Definition. Let G ⊂ Cn be a domain and K ⊂ G a subset. The set

K̂ = K̂G :=
{
z ∈ G : |f(z)| ≤ sup

K
|f |, for all f ∈ O(G)

}
is called the holomorphically convex hull of K in G.

5.3 Proposition. Let G ⊂ Cn be a domain, and K,K1,K2 subsets of G.
Then

1. K ⊂ K̂.
2. K̂ is closed in G.
3. ̂̂

K = K̂.
4. If K1 ⊂ K2, then K̂1 ⊂ K̂2.
5. If K is bounded, then K̂ is also bounded.

Proof: (1) is trivial.

(2) Let z0 be a point of G − K̂. Then there exists a holomorphic function
f on G with |f(z0)| > supK |f |. By continuity, this inequality holds on an
entire neighborhood U = U(z0) ⊂ G. So G− K̂ is open.

(3) supK̂ |f | ≤ supK |f |.
(4) is trivial.

(5) If K is bounded, it is contained in a closed polydisk Pn(0, r). The coordi-
nate functions zν are holomorphic in G. For z ∈ K̂ we have |zν | ≤ supK |zν | ≤
r. Hence K̂ is also bounded.

Definition. A domain G ⊂ Cn is called holomorphically convex if
K ⊂⊂ G implies that K̂ ⊂⊂ G.
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Example

In C every domain is holomorphically convex:

Let K ⊂⊂ G be an arbitrary subset. Then K̂ is bounded, and it remains
to show that the closure of K̂ is contained in G. If there is a point z0 ∈
K̂ − G, then z0 lies in ∂K̂ ∩ ∂G. We consider the holomorphic function
f(z) := 1/(z − z0) in G. If (zν) is a sequence in K̂ converging to z0, then
|f(zν)| ≤ supK |f | ≤ supK |f | < ∞. This is a contradiction. For n ≥ 2, we
will show that there are domains that are not holomorphically convex. But
we have the following result.

5.4 Proposition. If G ⊂ Cn is an affine convex domain, then it is holo-
morphically convex.

Proof: Let K be relatively compact in G. Then H(K) ⊂⊂ G. If z0 is a
point of G − H(K), then there exists an affine linear function λ ∈ L with
λ(z0) > supK λ. Replacing λ by λ− λ(0) we may assume that λ is a homo-
geneous linear function of the form

λ(z) = 2 Re(α1z1 + · · · + αnzn).

Then f(z) := exp(2 · (α1z1 + · · · + αnzn)) is holomorphic in G, and |f(z)| =
exp(λ(z)). Therefore, |f(z0)| > supK |f |, and z0 ∈ G− K̂. This proves K̂ ⊂⊂
G.

In general, holomorphic convexity is a much weaker property than affine
convexity.

The Cartan–Thullen Theorem. Let G ⊂ Cn be a domain, and
ε > 0 a small real number. We define

Gε := {z ∈ G : δG(z) ≥ ε}.
Here are some properties of the set Gε:

1. If z ∈ G, then there is an ε > 0 such that δG(z) ≥ ε.
Therefore, G =

⋃
ε>0Gε.

2. If ε1 ≤ ε2, then Gε1 ⊃ Gε2 .
3. Gε is a closed subset of Cn. In fact, if z0 ∈ Cn − Gε, then δG(z0) < ε

or z0 
∈ G. In the latter case, the ball Bε(z0) is contained in Cn −Gε. If
z0 ∈ G −Gε and δ := δG(z0), then Bε−δ(z0) ⊂ Cn −Gε. So Cn −Gε is
open.

5.5 Lemma. Let G ⊂ Cn be a domain, K ⊂ G a compact subset, and f a
holomorphic function in G. If K ⊂ Gε, then for any δ with 0 < δ < ε there
exists a constant C > 0 such that the following inequality holds:
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sup
K

|Dαf(z)| ≤ α!
δ|α| · C.

Proof: For 0 < δ < ε, G′ := {z ∈ G : dist(K, z) < δ} is open and
relatively compact in G, and for any z ∈ K the closed polydisk Pn(z, δ) is
contained in G′ ⊂ G. If T is the distinguished boundary of the polydisk and
|f | ≤ C on G′, then the Cauchy inequalities yield

|Dαf(z)| ≤ α!
δ|α| · sup

T
|f | ≤ α!

δ|α| · C.

5.6 Theorem (Cartan–Thullen). If G is a weak domain of holomorphy,
then G is holomorphically convex.

Proof: Let K ⊂⊂ G. We want to show that K̂ ⊂⊂ G. Let ε :=
dist(K,Cn −G) ≥ dist(K,Cn −G) > 0. Clearly, K lies in Gε.

We assert that the holomorphically convex hull K̂ lies even in Gε. Suppose
this is not so. Then there is a z0 ∈ K̂ − Gε. Now let f be any holomorphic
function in G. In a neighborhood U = U(z0) ⊂ G, f has a Taylor expansion

f(z) =
∑
ν≥0

aν(z − z0)ν , with aν =
1
ν!
Dνf(z0).

The function z �→ aν(z) := 1
ν!D

νf(z) is holomorphic in G. Therefore,
|aν(z0)| ≤ supK |aν(z)|. By the lemma, for any δ with 0 < δ < ε there
exists a C > 0 such that supK |aν(z)| ≤ C/δ|ν|, and then

|aν(z − z0)ν | ≤ C ·
( |z1 − z(0)

1 |
δ

)ν1

· · ·
( |zn − z(0)

n |
δ

)νn

.

On any polydisk Pn(z0, δ) the Taylor series is dominated by a geometric
series. Therefore, it converges on P = Pn(z0, ε) to a holomorphic function f̂ .
We have f = f̂ near z0, and then on the connected component Q of z0 in
P ∩G. Since P meets G and Cn −G, it follows from Lemma 1..9 that there
is a point z1 ∈ P ∩ ∂Q ∩ ∂G. Then f cannot be completely singular at z1.
This is a contradiction, because f is an arbitrary holomorphic function in G,
and G is a weak domain of holomorphy.

Exercises

1. Let G1 ⊂ G2 ⊂ Cn be domains. Assume that for every f ∈ O(G1) there
is a sequence of functions fν ∈ O(G2) converging compactly on G1 to f .
Show that for every compact set K ⊂ G1 it follows that K̂G2 ∩G1 = K̂G1 .
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2. Let F : G1 → G2 be a proper holomorphic map between domains in Cn,
respectively Cm. Show that if G2 is holomorphically convex, then so is
G1.

3. Let G ⊂ Cn be a domain and S ⊂ G be a closed analytic disk with
boundary bS. Show that S ⊂ (̂bS)G.

4. Define the domain G ⊂ C2 by G := P2(0, 1) − P2(0, 1/2). Construct the
holomorphically convex hull K̂G for K := {(z1, z2) : z1 = 0 and |z2| =
3/4}. Is K̂G a relatively compact subset of G ?

5. Let F be a family of functions in the domain G. For a compact subset
K ⊂ G we define

K̂F :=
{
z ∈ G : |f(z)| ≤ sup

K
|f | for all f ∈ F

}
.

The domain G is called convex with respect to F , provided that K̂F is
relatively compact in G whenever K is. Prove:
(a) Every bounded domain is convex with respect to the family C 0(G)

of all continuous functions.
(b) The unit ball B = B1(0) is convex with respect to the family of

holomorphic functions zk
ν · zl

µ with ν, µ = 1, . . . , n and k, l ∈ N0.

6. Singular Functions
Normal Exhaustions. LetG ⊂ Cn be a domain. IfG is holomorphically
convex, we want to construct a holomorphic function in G that is completely
singular at every boundary point. For that we use “normal exhaustions.”

Definition. A normal exhaustion of G is a sequence (Kν) of compact
subsets of G such that:
1. Kν ⊂⊂ (Kν+1)

◦, for every ν.
2.

⋃∞
ν=1Kν = G.

6.1 Theorem. Any domain G in Cn admits a normal exhaustion. If G is
holomorphically convex, then there is a normal exhaustion (Kν) with K̂ν =
Kν for every ν.

Proof: In the general case, Kν := Pn(0, ν) ∩G1/ν gives a normal exhaus-
tion. If G is holomorphically convex, K̂ν ⊂⊂ G for every ν. We construct a
new exhaustion by induction.

Let K∗
1 := K̂1. Suppose that compact sets K∗

1 , . . . ,K
∗
ν−1 have been con-

structed, with K̂∗
j = K∗

j for j = 1, . . . , ν − 1, and K∗
j ⊂⊂ (K ∗

j+1)
◦. Then

there exists a λ(ν) ∈ N such that K∗
ν−1 ⊂ (Kλ(ν))

◦. Let K∗
ν := K̂λ(ν).



6. Singular Functions 79

It is clear that (K∗
ν ) is a normal exhaustion with K̂∗

ν = K∗
ν .

Unbounded Holomorphic Functions. Again let G ⊂ Cn be a
domain.

6.2 Theorem. Let (Kν) be a normal exhaustion of G with K̂ν = Kν ,
λ(µ) a strictly monotonic increasing sequence of natural numbers, and (zµ)
a sequence of points with zµ ∈ Kλ(µ)+1 −Kλ(µ).

Then there exists a holomorphic function f in G such that |f(zµ)| is un-
bounded.

Proof: The function f is constructed as the limit function of an infinite
series f =

∑∞
µ=1 fµ. By induction we define holomorphic functions fµ in G

such that:

1. |fµ|Kλ(µ) < 2−µ for µ ≥ 1.

2. |fµ(zµ)| > µ+ 1 +
µ−1∑
j=1

|fj(zµ)| for µ ≥ 2.

Let f1 := 0. Now for µ ≥ 2 suppose that f1, . . . , fµ−1 have been constructed.
Since zµ ∈ Kλ(µ)+1 − Kλ(µ) and K̂λ(µ) = Kλ(µ), there exists a function g
holomorphic in G such that |g(zµ)| > q := supKλ(µ)

|g|. By multiplication by
a suitable constant we can make

|g(zµ)| > 1 > q.

If we set fµ := gk with a sufficiently large k, then fµ has the properties (1)
and (2).

We assert that
∑

µ fµ converges compactly in G. To prove this, first note
that for K ⊂ G an arbitrary compact subset, there is a µ0 ∈ N such that
K ⊂ Kλ(µ0). By construction supK |fµ| < 2−µ for µ ≥ µ0. Since the geo-
metric series

∑
µ 2−µ dominates

∑
µ fµ in K, the series of the fµ is normally

convergent on K. This shows that f =
∑

µ fµ is holomorphic in G. Moreover,

|f(zµ)| ≥ |fµ(zµ)| −
∑
ν 
=µ

|fν(zµ)|

> µ+ 1 −
∑
ν>µ

|fν(zµ)|

> µ+ 1 −
∑
ν>µ

2−ν (since zµ ∈ Kλ(ν) for ν > µ)

≥ µ (since
∑
ν≥1

2−ν = 1).

It follows that |f(zµ)| → ∞ for µ → ∞.
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The following is an important consequence:

6.3 Theorem. A domain G is holomorphically convex if and only if for
any infinite set D that is discrete in G there exists a function f holomorphic
in G such that |f | is unbounded on D.

Proof: (1) Let G be holomorphically convex, D ⊂ G infinite and discrete.
Moreover, let (Kν) be a normal exhaustion of G with K̂ν = Kν . Then Kν ∩D
is finite (or empty) for every ν ∈ N. We construct a sequence of points zµ ∈ D
by induction.

Let z1 ∈ D −K1 be arbitrary, and λ(1) ∈ N minimal with the property that
z1 lies in Kλ(1)+1. Now suppose the points z1, . . . , zµ−1 and the numbers
λ(1), . . . , λ(µ− 1) have been constructed such that

zν ∈ Kλ(ν)+1 −Kλ(ν), for ν = 1, . . . , µ− 1.

Then we choose zµ ∈ D − Kλ(µ−1)+1 and λ(µ) minimal with the property
that zµ lies in Kλ(µ)+1. By the theorem above there is a holomorphic function
f in G such that |f(zµ)| → ∞ for µ → ∞. Therefore, |f | is unbounded on D.

(2) Now suppose that the criterion is satisfied, and K ⊂⊂ G. Then K̂ ⊂ G,
and we have to show that K̂ is compact. Let (zν) be any sequence of points
in K̂. Then

sup{|f(zν)| : ν ∈ N} ≤ sup
K

|f | < ∞, for every f ∈ O(G).

Therefore, {zν : ν ∈ N} cannot be discrete in G. Thus the sequence (zν)
has a cluster point z0 in G. Since K̂ is closed, z0 belongs to K̂. So G is
holomorphically convex.

Sequences. For a domain G ⊂ Cn we wish to construct a sequence that
accumulates at every point of its boundary.

6.4 Theorem. Let (Kν) be a normal exhaustion of G. Then there exists
a strictly monotonic increasing sequence λ(µ) of natural numbers and a se-
quence (zµ) of points in G such that:

1. zµ ∈ Kλ(µ)+1 −Kλ(µ), for every µ.
2. If z0 is a boundary point of G and U = U(z0) an open connected neigh-

borhood, then every connected component of U ∩ G contains infinitely
many points of the sequence (zµ).

Proof: This is a purely topological result, since we make no assumption
about G. The proof is carried out in several steps.
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(1) Let B = {Bν : ν ∈ N} be the countable system of balls with rational
center and rational radius meeting ∂G. Every intersection Bν ∩G has at most
countably many connected components. Thus we obtain a countable family

C = {Cµ : ∃ ν ∈ N such that Cµ is a connected component of Bν ∈ B}.

(2) By induction, the sequences λ(µ) and (zµ) are constructed. Let z1 be
arbitrary in C1 − K1. Then there is a unique number λ(1) such that z1 ∈
Kλ(1)+1 −Kλ(1).

Now suppose z1, . . . , zµ−1 have been constructed such that

zj ∈ Cj ∩ (Kλ(j)+1 −Kλ(j)), for j = 1, . . . , µ− 1.

We choose zµ ∈ Cµ − Kλ(µ−1)+1 and λ(µ) as usual. That is possible, since
there is a point w ∈ Bν(µ) ∩ ∂Cµ ∩ ∂G if Cµ is a connected component of
Bν(µ) ∩G. Then Cn −Kλ(µ−1)+1 is an open neighborhood of w and contains
points of Cµ.

(3) Now we show that property (2) of the theorem is satisfied. Let z0 be a
point of ∂G, U = U(z0) an open connected neighborhood, and Q a connected
component of U ∩ G. We assume that only finitely many zµ lie in Q, say
z1, . . . , zm. Then

U∗ := U − {z1, . . . , zm} and Q∗ := Q− {z1, . . . , zm}

are open connected sets that contain no zµ. Obviously, Q∗ is a connected
component of G ∩ U∗.

There is a point w0 in U∗ ∩ ∂Q∗ ∩ ∂G, and a ball Bν ⊂ U∗ with w0 ∈ Bν .
Then Bν ∩ G ⊂ U∗ ∩ G. Moreover, Bν ∩ G must contain a point w1 ∈ Q∗.
The connected component C∗ of w1 in Bν ∩ G is a subset of the connected
component of w1 in U∗ ∩G. But C∗ is an element Cµ0 of C. By construction
it contains the point zµ0 . That is a contradiction. Infinitely many members
of the sequence belong to Q.

6.5 Theorem. If G is holomorphically convex, then it is a domain of holo-
morphy.

Proof: Let (Kν) be a normal exhaustion of G with K̂ν = Kν and choose
sequences λ(µ) ∈ N and (zµ) in G such that zµ ∈ Kλ(µ)+1 −Kλ(µ). We may
assume that for every point z0 ∈ ∂G, every open connected neighborhood
U = U(z0), and every connected component Q of U ∩G there are infinitely
many zµ in Q.

Now let f be holomorphic in G and unbounded on D := {zµ : µ ∈ N}. It is
clear that f is completely singular at every point z0 ∈ ∂G.
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Remark. It is not necessary that a completely singular holomorphic func-
tion is unbounded. In 1978, D. Catlin showed in his dissertation that if
G ⊂⊂ Cn is a holomorphically convex domain with smooth boundary, then
there exists a function holomorphic in G and smooth in a neighborhood of G
that is completely singular at every point of the boundary of G.

Exercises

1. A domain G ⊂⊂ Cn is holomorphically convex if and only if for every
z ∈ ∂G there is a neighborhood U(z) such that U ∩ G is a domain of
holomorphy.

2. Let G1 ⊂ Cn and G2 ⊂ Cm be domains of holomorphy. If f : G1 → Cm is
a holomorphic mapping, then f−1(G2) ∩G1 is a domain of holomorphy.

3. Find a bounded holomorphic function on the unit disk D that is singular
at every boundary point.

7. Examples and Applications
Domains of Holomorphy

7.1 Proposition. Every domain in the complex plane C is a domain of
holomorphy.

Proof: We have already shown that every domain in C is holomorphically
convex. Therefore, such a domain is also a domain of holomorphy.

7.2 Theorem. The following statements about domains G ∈ Cn are equiv-
alent:

1. G is a weak domain of holomorphy.
2. G is holomorphically convex.
3. For every infinite discrete subset D ⊂ G there exists a holomorphic func-

tion f in G such that |f | is unbounded on D.
4. G is a domain of holomorphy.

The equivalences have all been proved in the preceding paragraphs. Fur-
thermore, we know that every domain of holomorphy is pseudoconvex. Still
missing here is the proof of the Levi problem: Every pseudoconvex domain
is holomorphically convex. We say more about this in Chapter V.

Every affine convex open subset of Cn is a domain of holomorphy. The n-fold
Cartesian product of plane domains is a further example.

7.3 Proposition. If G1, . . . , Gn ⊂ C are arbitrary domains, then G :=
G1 × · · · ×Gn is a domain of holomorphy.
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Proof: Let D = {zµ = (zµ
1 , . . . , z

µ
n) : µ ∈ N} be an infinite discrete subset

of G. Then there is an i such that (zµ
i ) has no cluster point in Gi, and there

is a holomorphic function f in Gi with limµ→∞
∣∣ f(zµ

i )
∣∣ = ∞. The function f̂

in G, defined by f̂(z1, . . . , zn) := f(zi), is holomorphic in G and unbounded
on D.

Remark. The same proof shows that every Cartesian product of domains
of holomorphy is again a domain of holomorphy.

Complete Reinhardt Domains. Let G ⊂ Cn be a complete Rein-
hardt domain (see Section I.1). We will give criteria for G to be a domain of
holomorphy. For that purpose we define a map log from the absolute value
space V to Rn by

log(r1, . . . , rn) := (log r1, . . . , log rn).

Definition. A Reinhardt domain G is called logarithmically convex if
log τ(G ∩ (C∗)n) is an affine convex domain in Rn.

Remark. For z = (z1, . . . , zn) ∈ G we have log τ(z) = (log|z1|, . . . , log|zn|).
If z ∈ (C∗)n, then |zi| > 0 for each i, and log τ(z) is in fact an element of Rn.

7.4 Proposition. The domain of convergence of a power series S(z) =∑
ν≥0 aνzν is logarithmically convex.

Proof: Let G be the domain of convergence of S(z), and M := log τ(G ∩
(C∗)n) ⊂ Rn. We consider two points x,y ∈ M and points z,w ∈ G ∩ (C∗)n

with log τ(z) = x and log τ(w) = y. If λ > 1 is small enough, λz and λw still
belong to G ∩ (C∗)n. Since S(z) is convergent in λz, λw, there is a constant
C > 0 such that

|aν | · λ|ν| · |zν | ≤ C and |aν | · λ|ν| · |wν | ≤ C, for every ν ∈ Nn
0 .

Thus
|aν | · λ|ν| · |zν |t · |wν |1−t ≤ C, for every ν and 0 ≤ t ≤ 1.

It follows from Abel’s lemma that S(z) is convergent in a neighborhood of

zt :=
(|z1|t|w1|1−t, . . . , |zn|t|wn|1−t

)
.

This means that zt ∈ G and tx + (1 − t)y = log τ(zt) ∈ M , for 0 ≤ t ≤ 1.
Therefore, M is convex.
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7.5 Proposition. Let G be a complete Reinhardt domain. If G is logarith-
mically convex, then it is holomorphically convex.

Proof: Let K be a relatively compact subset of G. Since G is a complete
Reinhardt domain and K a compact subset of G, there are points z1, . . . , zk ∈
G ∩ (C∗)n such that

K ⊂ G′ :=
k⋃

i=1

Pn(0,qi) ⊂ G, where qi := τ(zi).

We consider the set M = {m(z) = zν : ν ∈ Nn
0} of monomials, which is a

subset of O(G). For z ∈ Pn(0,qi) and m ∈ M we have

|m(z)| = |zν | < qν
i = |m(qi)|.

Let Z := {z1, . . . , zk}. Then for z ∈ K̂ it follows that

|m(z)| ≤ sup
K

|m| ≤ sup
G′

|m| ≤ sup
Z

|m|, for every m ∈ M .

Suppose that K̂ is not relatively compact in G. Then K̂ has a cluster point
z0 in ∂G, and it follows that |m(z0)| ≤ supZ |m|, for every m ∈ M .

Let h(z) := log τ(z), for z ∈ (C∗)n. Since G is logarithmically convex, the
domain G0 := h(G ∩ (C∗)n) ⊂ Rn is affine convex. For the time being we
assume that z0 ∈ (C∗)n. Then x0 := h(z0) ∈ ∂G0, and there is a real linear
function λ(x) = a1x1 + · · · + anxn such that λ(x) < λ(x0) for x ∈ G0.

Let x = log τ(z) be a point of G0, and u ∈ Rn with uj ≤ xj for j = 1, . . . , n.
Then euj ≤ exj = |zj |, and therefore (since G is a complete Reinhardt do-
main) w = (eu1 , . . . , eun) ∈ G ∩ (C∗)n and u ∈ G0. In particular,

λ(x) − naj = λ(x − nej) < λ(x0), for every n ∈ N.

Therefore, aj ≥ 0 for j = 1, . . . , n.

Now we choose rational numbers rj > aj and define λ̃(x) := r1x1+· · ·+rnxn.
If we choose the rj sufficiently close to aj , the inequality λ̃(qi) < λ̃(x0)
holds for i = 1, . . . , k, and it still holds after multiplying by the common
denominator of the rj . Therefore, we may assume that the rj are natural
numbers, and we can define a special monomial m0 by m0(z) := zr1

1 · · · zrn
n .

Then
|m0(zi)| = eλ̃(qi) < eλ̃(x0) = |m0(z0)|, for i = 1, . . . , k.

So |m0(z0)| > supZ |m0|, and this is a contradiction.

If z0 
∈ (C∗)n, then after a permutation of the coordinates we may assume
that z(0)

1 · · · z(0)

l 
= 0 and z(0)

l+1 = · · · = z(0)
n = 0. We can project on the space
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Cl and work with monomials in the variables z1, . . . , zl. Then the proof goes
through as above.

Now we get the following result:

7.6 Theorem. Let G ⊂ Cn be a complete Reinhardt domain. Then the
following statements are equivalent:

1. G is the domain of convergence of a power series.
2. G is logarithmically convex.
3. G is holomorphically convex.
4. G is a domain of holomorphy.

Proof: We have only to show that if G is a complete Reinhardt domain
and a domain of holomorphy, then it is the domain of convergence of a power
series. By hypothesis, there is a function f that is holomorphic in G and
completely singular at every boundary point. In Section I.5 we proved that
for every holomorphic function in a proper Reinhardt domain there is a power
series S(z) that converges in G to f . By the identity theorem it does not
converge on any domain strictly larger than G.

Analytic Polyhedra. Let G ⊂ Cn be a domain.

Definition. Let U ⊂ G, V1, . . . , Vk ⊂ C open subsets, and f1, . . . , fk

holomorphic functions in G. The set

P := {z ∈ U : fi(z) ∈ Vi, for i = 1, . . . , k}
is called an analytic polyhedron in G if P ⊂⊂ U .

If, in addition, V1 = · · · = Vk = D, then one speaks of a special analytic
polyhedron in G.

Remark. An analytic polyhedron P need not be connected. The set U
in the definition ensures that each union of connected components of P is
also an analytic polyhedron if it has a positive distance from every other
connected component of P .

7.7 Theorem. Every connected analytic polyhedron P in G is a domain of
holomorphy.

Proof: We have only to show that P is a weak domain of holomorphy.
If z0 ∈ ∂P , then there is an i such that fi(z0) ∈ ∂Vi. Therefore, f(z) :=
(fi(z) − fi(z0))−1 is holomorphic in P and completely singular at z0.
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Example

Let q < 1 be a positive real number, and

P :=
{
z = (z1, z2) ∈ C2 : |z1| < 1, |z2| < 1 and |z1 · z2| < q

}
.

Then P (see Figure II.7) is clearly an analytic polyhedron, but neither affine

|z1|

|z2|

P q

q
1

Figure II.7. An analytic polyhedron

convex nor a Cartesian product of domains. So the analytic polyhedra enrich
our stock of examples of domains of holomorphy.

We will show that every domain of holomorphy is “almost” an analytic poly-
hedron.

7.8 Theorem. If G ⊂ Cn is a domain of holomorphy, then there exists
a sequence (Pν) of special analytic polyhedra in G with Pν ⊂⊂ Pν+1 and⋃∞

ν=1 Pν = G.

Proof: Let (Kν) be a normal exhaustion of G with K̂ν = Kν . If z ∈
∂Kν+1 is an arbitrary point, then z does not lie in Kν ⊂ (Kν+1)

◦, and
therefore not in K̂ν . Hence there exists a function f holomorphic in G for
which q := supKν

|f | < |f(z)|. By multiplication by a suitable constant we
obtain q < 1 < |f(z)|, and then there is an entire neighborhood U = U(z)
such that |f | > 1 on U .

Since the boundary ∂Kν+1 is compact, we can find finitely many open neigh-
borhoods Uν,j of zν,j ∈ ∂Kν+1, j = 1, . . . , kν , and corresponding functions
fν,j holomorphic in G such that |fν,j | > 1 on Uν,j , and ∂Kν+1 ⊂ ⋃kν

j=1 Uν,j .
We define

Pν :=
{
z ∈ (Kν+1)

◦ : |fν,j(z)| < 1 for j = 1, . . . , kν

}
.

Clearly, Kν ⊂ Pν ⊂ (Kν+1)
◦. Furthermore, M := Kν+1 − (Uν,1 ∪ · · · ∪Uν,kν )

is a compact set with Pν ⊂ M ⊂ (Kν+1)
◦. Consequently, Pν ⊂⊂ Kν+1. Thus

Pν is a special analytic polyhedron in G. It follows trivially that the sequence
(Pν) exhausts the domain G.
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In the theory of Stein manifolds one proves the converse of this theorem.

Exercises

1. If R is a domain in the real number space Rn, then

TR = R+ iRn := {z ∈ Cn : (Re(z1), . . . ,Re(zn)) ∈ R}
is called the tube domain associated with R. Prove that the following
properties are equivalent:
(a) R is convex.
(b) TR is (affine) convex.
(c) TR is holomorphically convex.
(d) TR is pseudoconvex.
Hint: To show (d) =⇒ (a) choose x0,y0 ∈ R. Then the function ϕ(ζ) :=
− ln δTR

(x0 +ζ(y0 −x0)) is subharmonic in D. Since δTR
(x+iy) = δR(x),

one concludes that t �→ − ln δR(x0 + t(y0 − x0)) assumes its maximum
at t = 0 or t = 1.

2. Let G ⊂ Cn be a domain. A domain Ĝ ⊂ Cn is called the envelope of
holomorphy of G if every holomorphic function f in G has a holomorphic
extension to Ĝ. Prove:
(a) If R ⊂ Rn is a domain and H(R) its affine convex hull, then Ĝ :=

H(R) + iRn is the envelope of holomorphy of the tube domain G =
R+ iRn.

(b) If G ⊂ Cn is a Reinhardt domain and Ĝ the smallest logarithmi-
cally convex complete Reinhardt domain containing G, then Ĝ is the
envelope of holomorphy of G. Hint: Use the convex hull of log τ(G).

3. Construct the envelope of holomorphy of the domain

Gq := P2(0, (1, q)) ∪ P2(0, (q, 1)) .

4. A domain G ⊂ Cn is called a Runge domain if for every holomorphic
function f in G there is a sequence (pν) of polynomials converging com-
pactly in G to f .

Prove that the Cartesian product of n simply connected subdomains of
C is a Runge domain in Cn.

5. A domain G ⊂ Cn is called polynomially convex if it is convex with
respect to the family of all polynomials (cf. Exercise 5.5). Prove that
every polynomially convex domain is a holomorphically convex Runge
domain.

8. Riemann Domains over Cn

Riemann Domains. It turns out that for general domains in Cn the
envelope of holomorphy (cf. Exercise 7.2) cannot exist in Cn. Therefore, we
have to consider domains covering Cn.
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Definition. A (Riemann) domain over Cn is a pair (G, π) with the
following properties:
1. G is a connected Hausdorff space.4

2. π : G → Cn is a local homeomorphism (that is, for each point x ∈ G
and its “base point” z := π(x) ∈ Cn there exist open neighborhoods
U = U(x) ⊂ X and V = V (z) ⊂ Cn such that π : U → V is a
homeomorphism).

Remarks

1. Let (G, π) be a Riemann domain. Then G is pathwise connected, and
the map π : G → Cn is continuous and open. The latter means that the
images of open sets are again open.

2. If (Gν , πν) are domains over Cn for ν = 1, . . . , l, and xν ∈ Gν are points
over the same base point z0, then there are open neighborhoods Uν =
Uν(xν) ⊂ Gν and a connected open neighborhood V = V (z0) ⊂ Cn such
that πν |Uν : Uν → V is a homeomorphism for ν = 1, . . . , l.

Examples

1. If G is a domain in Cn, then (G, idG) is a Riemann domain.
2. The Riemann surface of

√
z (without the branch point) is the set

G := {(z, w) ∈ C∗ × C : w2 = z}.
If G is provided with the topology induced from C∗ × C, then it is a
Hausdorff space. The mapping ϕ : C∗ → G defined by ζ �→ (ζ2, ζ) is
continuous and bijective. Therefore, G is connected. The mapping ϕ is
called a uniformization of G.

Now let π : G → C be defined by π(z, w) := z. Clearly, π is continuous. If
(z0, w0) ∈ G is an arbitrary point, then z0 
= 0, and we can find a simply
connected neighborhood V (z0) ⊂ C∗. Then there exists a holomorphic
function f in V with f2(z) ≡ z and f(z0) = w0. We denote f(z) by

√
z.

The image W := f(V ) is open, and the set π−1(V ) can be written as the
union of two disjoint open sets

U± := {(z,±f(z)) : z ∈ V } = (V × (±W )) ∩G.

Let f̂(z) := (z, f(z)). Then f̂ : V → G is continuous, and π ◦ f̂(z) ≡ z.
The open set U := U+ is a neighborhood of (z0, w0), with f̂(V ) = U and
f̂ ◦ π(z, w) = (z, w) on U ; that is, π|U : U → V is topological. Hence
(G, π) is a Riemann domain over C.

4 A general topological space X is said to be connected if it is not the union of
two disjoint nonempty open sets. A space X is called pathwise connected if each
two points of X can be joined by a continuous path in X. For open sets in C

n

these two notions are equivalent.
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The space G can be visualized in the following manner: We cover C with
two additional copies of C, cut both these “sheets” along the positive
real axis, and paste them crosswise to one another (this is not possible
in R3 without self intersection, but in higher dimensions, it is). This is
illustrated in Figure II.8.

�

0

Figure II.8. The Riemann surface of
√

z

8.1 Proposition (on the uniqueness of lifting). Let (G, π) be a domain
over Cn and Y a connected topological space. Let y0 ∈ Y be a point and
ψ1, ψ2 : Y → G continuous mappings with ψ1(y0) = ψ2(y0) and π ◦ ψ1 =
π ◦ ψ2. Then ψ1 = ψ2.

Proof: Let M := {y ∈ Y : ψ1(y) = ψ2(y)}. By assumption, y0 ∈ M ,
so M 
= ∅. Since G is a Hausdorff space, it follows immediately that M is
closed. Now let y ∈ Y be chosen arbitrarily, and set x := ψ1(y) = ψ2(y) and
z := π(x). There are open neighborhoods U = U(x) ⊂ G and V = V (z) ⊂
Cn such that π : U → V is topological, and there is an open neigborhood
W = W (y) with ψλ(W ) ⊂ U for λ = 1, 2. Then

ψ1|W = (π|U )−1 ◦ π ◦ ψ1|W = (π|U )−1 ◦ π ◦ ψ2|W = ψ2|W ,

and therefore W ⊂ M . Hence M is open, and since Y is connected, it follows
that M = Y .

Definition. Let z0 ∈ Cn be fixed. A (Riemann) domain over Cn with
distinguished point is a triple G = (G, π, x0) for which:
1. (G, π) is a domain over Cn.
2. x0 is a point of G with π(x0) := z0.
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Definition. Let Gj = (Gj , πj , xj) be domains over Cn with distin-
guished point. We say that G1 is contained in G2 (denoted by G1 ≺ G2 )
if there is a continuous map ϕ : G1 → G2 with the following properties:
1. π2 ◦ ϕ = π1 (called “ϕ preserves fibers”).
2. ϕ(x1) = x2.

8.2 Proposition. If G1 ≺ G2, then the fiber preserving map ϕ : G1 → G2
with ϕ(x1) = x2 is uniquely determined.

This follows immediately from the uniqueness of lifting.

8.3 Proposition. The relation “≺” is a weak ordering; that is:

1. G ≺ G.
2. G1 ≺ G2 and G2 ≺ G3 =⇒ G1 ≺ G3.

The proof is trivial.

Definition. Two domains G1,G2 over Cn with fundamental point are
called isomorphic or equivalent (symbolically G1 ∼= G2) if G1 ≺ G2 and
G2 ≺ G1.

8.4 Proposition. Two domains Gj = (Gj , πj , xj), j = 1, 2, are isomorphic
if and only if there exists a topological 5fiber preserving map ϕ : G1 → G2
with ϕ(x1) = x2.

Proof: If we have fiber preserving mappings ϕ1 : G1 → G2 and ϕ2 : G2 →
G1, with ϕ1(x1) = x2 and ϕ2(x2) = x1, it follows easily from the uniqueness
of fiber preserving maps that ϕ2 ◦ ϕ1 = idG1 and ϕ1 ◦ ϕ2 = idG2 . The other
direction of the proof is trivial.

Definition. A domain G = (G, π, x0) with π(x0) = z0 is called schlicht
if it is isomorphic to a domain G0 = (G0, idG0 , z0) with G0 ⊂ Cn.

8.5 Proposition. Let Gj = (Gj , idGj , xj), j = 1, 2, be two schlicht domains
with G1, G2 ⊂ Cn. Then G1 ≺ G2 if and only if G1 ⊂ G2.

Example
5 Recall that a “topological map” is a homeomorphism!
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Let G1 := {(z, w) ∈ C2 : w2 = z and z 
= 0} and π1(z, w) := z. Then
G1 = (G1, π1, (1, 1)) is the Riemann surface of

√
z, with distinguished point

(1, 1). The domain G1 is contained in the schlicht domain G2 = (C, idC, 1), by
ϕ(z, w) := z. But the two domains are not isomorphic.

Union of Riemann Domains. We begin with the definition of the
union of two Riemann domains. Let Gj = (Gj , πj , xj), j = 1, 2, be two Rie-
mann domains over Cn with distinguished point, and z0 := π1(x1) = π2(x2).
We want to glue G1, G2 in such a way that x1 and x2 will also be glued.

To get a rough idea of the construction, assume that we already have a
Riemann domain G = (G, π, x0) that is in some sense the union of G1 and
G2. Then there should exist continuous fiber preserving maps ϕ1 : G1 → G
with ϕ1(x1) = x0, and ϕ2 : G2 → G with ϕ2(x2) := x0. If α : [0, 1] → G1
and β : [0, 1] → G2 are two continuous paths with α(0) = x1, β(0) = x2 and
π1 ◦α = π2 ◦ β, then γ1 := ϕ1 ◦α and γ2 := ϕ2 ◦ β are continuous paths in G
with π ◦ γ1 = π ◦ γ2 and γ1(0) = γ2(0) = x0. Due to the uniqueness of lifting,
it follows that γ1 = γ2. This means that α(t) and β(t) have to be glued for
every t ∈ [0, 1]. Unfortunately, this is an ambiguous rule. For example, we
could say that x ∈ G1 and y ∈ G2 have to be glued if π1(x) = π2(y). Then
the desired property is fulfilled, but it may be that there are no paths α from
x1 to x and β from x2 to y with π1 ◦ α = π2 ◦ β.

Therefore, we proceed in the following way: Start with the disjoint union
G1

.∪ G2, and take the “finest” equivalence relation ∼ on this set with the
following property:

1. x1 ∼ x2.
2. If there are continuous paths α : [0, 1] → G1 and β : [0, 1] → G2 with
α(0) = x1, β(0) = x2, and π1 ◦ α = π2 ◦ β, then α(1) ∼ β(1).

One can equip G := (G1
·∪G2)/ ∼ with the structure of a Riemann domain.

This will now be carried out in a more general context.

LetX be an arbitrary set. An equivalence relation onX is given by a partition
X = {Xν : ν ∈ N} of X into subsets with:

1.
⋃

ν∈N Xν = X.
2. Xν ∩Xµ = ∅ for ν 
= µ.

The sets Xν are the equivalence classes.

Now let a family (Xι)ι∈I of equivalence relations on X be given with Xι =
{Xι

νι
: νι ∈ Nι} for ι ∈ I. We set N :=

∏
ι∈I Nι, and

Xν :=
⋂
ι∈I

Xι
νι
, for ν := (νι)ι∈I ∈ N.
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Then X = {Xν : ν ∈ N} is again an equivalence relation (simple exercise),
and it is finer than any Xι. This means that for every ι ∈ I and every ν ∈ N ,
there is a νι ∈ Nι with Xν ⊂ Xι

νι
.

We apply this to the disjoint union X =
.⋃

λ∈LGλ, for a given family (Gλ)λ∈L

of Riemann domains Gλ = (Gλ, πλ, xλ) over Cn with distinguished point. An
equivalence relation on X is said to have property (P) if the following hold:

1. xλ ∼ x	, for λ, � ∈ L.
2. If α : [0, 1] → Gλ and β : [0, 1] → G	 are continuous paths with α(0) ∼
β(0) and πλ ◦ α = π	 ◦ β, then α(1) ∼ β(1).

We consider the family of all equivalence relations on X with property (P).
It is not empty, as seen above in the case of two domains. Therefore we can
construct an equivalence relation (as above) that is finer than any equivalence
relation with property (P). We denote it by ∼P . It is clear that πλ(x) = π	(y)
if x ∈ Gλ, y ∈ G	, and x ∼P y. The relation ∼P also has property (P), and
the elements of an equivalence class Xν all lie over the same point z = z(Xν).
We define G̃ := X/∼P and π̃(Xν) := z(Xν). The equivalence class of all xλ

will be denoted by x̃.

8.6 Lemma. Let y ∈ Gλ and x ∈ G	 be given with π	(x) = πλ(y) =: z. If
we choose open neighborhoods U = U(y) ⊂ Gλ, V = V (x) ⊂ G	, and an open
connected neighborhood W = W (z) such that πλ : U → W and π	 : V → W
are topological mappings, then for ϕ := (π	|V )−1 ◦ πλ : U → V the following
hold:

1. ϕ(y) = x.
2. If x ∼P y, then ϕ(y′) ∼P y′ for every y′ ∈ U .

Proof: The first statement is trivial. Now let α : [0, 1] → W be a con-
tinuous path with α(0) = z and α(1) = πλ(y′) for some y′ ∈ U . Then
β := (πλ|U )−1 ◦ α and γ := ϕ ◦ β are continuous paths in U and V with
β(0) = y ∼P x = ϕ(y) = γ(0) and πλ ◦ β = π	 ◦ ϕ ◦ β = π	 ◦ γ. Therefore,
y′ = β(1) ∼P γ(1) = ϕ(y′).

8.7 Theorem. There is a topology on G̃ such that

G̃ :=
(
G̃, π̃, x̃

)
is a Riemann domain over Cn with distinguished point x̃, and all maps ϕλ :
Gλ → G̃ with

ϕλ(x) := equivalence class of x

are continuous and fiber preserving.
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Proof: (1) Sets of the form ϕλ(M) for M open in Gλ together with G̃

constitute a base of a topology for G̃. To see this it remains to show that the
intersection of two such sets is again of this form.

Let M ⊂ Gλ and N ⊂ G	 be open subsets. Then

ϕλ(M) ∩ ϕ	(N) = ϕ	(N ∩ ϕ−1
	 (ϕλ(M))).

But ϕ−1
	 (ϕλ(M)) is open in G	. In fact, let x ∈ ϕ−1

	 (ϕλ(M)) be given, and
y ∈ M be chosen such that ϕλ(y) = ϕ	(x) (and therefore y ∼P x). Let z :=
πλ(y) = π	(x). Then there exist open neighborhoods U = U(y) and V = V (x)
and an open connected neighborhood W = W (z) such that πλ : U → W and
π	 : V → W are topological mappings. Let ϕ := (π	|V )−1 ◦ πλ : U → V . By
the lemma, ϕ(y) = x and ϕ(y′) ∼P y′ for every y′ ∈ U .

So V ′ := ϕ(M∩U) is a neighborhood of x in G	, and since ϕ	(ϕ(y′)) = ϕλ(y′)
for every y′ ∈ U , it follows that V ′ ⊂ ϕ−1

	 (ϕλ(M)).

Consequently, every ϕλ is a continuous map.

(2) Remark: Since every y ∈ G̃ is an equivalence class ϕλ(x), we have

M =
⋃
λ∈L

ϕλ(ϕ−1
λ (M)) for any subset M ⊂ G̃.

(3) π̃ : G̃ → Cn is continuous: Let V ⊂ Cn be an arbitrary open set, and
M := π̃−1(V ). Then ϕ−1

λ (M) = π−1
λ (V ) is open in Gλ, and therefore M =⋃

λ∈L ϕλ(ϕ−1
λ (M)) is open in G̃.

(4) G̃ is a Hausdorff space: Let y1, y2 ∈ G̃ with y1 
= y2, and z1 := π̃(y1),
z2 := π̃(y2).

There are two cases. If z1 
= z2, then there are open neighborhoods V1(z1)
and V2(z2) with V1 ∩ V2 = ∅. Then π̃−1(V1) and π̃−1(V2) are disjoint open
neighborhoods of y1 and y2. If z1 = z2, then we choose elements x1 ∈ Gλ,
x2 ∈ G	 with ϕλ(x1) = y1 and ϕ	(x2) = y2, and since x1 and x2 are not
equivalent, the above lemma implies that there are disjoint neigborhoods of
y1 and y2.

(5) G̃ is connected: Let y = ϕλ(x) be an arbitrary point of G̃. Then there is
a continuous path α : [0, 1] → Gλ that connects the distinguished point xλ

to x. Then ϕλ ◦ α connects x̃ to y.

(6) π̃ is locally topological: Let y = ϕλ(x) be a point of G̃, and z = π̃(y) =
πλ(x). Then there exist open neighborhoods U = U(x) ⊂ Gλ and W =
W (z) ⊂ Cn such that πλ : U → W is a topological mapping. Ũ := ϕλ(U)
is an open neighborhood of y, with π̃(Ũ) = πλ(U) = W . In addition, π̃|Ũ is
injective, since π̃ ◦ ϕλ = πλ and πλ|U is injective.
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(7) Clearly, the maps ϕλ : Gλ → G̃ are fiber preserving, and it was already
shown that they are continuous.

Now G̃ has the following properties:

1. Gλ ≺ G̃, for every λ ∈ L.
2. If G∗ is a domain over Cn with Gλ ≺ G∗ for every λ, then G̃ ≺ G∗.

Proof: (of the second statement)

If G∗ is given, then there exist fiber preserving mappings ϕ∗
λ : Gλ → G∗. We

introduce a new equivalence relation � on the disjoint union X of the Gλ by

x � x′ : ⇐⇒ x ∈ Gλ, x
′ ∈ G	 and ϕ∗

λ(x) = ϕ∗
	(x

′).

It follows from the uniqueness of lifting that � has the property (P). Now we
define a map ϕ : G̃ → G∗ by

ϕ(ϕλ(x)) := ϕ∗
λ(x).

Since ∼P is the finest equivalence relation with property (P), ϕ is well defined.
Also it is clear that ϕ is continuous and fiber preserving.

Therefore G̃ is the smallest Riemann domain over Cn that contains all do-
mains Gλ.

Definition. The domain G̃ constructed as above is called the union of
the domains Gλ, and we write G̃ =

⋃
λ∈L Gλ.

Special cases:

1. From G1 ≺ G and G2 ≺ G it follows that G1 ∪ G2 ≺ G.
2. From G1 ≺ G2 it follows that G1 ∪ G2 ∼= G2.
3. G ∪ G ∼= G.
4. G1 ∪ G2 ∼= G2 ∪ G1.
5. G1 ∪ (G2 ∪ G3) ∼= (G1 ∪ G2) ∪ G3.

Example

Let G1 = (G1, π1, x1) be the Riemann surface of
√
z with distinguished point

x1 = (1, 1) and G2 = (G2, id, x2) the schlicht domain

G2 =
{
z ∈ C :

1
2
< |z| < 2

}
with distinguished point x2 = 1.

Then G1 ∪ G2 = (G̃, π̃, x̃0), where G̃ = (G1
.∪G2)/ ∼P .

Let y ∈ π−1
1 (G2) ⊂ G1. Then we can connect y to the point x1 by a path

α in π−1
1 (G2), and π1(y) to x2 by the path π1 ◦ α in G2. But x1 ∼P x2, so
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y ∼P π1(y) as well. This shows that over each point of G2 there is exactly
one equivalence class.

Now let z ∈ C − {0} be arbitrary. The line through z and 0 in C contains a
segment α : [0, 1] → C∗ that connects z to a point z∗ ∈ G2. There are two
paths α1, α2 in G1 with π1 ◦ α1 = π1 ◦ α2 = α. Since α1(1) ∼P α2(1), it
follows that α1(0) ∼P α2(0).

Then it follows that G1 ∪ G2 = (C − {0}, id, 1).

Exercises

1. For t = (t1, . . . , tn) ∈ V define Φt : Cn → Cn by

Φt(z1, . . . , zn) :=
(
eit1z1, . . . , e

itnzn

)
.

A Riemann domain G = (G, π, x0) is called a Reinhardt domain over
Cn if π(x0) = 0 and for every t ∈ V − (C∗)n there is an isomorphism
ϕt : G → G with π ◦ ϕt = Φt ◦ π. Prove:
(a) If G ⊂ Cn is a proper Reinhardt domain, then G = (G, id,0) is a

Reinhardt domain over Cn.
(b) Let G1, G2 ⊂ C2 be defined by

G1 := P2(0, 1) −
{

(z, w) : |z| =
1
2

and |w| ≤ 1
2

}
,

G2 :=
{

(z, w) ∈ P2(0, 1) : |w| < 1
2

}
.

Gluing G1 and G2 along
{
(z, w) : 1

2 < |z| < 1 and |w| < 1
2

}
one

obtains a Riemann domain over C2 that is a Reinhardt domain over
C2, but not schlicht. Show that this domain can be obtained as the
union of G1 =

(
G1, id,

( 3
4 ,

1
4

))
and G2 =

(
G2, id,

( 3
4 ,

1
4

))
.

2. Let J = {0, 1, 2, 3, . . .} ⊂ N0 be a finite or infinite sequence of natural
numbers and Pi = Pn(zi, ri), i ∈ J , a sequence of polydisks in Cn.
Assume that for every pair (i, j) ∈ J × J an “incidence number” εij ∈
{0, 1} is given such that the following hold:
(a) εij = εji and εii = 1.
(b) εij = 0 if Pi ∩ Pj = ∅.
(c) For every i > 0 in J there is a j < i with εij = 1.
(d) If Pi ∩ Pj ∩ Pk 
= ∅ and εij = 1, then εik = εjk.

Points z ∈ Pi and w ∈ Pj are called equivalent (z ∼ w) if z = w and

εij = 1. Prove that G :=
.⋃
Pi/ ∼ carries in a natural way the structure

of a Riemann domain over Cn.

Let π : G → Cn be the canonical projection and suppose that there is a
point z0 ∈ ⋂

i∈J Pi. Is there a point x0 ∈ G such that (G, π, x0) can be
written as the union of the Riemann domains (Pj , id, z0)?
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9. The Envelope of Holomorphy
Holomorphy on Riemann Domains

Definition. Let (G, π) be a domain over Cn. A function f : G → C
is called holomorphic at a point x ∈ G if there are open neighborhoods
U = U(x) ⊂ G and V = V (π(x)) ⊂ Cn such that π|U : U → V is
topological and f ◦ (π|U )−1 : V → C is holomorphic. The function f is
called holomorphic on G if f is holomorphic at every point x ∈ G.

Remark. A holomorphic function is always continuous. For schlicht do-
mains in Cn the new notion of holomorphy agrees with the old one.

Definition. Let Gj = (Gj , πj , xj), j = 1, 2, be domains over Cn with
distinguished point, and G1 ≺ G2 by virtue of a continuous mapping
ϕ : G1 → G2. For every function f on G2 we define f |G1 := f ◦ ϕ.

9.1 Proposition. If f : G2 → C is holomorphic and G1 ≺ G2, then f |G1 is
holomorphic on G1.

Proof: Trivial, since ϕ is a local homeomorphism with π2 ◦ ϕ = π1.

Definition.
1. Let (G, π) be a domain over Cn and x ∈ G a point. If f is a holo-

morphic function defined near x, then the pair (f, x) is called a local
holomorphic function at x.

2. Let (G1, π1), (G2, π2) be domains over Cn, and x1 ∈ G1, x2 ∈ G2
points with π1(x1) = π2(x2) =: z. Two local holomorphic functions
(f1, x1), (f2, x2) are called equivalent if there exist open neighbor-
hoods U1(x1) ⊂ G1, U2(x2) ⊂ G2, V (z), and topological mappings
π1 : U1 → V , π2 : U2 → V with f1 ◦ (π1|U1)

−1 = f2 ◦ (π2|U2)
−1.

3. The equivalence class of a local holomorphic function (f, x) is denoted
by fx.

Remark. If (f1)x1 = (f2)x2 , then clearly, f1(x1) = f2(x2). In particular,
if G1 = G2, π1 = π2, and x1 = x2, then it follows that f1 and f2 coincide in
an open neighborhood of x1 = x2.
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9.2 Proposition. Let (G1, π1), (G2, π2) be domains over Cn, αλ : [0, 1] →
Gλ continuous paths with π1◦α1 = π2◦α2. Additionally, let fλ be holomorphic
on Gλ, for λ = 1, 2. If (f1)α1(0) = (f2)α2(0), then also (f1)α1(1) = (f2)α2(1).

Proof: Let M := {t ∈ [0, 1] : (f1)α1(t) = (f2)α2(t)}. Then M 
= ∅, since
0 ∈ M . It is easy to see that M is open and closed in [0, 1], because of the
identity theorem for holomorphic functions. So M = [0, 1].

9.3 Proposition. Let Gj = (Gj , πj , xj), j = 1, 2, be domains over Cn with
distinguished point, and G1 ≺ G2. Then for every holomorphic function f on
G1 there is at most one holomorphic function F on G2 with F |G1 = f , i.e.,
a possible holomorphic extension of f is uniquely determined.

Proof: Let F1, F2 be holomorphic extensions of f to G2. We choose neigh-
borhoods Uλ(xλ) ⊂ Gλ such that the given fiber-preserving map ϕ : G1 → G2
maps U1 topologically onto U2. We have Fj ◦ ϕ|U1 = f |U1 , for j = 1, 2, and
therefore F1|U2 = F2|U2 . It follows that (F1)x2 = (F2)x2 . Since each point of
G2 can be joined to x2, the equality F1 = F2 follows.

Envelopes of Holomorphy

Definition. Let G = (G, π, x0) be a domain over Cn with distinguished
point and F a nonempty set of holomorphic functions on G.

Let (Gλ)λ∈L be the system of all domains over Cn with the following
properties:
1. G ≺ Gλ for every λ ∈ L.
2. For every f ∈ F and every λ ∈ L there is a holomorphic function
Fλ on Gλ with Fλ|G = f .

Then HF (G) :=
⋃

λ∈L Gλ is called the F -hull of G.

If F = O(G) is the set of all holomorphic functions on G, then H(G) :=
HO(G)(G) is called the envelope of holomorphy of G. If F = {f} for
some holomorphic function f on G, then Hf (G) := H{f}(G) is called the
domain of existence of the function f .

9.4 Theorem. Let G = (G, π, x0) be a domain over Cn, F a nonempty set
of holomorphic functions on G, and HF (G) = (Ĝ, π̂, x̂0) the F -hull. Then
the following hold:

1. G ≺ HF (G).
2. For each function f ∈ F there exists exactly one holomorphic function

F on Ĝ with F |G = f .
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3. If G1 = (G1, π1, x1) is a domain over Cn such that G ≺ G1 and every func-
tion f ∈ F can be holomorphically extended to G1, then G1 ≺ HF (G).

Proof: HF (G) is the union of all Riemann domains Gλ = (Gλ, πλ, xλ) to
which each function f ∈ F can be extended. We have fiber-preserving maps
ϕλ : G → Gλ and ϕ̂λ : Gλ → Ĝ.

Let ∼P be the finest equivalence relation on X :=
.⋃

λ∈LGλ with property
(P).6 Then Ĝ is the set of equivalence classes in X relative to ∼P . We define
a new equivalence relation � on X by

x � x′ : ⇐⇒ x ∈ Gλ, x
′ ∈ G	, πλ(x) = π	(x′), and for each f ∈ F

and its holomorphic extensions F1, F2 on Gλ, respectively G	,

we have (Fλ)x = (F	)x′ .

Then � has property (P):

(i)For any λ we can find open neighborhoods U = U(x0), V = V (xλ), and
W = W (π(x0)) such that all mappings in the following commutative dia-
gram are homeomorphisms:

U V

W

π πλ

ϕλ

Then for f ∈ F and its holomorphic extension Fλ on Gλ we have that
Fλ ◦ (πλ|V )−1 = Fλ ◦ ϕλ ◦ (π|U )−1 = f ◦ (π|U )−1 is independent of λ.
Therefore, all distinguished points xλ are equivalent.

(ii)If α : [0, 1] → Gλ and β : [0, 1] → G	 are continuous paths with α(0) � β(0)
and πλ ◦ α = π	 ◦ β, then (Fλ)α(0) = (F	)β(0). It follows that (Fλ)α(1) =
(F	)β(1) as well, and therefore α(1) � β(1).

Since G ≺ Gλ and Gλ ≺ HF (G), it follows that G ≺ HF (G). Furthermore, the
fiber preserving map ϕ̂ := ϕ̂λ ◦ ϕλ does not depend on λ.

Now let a function f ∈ F be given. We construct a holomorphic extension
F on Ĝ as follows:

If y ∈ Ĝ is an arbitrary point, then there is a λ ∈ L and a point yλ ∈ Gλ

such that y = ϕ̂λ(yλ), and we define

F (y) := Fλ(yλ).

If y = ϕ̂	(y	) as well, then yλ ∼P y	, and therefore yλ � y	 as well. It follows
that Fλ(yλ) = F	(y	), and F is well defined.
6 For the definition of property (P) see page 92.
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We have F ◦ ϕ̂ = F ◦ ϕ̂λ ◦ ϕλ = Fλ ◦ ϕλ = f on G. This shows that F is
an extension of f , and from the equation F ◦ ϕ̂λ = Fλ it follows that F is
holomorphic (since ϕ̂λ is locally topological).

The maximality of HF (G) follows by construction.

The F -hull HF (G) is therefore the largest domain into which all functions
f ∈ F can be holomorphically extended.

9.5 Identity theorem. Let Gj = (Gj , πj , xj), j = 1, 2, be domains over
Cn, and G̃ =

(
G̃, π̃, x̃

)
the union of G1 and G2. Let fj : Gj → C be holomor-

phic functions and G = (G, π, x) a domain with G ≺ Gj for j = 1, 2 such that
f1|G = f2|G. Then there is a holomorphic function f̃ on G̃ with f̃ |Gj = fj,
for j = 1, 2.

Proof: Let f := f1|G = f2|G, and F := {f}. Since G1 ≺ HF (G) and
G2 ≺ HF (G), it follows that G1 ∪ G2 ≺ HF (G).

Let f̂ be a holomorphic extension of f to Ĝ (where HF (G) =
(
Ĝ, π̂, x̂

)
), and

f̃ := f̂ |G̃. Then (
f̃ |Gj

)|G = f̃ |G =
(
f̂ |G̃

)|G = f̂ |G = f.

Therefore, f̃ |Gj
is a holomorphic extension of f to Gj . Due to the uniqueness

of holomorphic extension, f̃ |Gj
= fj for j = 1, 2.

Pseudoconvexity. Let Pn ⊂ Cn be the unit polydisk, (Pn,H) a Eu-
clidean Hartogs figure, and Φ : Pn → Cn an injective holomorphic map-
ping. Then (Φ(Pn),Φ(H)) is a generalized Hartogs figure. P = (Pn,Φ,0) and
H = (H,Φ,0) are Riemann domains with H ≺ P. We regard the pair (P,H)
as a generalized Hartogs figure.

9.6 Proposition. Let (G, π) be a domain over Cn, (P,H) a generalized
Hartogs figure, and x0 ∈ G a point for which H ≺ G := (G, π, x0).

Then every holomorphic function f on G can be extended holomorphically to
G ∪ P.

The proposition follows immediately from the identity theorem.

Definition. A domain (G, π) over Cn is called Hartogs convex if the
fact that (P,H) is a generalized Hartogs figure and x0 ∈ G a point with
H ≺ G := (G, π, x0) implies G ∪ P ∼= G.

A domain G = (G, π, x0) over Cn is called a domain of holomorphy if there
exists a holomorphic function f on G such that its domain of existence
is equal to G.
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Remark. If G ⊂ Cn is a schlicht domain, then the new definition agrees
with the old one.

9.7 Theorem.

1. If G = (G, π, x0) is a domain over Cn and F a nonempty set of holo-
morphic functions on G, then HF (G) is Hartogs convex.

2. Every domain of holomorphy is Hartogs convex.

Proof: Let (P,H) be a generalized Hartogs figure with H ≺ HF (G). Then
every function f ∈ F has a holomorphic continuation to HF (G) ∪ P. There-
fore, HF (G) ∪ P ≺ HF (G). On the other hand, we also have HF (G) ≺
HF (G) ∪ P. So HF (G) ∪ P ∼= HF (G).

A Riemann domain (G, π) is called holomorphically convex if for every infinite
discrete subset D ⊂ G there exists a holomorphic function f on G that is
unbounded on D.

9.8 Theorem (Oka, 1953). If a Riemann domain (G, π) is Hartogs pseu-
doconvex, it is holomorphically convex (and therefore a domain of holomor-
phy).

This is the solution of Levi’s problem for Riemann domains over Cn. We
cannot give the proof here.

It seems possible to construct the holomorphic hull by adjoining Hartogs
figures (cf. H. Langmaak, [La60]). It is conceivable that such a construction
may be realized with the help of a computer, but until now (spring 2002) no
successful attempt is known. We assume that parallel computer methods are
necessary.

Boundary Points. In the literature other notions of pseudoconvexity
are used. We want to give a rough idea of these methods.

Definition. Let X be a topological space. A filter (basis) on X is a
nonempty set R of subsets of X with the following properties:
1. ∅ 
∈ R.
2. The intersection of two elements of R contains again an element of

the set R.

Example

1. If x0 is a point of X, then every fundamental system of neighborhoods
of x0 in X is a filter, called a neighborhood filter of x0.
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2. Let (xn) be a sequence of points of X. If we define SN := {xn : n ≥
N}, then R := {SN : N ∈ N} is the so-called elementary filter of the
sequence (xn). A filter is therefore the generalization of a sequence.

Definition. A point x0 ∈ X is called a cluster point of the filter R if
x0 ∈ A, for every A ∈ R. The point x0 is called a limit of the filter R if
every element of a fundamental system of neighborhoods of x0 contains
an element of R.

For sequences the new notions agree with the old ones.

If f : X → Y is a continuous map, then the image of any filter on X is a
filter on Y , the so-called direct image.

Definition. Let (G, π) be a Riemann domain over Cn. An accessible
boundary point of (G, π) is a filter R on G with the following properties:
1. R has no cluster point in G.
2. The direct image π(R) has a limit z0 ∈ Cn.
3. For every connected open neighborhood V = V (z0) ⊂ Cn there is

exactly one connected component of π−1(V ) that belongs to R.
4. For every element U ∈ R there is a neighborhood V = V (z0) such

that U is a connected component of π−1(V ).

Remark. For a Hausdorff space X the following hold:

1. A filter in X has at most one limit.
2. If a filter in X has the limit x0, then x0 is the only cluster point of this

filter.

(for a proof see Bourbaki, [Bou66], § 8.1)

Therefore, the limit z0 in the definition above is uniquely determined.

There is an equivalent description of accessible boundary points that avoids
the filter concept. For this consider sequences (xν) of points of G with the
following properties:

1. (xν) has no cluster point in G.
2. The sequence of the images π(xν) has a limit z0 ∈ Cn.
3. For every connected open neighborhood V = V (z0) ⊂ Cn there is an
n0 ∈ N such that for n,m ≥ n0 the points xn and xm can be joined by a
continuous path α : [0, 1] → G with π ◦ α([0, 1]) ⊂ V .

Two such sequences (xν), (yν) are called equivalent if:

1. limν→∞ π(xν) = limν→∞ π(yν) = z0.
2. For every connected open neighborhood V = V (z0) there is an n0 such

that for n,m ≥ n0 the points xn and ym can be joined by a continuous
path α : [0, 1] → G with π ◦ α([0, 1]) ⊂ V .
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An accessible boundary point is an equivalence class of such sequences.

Let ∂̆G be the set of all accessible boundary points of G. Even if G is schlicht,
this set may be different from the topological boundary ∂G. There may be
points in ∂G that are not accessible, and it may be happen that an accessible
boundary point is the limit of two inequivalent sequences.

We define Ğ := G∪∂̆G. If r0 = [xn] is an accessible boundary point, we define
a neighborhood of r0 in Ğ as follows: Take a connected open set U ⊂ G
such that almost all xn lie in U and π(U) is contained in a neighborhood
of z0 := limn→∞ π(xn). Then add all boundary points r = [yn] such that
almost all yn lie in U and limn→∞ π(yn) is a cluster point of π(U). With this
neighborhood definition Ğ becomes a Hausdorff space, and π̆ : Ğ → Cn with

π̆(x) :=

{
π(x) if x ∈ G,

lim
n→∞π(xn) if x = [xn] ∈ ∂̆G,

is a continuous mapping.

Definition. A boundary point r ∈ ∂̆G is called removable if there is
a connected open neighborhood U = U(r) ⊂ Ğ such that (U, π̆) is a
schlicht Riemann domain over Cn and ∂̆G ∩ U is locally contained in a
proper analytic subset of U .

A subset M ⊂ ∂̆G is called thin if for every r0 ∈ M there is an open
neighborhood U = U(r0) ⊂ Ğ and a nowhere identically vanishing holo-
morphic function f on U ∩G such that for every r ∈ M ∩U there exists
a sequence (xn) in U ∩G converging to r such that limn→∞ f(xn) = 0.

Example

Let G ⊂ Cn be a (schlicht) domain and A ⊂ G a nowhere dense analytic
subset. Then every point of A is a removable boundary point of G′ := G−A.

The points of the boundary of the hyperball Br(0) ⊂ Cn are all not removable.

Let B be a ball in the affine hyperplane H = {(z0, . . . , zn) ∈ Cn+1 : z0 = 1},
and G ⊂ Cn+1 − {0} the cone over B. Then every boundary point of G is
not removable, since locally the boundary has real dimension 2n+1. The set
M := {0} is thin in the boundary, as is seen by choosing f(z0, . . . , zn) := z0.

Analytic Disks. Let (G, π) be a Riemann domain over Cn. If ϕ : D → Ğ
is a continuous mapping, π̆ ◦ϕ : D → Cn holomorphic, and (π̆ ◦ϕ)′(ζ) 
= 0 for
ζ ∈ D, then S := ϕ(D) is called an analytic disk in Ğ. The set bS := ϕ(∂D)
is called its boundary.
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Let I := [0, 1] be the unit interval. A family (St)t∈I of analytic disks ϕt(D)
in Ğ is called continuous if the mapping (z, t) �→ ϕt(z) is continuous. It is
called distinguished if St ⊂ G for 0 ≤ t < 1 and bSt ⊂ G for 0 ≤ t ≤ 1.

Definition. The domain G is called pseudoconvex if for every distin-
guished continuous family (St)t∈I of analytic disks in Ğ it follows that
S1 ⊂ G.

The domain G is called pseudoconvex at r ∈ ∂̆G if there is a neighborhood
U = U(r) ⊂ Ğ and an ε > 0 such that for every distinguished continuous
family (St)t∈I of analytic disks in Ğ with π̆(St) ⊂ Bε(π̆(r)) it follows
that St ∩ U ⊂ G for t ∈ I.

As in Cn one can show that a Riemann domain is pseudoconvex if and only
if it is Hartogs pseudoconvex.

9.9 Theorem (Oka). A Riemann domain (G, π) is pseudoconvex if and
only if it is pseudoconvex at every point r ∈ ∂̆G.

9.10 Corollary. If (G, π) is a domain of holomorphy, then G is pseudo-
convex at every accessible boundary point.

The converse theorem is Oka’s solution of Levi’s problem.

Finally, we mention the following result:

9.11 Theorem. Let (G, π) be a Riemann domain over Cn, and M ⊂ ∂̆G
a thin set of nonremovable boundary points. If G is pseudoconvex at every
point of ∂̆G−M , then G is pseudoconvex.

Proof: See [GrRe56], §3, Satz 4.

Exercises

1. Prove that a Reinhardt domain G over Cn must be schlicht if it is a
domain of holomorphy.

2. Prove that if (G, π) is a Reinhardt domain, then for every f ∈ O(G)
there is a power series S(z) at the origin such that f(x) = S(π(x)) for
x ∈ G.

3. Prove that the envelope of holomorphy of a Reinhardt domain is again a
Reinhardt domain.

4. Prove that the Riemann surface of the function f(z) = log(z) has just
one boundary point over 0 ∈ C.

5. Find a schlicht Riemann domain in C2 whose envelope of holomorphy is
not schlicht.

6. Construct a Riemann domain G = (G, π, x0) over C2 such that for all
x, y ∈ π−1(π(x0)) and every f ∈ O(G) the equality f(x) = f(y) holds.


